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The asymptotic stability on the line of ground states of the

pure power NLS with 0 ă |p ´ 3| ! 1

Scipio Cuccagna, Masaya Maeda

April 23, 2024

Abstract

For exponents p satisfying 0 ă |p´ 3| ! 1 and only in the context of spatially even solutions
we prove that the ground states of the nonlinear Schrödinger equation (NLS) with pure power
nonlinearity of exponent p in the line are asymptotically stable. The proof is similar to a
related result of Martel [46] for a cubic quintic NLS. Here we modify the second part of Martel’s
argument, replacing the second virial inequality for a transformed problem with a smoothing
estimate on the initial problem, appropriately tamed by multiplying the initial variables and
equations by a cutoff.

1 Introduction

We consider the pure power focusing Nonlinear Schrödinger Equation (NLS) on the line

iBtu` B2

xu “ ´fpuq where fpuq “ |u|p´1u for 0 ă |p´ 3| ! 1. (1.1)

We consider only even solutions, eliminating translations and simplifying the problem. In particular,
we will study Equation (1.1) in the space H1

rad
pRq “ H1

rad
pR,Cq, of even functions in H1pR,Cq. It

is well known that Equation (1.1) has standing waves, solutions with the form upt, xq “ eiωtφωpxq.
They are obtained from φωpxq “ ω

1

p´1φp?
ωxq with the explicit formula

φpxq “
ˆ
p` 1

2

˙ 1

p´1

sech
2

p´1

ˆ
p´ 1

2
x

˙
, (1.2)

see formula (3.1) of Chang et al. [7]. Energy E and Mass Q are invariants of (1.1), where

Epuq “ 1

2
}u1}2L2pRq ´

ż

R

F puq dx where F puq “ |u|p`1

p` 1
, (1.3)

Qpuq “ 1

2
}u}2L2pRq. (1.4)

It is well known that φω minimizes E under the constraint Q “ Qpφωq “: qpωq. Notice that

qpωq “ ω
2

p´1
´ 1

2qp1q. We have ∇Epφωq “ ω∇Qpφωq which reads also

´φ2
ω ` ωφω ´ φpω “ 0. (1.5)
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Set now for ω, δ P R` :“ p0,8q the set

Upω, δq :“
ď

ϑ0PR
eiϑ0DH1

rad
pRqpφω , δq,

where DXpu, rq :“ tv P X | }u´ v}X ă ru. The following was shown by Cazenave and Lions [6], see
also Shatah [54] and Weinstein [63].

Theorem 1.1 (Orbital Stability). Let p P p1, 5q and let ω0 ą 0. Then for any ǫ ą 0 there exists

a δ ą 0 such that for any initial value u0 P Upω0, δq then the corresponding solution satisfies u P
C0 pR,Upω0, ǫqq.

In order to study the notion of asymptotic stability, like in finite dimension, it is useful to have
information on the linearization of (1.1) at φω, which we will see later has the following form

Bt
ˆ
r1
r2

˙
“ Lω

ˆ
r1
r2

˙
with Lω :“

ˆ
0 L´ω

´L`ω 0

˙
, (1.6)

where

L`ω :“ ´B2

x ` ω ´ pφp´1

ω (1.7)

L´ω :“ ´B2

x ` ω ´ φp´1

ω . (1.8)

The linearization is better seen in the context of functions in H1

rad
pR,R2q rather than in H1

rad
pR,Cq,

because it is R–linear rather than C–linear. For p “ 3 the operator Lω is completely known very
thoroughly, so for example all its plane waves are known explicitly, see section 10. Coles and
Gustafson [8] proved that for 0 ă |p ´ 3| ! 1 the linearization Lω has exactly one eigenvalue of the
form iλ near iω. We set λpp, ωq :“ λ. Furthermore 0 ă λpp, ωq ă ω and dimkerpLω ´ iλpp, ωqq “ 1.
Let ξω P H1pR,C2q be an appropriately normalized generator of kerpLω ´ iλpp, ωqq, see §2.

In this paper we prove the following result.

Theorem 1.2. There exists p1 ă 3 ă p2 s.t. for any p P pp1, p2qzt3u and any ω0 ą 0, any a ą 0
and any ǫ ą 0 there exists a δ ą 0 such that for any initial value u0 P DH1

rad
pRqpφω0

, δq there exist

functions ϑ, ω P C1 pR,Rq, z P C1 pR,Cq and ω` ą 0 s.t. the solution of (1.1) with initial datum u0
can be written as

uptq “ eiϑptq
´
φωptq ` zptqξωptq ` zptqξωptq ` ηptq

¯
with (1.9)

ż

R

}e´axxyηptq}2H1pRqdt ă ǫ where xxy :“
a
1 ` x2 (1.10)

lim
tÑ8

}e´axxyηptq}L2pRq “ 0 (1.11)

lim
tÑ8

zptq “ 0, (1.12)

lim
tÑ8

ωptq “ ω`. (1.13)

Remark 1.3. Standing wave solutions in the integrable case p “ 3 are not asymptotically stable due
the existence of breathers, see Borghese et al. [1, formula (1.21)], very close in H1pRq to a soliton
(take for example η2 ÝÑ 0 in [1, formula (1.21)]). More broadly, when p “ 3 it is possible to
add solutions using Bäcklund transformations. In fact the situation resembles that of small energy
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solutions of NLS with a trapping linear potential with two or more eigenvalues when we treat the
nonlinearity as a perturbation. Then the linear equation has quasiperiodic solutions, due to linear
superposition, while generically a nonlinear equation does not, see [17] for a 1 D result and therein for
references. However, some form of asymptotic stability holds also in the p “ 3 case, using different
norms and the theory of Integrable Systems, [1, 21, 53].

Remark 1.4. Notice that the fact that the H1pRq norm of η is uniformly bounded for all times,
guaranteed by the orbital stability, and Theorem 1.2 imply that

lim
tÑ`8

uptqe´iϑptq “ φω`
in L8

locpRq. (1.14)

Remark 1.5. While we prove Theorem 1.2 in the case that 0 ă |pj ´ 3| ! 1 for j “ 1, 2, it is
possible to ease significantly these hypotheses. In fact, we emphasize that our theory is largely non
perturbative. What we need in the proof are the following facts:

(i) 2λpp, 1q ą 1;

(ii) we can take γpp, 1q ‰ 0, where this constant is related to the Fermi Golden Rule (FGR), see
below, and is defined below in (5.3);

(iii) given the Jost functions f3p¨, 0q and g3p¨, 0q introduced later in Sect. 8, which depend analyti-
cally on p, their Wronskian is nonzero: W rf3px, 0q, g3px, 0qs ‰ 0.

According to numerical computations in Chang et al. [7], condition (i) holds for all 2 ă p ă 3, where
there are no other eigenvalues of the form iλ for λ ą 0, no resonance is observed at the threshold
of the continuous spectrum. Furthermore, both γpp, 1q and W rf3px, 0q, g3px, 0qs can be made to
depend analytically on p. This would show that Theorem 1.2 holds for all the p P p2, 3q except for a
discrete subset of p2, 3q. Similarly, when we consider p ą 3, we have λp3, 1q “ 1 and λp5, 1q “ 0 and,
according to the numerical computations in Chang et al. [7] (similar results were in part already
known: the first author learned about them by personal communication by M.I.Weinstein in the
year 2000), the function p3, 5q Q p Ñ λpp, 1q is strictly decreasing, there are no other eigenvalues of
the form iλ with λ ą 0 and no resonance is observed at the threshold of the continuous spectrum. So
there will be a p0 P p3, 5q such that 2λpp, 1q ą 1 for all 3 ă p ă p0 (notice that p0 P p4, 5q in [7, fig. 1]
with p0 quite close to 5). Since also conditions (ii) and (iii) will be true for all the p P p3, p0q outside
a discrete subset of p3, p0q we conclude that outside a discrete subset of p3, p0q Theorem 1.2 continues
to be true. That the FGR constants are nonzero and that condition (iii) holds, are expected to be
generically true also for large perturbations of the cubic NLS. Furthermore, our framework could in
principle be applied in higher dimensions.

Remark 1.6. Martel [46] conjectures that for generic small perturbations of the cubic NLS the
asymptotic stability result in [45, 46] is true. Here we focus only on pure power NLS’s but our
method goes some way to prove this conjecture. For our method to work, we always need that
the threshold of the continuous spectrum be not a resonance, which should be true for generic
perturbations. For the smoothing estimate we need additionally condition (iii) in Remark 1.5,
which is true for small perturbations. If there is no eigenvalue in p0, iωq like in Martel [45] and
Rialland [52] and if the non resonance condition holds then our method proves Martel’s conjecture.
If there is one eigenvalue λ P p0, iωq (it is easy to show, proceeding along the lines in [22] or, since
this is 1 dimension, Coles and Gustafson [8], that there can be at most one such eigenvalue for small
perturbations), condition (i) in Remark 1.5 will be true. If, as expected, generically the Nonlinear
Fermi golden rule (FGR) condition (ii) in Remark 1.5 holds, then our method works. So, using our
framework, to prove Martel’s conjecture it remains only to prove that for generic small perturbations
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there is no threshold resonance and that if there is an eigenvalue the FGR is true. We think that
also Martel’s method in [46] yields a similar result.

Equation (1.1) is one of the most classical Hamiltonian systems in PDE’s and the asymptotic
stability of its ground states has been a longstanding open problem. Attempts at solving it date back
at least to the 80’s, see Soffer and Weinstein [57, 58]. The Vakhitov–Kolokolov stability criterion
yields the orbital stability exactly for p ă 5, while for p ě 5 the ground states are orbitally unstable.
On the other hand, proving asymptotic stability requires some form of spatial dispersion. It turns
out that it is difficult to prove dispersion for p ă 5, which is the opposite condition to the one
utilized for example in Strauss [60] to prove a form of asymptotic stability of vacuum. In essence,
dispersion is a linear phenomenon, but for p ă 5 the nonlinearity is strong and makes it difficult to
treat the problem as a perturbation of a linear equation. Whence the inability in the literature to
deal with the asymptotic stability problem for equation (1.1), left unaddressed from Buslaev and
Perelman [2, 3, 4] on. Another problem is the presence of nonzero eigenvalues of the linearization
Lω. These eigenvalues slow dispersion because the corresponding discrete modes tend to oscillate
periodically and decay slowly, see [3, 4, 59, 28], and furthermore they are a drag to the dispersion
of the continuous modes, on whose equation they exert a forcing. This is especially true in the case
when there are eigenvalues close to 0, as happens for example for p close to 1 or to 5. A mechanism
first discussed by Sigal [55], the Nonlinear Fermi Golden Rule (FGR), should allow to show that the
discrete modes lose energy by nonlinear interaction with the continuous modes.

It is next to impossible to see the FGR, without utilizing the Hamiltonian structure of the NLS,
see for example the complications in [27]. In [11] the FGR is seen using canonical coordinates and
normal forms transformations. Recently papers like [14] have simplified significantly [11], eliminating
the need of normal forms, thanks to the notion of Refined Profile, which is a generalization of the
families of ground states, a sort of surrogate of a (here not existent) family of quasiperiodic solutions
and encodes the discrete modes in the problem. Finding the Refined Profile is elementary, but
requires Taylor expansions of the nonlinearity, with the order higher when there are eigenvalues of
Lω closer to 0. Since fpuq is not smooth in u, this is one of the main reasons why p needs here to
stay close to 3, where the eigenvalue is not close to 0. Even more difficult appears the problem when
the power p is such that Lω has resonances at the thresholds of the continuous spectrum, except in
the integrable case p “ 3. To see some of the difficulties, on a different and non integrable model
involving a resonance, we refer to the partial results in [44, 50]. We stress that here the spectral
configuration is as in Martel [46] and that we prove the FGR like in Martel [46].
Dispersion has played a crucial role in stabilization problems. The sequel [58] to [57] was only possible
because a result on dispersion for Schrödinger by Journé et al. [34]. Strichartz estimates, in particular
the 3 D endpoint Strichartz estimate of Keel and Tao [37], were introduced by Gustafson et. al.
[33] and played an important role in the theory. Dimensions 1 and 2 were considered by Mizumachi
[48, 47], whose use of smoothing estimates has provided us with crucial insights. But ultimately,
in low dimensions Strichartz estimates have limited scope. A very important turning point in the
theory in 1 D has been Kowalczyk et al. [39] which, along with the further developments and
refinements in [40, 41, 38], has exploited very effectively virial inequalities. Recently Martel [45, 46]
has applied and extended these ideas to the study of the asymptotic stability of two versions of the
cubic–quintic NLS introduced by Pelinovsky et al. [51]. Rialland [52] has generalized [45]. One of
the most striking features of the theory initiated by Kowalczyk et al. [40], is how easily the nonlinear
term involving only the continuous mode of the solution is sorted out by what we might call the high
energy virial inequality, see inequality is (6.5) below, by means of a clever but simple integration
by parts. The same term is almost impossible to treat with perturbative methods involving the
Duhamel formula. There exist also different approaches, some, but not exclusively, stemming from
the theory of space–time resonances of Germain et al. [29]. For a partial sample we refer for example
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to work of Delort [26], Germain et al. [30], Naumkin [49]. Recently Germain and Collot [9] have
recovered and partially generalized Martel [45]. This theory requires a certain degree of smoothness
of the nonlinearity fpuq, so it is not easily applicable to the specific model (1.1). We think that the
framework in Kowalczyk et al., to which we return, is more robust and easier to apply in stability
problems.
After the first high energy virial inequality, the papers [40, 41, 38, 45, 46] utilize what we might call a
low energy virial inequality, which requires new coordinates where the linearization is nontrapping.
This has some similarities with the subtraction of solitons to study dispersion by means of the
Nonlinear Steepest Descent method of Deift and Zhou, as done for instance by Grunert and Teschl
[43], although the details are very different. An interesting feature and a possible criticality of the
low energy virial inequality, is that the virial inequality produces a different linear operator, which
also needs to be non–trapping. While in [45, 46, 52], which deal with small perturbations of the cubic
NLS, the two non–trapping conditions are shown to be equivalent, thanks to a result by Simon [56]
on small perturbations of the Laplacian in dimensions 1 and 2, in general this might not be the case,
so it is plausible that in some cases the second virial inequality method might require restrictions
not intrinsic but rather due to the method of proof. To take a concrete example, in the first paper
[17] of our own series inspired by the work of Kowalczyk et al.[40], the repulsivity Assumption 1.13
[17] is in fact unnecessary and is used only because of the method of proof. This is the main insight
and motivation for this paper. In [17], besides the two virial inequalities, there is a smoothing
estimate, inspired by Mizumachi [48, 47], which in [17] appears because the FGR rule is proved in
an overly complicated way (a simplification appears in [19], motivated by [38]). The insight in the
present paper, is that, while it is obviously a good idea to prove the FGR as simply as possible, it
is possible to replace the the second virial inequality by smoothing estimates. We explain now some
further reasons why this might be convenient. Kowalczyk et al.[39, 40, 41, 38] and Martel [45, 46]
perform some Darboux transformations, which are almost isospectral transformations which allow
to eliminate eigenvalues of the linearization in a controlled way. For scalar Schrödiger operators in
the line the theory is fully developed in Deift and Trubowitz [25], with an important special case
discussed in Chang et al. [7]. The analogue for the linearizations Lω is in Martel [45] and Rialland
[52] in the case without internal modes and in Martel [46] with just one internal mode. It is not
clear to us what are the Darboux transformations when the configuration of the internal modes of
Lω is more complicated and if the space dimension is 2 or larger. So it is worth to develop some
alternative method which does not use Darboux transformations. The Kato–smoothing estimates
are a classical tool, originating in Kato [35], valid in any dimension. The smoothing estimates are
perturbative, based on the Duhamel formula. But there is no issue here of too strong nonlinearity
because we only need to bound the continuous mode multiplied by a spatial cutoff. This means
that we can multiply the NLS by a cutoff, taming the nonlinearity. The cutoff appears also in the
second virial inequalities in the theory of Kowalczyk et al. Obviously, in the equation we obtain an
additional term, delicate for us, represented by the commutator of Laplacian and cutoff. We treat it
via a specific smoothing estimate, see Lemma 2.3 below. In [17] we used some standard bounds on
the Jost functions of Schrödinger operators in 1 D to prove an analogous lemma. Here, for Lω these
bounds on the Jost functions are not as obvious and this is one of the points where we exploit that
our problem is a small perturbation of the cubic NLS, the specific condition is (iii) in Remark 1.5
that appears generic and is in principle possible to check numerically in specific examples. Finally,
for a rather long list of references on the subject up until 2020, we refer to our survey [16].
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2 Linearization

