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Abstract

For exponents p satisfying 0 < |[p — 3| « 1 and only in the context of spatially even solutions
we prove that the ground states of the nonlinear Schrédinger equation (NLS) with pure power
nonlinearity of exponent p in the line are asymptotically stable. The proof is similar to a
related result of Martel [46] for a cubic quintic NLS. Here we modify the second part of Martel’s
argument, replacing the second virial inequality for a transformed problem with a smoothing
estimate on the initial problem, appropriately tamed by multiplying the initial variables and
equations by a cutoff.

1 Introduction
We consider the pure power focusing Nonlinear Schrédinger Equation (NLS) on the line
i0yu + 02u = — f(u) where f(u) = |u[P~'u for 0 < |p— 3| « 1. (1.1)

We consider only even solutions, eliminating translations and simplifying the problem. In particular,
we will study Equation (1.1) in the space H. j(R) = H} ;(R,C), of even functions in H*(R,C). It

rad .
is well known that Equation (1.1) has standing waves, solutions with the form u(t, x) = e*t¢p,, (z).

They are obtained from ¢, (x) = W T ¢(y/wz) with the explicit formula

d(z) = (%)ﬁsechﬁ <p2 13:), (1.2)

see formula (3.1) of Chang et al. [7]. Energy E and Mass Q are invariants of (1.1), where

JufP*

p+1

1
E(u) = 5”7/”%2(]1@) - JRF(U) dx where F'(u) , (1.3)

1
Qu) = 5”“”%2(&)- (1.4)

It is well known that ¢, minimizes E under the constraint Q = Q(¢,) =: q(w). Notice that
qw) = wﬁf%q(l). We have VE(¢,,) = wVQ(¢,) which reads also

— ¢, +wdy, — ¢l = 0. (1.5)
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Set now for w,d € Ry := (0,00) the set

M(w,&) = U ewODHrlad(]R)((bwué)v

YoER

where Dx (u,r) :={ve X | Ju—wv|x <r}. The following was shown by Cazenave and Lions [6], see
also Shatah [54] and Weinstein [63].

Theorem 1.1 (Orbital Stability). Let p € (1,5) and let wg > 0. Then for any € > 0 there exists
a d > 0 such that for any initial value ug € U(wg,d) then the corresponding solution satisfies u €
C° (R, U(wo, €)).

O
In order to study the notion of asymptotic stability, like in finite dimension, it is useful to have
information on the linearization of (1.1) at ¢,,, which we will see later has the following form

riy 1 . L 0 L_,
Ot (r2> =L, <r2) with £, = (_L+w 0 ) , (1.6)

Lyyi=—0% +w—pp?! (1.7)
L_y:=—0%+w—¢P L. (1.8)

where

The linearization is better seen in the context of functions in H! ;(R,R?) rather than in H} (R, C),
because it is R-linear rather than C-linear. For p = 3 the operator L, is completely known very
thoroughly, so for example all its plane waves are known explicitly, see section 10. Coles and
Gustafson [8] proved that for 0 < [p — 3| « 1 the linearization £, has exactly one eigenvalue of the
form i\ near iw. We set A\(p,w) := A. Furthermore 0 < A\(p,w) < w and dimker(L,, —iA(p,w)) = 1.
Let ¢, € H'(R,C?) be an appropriately normalized generator of ker(L,, — i\(p,w)), see §2.

In this paper we prove the following result.

Theorem 1.2. There exists p1 < 3 < p2 s.t. for any p € (p1,p2)\{3} and any wo > 0, any a > 0
and any € > 0 there exists a 6 > 0 such that for any initial value ug € DHrlad (®R) (hugy,0) there exist
functions 9,w € C* (R,R), z € C* (R,C) and wy > 0 s.t. the solution of (1.1) with initial datum ug
can be written as

u(t) = e (¢w(t) + 2(t) &) + E(t)gw(t) + n(t)) with (1.9)
JR \|e_“<m>n(t)\|%p(R)dt < € where {(x):= V1t a2 (1.10)
Jim e~ n(0)] ey = 0 (1.11)
tlirg} z(t) =0, (1.12)
tli)rg}w(t) =w;. (1.13)

Remark 1.3. Standing wave solutions in the integrable case p = 3 are not asymptotically stable due
the existence of breathers, see Borghese et al. [1, formula (1.21)], very close in H'(R) to a soliton
(take for example 7o — 0 in [1, formula (1.21)]). More broadly, when p = 3 it is possible to
add solutions using Bécklund transformations. In fact the situation resembles that of small energy



solutions of NLS with a trapping linear potential with two or more eigenvalues when we treat the
nonlinearity as a perturbation. Then the linear equation has quasiperiodic solutions, due to linear
superposition, while generically a nonlinear equation does not, see [17] for a 1 D result and therein for
references. However, some form of asymptotic stability holds also in the p = 3 case, using different
norms and the theory of Integrable Systems, [1, 21, 53].

Remark 1.4. Notice that the fact that the H!(R) norm of 7 is uniformly bounded for all times,
guaranteed by the orbital stability, and Theorem 1.2 imply that

Jim u()e ™0 = g, in L (R). (1.14)
Remark 1.5. While we prove Theorem 1.2 in the case that 0 < [p; — 3| « 1 for j = 1,2, it is

possible to ease significantly these hypotheses. In fact, we emphasize that our theory is largely non
perturbative. What we need in the proof are the following facts:

(1) 2A(p,1) > 1;

(ii) we can take y(p,1) # 0, where this constant is related to the Fermi Golden Rule (FGR), see
below, and is defined below in (5.3);

(iii) given the Jost functions f3(-,0) and g3(-,0) introduced later in Sect. 8, which depend analyti-
cally on p, their Wronskian is nonzero: W/ f3(z,0), g3(z,0)] # 0.

According to numerical computations in Chang et al. [7], condition (i) holds for all 2 < p < 3, where
there are no other eigenvalues of the form i\ for A > 0, no resonance is observed at the threshold
of the continuous spectrum. Furthermore, both v(p,1) and W[f5(z,0), gs(x,0)] can be made to
depend analytically on p. This would show that Theorem 1.2 holds for all the p € (2, 3) except for a
discrete subset of (2,3). Similarly, when we consider p > 3, we have A(3,1) = 1 and A(5,1) = 0 and,
according to the numerical computations in Chang et al. [7] (similar results were in part already
known: the first author learned about them by personal communication by M.I.Weinstein in the
year 2000), the function (3,5) 2 p — A(p, 1) is strictly decreasing, there are no other eigenvalues of
the form i\ with A > 0 and no resonance is observed at the threshold of the continuous spectrum. So
there will be a pg € (3,5) such that 2A\(p,1) > 1 for all 3 < p < pg (notice that pg € (4,5) in [7, fig. 1]
with pgy quite close to 5). Since also conditions (ii) and (iii) will be true for all the p € (3, pg) outside
a discrete subset of (3, pg) we conclude that outside a discrete subset of (3, pg) Theorem 1.2 continues
to be true. That the FGR constants are nonzero and that condition (iii) holds, are expected to be
generically true also for large perturbations of the cubic NLS. Furthermore, our framework could in
principle be applied in higher dimensions.

Remark 1.6. Martel [46] conjectures that for generic small perturbations of the cubic NLS the
asymptotic stability result in [45, 46] is true. Here we focus only on pure power NLS’s but our
method goes some way to prove this conjecture. For our method to work, we always need that
the threshold of the continuous spectrum be not a resonance, which should be true for generic
perturbations. For the smoothing estimate we need additionally condition (iii) in Remark 1.5,
which is true for small perturbations. If there is no eigenvalue in (0,iw) like in Martel [45] and
Rialland [52] and if the non resonance condition holds then our method proves Martel’s conjecture.
If there is one eigenvalue A € (0,iw) (it is easy to show, proceeding along the lines in [22] or, since
this is 1 dimension, Coles and Gustafson [8], that there can be at most one such eigenvalue for small
perturbations), condition (i) in Remark 1.5 will be true. If, as expected, generically the Nonlinear
Fermi golden rule (FGR) condition (ii) in Remark 1.5 holds, then our method works. So, using our
framework, to prove Martel’s conjecture it remains only to prove that for generic small perturbations



there is no threshold resonance and that if there is an eigenvalue the FGR is true. We think that
also Martel’s method in [46] yields a similar result.

Equation (1.1) is one of the most classical Hamiltonian systems in PDE’s and the asymptotic
stability of its ground states has been a longstanding open problem. Attempts at solving it date back
at least to the 80’s, see Soffer and Weinstein [57, 58]. The Vakhitov—Kolokolov stability criterion
yields the orbital stability exactly for p < 5, while for p > 5 the ground states are orbitally unstable.
On the other hand, proving asymptotic stability requires some form of spatial dispersion. It turns
out that it is difficult to prove dispersion for p < 5, which is the opposite condition to the one
utilized for example in Strauss [60] to prove a form of asymptotic stability of vacuum. In essence,
dispersion is a linear phenomenon, but for p < 5 the nonlinearity is strong and makes it difficult to
treat the problem as a perturbation of a linear equation. Whence the inability in the literature to
deal with the asymptotic stability problem for equation (1.1), left unaddressed from Buslaev and
Perelman [2, 3, 4] on. Another problem is the presence of nonzero eigenvalues of the linearization
L.,. These eigenvalues slow dispersion because the corresponding discrete modes tend to oscillate
periodically and decay slowly, see [3, 4, 59, 28], and furthermore they are a drag to the dispersion
of the continuous modes, on whose equation they exert a forcing. This is especially true in the case
when there are eigenvalues close to 0, as happens for example for p close to 1 or to 5. A mechanism
first discussed by Sigal [55], the Nonlinear Fermi Golden Rule (FGR), should allow to show that the
discrete modes lose energy by nonlinear interaction with the continuous modes.

It is next to impossible to see the FGR, without utilizing the Hamiltonian structure of the NLS,
see for example the complications in [27]. In [11] the FGR is seen using canonical coordinates and
normal forms transformations. Recently papers like [14] have simplified significantly [11], eliminating
the need of normal forms, thanks to the notion of Refined Profile, which is a generalization of the
families of ground states, a sort of surrogate of a (here not existent) family of quasiperiodic solutions
and encodes the discrete modes in the problem. Finding the Refined Profile is elementary, but
requires Taylor expansions of the nonlinearity, with the order higher when there are eigenvalues of
L, closer to 0. Since f(u) is not smooth in w, this is one of the main reasons why p needs here to
stay close to 3, where the eigenvalue is not close to 0. Even more difficult appears the problem when
the power p is such that £, has resonances at the thresholds of the continuous spectrum, except in
the integrable case p = 3. To see some of the difficulties, on a different and non integrable model
involving a resonance, we refer to the partial results in [44, 50]. We stress that here the spectral
configuration is as in Martel [46] and that we prove the FGR like in Martel [46].

Dispersion has played a crucial role in stabilization problems. The sequel [58] to [57] was only possible
because a result on dispersion for Schrodinger by Journé et al. [34]. Strichartz estimates, in particular
the 3 D endpoint Strichartz estimate of Keel and Tao [37], were introduced by Gustafson et. al.
[33] and played an important role in the theory. Dimensions 1 and 2 were considered by Mizumachi
[48, 47], whose use of smoothing estimates has provided us with crucial insights. But ultimately,
in low dimensions Strichartz estimates have limited scope. A very important turning point in the
theory in 1 D has been Kowalczyk et al. [39] which, along with the further developments and
refinements in [40, 41, 38], has exploited very effectively virial inequalities. Recently Martel [45, 46]
has applied and extended these ideas to the study of the asymptotic stability of two versions of the
cubic—quintic NLS introduced by Pelinovsky et al. [51]. Rialland [52] has generalized [45]. One of
the most striking features of the theory initiated by Kowalczyk et al. [40], is how easily the nonlinear
term involving only the continuous mode of the solution is sorted out by what we might call the high
energy virial inequality, see inequality is (6.5) below, by means of a clever but simple integration
by parts. The same term is almost impossible to treat with perturbative methods involving the
Duhamel formula. There exist also different approaches, some, but not exclusively, stemming from
the theory of space—time resonances of Germain et al. [29]. For a partial sample we refer for example



to work of Delort [26], Germain et al. [30], Naumkin [49]. Recently Germain and Collot [9] have
recovered and partially generalized Martel [45]. This theory requires a certain degree of smoothness
of the nonlinearity f(u), so it is not easily applicable to the specific model (1.1). We think that the
framework in Kowalczyk et al.; to which we return, is more robust and easier to apply in stability
problems.

After the first high energy virial inequality, the papers [40, 41, 38, 45, 46] utilize what we might call a
low energy virial inequality, which requires new coordinates where the linearization is nontrapping.
This has some similarities with the subtraction of solitons to study dispersion by means of the
Nonlinear Steepest Descent method of Deift and Zhou, as done for instance by Grunert and Teschl
[43], although the details are very different. An interesting feature and a possible criticality of the
low energy virial inequality, is that the virial inequality produces a different linear operator, which
also needs to be non—trapping. While in [45, 46, 52|, which deal with small perturbations of the cubic
NLS, the two non—trapping conditions are shown to be equivalent, thanks to a result by Simon [56]
on small perturbations of the Laplacian in dimensions 1 and 2, in general this might not be the case,
so it is plausible that in some cases the second virial inequality method might require restrictions
not intrinsic but rather due to the method of proof. To take a concrete example, in the first paper
[17] of our own series inspired by the work of Kowalczyk et al.[40], the repulsivity Assumption 1.13
[17] is in fact unnecessary and is used only because of the method of proof. This is the main insight
and motivation for this paper. In [17], besides the two virial inequalities, there is a smoothing
estimate, inspired by Mizumachi [48, 47], which in [17] appears because the FGR rule is proved in
an overly complicated way (a simplification appears in [19], motivated by [38]). The insight in the
present paper, is that, while it is obviously a good idea to prove the FGR as simply as possible, it
is possible to replace the the second virial inequality by smoothing estimates. We explain now some
further reasons why this might be convenient. Kowalczyk et al.[39, 40, 41, 38] and Martel [45, 46]
perform some Darboux transformations, which are almost isospectral transformations which allow
to eliminate eigenvalues of the linearization in a controlled way. For scalar Schrodiger operators in
the line the theory is fully developed in Deift and Trubowitz [25], with an important special case
discussed in Chang et al. [7]. The analogue for the linearizations £, is in Martel [45] and Rialland
[52] in the case without internal modes and in Martel [46] with just one internal mode. It is not
clear to us what are the Darboux transformations when the configuration of the internal modes of
L, is more complicated and if the space dimension is 2 or larger. So it is worth to develop some
alternative method which does not use Darboux transformations. The Kato—smoothing estimates
are a classical tool, originating in Kato [35], valid in any dimension. The smoothing estimates are
perturbative, based on the Duhamel formula. But there is no issue here of too strong nonlinearity
because we only need to bound the continuous mode multiplied by a spatial cutoff. This means
that we can multiply the NLS by a cutoff, taming the nonlinearity. The cutoff appears also in the
second virial inequalities in the theory of Kowalczyk et al. Obviously, in the equation we obtain an
additional term, delicate for us, represented by the commutator of Laplacian and cutoff. We treat it
via a specific smoothing estimate, see Lemma 2.3 below. In [17] we used some standard bounds on
the Jost functions of Schrodinger operators in 1 D to prove an analogous lemma. Here, for £, these
bounds on the Jost functions are not as obvious and this is one of the points where we exploit that
our problem is a small perturbation of the cubic NLS, the specific condition is (iii) in Remark 1.5
that appears generic and is in principle possible to check numerically in specific examples. Finally,
for a rather long list of references on the subject up until 2020, we refer to our survey [16].



2 Linearization

We return to a discussion of the linearization ( 6). Weinstein [62] showed that for 1 < p < 5 the
generalized kernel Ny(L,,) := U2 kerl], in H] 4(R,C?) is

rad

N,(Lo) = span{<(;w> , (aw(?w)}. (2.1)

By symmetry reasons, it known that the spectrum o (£,,)  C is symmetric by reflection with respect
of the coordinate axes. Furthermore, by Krieger and Schlag [42, p. 909] we know that o (L) < iR.
By standard Analytic Fredholm theory the essential spectrum is (—ooi, —wi] U [iw, +001). As already
mentioned 0 € o (£L,,). Numerical computations by Chang et al. [7] show that for p € (2,3) U (3,5),
besides 0 there are two eigenvalues of L, they are of the form +i\ with A > 0 and if we set as
above A(p,w) = A, we have A(3,w) = w and A\(5,w) = 0. As mentioned above Coles and Gustafson
[8] corroborate rigorously the numerical computations of Chang et al. [7] for 0 < |p — 3| « 1.
Furthermore, since at p = 3 the linearization £, has only 0 as an eigenvalue, and +iw are resonances,
Coles and Gustafson [8] imply that besides —iA(p,w),0,i\(p,w), for 0 < |p — 3| « 1 there are no
other eigenvalues and that +iw are not resonances.

Let us consider the orthogonal decomposition

L2a(R,C?) = Ny(L.,) P Ny (LE) (2.2)

We have, for A = A\(p,w), a further decomposition
N;‘(Ez) = ker(L,, —i\) @ ker(Le, +iA) P Xc(w) where (2.3)
Xo(w) i= (N (LX) Pker(LE —iA) D ker(LE +i))) . (2.4)
We denote by P. the projection of L2, (R, C?) onto X.(w) associated with the above decompositions.
The space L2 ,(R,C?) and the action of L, on it is obtained by first 1dent1fy1ng L? (R,C) =

L2 (R,R?) and then by extending this action to the completion of L2 ;(R,R?) @y C which is

rad
identified with L2 j(R,C?). In C we consider the inner product

rad
(z,w)e = Re{2w} = z1w1 + 22wy where a1 = Rea, az =Ima for a = 2z, w.

This obviously coincides with the inner product in R? and expands as the standard sesquilinear
(X,Y)e2 = XTY (row column product, vectors here are columns) form in C2. The operator of

multiplication by i in C' = R? extends into the linear operator J—! = —J where
0 1
J= (1 )
For u,v € L2 ,(R,C?) we set (u,v) := {; (u(x),v(x))c2 dz. We have a natural symplectic form
given by Q := (J~!.,-) in both L*(R,C?) and Lfdd(R,R2) = L2 ,(R,C), where equation (1.1) is

the Hamiltonian system in L2, (R, C) with Hamiltonian the energy E in (1.3). As we mentioned
we consider a generator &, € ker(L,, — i\). Then for the complex conjugate £, € ker(L,, + i\).
Notice the well known and elementary JL, = —L£*.J implies that ker(L£* + i\) = span {J¢,} and
ker(L¥ —i\) = span {J¢,}. Notice that in Lemma 2.7 [13] it is shown that we can normalize &, so
that

Q(&w,&u) = —, (2.5)



consistently with the fact that the functional E(u) + wQ(u) has a local minimum at u = ¢,,, see

(3.13)—(3.14) later. Notice that (2.5) is the same as
1
Q(Re &, Im¢,) = 3 and Q(Reé,,Reéy,) = Q(ImE,,Imé,) =0

where the latter is immediate by the skewadjointness of J. Notice that

L_,& =1X&

o = (&1,&)T e ker(L, —i)) = {L+w§1 AV

{ Lowbor = Air and {L“’&R = —Mu with £;r = Re¢; and &5 = Im¢;.

Lio&ir=—Aar Li,&ir = Mar

This implies that we can normalize so that

é‘w = (51,52)1- With 51 = Refl and 52 = 1Im§2

Hence condition (2.5) becomes

f & Iméodr =271,
R

Notation 2.1. We will use the following miscellanea of notations and definitions.

1. We will set

e(w) := E(¢w), qw) := Q(¢w) and d(w) := e(w) + wq(w).

2. We denote by diag(a, b) the diagonal matrix with first a and then b on the diagonal.

3. For z € C we will use z; = Rez and 2o = Im z and we will use the operators

0, := = (0, —10,,) and 0z := % (0, +10,) .

1
2

(2.8)

(2.9)

(2.10)

4. Like in the theory of Kowalczyk et al. [40], we consider constants A, B, e, § > 0 satisfying

log(671) » log(e ') » A» B*» B » 1.

(2.11)

Here we will take A ~ B3, see Sect. 7 below, but in fact A ~ B" for any n > 2 would make

no difference.
5. The notation o, (1) means a constant with a parameter e such that

0.(1) =295 .

6. For k € (0,1) fixed in terms of p and small enough, we consider

e := I<2)" 0l Loy where (z):=V/1+ a2,
+ AT

2 2
sech <—3:) n' sech (—x) n
A L2(R) A

Inlls := llsech (kwoz) 0 2 ) -

and
L2(R)

Inllsa =

(2.12)

(2.13)
(2.14)

(2.15)



7. We set
Cy:={zeC:+Imz > 0}. (2.16)

8. We will consider the Pauli matrices

0 1 0 —i 10
(o) e () )

9. The point iw is a resonance for £, if there exists a nonzero v € L* (R, C?) such that L,v = iwv.
Notice that for p = 3 the point iw is a resonance, see (10.7) for a v when w = 1. An elementary
scaling yields the cases w # 1 from the w = 1 case.

10. Given two Banach spaces X and Y we denote by L£(X,Y) the space of continuous linear
operators from X to Y. We write £(X) := £(X, X).

11. We have denoted by P. the projection on the space (2.4) associated to the spectral decompo-
sition (2.3) of the operator £L,. Later in (7.2) we will introduce an operator H,, which is an
equivalent to £, and obtained from L, by a simple conjugation. By an abuse of notation we
will continue to denote by P, the analogous spectral projection to the continuous spectrum
component, only of H,, this time.

12. We have the following elementary formulas,

= [ulP'X + (p— )|ul’Pulu, X)e and  (2.17)

Df(u)X = 4 (Ju+tX[P~! (u+tX))
dt 0

D?f(u)X? = %Df(u +tX)X
t=0

=2(p = DJul*X (u, X)e + (p = Dlul”ulX [ + (p = 1)(p = 3)[ufPulu, X)g.  (2.18)

O
The group e*« is well defined in L2 (R, C?), leaves invariant L2 ,(R, R?) and the terms of the

rad
direct sums in (2.2) and (2.3). The following result is an immediate consequence of a Proposition

8.1 in Krieger and Schlag [42], since L, as an easy consequence of Coles and Gustafson [8] is for
0 < |p — 3| « 1 admissible in the sense indicated in [42].

Proposition 2.2. For any fized s > 3/2 there is a constant C,such that
| Poetee : L2%(R,C2) — L>%(R,C2)| < Cu, ()2 for aliteR. (2.19)

O
We will need a variation of the last result, which we will be rephrased later and proved as
Lemma 8.9 and which is an analogue of Lemma 8.7 [17].

Proposition 2.3. For s > 3/2 and 7 > 1/2 there exists a constant C > 0 such that

t
J =L P (w)g(t)dt
0

< Clglpee,z27 )y for all g € LR, L*>7(R)).  (2.20)
L2(R,L>~*(R)) -

We will need the following result, whose proof is based on an argument in [24, Lemma 3.4].

Proposition 2.4 (Kato smoothing). For any w and for any s > 1 there exists ¢ > such that

€% Peuol| L2, L2.~#(m)) < clluolL2(z)- (2:21)



3 Refined profile, modulation, continuation argument and

proof of Theorem 1.2
It is well known, see Weinstein [62], that
S = {ewqﬁw eR w > O}
is a symplectic submanifold of L2, (R, C). We set
lw, 2] = bo, + Glw, 2] with dlw, 2] := 2 + ZE.

For functions gz, 573 and Wx to be determined below we introduce

Z[w, z] = Zo[w, z] + Zr[w, z] with Zp[w, z] = i\z

Iw, 2] = w+ Ur[w, 2] and J[w, 2] = Tr[w, 2].

(3.1)

(3.2)

Proposition 3.1. There exist C? functions Zr, 1;73 and Wr defined in a neighborhood of (wg,0) €

Ry x C with
0| + [Br| + 3R] < |21
such that, if we set
Rlw, 2] := 9lw, 2] + f(¢lw, 2]) = 9lw, 2] + B0ud[w, ] +iD:w, 2],
we have
| cosh (swz) Rle, 2] ) < 2P

with furthermore the following orthogonality conditions, for z;1 = Rez and zo = Im z,

(R[w, 2], ¢[w, 2]y = (R[w, 2], i0,0[w, 2]) = (iR[w, z],10.,¢[w, z] ) = 0, for all j =1,2.

Proof. From (1.5) and

D.3lw, 213 = Ludlw, 2] = =i (=329[w, 2] + wilw, 2] — D (9)9lw, ]
we obtain
iD,plw, 2|2y = —aig[w, 2] + wolw, 2] — f(P|w, 2]) + é[w, z] where
Rlw, 2] i= f(lw, 2]) = f(d) = Df(¢)dlw, 2].