We return to a discussion of the linearization (1.6). Weinstein [62] showed that for 1 ă p ă 5 the
generalized kernel NgpLωq :“ Y8

j“1
kerLj

ω in H1

rad
pR,C2q is

NgpLωq “ span

"ˆ
0
φω

˙
,

ˆ
Bωφω
0

˙*
. (2.1)

By symmetry reasons, it known that the spectrum σ pLωq Ď C is symmetric by reflection with respect
of the coordinate axes. Furthermore, by Krieger and Schlag [42, p. 909] we know that σ pLωq Ď iR.
By standard Analytic Fredholm theory the essential spectrum is p´8i,´ωis Y riω,`8iq. As already
mentioned 0 P σ pLωq. Numerical computations by Chang et al. [7] show that for p P p2, 3q Y p3, 5q,
besides 0 there are two eigenvalues of Lω , they are of the form ˘iλ with λ ą 0 and if we set as
above λpp, ωq “ λ, we have λp3, ωq “ ω and λp5, ωq “ 0. As mentioned above Coles and Gustafson
[8] corroborate rigorously the numerical computations of Chang et al. [7] for 0 ă |p ´ 3| ! 1.
Furthermore, since at p “ 3 the linearization Lω has only 0 as an eigenvalue, and ˘iω are resonances,
Coles and Gustafson [8] imply that besides ´iλpp, ωq, 0, iλpp, ωq, for 0 ă |p ´ 3| ! 1 there are no
other eigenvalues and that ˘iω are not resonances.
Let us consider the orthogonal decomposition

L2

radpR,C2q “ NgpLωq
à

NK
g pL˚

ωq (2.2)

We have, for λ “ λpp, ωq, a further decomposition

NK
g pL˚

ωq “ kerpLω ´ iλq
à

kerpLω ` iλq
à

Xcpωq where (2.3)

Xcpωq :“
`
NgpL˚

ωq
à

kerpL˚
ω ´ iλq

à
kerpL˚

ω ` iλq
˘K
. (2.4)

We denote by Pc the projection of L2

rad
pR,C2q onto Xcpωq associated with the above decompositions.

The space L2

rad
pR,C2q and the action of Lω on it is obtained by first identifying L2

rad
pR,Cq “

L2

rad
pR,R2q and then by extending this action to the completion of L2

rad
pR,R2qÂ

R
C which is

identified with L2

rad
pR,C2q. In C we consider the inner product

xz, wy
C

“ Retzwu “ z1w1 ` z2w2 where a1 “ Re a, a2 “ Im a for a “ z, w.

This obviously coincides with the inner product in R2 and expands as the standard sesquilinear
xX,Y y

C2 “ X⊺Y (row column product, vectors here are columns) form in C2. The operator of
multiplication by i in C “ R2 extends into the linear operator J´1 “ ´J where

J “
ˆ

0 1
´1 0

˙
.

For u, v P L2

rad
pR,C2q we set xu, vy :“

ş
R

xupxq, vpxqy
C2 dx. We have a natural symplectic form

given by Ω :“
@
J´1¨, ¨

D
in both L2pR,C2q and L2

rad
pR,R2q “ L2

rad
pR,Cq, where equation (1.1) is

the Hamiltonian system in L2

rad
pR,Cq with Hamiltonian the energy E in (1.3). As we mentioned

we consider a generator ξω P kerpLω ´ iλq. Then for the complex conjugate ξω P kerpLω ` iλq.
Notice the well known and elementary JLω “ ´L˚

ωJ implies that kerpL˚
ω ` iλq “ span tJξωu and

kerpL˚
ω ´ iλq “ span

 
Jξω

(
. Notice that in Lemma 2.7 [13] it is shown that we can normalize ξω so

that

Ωpξω , ξωq “ ´i, (2.5)
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consistently with the fact that the functional Epuq ` ωQpuq has a local minimum at u “ φω, see
(3.13)–(3.14) later. Notice that (2.5) is the same as

ΩpRe ξω , Im ξωq “ 1

2
and ΩpRe ξω,Re ξωq “ ΩpIm ξω , Im ξωq “ 0 (2.6)

where the latter is immediate by the skewadjointness of J . Notice that

ξω “ pξ1, ξ2q⊺ P kerpLω ´ iλq ô
"
L´ωξ2 “ iλξ1
L`ωξ1 “ ´iλξ2

(2.7)

"
L´ωξ2I “ λξ1R
L`ωξ1R “ ´λξ2I and

"
L´ωξ2R “ ´λξ1I
L`ωξ1I “ λξ2R

with ξjR “ Re ξj and ξjI “ Im ξj .

This implies that we can normalize so that

ξω “ pξ1, ξ2q⊺ with ξ1 “ Re ξ1 and ξ2 “ i Im ξ2. (2.8)

Hence condition (2.5) becomes
ż

R

ξ1 Im ξ2dx “ 2´1. (2.9)

Notation 2.1. We will use the following miscellanea of notations and definitions.

1. We will set

epωq :“ Epφωq, qpωq :“ Qpφωq and dpωq :“ epωq ` ωqpωq. (2.10)

2. We denote by diagpa, bq the diagonal matrix with first a and then b on the diagonal.

3. For z P C we will use z1 “ Re z and z2 “ Im z and we will use the operators

Bz :“ 1

2
pBz1 ´ iBz2q and Bz :“ 1

2
pBz1 ` iBz2q .

4. Like in the theory of Kowalczyk et al. [40], we consider constants A,B, ǫ, δ ą 0 satisfying

logpδ´1q " logpǫ´1q " A " B2 " B " 1. (2.11)

Here we will take A „ B3, see Sect. 7 below, but in fact A „ Bn for any n ą 2 would make
no difference.

5. The notation oεp1q means a constant with a parameter ε such that

oεp1q εÑ0
`

ÝÝÝÝÑ 0. (2.12)

6. For κ P p0, 1q fixed in terms of p and small enough, we consider

}η}Lp,s :“ }xxys η}LppRq where xxy :“
a
1 ` x2, (2.13)

}η}ΣA
:“

››››sech
ˆ
2

A
x

˙
η1
››››
L2pRq

`A´1

››››sech
ˆ
2

A
x

˙
η

››››
L2pRq

and (2.14)

}η}rΣ :“ }sech pκω0xq η}L2pRq . (2.15)
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7. We set

C˘ :“ tz P C : ˘ Im z ą 0u. (2.16)

8. We will consider the Pauli matrices

σ1 “
ˆ
0 1
1 0

˙
, σ2 “

ˆ
0 ´i
i 0

˙
, σ3 “

ˆ
1 0
0 ´1

˙
.

9. The point iω is a resonance for Lω if there exists a nonzero v P L8pR,C2q such that Lωv “ iωv.
Notice that for p “ 3 the point iω is a resonance, see (10.7) for a v when ω “ 1. An elementary
scaling yields the cases ω ‰ 1 from the ω “ 1 case.

10. Given two Banach spaces X and Y we denote by LpX,Y q the space of continuous linear
operators from X to Y . We write LpXq :“ LpX,Xq.

11. We have denoted by Pc the projection on the space (2.4) associated to the spectral decompo-
sition (2.3) of the operator Lω. Later in (7.2) we will introduce an operator Hω which is an
equivalent to Lω and obtained from Lω by a simple conjugation. By an abuse of notation we
will continue to denote by Pc the analogous spectral projection to the continuous spectrum
component, only of Hω this time.

12. We have the following elementary formulas,

DfpuqX “ d

dt

`
|u` tX |p´1 pu` tXq

˘ˇ̌ˇ̌
t“0

“ |u|p´1X ` pp´ 1q|u|p´3u xu,Xy
C

and (2.17)

D2fpuqX2 “ d

dt
Dfpu` tXqX

ˇ̌
ˇ̌
t“0

“ 2pp´ 1q|u|p´3X xu,Xy
C

` pp´ 1q|u|p´3u|X |2 ` pp´ 1qpp ´ 3q|u|p´5u xu,Xy2
C
. (2.18)

The group etLω is well defined in L2

rad
pR,C2q, leaves invariant L2

rad
pR,R2q and the terms of the

direct sums in (2.2) and (2.3). The following result is an immediate consequence of a Proposition
8.1 in Krieger and Schlag [42], since Lω as an easy consequence of Coles and Gustafson [8] is for
0 ă |p´ 3| ! 1 admissible in the sense indicated in [42].

Proposition 2.2. For any fixed s ą 3{2 there is a constant Cωsuch that

}Pce
tLω : L2,spR,C2q Ñ L2,´spR,C2q} ď Cω xty´ 3

2 for all t P R. (2.19)

We will need a variation of the last result, which we will be rephrased later and proved as
Lemma 8.9 and which is an analogue of Lemma 8.7 [17].

Proposition 2.3. For s ą 3{2 and τ ą 1{2 there exists a constant C ą 0 such that
››››
ż t

0

ept´t1qLωPcpωqgpt1qdt1
››››
L2pR,L2,´spRqq

ď C}g}L2pR,L2,τ

rad
pRqq for all g P L2pR, L2,τ pRqq. (2.20)

We will need the following result, whose proof is based on an argument in [24, Lemma 3.4].

Proposition 2.4 (Kato smoothing). For any ω and for any s ą 1 there exists c ą such that

}eitLωPcu0}L2pR,L2,´spRqq ď c}u0}L2pRq. (2.21)
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3 Refined profile, modulation, continuation argument and

proof of Theorem 1.2

It is well known, see Weinstein [62], that

S “
 
eiϑφω : ϑ P R, ω ą 0

(
(3.1)

is a symplectic submanifold of L2

rad
pR,Cq. We set

φrω, zs “ φω ` rφrω, zs with rφrω, zs :“ zξ ` zξ. (3.2)

For functions rzR, rϑR and rωR to be determined below we introduce

rzrω, zs “ rz0rω, zs ` rzRrω, zs with rz0rω, zs “ iλz

rϑrω, zs “ ω ` rϑRrω, zs and rωrω, zs “ rωRrω, zs.

Proposition 3.1. There exist C2 functions rzR, rϑR and rωR defined in a neighborhood of pω0, 0q P
R` ˆ C with

|rϑR| ` |rωR| ` |rzR| À |z|2 (3.3)

such that, if we set

Rrω, zs :“ B2

xφrω, zs ` fpφrω, zsq ´ rϑφrω, zs ` irωBωφrω, zs ` iDzφrω, zsrz, (3.4)

we have

} cosh pκωxqRrω, zs}L2pRq À |z|2, (3.5)

with furthermore the following orthogonality conditions, for z1 “ Re z and z2 “ Im z,

xiRrω, zs, φrω, zsy “ xiRrω, zs, iBωφrω, zsy “
@
iRrω, zs, iBzjφrω, zs

D
“ 0, for all j “ 1, 2. (3.6)

Proof. From (1.5) and

Dz
rφrω, zsrz0 “ Lω

rφrω, zs “ ´i
´

´B2

x
rφrω, zs ` ωrφrω, zs ´Dfpφωqrφrω, zs

¯

we obtain

iDzφrω, zsrz0 “ ´B2

x
rφrω, zs ` ωφrω, zs ´ fpφrω, zsq ` pRrω, zs where

pRrω, zs :“ fpφrω, zsq ´ fpφωq ´Dfpφωqrφrω, zs.