Since

1 01
Rl = [ [ 10250+ tsdli, s 2
0 Jo
we conclude that

| cosh (kwz) Rlw, 2] 2y < |21

(3.3)



Now we set
R[w, 2] = Rlw, 2] — iD:¢lw, 2]Zr + Irdlw, 2] — Briulw, ]
Setting ¢ = ¢[w, z] and R= I%[w, z], the orthogonality conditions (3.6) are equivalent to
Ir @ i0)
—— | (Ra.e) (3.8)
(RD.g).
where, by D., ¢ = 2(¢,,0)T and D.,¢ = —2(0,Im&)T, with the right hand sides defined in (2.7),

Loty = (0w, d) —(D=t7%)
A= ({p,0u0) =(ilot050) —(iD.0,0u0)
Z *<18 d); z¢> 7<1Dz¢7Dz¢>

"(w)J 1 O(z) )T~
- (q o) <JDZI_(E, Dzj5> i.j_1.2> +o(z) = (CI( 8J ! 3) + O(z),

where the cancelled terms are null. Since A|,_, is invertible, we conclude that A is invertible also
for small z. From (3.7) and (3.8) we obtain (3.3) and (3.5).

(3.9)

O
The proof of the following modulation is standard, see Stuart [61].

Lemma 3.2 (Modulation). Let wo > 0. There exists an &g > 0 and functions w € C*(U(wo, d0), R)
and 9 € CH(U(wo, do), R/Z) and z € C*(U(wo, o), C) such that for any u € U(wo, o)
n(u) = ey — glw(u), z(u)] satzsﬁes (3.10)
((u), iglw(w), 2(w)]) = (n(w), dudlw(w), 2(w)]) = (n(u)], =; lw(w), 2(u)]) = 0, for all j =1,2.

Furthermore we have the identities w(¢p,,) = w, V(ePou) = I(u) + 9o and w(e'°u) = w(u) and
z(eou) = z(u).

We have now the ansatz .
u=e? (plw, 2] +1). (3.11)
By orbital stability we can assume that there exists 6 = (¢) such that
[ — €@y | 1 < 6 for all values of time. (3.12)
Then, using the notation in (2.10) and the fact that d’(w) = q(w) it is standard to write
0(9) = E(u) + wQ(u) — e(wo) — wq(wo) = d(w) — d(wo) — d'(wo)(w — wo)
+27 ((@E(d0) +wd*Q(@w)) 7)o (Irlzn) + o (Irfa (w = wo)) (3.13)
for 7 = 26 +Z€ + 0. Now we have
(dPE(¢w) + wd®Q(¢w)) 1,7y = (Lor, Jry = 2X|z|* + (Lo, Jn) (3.14)
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Since (L,n, Jn) Z |03, from the above and the strict convexity of d(w) we conclude that

|lw — wol + [2] + |n] g2 < V6 for all values of time. (3.15)

We will set N N N N
O := (19,&),2’), O := (19,(:),’5) and @73 = (1973,(:373,573). (316)

The proof of Theorem 1.2 is mainly based on the following continuation argument.

Proposition 3.3. There exists a 09 = do(€) s.t. if

120,50 + 1l Lo 5 + 10 = Ollery + 12% 120y < € (3.17)
holds for I =[0,T] for some T > 0 and for 6 € (0,8y) then in fact for I = [0,T] inequality (3.17)
holds for € replaced by o.(1)e.

Notice that this implies that in fact the result is true for I = R;. We will split the proof of
Proposition 3.3 in a number of partial results obtained assuming the hypotheses of Proposition 3.3.

Proposition 3.4. We have

19— D) pagry + o — @y < € (3.18)
12 =220y < Ve, (3.19)
12 o= (1) S V6. (3.20)

Proposition 3.5 (Fermi Golden Rule (FGR) estimate). We have
|22 22(r) s A7 (3.21)
Proposition 3.6 (Virial Inequality). We have
Ilzacrsay < A8 + 120 5aqry + Il ogr 5 + € (3.22)
Proposition 3.7 (Smoothing Inequality). We have
7l p2r 5y S 01 (1)e. (3.23)

Proof of Theorem 1.2. 1t is straightforward that Propositions 3.4-3.7 imply Proposition 3.3
and thus the fact that we can take I = R in all the above inequalities. This in particular implies
(1.12). By z € L*(R,) and 2 € L®(R,) we have (1.13).

We next focus on the limit (1.11). We first rewrite our equation, entering the ansatz (3.11) in (1.1),
to obtain, for ¢ = ¢lw, 2],

i) — ) — D¢ + wdu¢ +1D:0F = —02n — 0% — f(4 + ).
Then, adding and subtracting and using (3.4), for R = R[w, z] we obtain

— (=D — @ — 5)0; +i(6 — @) +1D. (2 — 2) = —2n + I (3.24)
( (0+n)—f(¢)—R
—2¢ — f(¢) + Vo — 1w8w¢ —iD.¢? + R,

11



where the last line equals 0, because of the definition of R in (3.4). Equation (3.24) rewrites
i+ 1(0 — D) + e Do ¢[O] (@ - é) (3.25)
=i (0% + Df(9lw, 21)) n — i + i (f(¢lw, z] + ) = f($lw. 2]) = Df($[w, 2])n) + iR[w, 2].
Let
a(t) = 27 e “Wn(t)| 2 g
Then by the Orbital Stability

a= f% <[e*2a<f>, iag] 7 n> (3.26)
7 <efa<x> (izén + e "D d[O] (6 . é)) ,e*a<x>n>
(e G (F(lw. 2] + 1) — (010, 2]) + iRl 2]) .~y = O(c?) for all times.

t——+00
e

Since we already know from (1.12) that a € L*(R), we conclude that a(t) 0. Notice that the
integration by parts in (3.26) can be made rigorous considering that if ug € H?(R) by the well known
regularity result by Kato, see [5], we have n € C° (]R, o2 (R)) and the above argument is correct and
by a standard density argument the result can be extended to ug € H*(R).

Finally, we prove (1.13). Since Q(¢,,) = q(w) is monotonic, it suffices to show Q(¢,,) converge
as t — o0. Next, from the conservation of Q, the exponential decay of ¢[w, z], (1.11) and (1.12), we
have

lim (Q(u) — Q) — QN())) = 0.

t—0

Here, notice that we can take
™" 2 max{|p[w, 2], [8[w, 2], |o[w, 2] [P 2}

Thus, our task is now to prove %Q(n) € L', which is sufficient to show the convergence of Q(7).
Now, from (3.25), we have

9Qu) = iy =~ (e 1D60[6] (6~ 8) ) + . iDF (6l 2]y

+ i (f(lw, 2] + ) = f(0lw, 2]) = DF(Plw, 2])n)) + (1, iR[w, 2])
=I+1I+1IT+1V.
By the bound of the 1st and the 3rd term of (3.17), we have I € L*(R, ). Next, by (2.17), we have
|Df(o[w, 2])n] < e %®|n| for some small a. Therefore, IT € L*(Ry). IV € L'(Ry) follows from
(3.5) and |z|? € L?>(R..). For III, since f is at least C? (we only consider p > 2) we have In analogy

to similar partitions in [20] which allow to offset the lack of differentiability of f(u), we partition
the line where z lives as

Qs = {zeR | [sn(t, z)| < 2|¢[w(t), z(8)]]} and
Qops = R\Quss = {z e R | [sn(t, 2)| > 2|¢[w(t), z()]]},

Then, we have

HOEEY ReJ

j=1,2 0

ds JQ‘ in(t)D? f(p[w(t), 2(t)] + sn)(n(t), n(t)) dz =: II;(t) + ITx(t).
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For ITy, by |n|r= < e <1 and by (2.18), we have

T ()] < j s f Ol )] + )l do < f 6L (®). 2P n(e)? de

Thus, we see II; € L'(R..). For I, since |sn+ ¢[w, z]| > $[sn| > 0 we can expand the integrand as
D f(glw(t), z(t)] + sn(t))(n(t), n(t)) = D*f(sn(t))(n(t), n(t))
[ D001, 200 + @) 6l 10 e

Now, since D(sn)(n, 1) = s*~2p(p — 1)|nlP~"n, we have
1
Re [ ds | mD2f(sn®)n(®)n(e) de =0,
0 QQ,t,s

because the integrand becomes purely imaginary. Therefore, from the bound

|D? f () (w1, wa, w3)| < [P~ [wi | |wa] [ws]

and from
[To[w(t), z(t)] + sn(t)| ~ |sn(t)] for 7€ [0,1] in Qo
we have
1
s sn(t)|P~ 3olw(t), 2 dx sP=3ds w(t), z 2 dz.
i< [[as [ wollop o). ol e < [0 as [ ototo. 0o a

Since p > 2 we have Sé sP73 ds < oo and we see I I € L' (R, ). Therefore, we have the conclusion. O

4 Proof of Proposition 3.4
Lemma 4.1. We have the estimates

[0 =0 + | =& < (121 + [nls) Inls (4.1)
2= 2| < (2] + Inls) Inlls:-

Proof. Applying < ie " Dgp[© ®> with ® € R?* to (3.25) and by the cancelations (3.6), we get

<D@¢ [0](6 — 8),iDo¢[O] @> - <n7 ¢ " Dop[O] ®> (-9 — <n7 ie™" D26[0](©,6 — é)>

(0. DesfO18 )0 — (n,ie " DE4[0)(©,6)) = —I {n.c " PeplE]E )

+ (1, (2 + Df(¢lw, 2D)) ¢’ DedlO]® ) — { (& +n) = (&) = Df(6)n,e " Dog[O]®).  (43)

Setting also R[O] = ¢!V R[w, 2], notice that equation (3.4) can be written as

32¢[0] + f(#[O]) +iDe¢[O]O = R[O].
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Differentiating in ©, we obtain
(02 + Df(4[©))) De¢[€]© +iD3[6](6,®) + iDe¢[0]De6® = Do R[€]O.
Since from f(e?¢) = f(¢) we have Df(e”$)X = Df(¢)e X, we get
(1, (2 + Df(9)) " Doc[0]® ) = (', (32 + Df(4[0))) Dag[O]® )
=—<e n,iD36[0](6, ©) + iDes[oHe®® — Do R[O >

where the cancellation follows by the modulation orthogonality (3.10). Entering this inside (4.3) we
get

<D@¢[ 1(6 — 8),iDe¢[O ®> (n,e™ " De[0]©) (I — I) <77,1e W D2 6[0 ](@,éfé)>

e~ D2 /g;;mu%ﬁﬁﬂuf/f§+<a%LD@R ©)

= {f(@+n) = fl¢) - Df(¢) e " Do¢[O)]
where the cancellation is obvious, since we have equal terms. So, from this we get
— (@ = ) (@ut 0) + (D26(2 — 2),6) + O (Inll5|6 - 8]
= iRy —{f(¢ +n) — f(¢) — Df()n,id)
which implies
— (&= 3) (0 0) + O (12112 = 21) + O (516 - &) (4.4)
= O (Inlgl=?) + O (Inl) -

Similarly, using | cosh (kwz) d, R[w, 2] lr2wy < |22

(9 = 0) {9, 2u6) + O (12l|5 = 21) + O (Il 5|6 — 6] (45)
= O (Inlgl=?) +0 (Iml).
Finally we get the following which along the other formulas yields the lemma
(D:0(z —2),10.,6) + O (1216 = 8]) = (n, 02, Ry + O (Inl) - (4.6)

O

Proof of Proposition 3.4. Lemma 4.1 and (3.17) imply immediately (3.18)—(3.19). Entering
this, (3.3) and (3.15) in (4.6) we obtain (3.20).