Since

pRrω, zs “
ż 1

0

ż 1

0

tD2fpφω ` tsrφrω, zsqdtdsrφ2rω, zs

we conclude that

} cosh pκωxq pRrω, zs}L2pRq À |z|2. (3.7)
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Now we set

Rrω, zs “ pRrω, zs ´ iDzφrω, zsrzR ` rϑRφrω, zs ´ irωRBωφrω, zs.

Setting φ “ φrω, zs and pR “ pRrω, zs, the orthogonality conditions (3.6) are equivalent to

A

¨
˝
rϑR
rωR

rzR

˛
‚“ ´

¨
˚̊
˚̋

A
pR, iφ

E
A
pR, Bωφ

E
A
pR,Dzφ

E
.

˛
‹‹‹‚ (3.8)

where, by Dz1
rφ “ 2pξ1, 0q⊺ and Dz2

rφ “ ´2p0, Im ξ2q⊺, with the right hand sides defined in (2.7),

A “

¨
˝

✘✘✘xφ, iφy ´ xBωφ, φy
✘✘✘✘✘´ xDzφ, φy

xφ, Bωφy ✭✭✭✭✭✭✭´ xiBωφ, Bωφy ´ xiDzφ, Bωφy
✘✘✘✘xφ,Dzφy ´ xiBωφ,Dzφy ´ xiDzφ,Dzφy

˛
‚ (3.9)

“
˜
q1pωqJ´1 Opzq
Opzq

A
JDzi

rφ,Dzj
rφ
Eˇ̌
ˇ
i,j“1,2

¸
` opzq “

ˆ
q1pωqJ´1 0

0 J

˙
`Opzq,

where the cancelled terms are null. Since A|z“0
is invertible, we conclude that A is invertible also

for small z. From (3.7) and (3.8) we obtain (3.3) and (3.5).

The proof of the following modulation is standard, see Stuart [61].

Lemma 3.2 (Modulation). Let ω0 ą 0. There exists an δ0 ą 0 and functions ω P C1pUpω0, δ0q,Rq
and ϑ P C1pUpω0, δ0q,R{Zq and z P C1pUpω0, δ0q,Cq such that for any u P Upω0, δ0q

ηpuq :“ e
´iϑpuq

u ´ φrωpuq, zpuqs satisfies (3.10)

xηpuq, iφrωpuq, zpuqsy “ xηpuq, Bωφrωpuq, zpuqsy “
@
ηpuqs, Bzjφrωpuq, zpuqs

D
“ 0, for all j “ 1, 2.

Furthermore we have the identities ωpφωq “ ω, ϑpeiϑ0uq “ ϑpuq ` ϑ0 and ωpeiϑ0uq “ ωpuq and

zpeiϑ0uq “ zpuq.

We have now the ansatz

u “ eiϑ pφrω, zs ` ηq . (3.11)

By orbital stability we can assume that there exists θ “ θptq such that

}u´ eiθφω0
}H1 ă δ for all values of time. (3.12)

Then, using the notation in (2.10) and the fact that d1pωq “ qpωq it is standard to write

Opδq “ Epuq ` ωQpuq ´ epω0q ´ ωqpω0q “ dpωq ´ dpω0q ´ d1pω0qpω ´ ω0q
` 2´1

@`
d2Epφωq ` ωd2Qpφωq

˘
r, r

D
` o

`
}r}2H1

˘
` o p}r}H1pω ´ ω0qq , (3.13)

for r “ zξ ` zξ ` η. Now we have

@`
d2Epφωq ` ωd2Qpφωq

˘
r, r

D
“ xLωr, Jry “ 2λ|z|2 ` xLωη, Jηy (3.14)
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Since xLωη, Jηy Á }η}2
H1 , from the above and the strict convexity of dpωq we conclude that

|ω ´ ω0| ` |z| ` }η}H1 À
?
δ for all values of time. (3.15)

We will set
Θ :“ pϑ, ω, zq, rΘ :“ prϑ, rω, rzq and rΘR :“ prϑR, rωR, rzRq. (3.16)

The proof of Theorem 1.2 is mainly based on the following continuation argument.

Proposition 3.3. There exists a δ0 “ δ0pǫq s.t. if

}η}L2pI,ΣAq ` }η}
L2pI,rΣq ` } 9Θ ´ rΘ}L2pIq ` }z2}L2pIq ď ǫ (3.17)

holds for I “ r0, T s for some T ą 0 and for δ P p0, δ0q then in fact for I “ r0, T s inequality (3.17)
holds for ǫ replaced by oεp1qǫ.

Notice that this implies that in fact the result is true for I “ R`. We will split the proof of
Proposition 3.3 in a number of partial results obtained assuming the hypotheses of Proposition 3.3.

Proposition 3.4. We have

} 9ϑ´ rϑ}L1pIq ` } 9ω ´ rω}L1pIq À ǫ2, (3.18)

} 9z ´ rz}L2pIq À
?
δǫ, (3.19)

} 9z}L8pIq À
?
δ. (3.20)

Proposition 3.5 (Fermi Golden Rule (FGR) estimate). We have

}z2}L2pIq À A´1{2ǫ. (3.21)

Proposition 3.6 (Virial Inequality). We have

}η}L2pI,ΣAq À Aδ ` }z2}L2pIq ` }η}
L2pI,rΣq ` ǫ2. (3.22)

Proposition 3.7 (Smoothing Inequality). We have

}η}
L2pI,rΣq À oB´1p1qǫ. (3.23)

Proof of Theorem 1.2. It is straightforward that Propositions 3.4–3.7 imply Proposition 3.3
and thus the fact that we can take I “ R` in all the above inequalities. This in particular implies
(1.12). By z P L4pR`q and 9z P L8pR`q we have (1.13).
We next focus on the limit (1.11). We first rewrite our equation, entering the ansatz (3.11) in (1.1),
to obtain, for φ “ φrω, zs,

i 9η ´ 9ϑη ´ 9ϑφ` i 9ωBωφ` iDzφ 9z “ ´B2

xη ´ B2

xφ´ fpφ` ηq.

Then, adding and subtracting and using (3.4), for R “ Rrω, zs we obtain

i 9η ´ p 9ϑ´ rϑqη ´ p 9ϑ ´ rϑqφ ` ip 9ω ´ rωqBωφ` iDzφp 9z ´ rzq “ ´B2

xη ` rϑη (3.24)

´ pfpφ` ηq ´ fpφqq ´R

´B2

xφ´ fpφq ` rϑφ´ irωBωφ´ iDzφrz `R,
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where the last line equals 0, because of the definition of R in (3.4). Equation (3.24) rewrites

9η ` ip 9ϑ ´ rϑqη ` e
´iϑiDΘφrΘs

´
9Θ ´ rΘ

¯
(3.25)

“ i
`
B2

x ` Dfpφrω, zsq
˘
η ´ irϑη ` i pfpφrω, zs ` ηq ´ fpφrω, zsq ´ Dfpφrω, zsqηq ` iRrω, zs.

Let
aptq :“ 2´1}e´axxyηptq}2L2pRq.

Then by the Orbital Stability

9a “ ´1

2

A”
e´2axxy, iB2

x

ı
η, η

E
(3.26)

´
A
e´axxy

´
i 9ϑη ` e´iϑiDΘφrΘs

´
9Θ ´ rΘ

¯¯
, e´axxyη

E

`
A
e´axxy pi pfpφrω, zs ` ηq ´ fpφrω, zsqq ` iRrω, zsq , e´axxyη

E
“ Opǫ2q for all times.

Since we already know from (1.12) that a P L1pRq, we conclude that aptq tÑ`8ÝÝÝÝÑ 0. Notice that the
integration by parts in (3.26) can be made rigorous considering that if u0 P H2pRq by the well known
regularity result by Kato, see [5], we have η P C0

`
R, H2pRq

˘
and the above argument is correct and

by a standard density argument the result can be extended to u0 P H1pRq.
Finally, we prove (1.13). Since Qpφωq “ qpωq is monotonic, it suffices to show Qpφωq converge

as t Ñ 8. Next, from the conservation of Q, the exponential decay of φrω, zs, (1.11) and (1.12), we
have

lim
tÑ8

`
Qpu0q ´ Qpφωptqq ´ Qpηptqq

˘
“ 0.

Here, notice that we can take

e´axxy Á maxt|φrω, zs|, |φrω, zs|p´1, |φrω, zs|p´2u.

Thus, our task is now to prove d
dt
Qpηq P L1, which is sufficient to show the convergence of Qpηq.

Now, from (3.25), we have

d

dt
Qpηq “ xη, 9ηy “ ´

A
η, e´iϑiDΘφrΘs

´
9Θ ´ rΘ

¯E
` xη, iDfpφrω, zsqηy

` xη, i pfpφrω, zs ` ηq ´ fpφrω, zsq ´Dfpφrω, zsqηqy ` xη, iRrω, zsy
“ I ` II ` III ` IV.

By the bound of the 1st and the 3rd term of (3.17), we have I P L1pR`q. Next, by (2.17), we have
|Dfpφrω, zsqη| À e´axxy|η| for some small a. Therefore, II P L1pR`q. IV P L1pR`q follows from
(3.5) and |z|2 P L2pR`q. For III, since f is at least C2 (we only consider p ą 2) we have In analogy
to similar partitions in [20] which allow to offset the lack of differentiability of fpuq, we partition
the line where x lives as

Ω1,t,s “ tx P R | |sηpt, xq| ď 2|φrωptq, zptqs|u and

Ω2,t,s “ RzΩ1,t,s “ tx P R | |sηpt, xq| ą 2|φrωptq, zptqs|u,

Then, we have

IIptq “
ÿ

j“1,2

Re

ż 1

0

ds

ż

Ωj,t,s

iηptqD2fpφrωptq, zptqs ` sηqpηptq, ηptqq dx “: II1ptq ` II2ptq.
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For II1, by }η}L8 À ǫ ď 1 and by (2.18), we have

|II1ptq| À
ż 1

0

ds

ż

Ω1,t,s

|ηptq|p|φrωptq, zptqs| ` |sη|qp´2|η|2 dx À
ż

R

|φrωptq, zptqs|p´2|ηptq|2 dx.

Thus, we see II1 P L1pR`q. For II2, since |sη`φrω, zs| ą 1

2
|sη| ą 0 we can expand the integrand as

D2fpφrωptq, zptqs ` sηptqqpηptq, ηptqq “ D2fpsηptqqpηptq, ηptqq

`
ż 1

0

D3fpτφrωptq, zptqs ` sηptqqpφrω, zs, ηptq, ηptqqdτ.

Now, since D2fpsηqpη, ηq “ sp´2ppp´ 1q|η|p´1η, we have

Re

ż 1

0

ds

ż

Ω2,t,s

iηD2fpsηptqqpηptq, ηptqq dx “ 0,

because the integrand becomes purely imaginary. Therefore, from the bound

|D3fpψqpw1, w2, w3q| À |ψ|p´3|w1||w2||w3|

and from

|τφrωptq, zptqs ` sηptq| „ |sηptq| for τ P r0, 1s in Ω2,t,s

we have

|II2ptq| À
ż 1

0

ds

ż

Ω2,t,s

|ηptq||sηptq|p´3|φrωptq, zptqs||ηptq|2 dx À
ż 1

0

sp´3 ds

ż

R

|φrωptq, zptqs||ηptq|2 dx.

Since p ą 2 we have
ş1
0
sp´3 ds ă 8 and we see II2 P L1pR`q. Therefore, we have the conclusion.

4 Proof of Proposition 3.4

Lemma 4.1. We have the estimates

| 9ϑ ´ rϑ| ` | 9ω ´ rω| À
`
|z|2 ` }η}rΣ

˘
}η}rΣ (4.1)

| 9z ´ rz| À
`
|z| ` }η}rΣ

˘
}η}rΣ. (4.2)

Proof. Applying
@

¨, ie´iϑDΘφrΘsΘ
D
with Θ P R4 to (3.25) and by the cancelations (3.6), we get

A
DΘφrΘsp 9Θ ´ rΘq, iDΘφrΘsΘ

E
´
A
η, e

´iϑ
DΘφrΘsΘ

E
p 9ϑ ´ rϑq ´

A
η, ie´iϑ

D
2

ΘφrΘspΘ, 9Θ ´ rΘq
E

✭✭✭✭✭✭✭✭✭✭

´
A
η, e

´iϑ
DΘφrΘsΘ

E
rϑ ´

A
η, ie´iϑ

D
2

ΘφrΘspΘ, rΘq
E

“
✭✭✭✭✭✭✭✭✭✭

´rϑ
A
η, e

´iϑ
DΘφrΘsΘ

E

`
A
η,
`
B2

x ` Dfpφrω, zsq
˘
e

´iϑ
DΘφrΘsΘ

E
´
A
fpφ ` ηq ´ fpφq ´ Dfpφqη, e´iϑ

DΘφrΘsΘ
E
. (4.3)

Setting also RrΘs “ eiϑRrω, zs, notice that equation (3.4) can be written as

B2

xφrΘs ` fpφrΘsq ` iDΘφrΘsrΘ “ RrΘs.
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Differentiating in Θ, we obtain

`
B2

x `DfpφrΘsq
˘
DΘφrΘsΘ ` iD2

ΘφrΘsprΘ,Θq ` iDΘφrΘsDΘ
rΘΘ “ DΘRrΘsΘ.

Since from fpeiϑφq “ fpφq we have DfpeiϑφqX “ Dfpφqe´iϑX , we get
A
η,
`
B2

x ` Dfpφq
˘
e

´iϑ
DΘφrΘsΘ

E
“

A
e
iϑ
η,
`
B2

x ` DfpφrΘsq
˘
DΘφrΘsΘ

E

“ ´
A
e
iϑ
η, iD2

ΘφrΘsprΘ,Θq `✭✭✭✭✭✭✭

iDΘφrΘsDΘ
rΘΘ ´ DΘRrΘsΘ

E

where the cancellation follows by the modulation orthogonality (3.10). Entering this inside (4.3) we
get

A
DΘφrΘsp 9Θ ´ rΘq, iDΘφrΘsΘ

E
´
@
η, e´iϑDΘφrΘsΘ

D
p 9ϑ ´ rϑq ´

A
η, ie´iϑD2

ΘφrΘspΘ, 9Θ ´ rΘq
E

✭✭✭✭✭✭✭✭✭✭✭✭✭

´
A
η, ie´iϑD2

ΘφrΘspΘ, rΘq
E

“
✭✭✭✭✭✭✭✭✭✭✭✭

´
A
eiϑη, iD2

ΘφrΘsprΘ,Θq
E

`
@
eiϑη,DΘRrΘsΘ

D

´
@
fpφ` ηq ´ fpφq ´Dfpφqη, e´iϑDΘφrΘsΘ

D
,

where the cancellation is obvious, since we have equal terms. So, from this we get

´ p 9ω ´ rωq xBωφ, φy ` xDzφp 9z ´ rzq, φy `O
´

}η}rΣ| 9Θ ´ rΘ|
¯

“ xη, iRy ´ xfpφ` ηq ´ fpφq ´Dfpφqη, iφy

which implies

´ p 9ω ´ rωq xBωφ, φy `O p|z|| 9z ´ rz|q `O
´

}η}rΣ| 9Θ ´ rΘ|
¯

(4.4)

“ O
`
}η}rΣ|z|2

˘
`O

´
}η}2rΣ

¯
.

Similarly, using } cosh pκωxq Bω pRrω, zs}L2pRq À |z|2,

p 9ϑ ´ rϑq xφ, Bωφy `O p|z|| 9z ´ rz|q `O
´

}η}rΣ| 9Θ ´ rΘ|
¯

(4.5)

“ O
`
}η}rΣ|z|2

˘
`O

´
}η}2rΣ

¯
.

Finally we get the following which along the other formulas yields the lemma

@
Dzφp 9z ´ rzq, iBzjφ

D
`O

´
|z|| 9Θ ´ rΘ|

¯
“

@
η, BzjR

D
`O

´
}η}2rΣ

¯
. (4.6)

Proof of Proposition 3.4. Lemma 4.1 and (3.17) imply immediately (3.18)–(3.19). Entering
this, (3.3) and (3.15) in (4.6) we obtain (3.20).

5 The Fermi Golden Rule: proof of Proposition 3.5

The nonlinear Fermi Golden Rule (FGR) was an idea initiated by Sigal [55] and further developed
by Buslaev and Perelman [3] and by Soffer and Weinstein [59]. More complicated configurations
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were discussed in [11], where the deep connection of the FGR with the Hamiltonian nature of the
NLS was clarified. This comes about because the FGR has to do with the fact that the integral of
certain coefficients on appropriate spheres of the phase space associated to Lω are strictly positive.
The positivity is due to the fact that the coefficients are essentially squares, that is the product of
pairs of factors which are complex conjugates to each other. It turns out that the factors are like
this thanks to the Hamiltonian structure of the NLS, which gives relations between coefficients of
the system, since they are partial derivatives of a fixed given function, the Hamiltonian E, see [11,
pp. 287–288] for a heuristical explanation. The rigorous argument in [11] needed various changes of
variables, to get into canonical coordinates and normal forms. However the notion of Refined Profile
and the related modulation ansatz provide a framework to prove the FGR in a direct way, without
any need of a search of canonical coordinates and of normal forms, see for example [14]. The proof
involves differentiating a Lyapunov functional which lately in the literature, especially for space
dimension 1, is simpler than what would be analogous here to the energy EpφrΘsq used up until
[14, 17]. A good reference for the simpler Lyapunov functional is Kowalczyk and Martel [38] where
the spectrum is rather simple while for a version with a more complicated spectral configuration we
refer to [19]. In our current paper the spectrum is like in Kowalczyk and Martel [38] and Martel [46]
and involves the functional

JFGR :“
A
Jη, χA

´
z2gpωq ` z2gpωq

¯E
, (5.1)

with a nonzero gpωq P L8pR,C2q satisfying

Lωg
pωq “ 2iλpp, ωqgpωq. (5.2)

That gpωq exists is known since Krieger and Schlag [42], see Lemma 6.3, or earlier Buslaev and
Perelman [2]. Notice that if g solves (5.2) for ω “ 1 then gpωqpxq :“ g p?

ωxq solves (5.2), where
λpp, ωq “ ωλpp, 1q. We define the FGR constant γpω, pq by

γpω, pq :“
A
φp´2

ω

`
pξ21 ` ξ22

˘
, g

pωq
1

E
` 2

A
φp´2

ω ξ1ξ2, g
pωq
2

E
. (5.3)

The non-degeneracy of this constant, which is usually assumed, but proved in this paper, is impor-
tant.

Lemma 5.1. For |p´ 3| ! 1, we can choose gpωq so that γpω, pq ‰ 0.

The proof of Lemma 5.1 is given in section 11. Notice that once we have have γpω, pq ‰ 0, we
can multiply g by a constant to get

2pp´ 1qγpω, pq “ 1. (5.4)

In the next lemma we will need the following reformulation of equation (3.25), where we identify
J “ ´i,

9η “ Lωη ´ JprϑR ` rϑ ´ 9ϑqη ´ e
Jϑ

DΘφrΘsp 9Θ ´ rΘq ` J pDfpφrω, zsq ´ Dfpφωqq η (5.5)

´ J pfpφrω, zs ` ηq ´ fpφrω, zsq ´ Dfpφrω, zsqηq ´ JRrω, zs.

We have the following

Lemma 5.2. There is a C1 in time function IFGR, which satisfies |IFGR| À
?
δ such that

ˇ̌
ˇ 9JFGR ` 9IFGR ´ |z|4

ˇ̌
ˇ À A´1

´
|z|4 ` }η}2ΣA

` }η}2rΣ
¯
. (5.6)
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Proof. Differentiating JFGR, we have

9JFGR “
A
J 9η, χA

´
z
2
g

pωq ` z
2
g

pωq
¯E

`
A
Jη, χA

´
2zrzgpωq ` 2zrzgpωq

¯E

`
A
Jη, χA

´
2zp 9z ´ rzqgpωq ` 2zp 9z ´ rzqgpωq

¯E

`
A
Jη, χA

´
z
2Bωg

pωq ` z
2Bωg

pωq
¯E

p 9ω ´ rωq `
A
Jη, χA

´
z
2Bωg

pωq ` z
2Bωg

pωq
¯E

rω

“: A1 ` A2 ` A3 ` A4 ` A5.

We consider first the last three terms, the simplest ones. By (4.2) we have

|A3| À }ηχA}L1 |z| | 9z ´ rz| À A
3

2A´1}sech
ˆ
2

A
x

˙
η}L2 | 9z ´ rz| À

?
δA

3

2

´
}η}2ΣA

` }η}2rΣ
¯
.

Since }Bωgpωq}L8 À xxy, using also (4.1) we have

|A4| À A}ηχA}L1 |z|4| 9ω ´ rω| À A
5

2 |z|4}η}ΣA
| 9ω ´ rω|

À δ5A
5

2

´
}η}2ΣA

` }η}2rΣ
¯
.

Finally, using (3.3) we have

|A5| À A}ηχA}L1|z|2|rω| À A
5

2 |z|4}η}ΣA

À δ2A
5

2

`
}η}2ΣA

` |z|4
˘
.

Turning to the main terms, we have

A2 “
A
Jη, 2iλχA

´
z2gpωq ´ z2gpωq

¯E
`
A
Jη, χA

´
2zrzRgpωq ` 2z rzR gpωq

¯E
“ A21 `A22.

By (3.3) proceeding like for A3,

|A22| À }ηχA}L1|z|3 À
?
δA

3

2 }η}ΣA
|z|2 À

?
δA

3

2

`
}η}2ΣA

` |z|4
˘
.

By (5.5) and by (5.2) for the cancellation, we have

A1 ` A21 “ ´
✭✭✭✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤❤❤❤

A
Jη, χALωpz2gpωq ` z

2
g

pωqq
E

`✟
✟❍
❍A21 ` prϑR ` rϑ ´ 9ϑq

A
η, χApz2gpωq ` z

2
g

pωqq
E

´
A
Je

´iϑ
DΘφrΘsp 9Θ ´ rΘq, χApz2gpωq ` z

2
g

pωqq
E

`
A

p2χ1
ABx ` χ

2
Aqη, z2gpωq ` z

2
g

pωq
E

´
A

pDfpφrω, zsq ´ Dfpφωqq η, χApz2gpωq ` z
2
g

pωqq
E

`
A
fpφrω, zs ` ηq ´ fpφrω, zsq ´ Dfpφrω, zsqη, χApz2gpωq ` z

2
gq
E

`
A
R,χApz2g ` z

2
g

pωqqq
E

“ A11 ` A12 ` A13 ` A14 ` A15 ` A16.

It is easy to see, and a rather routine computation repeated often in the literature, also using Lemma
4.1, that

5ÿ

j“1

|A1j | À
?
δA

3

2

´
|z|4 ` }η}2ΣA

` }η}2rΣ
¯
.

16



The key term for the FGR is A16. We claim we have

A16 “
A
fpφrω, zsq ´ fpφωq ´ Dfpφωq

`
zξ ` zξ

˘
, χApz2gpωq ` z

2
g

pωqqq
E

´
A
iDzφrω, zsrzR ´ rϑRφrω, zs ` irωRBωφrω, zs, χApz2gpωq ` z

2
g

pωqqq
E

“: A161 ` A162.

We have

|A162| À A´1|z|4. (5.7)

Indeed, for example we have

rωR

A
iBωφrω, zs, χApz2gpωq ` z2gpωqq

E
“ rωR

A
i p✘✘✘Bωφω ` zBωξ ` `zBωξq , z2gpωq ` z2gpωq

E

` rωR

A
iBωφrω, zs, p1 ´ χAq pz2gpωq ` z2gpωqq

E
“ O

`
z5
˘

`O
`
e´κω0Az4

˘

where we used the orthogonality (2.2)–(2.3), the bound (3.3) and the exponential decay of ξ. The
other terms forming A162 can be bounded similarly, yielding (5.7). We have

A161 “ 2´1

A
D

2
fpφωq

`
zξ ` zξ

˘2
, χApz2gpωq ` z

2
g

pωqqq
E

`

ż

r0,1s2
t
A`

D
2
fpφω ` t s

`
zξ ` zξ

˘
q ´ D

2
fpφωq

˘ `
zξ ` zξ

˘2
, χApz2gpωq ` z

2
g

pωqqq
E

“: A1611 ` A1612.

We have, taking δ ą 0 small enough,

|A1612| ď oδp1q|z|4 ď A´1|z|4.

Next, by (2.18) for ξ “ pξ1, ξ2q⊺, X “ pzξ1 ` zξ1q ` ipzξ2 ` zξ2q, u “ φω and identifying C “ R2, we
have

D2fpφωq
`
zξ ` zξ

˘2 “ pp´ 1qφp´2

ω

ˆ
ppzξ1 ` zξ1q2 ` pzξ2 ` zξ2q2

2pzξ1 ` zξ1qpzξ2 ` zξ2q

˙
. (5.8)

Then, by (2.18) we have

A1611 “ 2pp´ 1q|z|4γpω, pq

` 4pp´ 1q|z|2
´A
φp´2

ω

`
p|ξ1|2 ` |ξ2|2

˘
, z2g

pωq
1

E
` 2

A
φp´2

ω pξ1ξ2 ` ξ1ξ2q, z2gpωq
2

E¯

` 2pp´ 1q
´A
φp´2

ω

´
pξ

2

1 ` ξ
2

2

¯
, z4g

pωq
1

E
` 2

A
φp´2

ω ξ1ξ2, z
4g

pωq
2

E¯

“: A16111 `A16112 `A16113.

We claim that

3ÿ

j“2

|A1511j | À |z|5 ` |z|3| 9Θ ´ rΘ|.

To n “ 2, 4 write

d

dt
zn “ nrzzn´1 ` n p 9z ´ rzq zn´1 “ niλzn ` nrzRzn´1 ` n p 9z ´ rzq zn´1. (5.9)
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Then for example

A
φp´2

ω ξ1ξ2, z
4g

pωq
2

E
“
B
φp´2

ω ξ1ξ2,
1

4iλ

ˆ
d

dt
z4 ´ 4rzRz3 ´ 4 p 9z ´ rzq z3

˙
g

pωq
2

F

and applying the Leibnitz rule for the time derivative, it is easy to obtain the claim, from which we
conclude, since the other terms can be treated similarly,

3ÿ

j“2

|A1511j | À A´1

´
|z|4 ` }η}2ΣA

` }η}2rΣ
¯
.

Using also the normalization in (5.4) we obtain (5.6).

Proof of Proposition 3.5. Integrating (5.6) we obtain }z2}2
L2pIq À

?
δ `A´1ǫ2 yielding (3.21).