O

5 The Fermi Golden Rule: proof of Proposition 3.5

The nonlinear Fermi Golden Rule (FGR) was an idea initiated by Sigal [55] and further developed
by Buslaev and Perelman [3] and by Soffer and Weinstein [59]. More complicated configurations
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were discussed in [11], where the deep connection of the FGR with the Hamiltonian nature of the
NLS was clarified. This comes about because the FGR has to do with the fact that the integral of
certain coefficients on appropriate spheres of the phase space associated to L, are strictly positive.
The positivity is due to the fact that the coefficients are essentially squares, that is the product of
pairs of factors which are complex conjugates to each other. It turns out that the factors are like
this thanks to the Hamiltonian structure of the NLS, which gives relations between coefficients of
the system, since they are partial derivatives of a fixed given function, the Hamiltonian E, see [11,
pp. 287-288] for a heuristical explanation. The rigorous argument in [11] needed various changes of
variables, to get into canonical coordinates and normal forms. However the notion of Refined Profile
and the related modulation ansatz provide a framework to prove the FGR in a direct way, without
any need of a search of canonical coordinates and of normal forms, see for example [14]. The proof
involves differentiating a Lyapunov functional which lately in the literature, especially for space
dimension 1, is simpler than what would be analogous here to the energy E(4[©O]) used up until
[14, 17]. A good reference for the simpler Lyapunov functional is Kowalczyk and Martel [38] where
the spectrum is rather simple while for a version with a more complicated spectral configuration we
refer to [19]. In our current paper the spectrum is like in Kowalczyk and Martel [38] and Martel [46]
and involves the functional

Tran = (Jn,xa (29 + 229) ), (5.1)
with a nonzero ¢() e L®(R, C?) satisfying
L,g) = 2i\(p,w)g™). (5.2)

That ¢“) exists is known since Krieger and Schlag [42], see Lemma 6.3, or earlier Buslaev and
Perelman [2]. Notice that if g solves (5.2) for w = 1 then ¢()(z) := g (y/wz) solves (5.2), where
Ap,w) = wA(p,1). We define the FGR constant v(w, p) by

Y(w,p) = <¢5‘2 (p&; + &) ,g§w)> +2 <¢f)_2§1§27 95”)>- (5.3)

The non-degeneracy of this constant, which is usually assumed, but proved in this paper, is impor-
tant.

Lemma 5.1. For |p — 3| < 1, we can choose g so that y(w,p) # 0.

The proof of Lemma 5.1 is given in section 11. Notice that once we have have v(w, p) # 0, we
can multiply g by a constant to get

2(p — Dy(w,p) = 1. (5.4)

In the next lemma we will need the following reformulation of equation (3.25), where we identify
J = —i,

0= Lon— J(Or + 0 —9)n —e’’Dop[0](6 — ) + J (Df(¢|w, 2]) — Df(¢))n (5.5)
- J (f(¢[w7 Z] + 77) - f(¢[w7 Z]) - Df(¢[w7 Z])U) - JR[wv Z]

We have the following

Lemma 5.2. There is a C' in time function Trgr, which satisfies |Irgr| < V6 such that

Fran + Toan = 2! < A7 (21" + [l + Inlg) (5.6)
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Proof. Differentiating Jrar, we have
Jrar = (I xa (29 +25)) ) + (In.xa (226 + 2255 )
+ <J777 XA (22(2' —2)g") +22(z - §)§(“’))>
+ (I xa (2009 +720.59) ) (@ = @) + (In,xa (P09 +7°0.5)) )&
— Ay 4 As + Ag + A + As.

We consider first the last three terms, the simplest ones. By (4.2) we have
. 3 2 C 3
Aal 5 [callel £ = 21 5 434~ soch (G ) nlaals = 21 5 V343 (Juf, + )

Since ||0,9“) |1 < (x), using also (4.1) we have
S~ 5 S~
| Al < Almxal |2 — @] < A% |2 0]z, |w — I
5
<A (Inlg, +Inl) -
Finally, using (3.3) we have

~ 5
45| < Allnxallp21&] < A2 [2]*[n] 2.
5
< 82A% (Inl%, + 121%) -

Turning to the main terms, we have
Ay = <J17, 2i\x A (zzg(“) — E2§(°"))> + <J77, XA (QZERQ(W) + 27 Zr §(w)>> = Aoy + Aoo.
By (3.3) proceeding like for As,
3 3
|Azz| < [nxallnlz® € VAR ), |2l < VEAZ (In3, +=[*).

By (5.5) and by (5.2) for the cancellation, we have

vt A = ~(In GE2ALTTTD)) 486+ (T +9 = 9) (mxa( ) +5))

—(Je " Ded[](6 - 8),xa(x’g") +Z°5)))

+{(@xa0: + XaIn 29 +5°5)) = ((DF (9lw, 21) = DF(9.)) mxa (%9 +7°5) )

+ (J(8lw, 2] + 1) = f(lw, 2]) = DF@lw, 2D xa (229 +2°9) ) + (R, xa(z%g + 2°5) )
= A1 + A2+ A1z + A + Ais + Ass.

It is easy to see, and a rather routine computation repeated often in the literature, also using Lemma
4.1, that

5
> 1Au] < VAR (Jof* + Inl3, + 1)
Jj=1
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The key term for the FGR is A15. We claim we have
Ars = (J(8lw, 2]) = F(6) = Df(6) (26 + ) . xa(2*g) +2°5))
- <iDz¢[w7 2R — Ird[w, 2] + iBrOwdw, 2], xa(22g™ + 727 <“’)))> —: Asg1 + Area.
We have
[Asga| £ A7Hz[" (5.7)

Indeed, for example we have

o (i0u0[w, 2], Xa(229) +225) ) = O (i (2T + 2006 + +30,8) , 229 + 225

+Wr <16w¢[w, 2], (1= xa) (229" + E2§(°L)))> =0 (2°) + O (et

where we used the orthogonality (2.2)—(2.3), the bound (3.3) and the exponential decay of £. The
other terms forming Aj2 can be bounded similarly, yielding (5.7). We have

Asgr =271 (D*f(60) (26 +78)°  xa (29" + 2°5)) )
J[01 t< (D (b +1 5 (26 +78)) — D?f(6w)) (2€ +76)7, xa (g +225“))) >  Avont + Ao,
We have, taking 6 > 0 small enough,
|A1612] < 0s(1)]2]* < A7 2"

Next, by (2.18) for € = (&1,&)T, X = (26 +26,) +i(2& +ZE,), u = ¢, and identifying C = R?, we
have

—\ 2 z z£,)? z 7£,)?
D2f(0.) (s + ) = (- Dot (Mo F 0 - P T 2T (58)

Then, by (2.18) we have
Asgrn = 2(p — 1)|2|"y(w, p)
+dp = DI ({6872 (Pl + 1&) 2201 ) + 2 (726G + §i&). 225
+2(p—1) ({872 (v +E2) 20l >+2<¢>P 285,295 ))

=: Aig111 + Are112 + Ai6113-

We claim that

3
Z |[Ais115] < |2I° + |2’|© — ©.

j=2
To n = 2,4 write
d >, n—1 : >\ ,n—1 ) > . n—1 : >\ ,n—1
EZ =nZz" 4 n(Z=2)2" = ni" 4+ nZr2" T +n(2-2) 2" (5.9)
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Then for example
p—27F A4 (w) p—2¢ ¢ 1 d 4 ~ .3 2 L3 (W)
<¢w §182,27°95 > =( 9 515275 EZ —4ZRrz” —4(2 —2)2" | gy

and applying the Leibnitz rule for the time derivative, it is easy to obtain the claim, from which we
conclude, since the other terms can be treated similarly,

3
> sl < A7 (121 + Il + Inl2)

Jj=2

Using also the normalization in (5.4) we obtain (5.6).
O
Proof of Proposition 3.5. Integrating (5.6) we obtain [|2%]7. ;) < V0 + A71e? yielding (3.21).
|

6 High energies: proof of Proposition 3.6

The power of the method used by Kowalezyk et al. [40] is seen at high energies, thanks to a striking
computation that deals with great ease with the |7|P~17 term in the equation (3.25), see in particular
formula (3.12) in Kowalczyk et al. [40]. Notice that methods of proof of dispersion based on the
Duhamel formula, run into great trouble when dealing with the |n|P~1n at low p’s.

Following the framework in Kowalczyk et al. [40] we fix an even function y € C°(R, [0, 1]) satisfying

Io11] S X < 1j_g) and zx'(z) < 0 and set x¢ := x(-/C) for a C' > 0. (6.1)
We consider the function
T T
ata) = exp (<50 - x@)) and eato) = [ G (6.2
0

and the vector field

Sa =@y + 2040;. (6.3)
Next, we set

T :=2""n, San).
Lemma 6.1. There exists a fized constant C' > 0 s.t. for an arbitrary small number

2, < C[~Zia + [l3 +16 — O + [2] (6.4)
Proof. From (3.25)
T = —(n,iSany = {9, San) + (R, Sany + {f (¢ +n) = f(¢), Sam)
+0(16-8lls).

From [45] we have

C
@n; Sam) < =2 (Can)' 72 + ZInlE-
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Like in [45]
(f(@+m) = f(0),Sany = =2(F(¢+n) — F(¢) — f(#)n,C3)
3
—2{f(6+m) = £(&) = '@, &' 0ay + {f(6+m) = f(#),Gny = ), By

We have

B,

—2J t1(D?f(t3¢ + t1tan)(n, ¢),n¢a ) dtrdtadts + 2{F(n),(5)
0 3

)

Bs f[o ” (D?f(tag + tin)(n, d),nC3 y dtrdts — {f(n),n¢3)

This yields
|Bi| + |Bs| < |0l + 0"~ A%[n]3,,,,

where the crucial bound is
| 11 < A2 N Gan ey (6.5)
see Kowalezyk et al. [40], see also [15]. We have

2
| Ba| < [In%-

Notice, see Lemma 6.2 [19], that the following holds, completing the proof,

2 _ 2 _
ect () 132 + A2 lsect (o) e < 1an) ey + A7 1l

Proof of Proposition 3.6. Integrating in I inequality (6.1) we obtain (3.22).

7 Low energies: proof of Proposition 3.7

While very effective and efficient at proving dispersion at high energies thanks to inequality (6.5),
the virial inequality of Kowalezyk et al. [40] is somewhat inefficient at low energies, because it places
some restrictions on the system that seem due to the method of proof. In fact, as we show below,
we can replace the virial inequality with smoothing estimates. This because we only need to bound
Inlg = [sech (kwox) 12y, Which has the rapidly decaying weight sech (kwoz). It is enough to

bound |sech (kwox) XB77HL2(]R) because the difference is, choosing B ~ v/A « v/A, a small fraction
of [n]x,. To get a bound for [sech (kwox) xBN|2(r), We can multiply equation (5.5) by xp. The

cutoff xp tames the term xp|n|P~'n, which is very small and easy to bound. There is a new term
due to the commutator of yp and £, which requires a new smoothing estimate, see Proposition
2.3, not already contained in Krieger and Schlag [42]. Notice that in the case of scalar Schrodinger
operators in R a version of Proposition 2.3 is implied by Deift and Trubowitz [25] and is easy to
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prove, see Sect. 8 [17]. For convenience, in the study of dispersive and smoothing estimates of (5.5)
it is customary to use a different coordinate system. We consider the matrix U defined by

U= C 11) , Ut= % G ii). (7.1)

U™'JU = io3 where o3 := diag(1, —1).

We have

By elementary computations

U'L,U =iH,, where H, = 03 (—02 + w) + V,,, (7.2)

___p+1 p—1 _.p—l p—1 (0 i
V, = — PP o3 1—2 @P "oy where og := YL

Notice that we have the symmetries
o1H, = —H,o1 and 03H,, = H03. (7.3)
Applying U~ to equation (5.5) we get
(U™ ) = iH U 'y —ios(dr +9 — U 'n (7.4)
— U™ Deg[O](0 = ©) +iosU ™" (Df(9[w, 21) — Df(d))
— 103U~ (f(¢lw, 2] +n) = f($[w, 2]) = Df($[w, z])n) — 103U~ " Rlw, z].

Set v := xpU~'n. We denote P;(w) the discrete spectrum projection and P.(w) the continuous
spectrum projection associated to H,,, which are closely related to the corresponding projections for
L. Then we write

v = P.(wo)v + [Pa(wo), x5]U 'n where it is easy to check that (7.5)
|[Pa(wo), xB]1U 11l L2 m) < 0p-1(1)|n]5; for any s € R.
Setting w = P.v(wg), we have
Orw = iHugw — iwPe(wo)osw + iPe(wo)os (2X50z + XB) U™ 'n (7.7)
+1Pe(Viy — Vio)w + 1Pe(Visy — Vi) [Palwo), x5]U " 'n
— Pe(wo)x5e' ™ U™ Do¢[O](O — ©) + iPe(wo)osxnU ™" (Df(#lw, 2]) = Df(¢))n
— iPe(wo)xposU " (f(9lw, 2] + 1) = f(8lw, 2]) — Df ($lw, 21)m) — iPe(wo)osxsU " Rlw, 2]
where
wi=U0r + 9 — 9+ w — wp. (7.8)

There is a splitting P.(w) = Py (w) + P_(w) with Py (w) the spectral projections in Ry n oc(Hy).
Specifically we have the following for which we refer to [24].