6 High energies: proof of Proposition 3.6

The power of the method used by Kowalczyk et al. [40] is seen at high energies, thanks to a striking
computation that deals with great ease with the |η|p´1η term in the equation (3.25), see in particular
formula (3.12) in Kowalczyk et al. [40]. Notice that methods of proof of dispersion based on the
Duhamel formula, run into great trouble when dealing with the |η|p´1η at low p’s.
Following the framework in Kowalczyk et al. [40] we fix an even function χ P C8

0 pR, r0, 1sq satisfying

1r´1,1s ď χ ď 1r´2,2s and xχ
1pxq ď 0 and set χC :“ χp¨{Cq for a C ą 0. (6.1)

We consider the function

ζApxq :“ exp

ˆ
´ |x|
A

p1 ´ χpxqq
˙

and ϕApxq :“
ż x

0

ζ2Apyq dy (6.2)

and the vector field

SA :“ ϕ1
A ` 2ϕABx. (6.3)

Next, we set

I :“ 2´1 xiη, SAηy .

Lemma 6.1. There exists a fixed constant C ą 0 s.t. for an arbitrary small number

}η}2ΣA
ď C

”
´ 9I1st,1 ` }η}2rΣ ` | 9Θ ´ rΘ|2 ` |z|2

ı
. (6.4)

Proof. From (3.25)

9I “ ´ x 9η, iSAηy “
@

B2

xη, SAη
D

` xR,SAηy ` xfpφ` ηq ´ fpφq, SAηy

`O
´

| 9Θ ´ rΘ|}η}rΣ
¯
.

From [45] we have

@
B2

xη, SAη
D

ď ´2}pζAηq1}2L2 ` C

A
}η}2rΣ.
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Like in [45]

xfpφ` ηq ´ fpφq, SAηy “ ´2
@
F pφ` ηq ´ F pφq ´ fpφqη, ζ2A

D

´ 2
@
fpφ` ηq ´ fpφq ´ f 1pφqη, φ1ϕA

D
`
@
fpφ` ηq ´ fpφq, ζ2Aη

D
“

3ÿ

j“1

Bj .

We have

B1 “ ´2

ż

r0,1s3
t1
@
D2fpt3φ` t1t2ηqpη, φq, ηζ2A

D
dt1dt2dt3 ` 2

@
F pηq, ζ2A

D

B3 “
ż

r0,1s2

@
D2fpt2φ` t1ηqpη, φq, ηζ2A

D
dt1dt2 ´

@
fpηq, ηζ2A

D

This yields

|B1| ` |B3| À }η}2rΣ ` δp´1A2}η}2ΣA
,

where the crucial bound is
ż

R

|η|p`1ζ2Adx À A2}η}p´1

L8pRq}pζAηq1}2L2pRq, (6.5)

see Kowalczyk et al. [40], see also [15]. We have

|B2| À }η}2rΣ.

Notice, see Lemma 6.2 [19], that the following holds, completing the proof,

}sech
ˆ
2

A
x

˙
η1}2L2 `A´2}sech

ˆ
2

A
x

˙
η}2L2 À }pζAηq1}2L2pRq `A´1}η}2rΣ.

Proof of Proposition 3.6. Integrating in I inequality (6.1) we obtain (3.22).

7 Low energies: proof of Proposition 3.7

While very effective and efficient at proving dispersion at high energies thanks to inequality (6.5),
the virial inequality of Kowalczyk et al. [40] is somewhat inefficient at low energies, because it places
some restrictions on the system that seem due to the method of proof. In fact, as we show below,
we can replace the virial inequality with smoothing estimates. This because we only need to bound
}η}rΣ “ }sech pκω0xq η}L2pRq, which has the rapidly decaying weight sech pκω0xq. It is enough to

bound }sech pκω0xqχBη}L2pRq because the difference is, choosing B „ 3
?
A !

?
A, a small fraction

of }η}ΣA
. To get a bound for }sech pκω0xqχBη}L2pRq, we can multiply equation (5.5) by χB. The

cutoff χB tames the term χB|η|p´1η, which is very small and easy to bound. There is a new term
due to the commutator of χB and Lω which requires a new smoothing estimate, see Proposition
2.3, not already contained in Krieger and Schlag [42]. Notice that in the case of scalar Schrödinger
operators in R a version of Proposition 2.3 is implied by Deift and Trubowitz [25] and is easy to
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prove, see Sect. 8 [17]. For convenience, in the study of dispersive and smoothing estimates of (5.5)
it is customary to use a different coordinate system. We consider the matrix U defined by

U “
ˆ
1 1
i ´i

˙
, U´1 “ 1

2

ˆ
1 ´i
1 i

˙
. (7.1)

We have
U´1JU “ iσ3 where σ3 :“ diagp1,´1q.

By elementary computations

U´1LωU “ iHω where Hω “ σ3
`
´B2

x ` ω
˘

` Vω, (7.2)

Vω :“ ´p` 1

2
φp´1

ω σ3 ´ i
p´ 1

2
φp´1

ω σ2 where σ2 :“
ˆ
0 ´i
i 0

˙
.

Notice that we have the symmetries

σ1Hω “ ´Hωσ1 and σ3Hω “ H˚
ωσ3. (7.3)

Applying U´1 to equation (5.5) we get

BtpU
´1

ηq “ iHωU
´1

η ´ iσ3prϑR ` rϑ ´ 9ϑqU´1
η (7.4)

´ e
iσ3ϑU

´1
DΘφrΘsp 9Θ ´ rΘq ` iσ3U

´1 pDfpφrω, zsq ´ Dfpφωqq η

´ iσ3U
´1 pfpφrω, zs ` ηq ´ fpφrω, zsq ´ Dfpφrω, zsqηq ´ iσ3U

´1
Rrω, zs.

Set v :“ χBU
´1η. We denote Pdpωq the discrete spectrum projection and Pcpωq the continuous

spectrum projection associated to Hω, which are closely related to the corresponding projections for
Lω. Then we write

v “ Pcpω0qv ` rPdpω0q, χBsU´1η where it is easy to check that (7.5)

}rPdpω0q, χBsU´1η}L2,spRq ď oB´1p1q}η}rΣ for any s P R. (7.6)

Setting w “ Pcvpω0q, we have

Btw “ iHω0
w ´ i̟Pcpω0qσ3w ` iPcpω0qσ3

`
2χ1

BBx ` χ
2
B

˘
U

´1
η (7.7)

` iPcpVω0
´ Vωqw ` iPcpVω0

´ VωqrPdpω0q, χBsU´1
η

´ Pcpω0qχBe
iσ3ϑU

´1
DΘφrΘsp 9Θ ´ rΘq ` iPcpω0qσ3χBU

´1 pDfpφrω, zsq ´ Dfpφωqq η

´ iPcpω0qχBσ3U
´1 pfpφrω, zs ` ηq ´ fpφrω, zsq ´ Dfpφrω, zsqηq ´ iPcpω0qσ3χBU

´1
Rrω, zs

where

̟ :“ rϑR ` rϑ´ 9ϑ ` ω ´ ω0. (7.8)

There is a splitting Pcpωq “ P`pωq ` P´pωq with P˘pωq the spectral projections in R˘ X σepHωq.
Specifically we have the following for which we refer to [24].

Lemma 7.1. The following are bounded operators P˘pωq in L2 pRq

P`pωqu “ lim
MÑ`8

lim
ǫÑ0`

1

2πi

ż

rω,Ms
rRHω

pE ` iǫq ´RHω
pE ´ iǫqsudE

P´pωqu “ lim
MÑ`8

lim
ǫÑ0`

1

2πi

ż

r´M,´ωs
rRHω

pE ` iǫq ´RHω
pE ´ iǫqsudE

(7.9)
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and for any M ą 0 and N ą 0 and for C “ CpN,M,ωq we have

}pP`pωq ´ P´pωq ´ PcpHωqσ3qf}L2,M pRq ď C}f}L2,´NpRq. (7.10)

A version of Lemma 7.1 was introduced by Buslaev and Perelman [3], see also [4].
We rewrite (7.7) as

Btw “ iHω0
w ´ i̟pP`pω0q ´ P´pω0qqw ` iσ3

`
2χ1

BBx ` χ
2
B

˘
w

´ i̟Pcpω0qσ3rPdpω0q, χBsU´1
η ´ i̟pPcpω0qσ3 ´ P`pω0q ` P´pω0qqw (7.11)

` iPcpVω0
´ Vωqw ` iPcpVω0

´ VωqrPdpω0q, χBsU´1
η (7.12)

´ Pcpω0qχBe
iσ3ϑU

´1
DΘφrΘsp 9Θ ´ rΘq ` iPcpω0qσ3χBU

´1 pDfpφrω, zsq ´ Dfpφωqq η (7.13)

´ iPcpω0qχBσ3U
´1 pfpφrω, zs ` ηq ´ fpφrω, zsq ´ Dfpφrω, zsqηq ´ iPcpω0qσ3χBU

´1
Rrω, zs. (7.14)

We have

w “ Upt, 0qwp0q ` i

ż t

0

Upt, t1qPcpω0qσ3
`
2χ1

BBx ` χ2
B

˘
U´1ηdt1 (7.15)

`
ż t

0

Upt, t1q plines (7.11)– (7.14)q dt1, (7.16)

where U is the generator associated with the linear evolution Btw “ iHω0
w´ i̟pP`pω0q´P´pω0qqw.

For αtt1 “
şt
t1 ̟pυqdυ, P˘ “ P˘pω0q and Pc “ Pcpω0q, expanding the exponential we get

Upt, t1q :“ eipt´t1qHω0Pce
iαtt1 pP`´P´q “ Pce

ipt´t1qHω0 pcos pαtt1 qPc ` i sin pαtt1 q pP` ´ P´qq . (7.17)

Lemma 7.2. For S ą 3{2 we have

}w}L2pI,L2,´SpRqq ď oB´1p1qǫ. (7.18)

Proof. Let us take S ą 3{2. Taking the expansion in (7.17), we have

}Upt, 0qwp0q}L2pI,L2,´SpRqq ď }eitHω0wp0q}L2pR,L2,´SpRqq

` }eitHω0 pP` ´ P´qwp0q}L2pR,L2,´SpRqq.

By the analogue for Hω of (2.21), see (9.1), which is what we actually prove in Sect. 9 below, we
have

}eitHω0wp0q}L2pR,L2,´SpRqq À }wp0q}L2pRq.

Similarly

}eitHω0 pP` ´ P´qwp0q}L2pR,L2,´SpRqq À }pP` ´ P´qwp0q}L2pRq À }wp0q}L2pRq.

The second term in (7.15) is more delicate for more than one reason. First of all, by (7.17) and
αtt1 “ αt0 ´ αt10, we write the integrand as the sum

eipt´t1qHω0Pc rcos pαt0q cos pαt10q ` sin pαt0q sin pαt10q
`i pcos pαt0q sin pαt10q ´ sin pαt0q cos pαt10qq pP` ´ P´qs σ3

`
2χ1

BBx ` χ2
B

˘
U´1η
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This yields various terms, that can be bounded all in the same way, so that we bound only the last
of them. We proceed like in [17]. We have

} sin pαt0q
ż t

0

eipt´t1qHω0PcpP` ´ P´qσ3
`
2χ1

BBx ` χ2
B

˘
cos pαt10qU´1ηdt1}L2pI,L2,´SpRqq

À }
ż t

0

eipt´t1qHω0 pP` ´ P´ ´ Pcσ3qσ3
`
2χ1

BBx ` χ2
B

˘
cos pαt10qU´1ηdt1}L2pI,L2,´SpRqq

` }
ż t

0

eipt´t1qHω0Pc

`
2χ1

BBx ` χ2
B

˘
cos pαt10qU´1ηdt1}L2pI,L2,´SpRqq “: I1 ` I2.

For I1 can use the estimate (2.19) derived by Krieger and Schlag [42] and write

I1 À }

ż t

0

}eipt´t1qHω0Pc}L2,SÑL2,´S }P` ´ P´ ´ Pcσ3}L2ÑL2,S }
`
2χ1

BBx ` χ
2
B

˘
U

´1
η}L2pRqdt

1}L2pIq

À }

ż t

0

@
t ´ t

1
D´3{2

}
`
2χ1

BBx ` χ
2
B

˘
U

´1
η}L2pRqdt

1}L2pIq À }
`
2χ1

BBx ` χ
2
B

˘
η}L2pI,L2pRqq, (7.19)

where we postpone completion of the analysis. The term I2 is more delicate and is bounded by
Lemma 8.9, expressed for Hω instead of Lω , which is the same. So for any s ą 1{2

I2 À }
`
2χ1

BBx ` χ2
B

˘
η}L2pI,L2,spRqq. (7.20)

Now we have

}
`
2χ1

BBx ` χ2
B

˘
η}L2pI,L2,spRqq À Bs´1}sech

ˆ
2

A
x

˙
η1}L2pI,L2pRqq

`Bs´2}1Bď|x|ď2Bsech

ˆ
2

A
x

˙
η}L2pI,L2pRqq À Bs´1}η}L2pI,ΣAq

`Bs´1

¨
˝
›››››

ˆ
sech

ˆ
2

A
x

˙
η

˙1
›››››
L2pI,L2pRqq

` }η}
L2pI,rΣq

˛
‚“ oB´1p1qǫ,

where we used s P p1{2, 1q and, see [17],

}1Bď|x|ď2Bu}L2pRq À
b

}1Bď|x|ď2B|x|}L1pRq
´››u1››

L2pRq ` }u}rΣ
¯
.

This implies the following, yielding good bounds for the terms in the right hand side of line (7.15),

I1 ` I2 “ oB´1p1qǫ.

The terms in line (7.16) can be similarly bounded using in particular the analogue for Hω of Propo-
sition 2.2. The estimates are elementary and similar to [17, Sect. 8].

Proof of Proposition 3.7. From (7.5), (7.6) and (7.18) we have }v}
L2pI,rΣq À oB´1p1qǫ. Next,

from v “ χBU
´1η, and thanks to the relation A „ B3 set in (2.11) we have

}η}rΣ À }v}rΣ ` }p1 ´ χBqη}rΣ À }v}rΣ `A´2}sech
ˆ
2

A
x

˙
η}L2

À }v}rΣ `A´1}η}ΣA
(7.21)
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So by (3.22) and (3.21) we get the following, which implies (3.23),

}η}
L2pI,rΣq À }v}

L2pI,rΣq `A´1}η}L2pI,ΣAq

À oB´1p1qǫ`A´1

´
}z2}L2pIq ` }η}

L2pI,rΣq

¯
À oB´1p1qǫ `A´1}η}

L2pI,rΣq.

8 The resolvent of the linearized operator

We will focus on the operator Hω in (7.2). For the discussion it is enough to consider ω “ 1, since
the operators for other values of ω are obtained by a scaling transformation. We will set H “ H1

with vector potential V “ V1. We will set

e1 :“
ˆ
1
0

˙
and e2 :“

ˆ
0
1

˙
.

Given two (column) functions f, g : R Ñ C2, using the row column product, we consider the
Wronskian

W rf, gspxq :“ f 1pxq⊺gpxq ´ fpxq⊺g1pxq.

It is well known that H has Jost functions, discussed in [2, 42], which we subsume here.

Proposition 8.1. For any k P R there exists solutions fjpx, kq for j “ 1, 2, 3, 4 of

Hu “ p1 ` k2qu (8.1)

with for a fixed C ą 0 and for x ě 0

fjpx, kq “ eip´1qj`1xkmjpx, kq with |mjpx, kq ´ e1| ď C xky´1
e´pp´1qx for j “ 1, 2, (8.2)

f3px, kq “ e´
?
2`k2xm3px, kq with |m3px, kq ´ e2| ď C xky´1

e´pp´1qx. (8.3)

There is a solution rf4px, kq of (8.1) with

rf4px, kq “ e
?
2`k2x rm4px, kq with |rm4px, kq ´ e2| ď C xky´1

e´pp´1qx. (8.4)

We have

W rf1, f2s “ 2ik , W rf2, rf4s “ 2
a
2 ` k2 , W rfj, f3s “ 0 for j “ 1, 2. (8.5)

There is a unique choice of c1, c2 P C such that for

f4px, kq :“ ´c1f1px, kq ´ c2f2px, kq ` rf4 ùñ W rfj, f4s “ 0 for j “ 1, 2. (8.6)

For the proof see [42]. Since the potential V pxq is even, writing

gjpx, kq :“ fjp´x, kq (8.7)

yields analogous Jost functions with prescribed behavior as x Ñ ´8. Notice that since the potential
V pxq is exponentially decreasing, all the above Jost functions extend in the region | Im k| ď δp for a
small δp ą 0.
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Remark 8.2. For p “ 3 it is possible to write explicit formulas for the above Jost functions, for
fjpx, kq for j “ 1, 2 see [36]. We write the formulas in Sect. 10.

We consider the matrices

F1px, kq “ pf1px, kq, f3px, kqq , F2px, kq “ pf2px, kq, f4px, kqq ,
G1px, kq “ pg2px, kq, g4px, kqq , G2px, kq “ pg1px, kq, g3px, kqq.

For matrix valued functions F “ pφ1, φ2q and G “ pψ1, ψ2q we set

W rF,Gs :“ F 1pxq⊺Gpxq ´ F pxq⊺G1pxq.

By direct computation, see [42],

W rF,Gs “
ˆ
W rφ1, ψ1s W rφ1, ψ2s
W rφ2, ψ1s W rφ2, ψ2s

˙
.

Still quoting from [42], we have the following.

Lemma 8.3. For any k P Rzt0u there matrices Apkq and Bpkq, smooth in k and s.t.

F1px, kq “ G1px, kqApkq `G2px, kqBpkq, (8.8)

with Ap´kq “ Apkq, Bp´kq “ Bpkq and

G2px, kq “ F2px, kqApkq ` F1px, kqBpkq, (8.9)

W rF1px, kq, G2px, kqs “ Apkq⊺diagp2ik,´2
a
2 ` k2q (8.10)

W rF1px, kq, G1px, kqs “ ´Bpkq⊺diagp2ik,´2
a
2 ` k2q. (8.11)

Furthermore
G1px, kq “ F2p´x, kq , G2px, kq “ F1p´x, kq
F1px, kq “ F1px,´kq , F2px, kq “ F2px,´kq.

(8.12)

We set

Dpkq :“ W rF1px, kq, G2px, kqs “
ˆ
W rf1px, kq, g1px, kqs W rf1px, kq, g3px, kqs
W rf3px, kq, g1px, kqs W rf3px, kq, g3px, kqs

˙
. (8.13)

The following holds, see [42].

Lemma 8.4. For k ‰ 0 the following are equivalent:

• detApkq “ 0;

• E “ 1 ` k2 is an eigenvalue of H;

• detDpkq “ 0.

Furthermore E “ 1 is neither nor an eigenvalue of H if and only if detDp0q ‰ 0 and we have

Dp´kq “ Dpkq and Dpkq⊺ “ Dpkq.
The following holds, see [42].
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Lemma 8.5. For k ě 0 the following extensions of the resolvent RHpEq from above and from below

the real line hold, for E “ 1 ` k2:

R`
Hpx, y, Eq “

"
´F1px, kqD´1pkqG2py, kq⊺σ3 if x ě y

´G2px, kqD´1pkqF1py, kq⊺σ3 if x ď y
(8.14)

R´
Hpx, y, Eq “

"
´F1px,´kqD´1p´kqG2py,´kq⊺σ3 if x ě y

´G2px,´kqD´1p´kqF1py,´kq⊺σ3 if x ď y.
(8.15)

We set x˘ “ maxt˘x, 0u. The main result of this section is the following.

Proposition 8.6. There exists a small constant δ3 ą 0 such that for any p with 0 ă |p ´ 3| ă δ3
there exists a constant C such that for any E P p´8,´1s Y r1,`8q we have

ˇ̌
R˘

Hpx, y, Eq
ˇ̌

ď C

"
p1 ` x´ ` y`q if x ě y

p1 ` x` ` y´q if x ď y.
(8.16)

Assuming Proposition 8.6, we have the following.

Lemma 8.7. For S ą 3{2 and τ ą 1{2 we have

sup
EPR

}R˘
HpEqPc}L2,τpRqÑL2,´SpRq ă 8. (8.17)

Proof. First of all, from the proof of Proposition 8.6 it will be clear that (8.16) holds for any
E P p´8,´as Y ra,`8q for an a P p0, 1q sufficiently close to 1. Then in such a set we proceed like
in [17], we can ignore Pc and consider the square of the Hilbert–Schmidt norm

ż

R

dx xxy´2S

ż

R

|R`
HN`1

px, y, zq|2 xyy´2τ
dy “

ż

R

dx xxy´2S

ż x

´8
|R`

HN`1
px, y, zq|2 xyy´2τ

dy

`
ż

R

dx xxy´2S

ż `8

x

|R`
HN`1

px, y, zq|2 xyy´2τ
dy. (8.18)

The second term in the right hand side is bounded by
ż

xăy

xxy´2S xyy´2τ
`
1 ` x` ` y´˘2 dxdy ď

ż

xăyă0

xxy´2S xyy´2τ`2
dxdy

`
ż

0ăxăy

xxy´2S`2 xyy´2τ
dxdy `

ż

xă0ăy

xxy´2S xyy´2τ
dxdy “:

3ÿ

j“1

Ij .

Then

I1 ď
ż

R

xxy´2S`2
dx

ż

R

xyy´2τ
dy “: I4 ă 8 for S ą 3{2 and τ ą 1{2.

Similarly Ij ă I4 for j “ 2, 3. Similar estimates hold for the term in the first line in the right hand
side of (8.18). So now we need to consider the inequality in (8.17) only for E P r´a, as, in which
case we can drop the superscript ˘. Then the result is trivial, because

sup
EPr´a,as

}RHpEqPc}L2,τ pRqÑL2,´SpRq ď sup
EPr´a,as

}RHpEqPc}L2pRqÑL2pRq

“ sup
EPr´a,as

}RHPc
pEq}RpPcqÑRpPcq ă 8

by the invariance of RpPcq, the Range of Pc, and by σpHPcq X p´1, 1q “ H.

The following formula is inspired by Mizumachi [48, Lemma 4.5].
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Lemma 8.8. Let for g P SpR ˆ R,C2q with Pcgptq “ gptq

Upt, ¨q :“ i

2π

ż

R

e´iEt
`
R´

HpEq `R`
HpEq

˘
g_pE, ¨qdE

where g_ is the inverse Fourier transform in t of g. Then

2

ż t

0

e´ipt´t1qHgpt1qdt1 “ Upt, xq ´
ż

R´

e´ipt´t1qHgpt1qdt1 (8.19)

`
ż

R`

e´ipt´t1qHgpt1qdt1.

We postpone the proof of Lemma 8.8 until the end of this section. From Lemmas 8.7 and 8.8
we conclude the following, inspired by Mizumachi [48].

Lemma 8.9. For S ą 3{2 and τ ą 1{2 there exists a constant CpS, τq such that we have

››››
ż t

0

e´ipt´t1qHPcgpt1qdt1
››››
L2pR,L2,´SpRqq

ď CpS, τq}g}L2pR,L2,τpRqq. (8.20)

Proof. The proof is verbatim in [17]. We can use formula (8.19) and bound U , with the bound on
the last two terms in the right hand side of (8.19) similar. Taking Fourier transform in t,

}U}L2
tL

2,´S ď 2 sup
˘

}R˘
HN`1

pλqpgpλ, ¨q}L2

λ
L2,´S ď

ď 2 sup
˘

sup
λPR

}R˘
HN`1

pλq}L2,τ ÑL2,´S }pgpλ, xq}L2,τL2

λ
À }g}L2

tL
2,τ .

Proof of Proposition 8.6. From R´
Hpx, y, Eq “ R`

Hpx, y, Eq for the bounds it is enough consider
the case of R`

H . From

R`
Hpx, y, Eq “ σ3R

`
Hp´y,´x,Eq⊺σ3

it is enough to consider case x ě y. Finally

R`
Hpx, y, Eq “ ´σ1R´

Hpx, y,´Eqσ1,

it is enough to focus on E “ 1 ` k2.
After the above reductions, we remark that it is enough to consider the case when k is close to
0. This is because for k away from 0 a better estimate, without the term 1 ` x` ` y´, is already
contained in [42]. Notice that the estimates in [42] there are some subtleties because, while for
x ě 0 ě y the desired estimate follows directly form the bounds here stated in Proposition 8.1, for
say 0 ą x ě y the bounds rely on (8.8)–(8.9) and on formulas (8.10)–(8.11) which yield formulas

like ApkqD´1pkq “ diag

ˆ
1

2ik
,´ 1?

2 ` k2

˙
which are responsible for some crucial cancellations.

In the sequel we consider only the case R`
H for E “ 1` k2 and x ě y for k close to 0. We will follow

the argument in [12], which unfortunately has some mistakes, but contains some useful insights
that we will review, avoiding errors. We will prove the following where to simplify notation we set

fpx, kq “ f1px, kq. We will write Dkpxq “ 1´e´2ikx

2ki
with D0pxq “ x.
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Lemma 8.10. For 0 ă |p´3| ! 1 and k P C` close to 0, it is possible to write fpx, kq “ eikxmpx, kq
where

mpx, kq “e1 ´
ż 8

x

Dkpx ´ yqdiagp1, 0qV pyqmpy, kqdt (8.21)

´
ż

R

e´
?
k2`2|x´y|´ikpx´yq

2
?
k2 ` 2

diagp0, 1qV pyqmpy, kqdt.

In particular there exists a constant C such that

|mpx, kq ´ e1| ď Cp1 ` x´q for all k near 0 and x P R. (8.22)

Proof. First of all it is easy to see that if mpx, kq satisfies (8.21), then fpx, kq “ eikxmpx, kq
satisfies (8.1) and can be taken as the f1px, kq in Proposition 8.1. Now let us write mpx, kq “
pm1px, kq,m2px, kqq⊺, where here m1 and m2 are the two components of m and should not be
confused with the m1 and m2 in Proposition 8.1. For the first component of m we have

m1px, kq `
ż 8

x

Dkpx´ yqV11pyqm1py, kqdy “ 1 ´
ż 8

x

Dkpx´ yqV12pyqm2py, kqdy.

It is elementary that the operators

Aijpkqu :“ ´
ż 8

x

Dkpx´ yqVijpyqupyqdy

are bounded within the space xx´yL8pRq endowed with norm }v}xx´yL8pRq :“ } xx´y´1
v}L8pRq.

The following is standard and follows from [25, Lemma 1 p.130].

Claim 8.11. The operators p1 ´ Aijpkqq : xx´yL8pRq Ñ xx´yL8pRq can be inverted with norm of
the inverse uniformly bounded in k P C`.

Proof. Consider p1 ´Aijpkqqu “ v and write formally the series

8ÿ

n“0

un with un “ Aijpkqun´1 and u0 “ v.

Then, like in [25, p.132] and by |Dkpx´ yq| ď |x´ y|, for x0 “ x

|unpxq| ď
ż

xďx1ď...ďxn

dx1...dxn

nź

ℓ“1

pxℓ ´ xℓ´1q|Vijpxℓq| xxny } x¨y´1
v}L8pRq

ď 1

n!