Lemma 7.1. The following are bounded operators Py (w) in L? (R)

: 1 : .
Py (w)u = Mli»H-}l—oo 51—1>I(§l+ 5 J[W)M] [Ru, (E +i€) — Ry, (E —ie)|udE
M-+ e—0+ 2mi

P (@u= lim lim — J (R (E +i€) — Ry (F — i€)] udF
[_Mv_w]
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and for any M >0 and N > 0 and for C = C(N, M,w) we have
|(Py(w) = P-(w) = Pe(Hu)os) fllp2a ) < Ol fll2-vw)- (7.10)

A version of Lemma 7.1 was introduced by Buslaev and Perelman [3], see also [4].
We rewrite (7.7) as

Orw = iHuow — iw(Py (wo) — P-(wo))w + ios (2Xpdx + X5) w

— inc(w())O'g[Pd(wo), XB]U7177 — iw(Pc(w())O'g — P+(wo) + P (wo))w (7.11)
+iP.(Voy — Vi )w + iPe(Viyy — Vi) [Pa(wo), xB]U 'n (7.12)
— P(wo)xpe”* U™ Ded[O](© — ©) + iPu(wo)osxsU ' (Df($[w, 2]) — Df(¢u))n (7.13)
— iPe(wo)xBosU " (f(¢lw, 2] + 1) — f(¢lw, z]) — Df(plw, 2])n) — iPe(wo)osxsU 'Rlw,z].  (7.14)
We have
t
w=U(t,0)w(0) + iJ U(t, ') Pe(wo)os (2xp0s + XB) U™ 'ndt! (7.15)
0
t
+ J U(t, ') (lines (7.11)- (7.14)) dt’, (7.16)
0

where U is the generator associated with the linear evolution dyw = 1H,,,w —iww (P4 (wg) — P—(wo))w.
For oy = S:, w(v)dv, Py = Py(wp) and P. = P.(wp), expanding the exponential we get

UL, 1) = e/t ey peiow (Pr=P2) — p i) oo (cog (o) Py + isin (o) (Py — P_)) . (7.17)
Lemma 7.2. For S > 3/2 we have

lwlz2r,2-5®yy < op-1(1)e. (7.18)

Proof. Let us take S > 3/2. Taking the expansion in (7.17), we have

HU(t, O)M(O)HLZ(I,LI*S(R)) < HeitHWO w(O)HL2(R7L2,75(R))
+ [elen (Py — P_)w(0)] L2, 225 ) -

By the analogue for H,, of (2.21), see (9.1), which is what we actually prove in Sect. 9 below, we
have

leHe0w(0)] L2, 2 -s @) < [w(0)] 12 ().
Similarly
HeitHwo (P, — P_)w(O)HL2(R,L2v*S(R)) < [Py — P—)w(O)HLz(R) S Hw(O)HL2(R)-

The second term in (7.15) is more delicate for more than one reason. First of all, by (7.17) and
= g — Qpg, we write the integrand as the sum

el (t=t) Hag P, [cos (at0) cos (awg) + sin (ayp) sin (apo)

+i (cos (auo) sin (apo) — sin (o) cos (o)) (Py — P-)] 03 (2X'50x + X5) U lp

21



This yields various terms, that can be bounded all in the same way, so that we bound only the last
of them. We proceed like in [17]. We have

t

| sin (ato)f =" oo p (P, — P oy (2x'30x + X'B) cos (o) U™ ndt! | 21 r2.-s r))
0

< | Lt = oo (P — P — Poo3)os (2x50s + X'5) o8 (awo) U™ ndt | 121,125 (my)
+ Jot el Heo P (2350, + X'5) cos (o) U ndt! | p2(r, p2-smy) =2 1 + .
For I; can use the estimate (2.19) derived by Krieger and Schlag [42] and write
his] Jot [0 Pl s pams | Pe = P = Peoslgapas | (2Xa0s + Xi) Ul 2y dt 21y

t
_3/2 _
< J -t / | (2xE0x + X5) U 177||L2(]R)dtl”L2(I) < | (2XB02 + XB) 02,12 () (7.19)
0

where we postpone completion of the analysis. The term I is more delicate and is bounded by
Lemma 8.9, expressed for H,, instead of L,,, which is the same. So for any s > 1/2

I < | (2x'B02 + XB) 1l L2(1, 124 (R))- (7.20)
Now we have

_ 2
| (2x'B0s + XB) nllr2(1, 125 () < B*~|sech (ZI> 0l L2(r,L2®))

S— 2 S—
+ B L pepueamsect (52 ) ooy < B nlras,

2 /
+ B! ’ (sech (Zaz> 77)

where we used s € (1/2,1) and, see [17],

Il ez | = 01 (e,

L2(1,L3(R))

N p<pi<entla < A/ <ei<anlalln@ (0] 2@ + luls) -
This implies the following, yielding good bounds for the terms in the right hand side of line (7.15),
L+ 1 = 0371(1)6.

The terms in line (7.16) can be similarly bounded using in particular the analogue for H,, of Propo-
sition 2.2. The estimates are elementary and similar to [17, Sect. 8].

O

Proof of Proposition 3.7. From (7.5), (7.6) and (7.18) we have HUHU(I 5 S op-1(1)e. Next,

from v = xpU !, and thanks to the relation A ~ B3 set in (2.11) we have

_ 2
Il < ol + 101 = xerls < lol + A~ }sech (G

< ols + A7 nls. (7.21)
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So by (3.22) and (3.21) we get the following, which implies (3.23),

HWHLz(Li) < HUHLz(I,i) + A_1H77HL2(I,ZA)

S opr (et A7 (12220 + 0l pars)) < 051 (e + Al gy 5.

8 The resolvent of the linearized operator

We will focus on the operator H,, in (7.2). For the discussion it is enough to consider w = 1, since
the operators for other values of w are obtained by a scaling transformation. We will set H = H;
with vector potential V' = V1. We will set

e (3wt (2).

Given two (column) functions f,g : R — C2, using the row column product, we consider the
Wronskian

Wf,gl(@) == f'(z)Tg(x) — f(2)7g' ().
It is well known that H has Jost functions, discussed in [2, 42], which we subsume here.

Proposition 8.1. For any k € R there exists solutions fj(x, k) for j =1,2,3,4 of

Hu=(1+k)u (8.1)

with for a fited C > 0 and for x =0
fiz, k) = ei(fl)jﬂkaj (z, k) with |mj(z, k) —ei| < C kY e P~V for j = 1,2, (8.2)
falx, k) = eV oy (0 k) with [my(z, k) — ez] < C (k) e, (8.3)

There is a solution f4(x,k) of (8.1) with

Faa, k) = V2 %5, (2, k) with |ma(a, k) — es] < C kY e D7, (8.4)
We have
Wlfi. fo] = 2ik , W(f, il = 2v/2 + k2, W[f;, f5] = 0 for j = 1,2. (85)
There is a unique choice of c¢1,co € C such that for
falw k) = —crfil, k) — cofa(@, k) + fs = W[f;, fa] = 0 for j =1,2. (8.6)
O

For the proof see [42]. Since the potential V() is even, writing
gi(z, k) := fj(—x, k) (8.7)

yields analogous Jost functions with prescribed behavior as  — —o0. Notice that since the potential
V(z) is exponentially decreasing, all the above Jost functions extend in the region |Im k| < §, for a
small 6, > 0.
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Remark 8.2. For p = 3 it is possible to write explicit formulas for the above Jost functions, for
fi(z, k) for j = 1,2 see [36]. We write the formulas in Sect. 10.

We consider the matrices

Fl(xak) = (fl(xak)vj%(ka)) ) FQ(Iak) = (fQ(ka)aﬂl(ka))a
Gl(xak) = (gQ(Iak)vg4(ka)) ) GQ(ka) = (gl(I,k),gg(I,k)).

For matrix valued functions F' = (¢1, ¢2) and G = (1)1, 13) we set
WI[F,G] = F'(2)TG(z) — F(z)"G' (z).

By direct computation, see [42],

_ (W1, 1] W[p1,90]
Wik el = (W[ébzﬂ/)l] W[¢2,1/12]) '

Still quoting from [42], we have the following.
Lemma 8.3. For any k € R\{0} there matrices A(k) and B(k), smooth in k and s.t.

Fi(z, k) = Gi(z, k) A(k) + Ga(z, k) B(k), (8.8)

with A(—k) = A(k), B(—k) = B(k) and

Go(x, k) = Fy(z, k)A(k) + Fi(z, k)B(k), (8.9)
W[Fi(z, k), Ga(z, k)] = A(k)Tdiag(2ik, —24/2 + k?) (8.10)
W(Fi(z, k), G1(z, k)] = —B(k)Tdiag(2ik, —2/2 + k?). (8.11)
Furthermore
Gl (,T, k) = FQ(—JJ, k) N GQ(LL‘, k) = Fl(—:v, k) (8 12)
Fi(z, k) = Fi(z,—k) , Fo(x k) = Fo(x,—k). '
O
We set
. W[fl(ka)a 1(Iak)] W[fl(ka)a (ka)]
Dik) := Wik (@, k), G (e, k)] = (W[f3<x,k>,§1<x,k>] W[f3<x,k>,§§<x,k>]) - @19

The following holds, see [42].
Lemma 8.4. For k # 0 the following are equivalent:

o det A(k) = 0;
o E =1+k?is an eigenvalue of H;
e det D(k) = 0.

Furthermore E = 1 is neither nor an eigenvalue of H if and only if det D(0) # 0 and we have
D(—k) = D(k) and D(k)T = D(k).

The following holds, see [42].
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Lemma 8.5. For k = 0 the following extensions of the resolvent Ry (E) from above and from below
the real line hold, for E =1+ k?:

—Fi(z,E)D 1 (k JE)Tog if x >

R B) = G o (e ks i+ < e:14)
_ | —Fi(x,—k)D~ H—k)Ga(y, —k)Tos ifz =y
R B) = | et 0D e o e 23

We set ¥ = max{+x,0}. The main result of this section is the following.

k
. (8.15)

Proposition 8.6. There exists a small constant d35 > 0 such that for any p with 0 < |p — 3| < J3
there exists a constant C' such that for any E € (—o0, —1] U [1, +00) we have

RiGa Bl <c{{Tn ) Iy (5.16)
Assuming Proposition 8.6, we have the following.
Lemma 8.7. For S > 3/2 and 7 > 1/2 we have
SEZE HRIi;((E)PcHL2’T(R)—>L2’*S(R) < . (8.17)

Proof. First of all, from the proof of Proposition 8.6 it will be clear that (8.16) holds for any
E € (—w,—a] u [a,+0w) for an a € (0,1) sufficiently close to 1. Then in such a set we proceed like
in [17], we can ignore P, and consider the square of the Hilbert—Schmidt norm

f d (zy % f IRYy . (2,9, 2) oy~ dy = fRdx<x>‘2S f IRY (20, 2) oy dy

" fRdx<x>*25 f IRY, . (2, 2) oy dy. (8.18)

The second term in the right hand side is bounded by

f O (1+a*t+ y_)2 dxdy < f (&2 )2 dady

<y<0

3
+ J (o) P2 () dady + J @y 2 ) dady =: | 1.
O<z<y x j=1

<0<y

Then

I < J <x>725+2 dxf Wy dy =1, <o for $>3/2and 7> 1/2.
R R

Similarly I; < I for j = 2,3. Similar estimates hold for the term in the first line in the right hand
side of (8.18). So now we need to consider the inequality in (8.17) only for E € [—a,a], in which
case we can drop the superscript +. Then the result is trivial, because

sup ||Ru(E)Pe|r2rm)sr2-sm) < sup  |Ry(E)Pe|2m)—r2(r)

FEe[—a,a Ee[—a,a

= sup |Rup.(E)|rp)—rp) < ©
Ee[—a,a]
by the invariance of R(P.), the Range of P., and by o(HF.) n (—=1,1) = &.

The following formula is inspired by Mizumachi [48, Lemma 4.5].
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Lemma 8.8. Let for g € S(R x R, C?) with P.g(t) = g(t)
i

T 27

Ul(t,-): JR e (R, (E) + R (E)) g¥ (B, )dE

where g is the inverse Fourier transform in t of g. Then

t
2 [ ey i = Ule) — [ e (3.19)
0

+ J e_i(t_t/)Hg(t/)dt’.
Ry

We postpone the proof of Lemma 8.8 until the end of this section. From Lemmas 8.7 and 8.8
we conclude the following, inspired by Mizumachi [48].