ˆż 8

x

py ´ xq xyy |Vijpyq|dy
˙n

}v}xx´yL8pRq.

This means that the series is uniformly convergent in half–lines and that for any x we have

upxq “ vpxq ´
ż 8

x

Dkpx´ yqVijpyqupyqdy.

Then

|upxq| ď |vpxq| `
ż 8

x

y|Vijpyq||upyq|dy ´ x

ż 8

x

|Vijpyq||upyq|dy

ď |vpxq| `
ż 8

0

y|Vijpyq||upyq|dy ` x´
ż 8

x

|Vijpyq||upyq|dy.
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This implies

@
x´D´1 |upxq| ď }v}xx´yL8pRq `

ż 8

x

2 xyy2 |Vijpyq|
@
y´D´1 |upyq|dy

which in turn implies the following, by an application of Gronwall’s inequality,

@
x´D´1 |upxq| ď }v}xx´yL8pRq exp

ˆż 8

x

2 xyy2 |Vijpyq|dy
˙
.

Thanks to Claim 8.11 we can write

m1p¨, kq “ p1 ´A11pkqq´11 ` p1 ´A11pkqq´1A12pkqm2p¨, kq (8.23)

where if
|m2py, kq| ď C for all y P R and for k close to 0, (8.24)

then
|m1px, kq| ď C

@
x´D for all x P R and for k close to 0. (8.25)

For the second component of m we have

m2px, kq “ ´
ż

R

e´
?
k2`2|x´y|´ikpx´yq

2
?
k2 ` 2

V21pyqm1py, kqdy

´
ż

R

e´
?
k2`2|x´y|´ikpx´yq

2
?
k2 ` 2

V22pyqm2py, kqdy.

Using formula (8.23), we can eliminate in the last equation m1p¨, kq, obtaining an equation of the
form

p1 ` Apkqqm2p¨, kq “ ´
ż

R

e´
?
k2`2|x´y|´ikpx´yq

2
?
k2 ` 2

V21pyqp1 ´A11pkqq´11dy where (8.26)

Apkqu2 :“
ż

R

e´
?
k2`2|x´y|´ikpx´yq

2
?
k2 ` 2

`
V22pyqu2pyq ` V21pyqp1 ´A11pkqq´1A12pkqu2

˘
dy.

We want to solve this equation in L8pRq. The operator Apkq is compact from L8pRq into itself. If
kerp1`Apkqq “ 0 for k “ 0 then the same is true for k close to 0 and by Fredholm theory, equation
(8.26) is solvable and Lemma 8.10 is proved. So suppose now that there exists a nonzero u2 P L8pRq
such that p1 ` Ap0qqu2 “ 0. Then setting

u1 :“ p1 ´A11p0qq´1A12p0qu2,

with u1 P xx´yL8pRq by Claim 8.11, the pair u :“ pu1, u2q⊺ solves (recall that D0pxq “ x)

upxq “ ´
ż 8

x

px´ yqdiagp1, 0qV pyqupyqdt (8.27)

´
ż

R

e´
?
2|x´y|

2
?
2

diagp0, 1qV pyqupyqdt
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and upxq is a solution of (8.1) for k “ 0. Since upxq xÑ`8ÝÝÝÝÑ 0, it follows that upxq “ cf3px, 0q for a
non zero constant c P C. This, u1 P xx´yL8pRq and u2 P L8pRq yield

|f3px, 0q| À 1 ` x´. (8.28)

The latter is equivalent to

W rf3px, 0q, g3px, 0qs “ 0. (8.29)

If this is not true for p “ 3, by continuity of the dependence on the parameter p of the solutions of
system (8.1), (8.28) is not true for any p close to 3.

Claim 8.12. For p “ 3 we have |f3px, 0q| „ e
?
2 |x| as x Ñ ´8.

Proof. Follows immediately from formula (10.9) below which yields a function proportional to
g3px, 0q and from f3px, 0q “ g3p´x, 0q.

From Claim 8.12 we conclude that W rf3px, 0q, g3px, 0qs ‰ 0 for p “ 3 and also for p close to 3.
Hence kerp1 ` Ap0qq “ 0. This completes the proof of Lemma 8.10.

Proof of Proposition 8.6: continuation and end. We have already discussed the fact that the
desired bound for the kernel R`

Hpx, y, Eq for E “ 1`k2 and x ě y and k outside a neighborhood of 0
are true by Krieger and Schlag [42]. So now we consider the case when k is small. Then by the bound
(8.22) for the f1px, kq in (8.2) and by the exponential decay to 0 for x Ñ ´8 of g3px, kq “ f3p´x, kq,
it follows that

W rf1px, kq, g3px, kqs “ W rf3px, kq, g1px, kqs “ 0.

So the matrix Dpkq in (8.13) is diagonal. This then implies, similarly to the proof in Kriger and
Schlag [42], that for x ě y and for k small,

R`
Hpx, y, 1 ` k2q “ pf1px, kq, 0qD´1pkqpg1py, kq, 0q⊺ ` p0, f3px, kqqD´1pkqp0, g3py, kqq⊺. (8.30)

We bound this for 0 ą x ą y. The first term can be bounded by a constant times xx´y because
|g1py, kq| À 1 for y ă 0 and, by (8.22), |f1px, kq| À xx´y for x ď 0. The second term is uniformly

bounded, because |f3px, kq| À e
?
2`k2|x| for x ď 0 and |g3py, kq| À e´

?
2`k2|y| for y ď 0 when k is

sufficiently small. So this yields

|R`
Hpx, y, 1 ` k2q| À

@
x´D for 0 ě x ě y and for k close to 0.

By exploiting the symmetries due to gjpx, kq “ fjp´x, kq and by similar estimates, we obtain also
the estimate

|R`
Hpx, y, 1 ` k2q| À

@
y`D for x ě y ě 0 and for k close to 0.

So we obtained the estimate (8.16) for all x ě y. This completes the proof of Proposition 8.6.
Proof of Lemma 8.8. The group eitH is continuous and, see [42, Lemma 6.11] equibounded,

with infinitesimal generator iH . Then for a ą 0 and u0, v0 P L2pR,C2q by the Hille Yoshida theorem,
Goldstein [31, p. 17], we have

xiRHpλ´ iaqu0, v0y “
ż `8

0

A
eitpH´λ`iaqu0dt, v0

E
“
ż `8

0

e´itλ
A
eitpH`iaqu0, v0

E
dt and

x´iRHpλ` iaqu0, v0y “
Bż 0

´8
eitpH´λ´iaqu0dt, v0

F
“

ż 0

´8
e´itλ

A
eitpH´iaqu0, v0

E
dt.
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Then

1

2π

ż

R

eitλ xiRHpλ´ iaqu0, v0y dλ “ χR`
ptq

A
eitpH`iaqu0, v0

E
and

´ 1

2π

ż

R

eitλ xiRHpλ` iaqu0, v0y dλ “ χR´
ptq

A
eitpH´iaqu0, v0

E
.

So for g, which for convenience we take in SpR ˆ R,C2q X CcpRt, L
2pRx,C

2qq, we have

i

2π

ż

R

eitλiRHpλ´ iaqg_pλ, ¨qdλ “
ż t

´8
eipt´t1qpH`iaqgpt1qdt1 and

´ i

2π

ż

R

eitλiRHpλ ` iaqg_pλ, ¨qdλ “
ż `8

t

eipt´t1qpH´iaqgpt1qdt1.

Summing up and after an elementary manipulation, for t ą 0 we have

i

2π

ż

R

eitλ pRHpλ´ iaq `RHpλ` iaqq g_pλ, ¨qdλ (8.31)

“
ż 0

´8
e´pt´t1qaeipt´t1qHgpt1qdt1 ´

ż `8

0

ept´t1qaeipt´t1qHgpt1qdt1

`
ż t

0

e´pt´t1qaeipt´t1qHgpt1qdt1 `
ż t

0

ept´t1qaeipt´t1qHgpt1qdt1 aÑ0
`

ÝÝÝÝÑ
ż 0

´8
eipt´t1qHgpt1qdt1 ´

ż `8

0

eipt´t1qHgpt1qdt1 ` 2

ż t

0

eipt´t1qHgpt1qdt1 (8.32)

where the limit of the right hand side holds in L2pRq by e˘at1

gpt1q aÑ0
`

ÝÝÝÝÑ g in L1pR, L2pRx,C
2qq

and by the Strichartz estimates, see Keel and Tao [37, Theorem 1.2]. We now focus at the limit of
line (8.31) as a Ñ 0` when Pcgptq “ gptq for all times. We claim that

lim
aÑ0`

line (8.31) “ i

2π

ż

R

eitλ
`
R´

Hpλq `R`
Hpλq

˘
g_pλ, ¨qdλ in L2,´s pRq (8.33)

for s ą 3{2. We distinguish between three cases. For λ P r´1 ` α, 1 ´ αs for any fixed α P p0, 1q
we have uniform convergence of the resolvents in the operator norm, where Pcg

_pλq “ g_pλq avoids
the singularities of the resolvent. For such that Re z P p´8,´1 ´ αs Y r1 ` α,8q and Im z ě 0
(resp. Im z ď 0) it is possible to apply the 3 dimensional theory in [10] to conclude that RHpzq is
continuous as a function with values in the space of of bounded operators operator from L2,s pRq to
L2,´s pRq for s ą 1{2. We finally consider the case when λ is close to t1,´1u. For symmetry reasons
it is not restrictive to consider the limit of RHpλ` iaq for λ close to 1 focusing on the corresponding
integral kernel in the region x ě y. Notice that Lemma 8.10 continues to be true for k P Czr0,`8q
with k near 0. The resolvent of RHpλ` iaq is given by (8.14) with λ` ia “ 1 ` k2 and we continue
to have the diagonalization of Dpkq yielding to (8.30). Then RHpx, y, λ ` iaq satisfies the estimate
(8.16) and by dominated convergence we obtain the desired limit.

9 Proof of Proposition 2.4

We will prove the following version for H , that is in the case ω “ 1, of (2.21), where Pc is the
spectral projection associated to the continuous spectrum of H , for any u0 P L2pR,C2q and for a
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fixed constant c ą 0,
}eitLPcu0}L2pR,L2,´spRqq ď c}u0}L2pRq. (9.1)

Let gpt, xq P SpR2q with gptq “ PcpHqgptq. Then
ż

R

@
e´itHu0, σ3g

D
dt “ 1?

2πi

ż

R

A
pR`

HpEq ´R´
HpEqqu0, σ3pgpEq

E
x
dE

“ 1?
2πi

ż

σcpHq

A
pR`

HpEq ´R´
HpEqqu0, σ3pgpEq

E
x
dE.

Then from Fubini we have
ˇ̌
ˇ̌
ż

R

@
e´itHu0, σ3g

D
dt

ˇ̌
ˇ̌ ď }pR`

HpEq ´R´
HpEqqu0}

L
2,´s
x L2

E
pσcpHqq}g}L2,s

x L2
t
.

So now we need to show that

}pR`
HpEq ´R´

HpEqqu0}
L

2,´s
x L2

EpσcpHqq À }u0}L2pRq,

where the subscripts x and E indicate the variables of integration. We can split between E away from
the thresholds of σcpHq, where the corresponding bound is obtained thanks to the corresponding
bound for the flat operator σ3p´B2

x ` 1q like in the 3 dimensional case, proved in [23], and the case
when E is close to the thresholds ˘1. More generally, we will show that for s ą 1 there is a constant
Cs

}R˘
HpEqu0}L2p|E´1|!1,L2,´spRqq ď Cs}u0}L2pRq, (9.2)

with an analogous estimate valid near ´1. Let us consider the scalar Schrödinger operator h “
´B2

x ` sech2
`
p´1

2
x
˘
. Then we claim that xxy´s

is h–smoothing in the sense of Kato [35], which
implies that for s ą 1 there is a constant Cs such that

}R˘
σ3ph`1qpEqu0}

L2

E
pR,L2,´s

x pRqq ď Cs}u0}L2pRq. (9.3)

Since σ3ph ` 1q is selfadjoint, by (5.3) in Theorem 5.1 [35], (9.3) will follow if for a fixed C ą 0

}xxy´sRσ3ph`1qpzqxxy´s}L2pRqÑL2pRqq ă C for all z with 0 ă | Im z|. (9.4)

From Rσ3ph`1qpzq “ diag pRhpz ´ 1q,´Rhpz ` 1qq, (9.4) follows from

}xxy´sRhpzqxxy´s}L2pRqÑL2pRqq ă C for all z with 0 ă | Im z|. (9.5)

The kernel of Rhpzq for x ă y, with an analogous formula for x ą y, for arg
?
z P r0, πs is

Rhpzqpx, yq “ T p?
zq

2i
?
z
f´px,

?
zqf`py,

?
zq “ T p?

zq
2i

?
z
ei

?
zpx´yqm´px,

?
zqm`py,

?
zq,

where the Jost functions f˘px,?zq “ e˘i
?
zxm˘px,?zq solve hu “ zu with

lim
xÑ`8

m`px,
?
zq “ 1 “ lim

xÑ´8
m´px,

?
zq.
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These functions satisfy, see Lemma 1 p. 130 [25],

|m˘px,
?
zq ´ 1| ď C1xmaxt0,¯xuyx

?
zy´1

ˇ̌
ˇ̌
ż ˘8

x

xyysech2
ˆ
p´ 1

2
y

˙
dy

ˇ̌
ˇ̌

|m˘px, kq ´ 1| ď
@?

z
D´1

ˇ̌
ˇ̌
ż ˘8

x

sech2
ˆ
p´ 1

2
y

˙
dy

ˇ̌
ˇ̌ exp

ˆ@?
z
D´1

ˇ̌
ˇ̌
ż ˘8

x

sech2
ˆ
p´ 1

2
y

˙
dy

ˇ̌
ˇ̌
˙
,

while, since h has no 0 resonance, T pkq “ αkp1 ` op1qq near k “ 0 for some α ‰ 0 and T pkq “ 1 `
Op1{kq for k Ñ 8 and T P C0pRq, see Theorem 1 [25]. Then (here for z P R we are taking R`

h pzq)

}xxy´sRhpzqxxy´s}2L2pRqÑL2pRqq ď
ż

xăy

xxy´2sxyy´2s|Rhpzqpx, yq|2dxdy

`
ż

xąy

xxy´2sxyy´2s|Rhpzqpx, yq|2dxdy “: A ` B.