Lemma 8.9. For S > 3/2 and 7 > 1/2 there exists a constant C(S,T) such that we have

< C(S, )9l 2w, 27 (®)) - (8.20)

t
f e_i(t_t/)Hch(t/)dt’
0 L2(R,12-5 (R))

Proof. The proof is verbatim in [17]. We can use formula (8.19) and bound U, with the bound on
the last two terms in the right hand side of (8.19) similar. Taking Fourier transform in ¢,

U z2p2-s < 251ip HR%JNH()\)g()\a ')‘|L§\L2’*S <

< 2supsup R (Wliarmas G0 0zors S glzzrne
T €

. O
Proof of Proposition 8.6. From Ry (z,y, E) = R};(z,y, F) for the bounds it is enough consider
the case of R}}. From

RIJ}(‘Tu Y, E) = USR;_FI(_y, —x, E)T0'3
it is enough to consider case = > y. Finally
R;I(x’ Y, E) = 70'1R;1(.’,E, Y, 7E)0'17

it is enough to focus on E = 1 + k2.

After the above reductions, we remark that it is enough to consider the case when k is close to
0. This is because for k away from 0 a better estimate, without the term 1 + x* + y—, is already
contained in [42]. Notice that the estimates in [42] there are some subtleties because, while for
x = 0 = y the desired estimate follows directly form the bounds here stated in Proposition 8.1, for
say 0 > 2 > y the bounds rely on (8.8)—(8.9) and on formulas (8.10)—(8.11) which yield formulas
) 1y s 1 1
like A(k)D~1(k) = diag (2i/€’ o
In the sequel we consider only the case R;} for E =1+ k2 and x > y for k close to 0. We will follow
the argument in [12], which unfortunately has some mistakes, but contains some useful insights
that we will review, avoiding errors. We will prove the following where to simplify notation we set

—2ikx

x, k) = fi(x, k). We will write Dy(z) = 1=6— with Dg(z) = .
2ki

which are responsible for some crucial cancellations.
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Lemma 8.10. For 0 < [p—3| « 1 and k € Cy close to 0, it is possible to write f(z,k) = e**m(z, k)
where

[oe]
m(z, k) —e - j Di(w — y)diag(1,0)V (y)m(y, k)t (8.21)
e~ VEZ 2|z —y|—ik(z—y)
- JR WK+ 2

In particular there exists a constant C' such that

[m(z, k) —e1| < C(1+x7) for all k near 0 and = € R. (8.22)

diag(0, 1)V (y)m(y, k)dt.

Proof. First of all it is easy to see that if m(x, k) satisfies (8.21), then f(z,k) = e*m(z,k)
satisfies (8.1) and can be taken as the fi(z,k) in Proposition 8.1. Now let us write m(x, k) =
(mq(x, k), ma(x, k)T, where here my and ms are the two components of m and should not be
confused with the m; and ms in Proposition 8.1. For the first component of m we have

| " Dule — ) Vi (yyma(y, Kydy = 1 - | " Di( — y)Vaa(y)ma(y, K)dy.

It is elementary that the operators
o0
A= = [ Die— )V ()us)dy

are bounded within the space (z~) L*(R) endowed with norm [v|¢z-yrm®) = | <3:*>_1 V]| oo (R)-
The following is standard and follows from [25, Lemma 1 p.130].

Claim 8.11. The operators (1 — A;;(k)) : (=) L®(R) — {(z~) L*(R) can be inverted with norm of
the inverse uniformly bounded in k € C.

Proof. Consider (1 — A;;(k))u = v and write formally the series

o0
Z Uy, With u, = A;j(k)up—1 and ug = v.

n=0
Then, like in [25, p.132] and by |Dy(z — y)| < |z — y|, for xg = =
|un ()] < J day...dwy | [(@e = we-1) Vi (@) @) | ()7 0l ey
TET <Tp

(=1
1
< J—
n!

This means that the series is uniformly convergent in half-lines and that for any = we have

[ =@ Wi ol

x

) =) - | " Dele — Vi ()uly)dy.

Then

0

u(2)] < |v(@)] + Jw ylVij (w)l[u(y)ldy — xJ Vij (y)[[u(y)ldy

x x
0

< [o(a)] + L ylVig ()l luly)|dy + = J Vi ()l lu(y)|dy.

x
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This implies

0
-1 N
@) Ju@)] < [vlla-yrem) + J 20p)* [Viy )|y )™ July)ldy
which in turn implies the following, by an application of Gronwall’s inequality,

<$7>71 [u(z)| < [v]¢e-yr=(®) exp (J 2(y)? | Vi (y)|dy) .

x

O
Thanks to Claim 8.11 we can write
ml(-, k) = (1 — All(k))_ll + (1 - All(k))_lAlg(k)mg(', k) (823)
where if
|ma(y, k)| < C for all y € R and for k close to 0, (8.24)
then
Im1(z, k)] < C (™) for all z € R and for k close to 0. (8.25)

For the second component of m we have
ef\/k2+2\zfy\7ik(zfy)

mo(x, k) = —

2(, ) fR 2vk2 + 2
J e—\/k2+2|m—y|—ik(m—y)
R

2vk2 + 2

Using formula (8.23), we can eliminate in the last equation m;(-, k), obtaining an equation of the
form

Va1 (y)ma(y, k)dy

Vao (y)ma(y, k)dy.

e—\/m‘w—y\—ik(w—y)

(1+ A(k))ma(- k) = — JR Sy Ve ) — A () dy where (8.26)
e~ VEZ+2|z—y|—ik(z—y)
A(k)ug = JR N (Voo (y)ua(y) + Va1 (y) (1 — Ana (k)™ Ava(k)uz) dy.

We want to solve this equation in L®(R). The operator A(k) is compact from L*(R) into itself. If
ker(1+ A(k)) = 0 for k = 0 then the same is true for k close to 0 and by Fredholm theory, equation
(8.26) is solvable and Lemma 8.10 is proved. So suppose now that there exists a nonzero us € L*(R)
such that (1 + A(0))uz = 0. Then setting

Uy = (1 - All(O))71A12(O)’UJ2,
with uy € (2~ ) L*(R) by Claim 8.11, the pair u := (u1, uz)T solves (recall that Dy(z) = z)

utw) =~ | " (@ — y)ding(1, 0)V(y)uly)dt (8.27)

x

e—V2lz—yl
R 2V/2

diag(0, 1)V (y)u(y)dt

28



r——+00

and u(x) is a solution of (8.1) for & = 0. Since u(x) 0, it follows that u(x) = cf3(x,0) for a
non zero constant ¢ € C. This, u; € (7 ) L*(R) and ug € L*(R) yield

|f3(z,0) S 1+ (8.28)
The latter is equivalent to
W{fs(z,0),gs5(z,0)] = 0. (8.29)

If this is not true for p = 3, by continuity of the dependence on the parameter p of the solutions of
system (8.1), (8.28) is not true for any p close to 3.

Claim 8.12. For p = 3 we have | f3(z,0)| ~ V2 Il as 2 — —c0.

Proof. Follows immediately from formula (10.9) below which yields a function proportional to

93(x,0) and from f3(x,0) = g3(—=z,0). O
From Claim 8.12 we conclude that W[ fs(x,0), gs(z,0)] # 0 for p = 3 and also for p close to 3.
Hence ker(1 + A(0)) = 0. This completes the proof of Lemma 8.10. O

Proof of Proposition 8.6: continuation and end. We have already discussed the fact that the
desired bound for the kernel R};(z,y, E) for E = 1+ k? and « > y and k outside a neighborhood of 0
are true by Krieger and Schlag [42]. So now we consider the case when k is small. Then by the bound
(8.22) for the fi(x, k) in (8.2) and by the exponential decay to 0 for x — —c0 of g3(z, k) = f3(—x, k),
it follows that

W[fl(xv k),gg(.%‘,k)] = W[f3(x7k)7gl(‘rv k)] =0.

So the matrix D(k) in (8.13) is diagonal. This then implies, similarly to the proof in Kriger and
Schlag [42], that for 2 = y and for k small,

Ri(z,y,1 + k%) = (fi(z,k),0) D~ (k) (g1(y, k),0)T + (0, f3(x, k) D' (k)(0, g3(y, k))T.  (8.30)

We bound this for 0 > = > y. The first term can be bounded by a constant times {(x~) because
lg1(y, k)| < 1 for y < 0 and, by (8.22), |fi(z, k)| < (a™) for < 0. The second term is uniformly
bounded, because |f3(x, k)| < eV2+H¥ 17l for < 0 and |g3(y, k)| < e V2 W for y < 0 when k is
sufficiently small. So this yields

IR} (z,y,1+ k%) < {a”) for 0 >z >y and for k close to 0.

By exploiting the symmetries due to g;(z, k) = f;(—z, k) and by similar estimates, we obtain also
the estimate

IR (z,y, 1+ k%) <{y") for 2 >y >0 and for k close to 0.

So we obtained the estimate (8.16) for all > y. This completes the proof of Proposition 8.6. [

Proof of Lemma 8.8. The group e is continuous and, see [42, Lemma 6.11] equibounded,
with infinitesimal generator iH. Then for a > 0 and ug,vo € L?(R,C?) by the Hille Yoshida theorem,
Goldstein [31, p. 17], we have

oo, . oo . _
GRp (A —ia)ug,vp)y = J <e‘t(H_’\+‘“)uodt, ’U0> = f e 1A <e‘t(H+‘“)uo, v0> dt and
0 0

0 0
(=iRg (A + ia)ug,vo) = <J et H=2=1a)y 0 qt v0> = J e 1A <eit(H*ia)u0, v0> dt.
—00 —00
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Then
1 J itA <1RH()\ - ia)uo ’U0> d\ = XR (t) <€it( i )’U,O ’U0> and
27 R ’ ’
- — J el <iRH()‘ + ia)UO UO> dA = xr (t) <eit( i )UO ’U0> :
2 ) — )

So for g, which for convenience we take in S(R x R, C?) n C.(Ry, L?(R,, C?)), we have
i

27

t
J MRy (N —ia)gY (N, -)dA = J =t H ) o (1) gy’ and
R —
i . +00 ) , )
- — J MRy (N +ia)gY (N, -)dA = J et H=ia) o (41 gy
27 R t
Summing up and after an elementary manipulation, for ¢ > 0 we have
i

2

0 ’ : ’ +m ’ B ’
_ J e—(t—t )ael(t—t )Hg(t,)dt/ - L e(t—t )ael(t—t )Hg(t/)dt/
—00

fR ™ (Ri(A —ia) + Ry (A +ia)) ” (A, -)dA (8.31)

¢ ¢
+f e—(t—t')aei(t—t/)Hg(t/)dt/ +J e(t—t/)aei(t—t')Hg(t/)dt/ a—0"
0 0
o oo t
J g dt! ff T gt )dt! + 2 f g dt! (8.32)
—o0 0 0
where the limit of the right hand side holds in L2(R) by e g(t') 07, g in LY(R, L*(R,, C?))
and by the Strichartz estimates, see Keel and Tao [37, Theorem 1.2]. We now focus at the limit of
line (8.31) as a — 0 when P.g(t) = g(¢) for all times. We claim that

lim, line (8.31) = if "™ (R (\) + R (V) g¥ (A, )dX in L*~* (R) (8.33)
a— R
for s > 3/2. We distinguish between three cases. For A\ € [-1 + a, 1 — «] for any fixed a € (0,1)
we have uniform convergence of the resolvents in the operator norm, where P.g" (\) = g¥(\) avoids
the singularities of the resolvent. For such that Rez € (—o0,—1 —a] U [1 + a,0) and Imz > 0
(resp. Tmz < 0) it is possible to apply the 3 dimensional theory in [10] to conclude that Ry (2) is
continuous as a function with values in the space of of bounded operators operator from L?* (R) to
L?7% (R) for s > 1/2. We finally consider the case when ) is close to {1, —1}. For symmetry reasons
it is not restrictive to consider the limit of Ry (A +1ia) for A close to 1 focusing on the corresponding
integral kernel in the region 2 > y. Notice that Lemma 8.10 continues to be true for k € C\[0, +00)
with k near 0. The resolvent of Ry (X + ia) is given by (8.14) with A + ia = 1 + k% and we continue
to have the diagonalization of D(k) yielding to (8.30). Then Ry (z,y, A + ia) satisfies the estimate
(8.16) and by dominated convergence we obtain the desired limit.

O

9 Proof of Proposition 2.4

We will prove the following version for H, that is in the case w = 1, of (2.21), where P, is the
spectral projection associated to the continuous spectrum of H, for any ug € L?(R,C?) and for a
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fixed constant ¢ > 0, .
| Pouo| 2, 2—=(r)) < cluolLe(w)- (9.1)

Let g(t,7) € S(R?) with g(t) = P.(H)g(t). Then

JR (e g, oag) dt = ﬁ JR (R} (B) = Ry(E))uo,053(E) ) dB
1
V2mi

LC(H) <(RE(E) — Ry (E))uo, UsE(E)>I dE.

Then from Fubini we have

J;R <efitHu0, 03g> dt’ < H (R};(E) — R;{(E))UOHL%’SL%(UC(H)) HgHLi’SLf'
So now we need to show that
|(RE(E) = Ry (E))uol 212 (5. a1y < [0l L2y

where the subscripts  and E indicate the variables of integration. We can split between E away from
the thresholds of o.(H), where the corresponding bound is obtained thanks to the corresponding
bound for the flat operator o3(—02 + 1) like in the 3 dimensional case, proved in [23], and the case
when F is close to the thresholds +1. More generally, we will show that for s > 1 there is a constant
Cs

| R (E)uo| p2(jp—1)«1,2-+(®)) < Cs|uolL2(r), (9.2)

with an analogous estimate valid near —1. Let us consider the scalar Schrodinger operator h =
—02 + sech® (E:1z). Then we claim that (x) ° is h-smoothing in the sense of Kato [35], which
implies that for s > 1 there is a constant Cy such that

”R;Lg(hﬂ)(E)UOHL%(R,Lg’fS(R)) < Cslluol 2 (w)- (9.3)
Since og(h + 1) is selfadjoint, by (5.3) in Theorem 5.1 [35], (9.3) will follow if for a fixed C' > 0
I<z) ™ Ry (41) (2){2) ™% | L2(m)— £2(R)) < C for all z with 0 < |Im 2|. (9.4)
From R,,(n4+1)(2) = diag (Rn(z — 1), —=Rp(z + 1)), (9.4) follows from
I<z)™* R (2){x)™* | L2(m)—£2(r)) < C for all z with 0 < |Im 2|. (9.5)

The kernel of Ry (z) for x < y, with an analogous formula for x > y, for arg+/z € [0, 7] is

BV = RS D )

where the Jost functions fy(x,/z) = eXV*®m (x,1/z) solve hu = zu with

R (2)(x,y) =

lim my(z,v/z)=1= lirzloom_(:v,\/;).

T—+00
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These functions satisfy, see Lemma 1 p. 130 [25],

(2, V) — 1] < Crmax{0, Fa}y(y/z) ! j psect (21 dy]

Jf sech? (%y) dy| exp (<\/E>‘1 Ew sech? <pTy> dyD

while, since h has no 0 resonance, T'(k) = ak(1 + o(1)) near k = 0 for some o # 0 and T'(k) = 1 +
O(1/k) for k — o0 and T € C°(R), see Theorem 1 [25]. Then (here for z € R we are taking R; (2))

s (k) — 1] < (V)

Koy R0 Bagerasngan < | @) | ae) o) Pdady
" f (Y~ 25(yy | Ry (=) (z,y) Pdrdy = A+ B.

The two terms on the right can be estimated similarly, so we bound only the first. It is easy to see
that, like in Proposition 8.6,

l+z +yh)ifz>y
|Ry(2)(z,y)| < C{(l bt hy)ifn <y, (9.6)

where in fact these estimates are what inspired (8.16). Then

()2 yy? 2 dudy + f (&)™) ddy

<0<y

A% |y Pdady + |
O<z<y x
=: A + Ay + As.

<y<0

Then

+0
A = J da{x)>—2s H~8dy < J (x)**dr < o0 for 3 —4s < —1 == 5> 1.
R R

x

Similarly As, obviously also As, and B are bounded for s > 1. So this yields (9.5) and (9.4). In
particular this implies (9.3). Now we can express

H=o03h+1)+V
where V = My sech? (—:v) for My a constant matrix. We can factor
V = B*A with B* = ()°V and A = (z)".
Now, for Im z > 0, for Qo(2) = ARy, (n41)(2)B*, we have
ARp(2) = (1+ Qo(2)) ™" ARyy (11 (2).

The function Qo(z) extends as an element of C°(C,\o,(H),L(L?)) with values in the space of
compact operators of L2 = L2(R,C?) in itself. Furthermore, (1 + Qo(z))”" extends into a bounded
operator except for those z € R for which ker (1 + Qo(z)) # 0. For z near but not equal to 1, by
standard arguments that can be seen in [23], this implies that z is an eigenvalue of H, but this is
not possible since here our z’s are taken much closer to 1 than A(p, 1), which is the only positive
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eigenvalue of H. The other possibility is that ker (1 + Qo(1)) # 0. We exclude this proceeding by
contradiction. If

(1+Qo(1))w =0 with w # 0

then ¢ = R:S(h+1)(1)B*w satisfies

(03(h+1) = 1)¥ = B*w = =B*AR} , | (1)B*w = =V

and so ¢ # 0 is a nontrivial distributional solution of (H — 1)u = 0. We claim that ¢ € L*(R). In
fact, for g = B*w,

wie) <

x

. IR sy (@9 )] 9(y)ldy + J IR hiny (@9 1) 19(y)ldy =: Bi(z) + Ba(x).

Then by (9.6) we have

Bi(z) < J (L+2" +y7) lg(y)ldy

<y

If now & < 0 then by the rapid decay of g we get

Bi(x) < j (1+ Iy lgw)ldy < o.
R
If £ > 0 we write

Bi(x) <f

(1+ J2]) l9(v)ldy < fRu 1y lo@)ldy < oo.

So By € L*(R). By a similar argument we obtain By € L*(R) and hence also 1 € L*(R). But then
1 is a resonance for H, which is not true. So we conclude that ker (1 + Qo(1)) = 0. Then

| R% (E)uol r2(p-1)<1,02-(®)
= | (1+Qo(E) ™ (x)™* R,i(hﬂ)(E)UoHL2(|E—1\<<1,L2(R))

< [ ay™? R:,i(hﬂ)(E)uoHL2(\E—1|<<1,L2(R)) S luolz2(w)

and (9.2) for the + and for —. This completes the proof of (9.1) and so also of Proposition 2.4.

10 Explicit Jost functions of the linearization for p = 3.

When p = 3 the Jost functions discussed in §8 have been explicitly known since Kaup [36]. In fact
it was shown that these Jost functions can be expressed in terms of the solutions of the Lax pair
system. In turn, the latter ones can be expressed in terms of the solutions of the Lax pair system
for the null solution of the NLS using Béacklund transformations. However here we will use some
transformations in Martel [45, 46] to write these explicit formulas. It is not restrictive to take w = 1.
For w =1 we have Ly = Lo and L_ = L; where, Chang et al. [7],

2

p+1  jlp—1)
p+1 '

P~ for j =0,1,2,... and k;(p) := —— —

Lj:=—02 4+ 1—k;_1(p)k;(p) 2 2

(10.1)
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Notice that
—p

and k3(p) = 2 —p.

When p =3, Ly = Ly = —0% + 1. Let

Sy = S(ki(p)) := 0x + k1(p) tanh (p2 13;) = 0, + tanh <PT1$) .

Martel [45, 46] exploits the following formula, which we derive for reader’s sake,
S2LoLy = S?LoSES) = S18FL3S? = LoL3S3,

where the first and last equalities follow from (3.14) and the second from (3.24) in Chang et al. [7].
Taking the adjoint we obtain

L1Lo(SY)? = (S7)?Ls La. (10.2)
This formula is exploited in Martel [45, 46] to show that starting from
L2w1 = )\’wg
{L3w2 — (10.3)
we get
& = (S7)*wn L& = A
10.4
{52 = —3Lovy - Lo& = — A&, (104)
where Lo&1 = —A& is true by definition and
1 1
L& = *XLlLO(ST)le = *X(ST)ZLBszl = —(S7)*Lawy = A(ST)*w1 = A&
Forp=3,by Ly = L3 = —02 + 1 for A = i(1 + k?) we consider solutions to (10.3) of the form
eFr (1, —i)T
T — )
(w1, w2) {e”m(l,i)T where p = /2 + k2 (10.5)

and by (10.4), after elementary computations, we obtain Jost functions for £, _, for p = 3,

elk* (1 — k2 — 2ik tanh(z) — 2sech®(z),i (1 — k2 — 2ik tanh(z)))" (10.6)
e"® (p? + 1 — 2ptanh(z) — 2sech®(z),i (u? + 1 — 2p tanh(:v)))T . '

Notice that

e (1 — k? — 2ik tanh(z) — 2sech®(z),i (1 — k* — 2ik tanh(m)))T’ (1 — 2sech®(z), i)T (10.7)

k=0
yields the resonance at the threshold i, see formula (3.54) Chang at al. [7]. Eigenfunctions for the
operator H are obtained applying to the vectors in (10.6) the matrix U~ yielding

(ur,ug)T := 271 (& —i&a, & +i&)T.

Entering in this formula the functions in (10.6) we obtain

(Z;) = (1 e 2152::}?(8)7 el (x)) and (10.8)
()= (s o) o). oo

which are the Jost functions of H for p = 3.
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11 The linear approximation of y(p,1) at p = 3.

In this section we prove Lemma 5.1 by following Martel [46]. We will focus only on y(p) := v(p, 1),
since the general w > 0 case follows from the w = 1 by scaling. We write ¢, to denote ¢ given in
(1.2). Similarly, when it is necessary to stress the dependence on p, we write g = 9p = (Gp.1,9p,2)7,
Co=1 = & = (£1,6,2)7, Lo|,1 = Ly and Liy|,_; = Lpt. For gp, like in (2.8), we take
gp,1 = Regp1 and gp2 = ilmgp 2. In the following, we choose
, 1 Oy T
&= (1-¢3,1)" and g3 = <—¢§ cos(x) + —2 sin(z),i-> sm(:z:)> ,
2 ¢3 b3

where {3 is just a resonance and not an eigenfunction.

Remark 11.1. Notice that here for &, we are not using the normalization in (2.9) and instead we
are defining it as a solution of (11.3) which will be defined in Lemma 11.5. On the other hand, g3
is given multiplying by —1 the vector given in (10.6) with k& = 1 and then taking the real part for
the first component and imaginary part for the second component respectively.

Also, for g, we have the following lemma which is a variant of Lemma 19 of Martel [46].

Lemma 11.2. We can choose g, so that

1 / /
lgp — (—¢§ cos(tx) + % sin(rz), i% sin(7:1:)> e < |p— 3|,
2 b3 b3
where T = /1 — A(p, 1)2.
Proof. The proof is parallel to Lemma 19 of Martel [46]. O

We will start by writing an expansion in p of the eigenfunction &,. Along the way we give a
new proof, based on Martel [46], of the result by Coles and Gustafson [8] about the existence of an
eigenvalue.

Lemma 11.3. There exists a small 61 > 0 and a function o € C*(Dg(3,61),R) such that

alp) = (p -3 (272 + 275274 (6, 1)) + O ((p - 3)"), (11.1)
where
e
T:= 5 * b3, (11.2)

and such that i(1 — a?(p)) is an eigenvalue of L, for 0 < |p — 3| < §1. That is, A\(p,1) = 1 — a(p)?.
Remark 11.4. Notice that (—02 + 2)T = /2¢3.

Proof. We are looking to solutions to

L &2=i(1-0a%)&
{L-?-gpf)l = —i(1 - 0‘2)21772 ' (11.3)

By (10.3), this is equivalent to the existence of w, = (wp, 1, wy 2)T such that

0 *Lg Wp, 1
L2 0 Wp, 2

= (—J(—ai +1)+ kz(p)pi T (01 k3ép))) wp = i(1 = a?)w,. (11.4)
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Applying U™, recall U is given in (7.1), to this equation and introducing Z, =: U 1w, , after
elementary computations we get the equivalent problem

(~oa-2 4+ k)t (DT ] (om0 )z, - 1oz,

Substituting the values of ka(p) and k3(p) and multiplying by —o3, this can be written
((_85 +1)+(p— 3)Pp($)) Zy = —o3(1 — 0‘2)Zp

with

3—p p—1 1 -1
P = b .
Notice in particular that

Ps3(x) = 01%¢§(:v) = olésechQ(x). (11.5)

For

52 4,2
H, = ( 8””0+ " —620—|— a2) with kK = /2 — o2,

x

we can write
(Ho + (p = 3)Pyp) Z, = 0,
which is equivalent to
(1+(p—3)H,'P,) Z, = 0.
If we set

s (1+Vp=2 1-p=2) 1 e
|P;D(ZU)| _<1\/p—2 1+\/p—2) Nﬁ(bp (ZC) and

Phw) =Pl - (1 V22 TR e @)

I+vp—2 1—-+p-2)2p+1

from the elementary computation
l—c 14c¢)\(1+c 1—-c\ _ 2(1 —¢?) (1—c)*+(1+¢)?
l+c 1—¢J\1—c 1+4+c¢) \(1=¢)?+ (1+c)? 2(1 — c?)
_9 1—c® 1+¢2
T\ +e 1)

1
it follows that P, (z) = P2 (2)|P,(z)|? and furthermore these matrices commute.
Setting

v, :=P:Z, (11.6)

the equation for Z,, writes

(1+ (p— 3)Kap) ¥ = 0 where Kop = P2 H 1P|},
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We expand

1
Kop = Lap + My with My, :=Pp Na|Pp|% with integral kernels

ap—rlz—y| 0

1
Na(xvy) = % ( 0 €7a|x7y| — 1) and

I 53 . 1
Lap(,y) = =Py (v) diag(0,1) [Py(y)|*.

Here (p,a) — My, is in C*(Dg2((3,0),61), L*(R,C?)) for a small enough &; > 0. The equation for

W, becomes

1 _ 1 1 1
50 1+ (P = 3)Map) " "PE ()e2 <e2, |PP|“I’P> =3

To have a solution in (11.7) it is not restrictive to posit
W, = (1+ (p— 3)Map) "Phes € C°(Ds2((3,0),81), LA(R, C2))
1
U =Pi(1+(p— 3)N06PP)71625
where the two formulas for ¥, are equivalent. With them, (11.7) is equivalent to

-3 . N o
o= _P . s(p, ) with s(p,«) := <62, |Pp|§(1 + (p— 3)Map) ' P2 e2>'

Notice that s(-,-) € C*(Dg2((3,0), 1), R) with

s(p, @) = ez, Ppea) — (p = 3) (e, [Py | Moy PF ez ) + O (0 - 3)%)
= {e2,Ppea) — (p = 3) {e2, P, NaPpea) + O ((p — 3)°) .
Since, we have

p—3 -1 1 _ 1 _
oy = gy (en (T L) o7t )+ ppCentpiomesy

p

p—3 J p—1 p—3 f 2 p—3
=— de = — sech” (z)dr = ———
2+ 1) Ju 2p—1) e

with the canceled term null, and
(e2, PpNoPpea) = {e2, P3NogP3ea) + O ((p — 3)) + O (a)
= 47%{ea, 51 No@301€2) + O ((p = 3)) + O (a)
=272 (BT + 0 ((p—3) +0(a),

we obtain

s(p,a) = —(p—3) (ﬁ +275272 (g3, T>) +0((p-3)°) +0((p—3)).

Applying the implicit function theorem to (11.10) we get (11.1).

In analogy to Martel [46] we give an expansion of a &,.
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Lemma 11.5. There exists an open interval Z containing 3 and for each p € T there exists a solution

& = (&p1,&p,2)T of (11.3) of the form

Ep1=1—¢2+(p—3)R1+ (p—3)%,1, (11.11)
bpo=i(1+ (0= 3R+ (0 —3)%62), (11.12)
where
Ry = —xd30% — f(?’ $3)T — 2\%@ T and
Ll 34 4 g
R2—2¢3+4\/§ 2\/7¢3T

and where furthermore, for any k = 0 there exists a constant Cy, such that
|§(k)( )| < Cr(x)® for allzeR and all peT. (11.13)
Proof. From (11.6) and (11.9), and in particular expanding the latter, we have
Zy=(1+(p—3)NaP,) les = 2 — (p— 3)NaPpes + (p — 3)*Zs
—ey— (p—3)272272Te; + (p— 3)°Z with Z = Zy + Zs
N 1
Zy = _L O (Nap)Py)

Zo i= NaP,No|P,|* (1 + (p — 3)Ma,) 'Phes

ezdt

p'=3+t(p—3)

where we used NgP3 = 272Te;. By standard computations for any k > 0 there exists a constant
C}, such that

|0k Zy| < Ci (x) for all z € R and all p near 3.
It is also elementary to see that for any k£ > 0 there exists a constant C}, such that
-1
10p (Nap) (x,y)@’;Pp( ) e2] < (x— y)? sech < 5 y) for all x,y € R,
which implies for any k > 0 there exists a constant Cj such that
|0’;Z| < Cp(z)® for all z € R and all p near 3. (11.14)

Going back to wy, = (wp,1,wp 2)T and for & = UZ we have

w, =UZ, = (_11) —(p—3)2727 2T <}> + (p—3)%w

Notice that the first term in the expansion is exactly what we get entering & = 0 in (10.5).
Going back to &, = (§p,1,&p,2)T by means of (10.4) we have

/N 2 AN /2
&p1 = (S )2wp, = (6;5—1—2—2) Wp,1 = (32+2¢26 +(Zp) +Z—2> Wp,1

¢//
82 pa .
( + 2% + ¢p) Wp,1
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We will use also the expansion in [8]

¢£—1 =¢2 4 (p—3)q1 + (p — 3)%qr(x) with ¢ (z) = sech?(z) (27" — 2z tanh(z)) (11.15)

1 / o
tdt = J 02 Pt 1sech2 P 190
p'=(1—t)3+tp o ? 2 2

Notice that for any k& > 0 there exists a constant C, such that

where

1 /!
ar(z) = f 2267 ()

tdt.
p'=(1—t)3+tp

|q§§) ()| < Cy {x)* sech? (min {p%l, 1} x) for all € R and all p near 3. (11.16)
Recalling the identities
—(bg—i—(bp— > =0 and
R R T A

we get
QI)//
Pp
bp
so that using also the expansion in (11.15) we have
&ai=1—-0¢3+(p—3)Ri+(p— 3)%6;

where, using the equation in (11.2),

=1-¢b " =1-¢5—(p—3)a1 — (0~ 3)°ar,

/
Rii=—q—272273 (aﬁ + 2%@ +1-— ¢§) T
3

=+ 2722 —272273(3 — ¢2)T + 271277 tanh(z)T’
which by (11.15) yields the desired expression of Ry and

~' 27% ¢;) ¢/3 / —2 _1 *\2 ~
51':74(19—3) (b—pf% T' +27°272qgT + (ST) W

By (11.14) and (11.16), we have (11.13) for j = 1. Next, by (10.4), we have —i(1—a?)&,2 = Ly pép1-
Substituting the expansions (11.11) and

Lip=1Lis—(p—3)(#5+3q)— (p—3)°Bar + a1 + (p — 3)q1ar) ,

which follows from (11.15), we have

o? 1

—i€p2 = Lipépr + (p — 3)? (m meLpgp,l)
= Lys(1—63) + (p—3) (LysR1 — (65 + 3q1)(1 — ¢3))

+(p=3)? (Lusés — (65 +30) (B1 + (0= 3)1) — Bar + a1 + (0~ 3)a14) 1)
2 1
+(p—3)° (@0[73)2 mL-ﬁ-pgp,l)
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By looking the coefficients of (p — 3)? and (p — 3)! we have (11.12). Further, the estimate of &
follows from the estimate of & given by (11.13), (11.16) and the explicit form of Ry and ¢;.

O
Now, Lemma 5.1 is a direct consequence of the following lemma.
Lemma 11.6. For |p — 3| < 1, we have
(1) = = (p—3) + olp — 3)
T v/2 cosh(7/2) b b '
Proof. We set
1 1 1
E = a1o|p:3 bp = §¢3 (Z - 10g¢3> + §$¢§,
Fi=0pl,_3007 % = E+ ¢3log és.
Further, we set
F=¢b%—¢3—(p—3)F. (11.17)

Recall,

v(p, 1) = <¢£72 (pgz,l + 52,2)7 gp,1> +2 <¢572€p,1€p,27 gp,2>

and setting, following notation and argument in Martel [46],

Gp,1 = ¢§_2(p§§,1 + 5;2),2)7
Gp72 = *2i¢£72§p,1€p,27

we have
Gpi = ¢3 (3(1—¢3)> — 1) + (p — 3)A1 + Ay,
1 _
EG;DQ = ¢3(1 — ¢§) + (p — 3)A2 + Ay,

where

Ay = F (3(1—¢8)* —1) + ¢s(1 — ¢3)* + 6¢3(1 — ¢3) Ry — 23z,

Ay = F(1 - ¢3) + ¢3R1 + ¢3(1 — ¢3) Ry
and A;, Ay are remainder terms of (p — 3)2 order. Since it is easy to verify that the Fin (11.17) is
decaying exponentially, we see from Lemma 11.5 that the contribution of A; and Ay to v(p, 1) are

(p — 3)? order. Thus, we can ignore these terms.
i

We have {¢p, gp1) = 0 like in Martel [46]. Now, by g,2 = D) Lot gp.1s We have

1
Y(p, 1) = (Gp1,9p,1) + <Gp,27 mLP+gp,l>

1
=(G — L, G
(o + iyt Goin)
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By direct computation, see the proof of Lemma 20 of [46], we have

Gs + %(—ag +1-303)Ga2 =3 (3(1—5)° — 1) + %(—832 +1-363) (¢3(1 = ¢3)°) = 203,

Thus, we see v(3,1) = 0. Further, expanding Gp 1, Gp2 and L, we have
1
v(p,1) = <2¢3 +(p-3) (Al tLsrBat+ g (3p|p:3 Lp+) G3,2) 7gp,l> +o(p—3)

=(p—3) (—2<E,93,1> + (A1, 931) +2{Dg, —ig3,2) — % <¢3 <£¢3 + 3:6(;5/3) 03,2793,1>)
+ o(p — 3).

Thus, it suffices to compute the coefficient of p — 3, which we denote 71 (i.e. v(p,1) = (p — 3)y1 +
o(p — 3)). Following Martel [46] we will consider the following constants,

Pr = Jsech]C Cos,

qr = J sech” log osech cos

T = JsechkT cos

Sk = J sech®T tanh sin

ap = f asech® tanh cos

by, = fsechk tanh sin

Ck = f sech® log osech tanh sin
di = stechlC sin

e = Jsech]C tanh T’ cos

Je = JsechkT’ sin .
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Then, after a quite long but elementary computation, we arrive to
3 3 3 3
=2 —5(210g2 + 1)ps + 5(2log2 + 1)p7 + 50~ 6qgs + 6q7 — 203 + 6as — 6ar
3 3 3
+2 5(21og2 +1)bg — 5(2log2 +1)bs — 501+ 6eg — 6es
3 3
+2 5t — 5ds — 6d + 6ds + Gd5 — 6d7)

1 1 1 1 1
+ \/5 (—5(]3 + 5@3 + 501 — §d1 + gdg)

+ V2 (—4ps + 4p7 + 4bs — 4bs + 12a5 — 24a; — 12ds + 36ds — 24d7 — 2ps + 2bs)
9 9 3 3
— 57‘3 + 12r5 — 6177 + 3e3 — 6es + 581 — 1253 + 655 — 3f1 + 9f3 — 6f5 — 57‘3 +e3 + 581 — fl + f3.

We can further simplify this quantity. First, we can eliminate by, cx, di, ex and fi by the identities
obtained by integration by parts,

b = (k + 1)prt2 — kpr,

ck = (kK + 1)qry2 — kqr + Pry2 — Pr,
dx, = —kag + pg,

er = sk + kry — (k + 1)rgso,

fo = —ri + ksg.

The expression given by p, gk, 7k, sk and ai (k = 1,3,5,7) can be reduced to p1,q1, 7k, $1 and a1 by
the identities, again obtained by integration by parts,

1+ k2
1 2
Qk+2—m((1+k )ik — (2k + Vpryo + (k + Dpr)
oy = ((k2 — 3)rp + 2ksy, + 2\/§pk+2)
k(k+1) '
1
= ((¥*-3 2(k +1 — 2k 2V2(k +3 —2v2(k + 2
2 = TR D) (( )sk +2(k + 1)rggo T+ 2V2(k + 3)prya — 2V2(k + )Pk+2)7
1
=— —  ((K*+1 — 2k 2(k +1 .
(42 k+ (k<2 ((K* + Dag P+ 2(k + 1)pr2)

Now, as in Martel [46], a quite surprising simplification occurs. That is, after reducing the expression
to a linear combination of pi, ¢, 71,1 and a; by means of lengthy but nonetheless very elementary
computations, the coefficients of ¢1, 71, s1 and a; vanish and we are left with the very simple formula

1
"= Eph

like in Martel [46]. We have p; = m/cosh(n/2), see Martel [46]. We have the relation p; =
pl,Martcl/\/i- This completes the proof of Lemma 11.6. We will provide all the elementary compu-
tations which we have skipped here in the forthcoming note [18]. O
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