The two terms on the right can be estimated similarly, so we bound only the first. It is easy to see
that, like in Proposition 8.6,

|Rhpzqpx, yq| ď C

"
p1 ` x´ ` y`q if x ě y

p1 ` x` ` y´q if x ď y,
(9.6)

where in fact these estimates are what inspired (8.16). Then

A À
ż

0ăxăy

xxy2´2sxyy´2sdxdy `
ż

xăyă0

xxy´2sxyy2´2sdxdy `
ż

xă0ăy

xxy´2sxyy´2sdxdy

“: A1 `A2 `A3.

Then

A1 “
ż

R`

dxxxy2´2s

ż `8

x

xyy´2sdy À
ż

R`

xxy3´4sdx ă `8 for 3 ´ 4s ă ´1 ðñ s ą 1.

Similarly A2, obviously also A3, and B are bounded for s ą 1. So this yields (9.5) and (9.4). In
particular this implies (9.3). Now we can express

H “ σ3ph` 1q ` rV

where rV “ M0 sech2
`
p´1

2
x
˘
, for M0 a constant matrix. We can factor

rV “ B˚A with B˚ “ xxysrV and A “ xxy´s.

Now, for Im z ą 0, for Q0pzq “ ARσ3ph`1qpzqB˚, we have

ARHpzq “ p1 `Q0pzqq´1
ARσ3ph`1qpzq.

The function Q0pzq extends as an element of C0pC`zσppHq,LpL2qq with values in the space of

compact operators of L2 “ L2pR,C2q in itself. Furthermore, p1 `Q0pzqq´1
extends into a bounded

operator except for those z P R for which ker p1 `Q0pzqq ‰ 0. For z near but not equal to 1, by
standard arguments that can be seen in [23], this implies that z is an eigenvalue of H , but this is
not possible since here our z’s are taken much closer to 1 than λpp, 1q, which is the only positive
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eigenvalue of H . The other possibility is that ker p1 `Q0p1qq ‰ 0. We exclude this proceeding by
contradiction. If

p1 `Q0p1qqw “ 0 with w ‰ 0

then ψ “ R`
σ3ph`1qp1qB˚w satisfies

pσ3ph ` 1q ´ 1qψ “ B˚w “ ´B˚AR`
σ3ph`1qp1qB˚w “ ´rV ψ

and so ψ ‰ 0 is a nontrivial distributional solution of pH ´ 1qu “ 0. We claim that ψ P L8pRq. In
fact, for g “ B˚w,

|ψpxq| ď
ż

xăy

|R`
σ3ph`1qpx, y, 1q| |gpyq|dy `

ż

xąy

|R`
σ3ph`1qpx, y, 1q| |gpyq|dy “: B1pxq `B2pxq.

Then by (9.6) we have

B1pxq ď
ż

xăy

p1 ` x` ` y´q |gpyq|dy

If now x ă 0 then by the rapid decay of g we get

B1pxq ď
ż

R

p1 ` |y|q |gpyq|dy ă 8.

If x ą 0 we write

B1pxq ď
ż

xăy

p1 ` |x|q |gpyq|dy ď
ż

R

p1 ` |y|q |gpyq|dy ă 8.

So B1 P L8pRq. By a similar argument we obtain B2 P L8pRq and hence also ψ P L8pRq. But then
1 is a resonance for H , which is not true. So we conclude that ker p1 `Q0p1qq “ 0. Then

}R˘
HpEqu0}L2p|E´1|!1,L2,´spRqq

“ } p1 `Q0pEqq´1 xxy´s
R˘

σ3ph`1qpEqu0}L2p|E´1|!1,L2pRqq

À } xxy´s
R˘

σ3ph`1qpEqu0}L2p|E´1|!1,L2pRqq À }u0}L2pRq

and (9.2) for the ` and for ´. This completes the proof of (9.1) and so also of Proposition 2.4.

10 Explicit Jost functions of the linearization for p “ 3.

When p “ 3 the Jost functions discussed in §8 have been explicitly known since Kaup [36]. In fact
it was shown that these Jost functions can be expressed in terms of the solutions of the Lax pair
system. In turn, the latter ones can be expressed in terms of the solutions of the Lax pair system
for the null solution of the NLS using Bäcklund transformations. However here we will use some
transformations in Martel [45, 46] to write these explicit formulas. It is not restrictive to take ω “ 1.
For ω “ 1 we have L` “ L0 and L´ “ L1 where, Chang et al. [7],

Lj :“ ´B2

x ` 1 ´ kj´1ppqkjppq 2

p ` 1
φp´1 for j “ 0, 1, 2, ... and kjppq :“ p ` 1

2
´ jpp´ 1q

2
. (10.1)
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Notice that

k1ppq “ 1 , k2ppq “ 3 ´ p

2
and k3ppq “ 2 ´ p.

When p “ 3, L2 “ L3 “ ´B2
x ` 1. Let

S1 “ Spk1ppqq :“ Bx ` k1ppq tanh
ˆ
p´ 1

2
x

˙
“ Bx ` tanh

ˆ
p´ 1

2
x

˙
.

Martel [45, 46] exploits the following formula, which we derive for reader’s sake,

S2

1L0L1 “ S2

1L0S
˚
1 S1 “ S1S

˚
1L3S

2

1 “ L2L3S
2

1 ,

where the first and last equalities follow from (3.14) and the second from (3.24) in Chang et al. [7].
Taking the adjoint we obtain

L1L0pS˚
1 q2 “ pS˚

1 q2L3L2. (10.2)

This formula is exploited in Martel [45, 46] to show that starting from
"
L2w1 “ λw2

L3w2 “ ´λw1

(10.3)

we get
"
ξ1 :“ pS˚

1
q2w1

ξ2 :“ ´ 1

λ
L0v1

ùñ
"
L1ξ2 “ λξ1
L0ξ1 “ ´λξ2, (10.4)

where L0ξ1 “ ´λξ2 is true by definition and

L1ξ2 “ ´ 1

λ
L1L0pS˚

1 q2w1 “ ´ 1

λ
pS˚

1 q2L3L2w1 “ ´pS˚
1 q2L3w2 “ λpS˚

1 q2w1 “ λξ1.

For p “ 3, by L2 “ L3 “ ´B2
x ` 1 for λ “ ip1 ` k2q we consider solutions to (10.3) of the form

pw1, w2q⊺ “
"

eikxp1,´iq⊺
eµxp1, iq⊺ where µ :“

?
2 ` k2

(10.5)

and by (10.4), after elementary computations, we obtain Jost functions for Lω|ω“1
for p “ 3,

"
eikx

`
1 ´ k2 ´ 2ik tanhpxq ´ 2sech2pxq, i

`
1 ´ k2 ´ 2ik tanhpxq

˘˘⊺

eµx
`
µ2 ` 1 ´ 2µ tanhpxq ´ 2sech2pxq, i

`
µ2 ` 1 ´ 2µ tanhpxq

˘˘⊺
.

(10.6)

Notice that

eikx
`
1 ´ k2 ´ 2ik tanhpxq ´ 2sech2pxq, i

`
1 ´ k2 ´ 2ik tanhpxq

˘˘⊺ˇ̌ˇ
k“0

“
`
1 ´ 2sech2pxq, i

˘⊺
(10.7)

yields the resonance at the threshold i, see formula (3.54) Chang at al. [7]. Eigenfunctions for the
operator H are obtained applying to the vectors in (10.6) the matrix U´1 yielding

pu1, u2q⊺ :“ 2´1pξ1 ´ iξ2, ξ1 ` iξ2q⊺.
Entering in this formula the functions in (10.6) we obtain

ˆ
u1
u2

˙
“ eikx

ˆ
1 ´ k2 ´ 2ik tanhpxq ´ sech2pxq

´sech2pxq

˙
and (10.8)

ˆ
u1
u2

˙
“ eµx

ˆ
´sech2pxq

µ2 ` 1 ´ 2µ tanhpxq ´ sech2pxq

˙
, (10.9)

which are the Jost functions of H for p “ 3.
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11 The linear approximation of γpp, 1q at p “ 3.

In this section we prove Lemma 5.1 by following Martel [46]. We will focus only on γppq :“ γpp, 1q,
since the general ω ą 0 case follows from the ω “ 1 by scaling. We write φp to denote φ given in
(1.2). Similarly, when it is necessary to stress the dependence on p, we write gp1q “ gp “ pgp,1, gp,2q⊺,
ξω“1 “ ξp “ pξp,1, ξp,2q⊺, Lω|ω“1

“ Lp and L˘ω|ω“1
“ Lp˘. For gp, like in (2.8), we take

gp,1 “ Re gp,1 and gp,2 “ i Im gp,2. In the following, we choose

ξ3 “
`
1 ´ φ23, i

˘⊺
and g3 “

ˆ
1

2
φ23 cospxq ` φ1

3

φ3
sinpxq, iφ

1
3

φ3
sinpxq

˙⊺

,

where ξ3 is just a resonance and not an eigenfunction.

Remark 11.1. Notice that here for ξp we are not using the normalization in (2.9) and instead we
are defining it as a solution of (11.3) which will be defined in Lemma 11.5. On the other hand, g3
is given multiplying by ´ 1

2
the vector given in (10.6) with k “ 1 and then taking the real part for

the first component and imaginary part for the second component respectively.

Also, for gp we have the following lemma which is a variant of Lemma 19 of Martel [46].

Lemma 11.2. We can choose gp so that

}gp ´
ˆ
1

2
φ23 cospτxq ` φ1

3

φ3
sinpτxq, iφ

1
3

φ3
sinpτxq

˙
}L8 À |p´ 3|,

where τ “
a
1 ´ λpp, 1q2.

Proof. The proof is parallel to Lemma 19 of Martel [46].

We will start by writing an expansion in p of the eigenfunction ξp. Along the way we give a
new proof, based on Martel [46], of the result by Coles and Gustafson [8] about the existence of an
eigenvalue.

Lemma 11.3. There exists a small δ1 ą 0 and a function α P C8pDRp3, δ1q,Rq such that

αppq “ pp´ 3q2
´
2´2 ` 2´52´ 1

2

@
φ23,T

D¯
`O

`
pp ´ 3q3

˘
, (11.1)

where

T :“ e´
?
2|¨|

2
˚ φ23, (11.2)

and such that ip1 ´ α2ppqq is an eigenvalue of Lp for 0 ă |p´ 3| ă δ1. That is, λpp, 1q “ 1 ´ αppq2.
Remark 11.4. Notice that p´B2

x ` 2qT “
?
2φ23.

Proof. We are looking to solutions to
"
L´ξp,2 “ ip1 ´ α2qξp,1
L`ξp,1 “ ´ip1 ´ α2qξp,2 . (11.3)

By (10.3), this is equivalent to the existence of wp “ pwp,1, wp,2q⊺ such that
ˆ

0 ´L3

L2 0

˙ˆ
wp,1

wp,2

˙

“
ˆ

´Jp´B2

x ` 1q ` k2ppq 2

p ` 1
φp´1

p

ˆ
0 k3ppq

´1 0

˙˙
wp “ ip1 ´ α2qwp. (11.4)
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Applying U´1, recall U is given in (7.1), to this equation and introducing Zp “: U´1wp,, after
elementary computations we get the equivalent problem

ˆ
´σ3p´B2

x ` 1q ` k2ppq 1

p` 1
φp´1

p

ˆ
k3ppq ` 1 1 ´ k3ppq
k3ppq ´ 1 ´pk3ppq ` 1q

˙˙
Zp “ p1 ´ α2qZp.

Substituting the values of k2ppq and k3ppq and multiplying by ´σ3, this can be written
`
p´B2

x ` 1q ` pp ´ 3qPppxq
˘
Zp “ ´σ3p1 ´ α2qZp

with

Pppxq “
ˆ
3 ´ p p´ 1
p´ 1 3 ´ p

˙
1

2pp` 1qφ
p´1

p pxq.

Notice in particular that

P3pxq “ σ1
1

4
φ23pxq “ σ1

1

2
sech2pxq. (11.5)

For

Hα “
ˆ

´B2
x ` κ2 0
0 ´B2

x ` α2

˙
with κ “

a
2 ´ α2,

we can write

pHα ` pp ´ 3qPpqZp “ 0,

which is equivalent to
`
1 ` pp´ 3qH´1

α Pp

˘
Zp “ 0.

If we set

|Pppxq| 1

2 :“
ˆ
1 ` ?

p´ 2 1 ´ ?
p´ 2

1 ´ ?
p´ 2 1 ` ?

p´ 2

˙
1

2
?
p ` 1

φ
p´1

2

p pxq and

P
1

2

p pxq :“ σ1|Pppxq| 1

2 “
ˆ
1 ´ ?

p´ 2 1 ` ?
p´ 2

1 ` ?
p´ 2 1 ´ ?

p´ 2

˙
1

2
?
p` 1

φ
p´1

2

p pxq,

from the elementary computation
ˆ
1 ´ c 1 ` c

1 ` c 1 ´ c

˙ˆ
1 ` c 1 ´ c

1 ´ c 1 ` c

˙
“

ˆ
2p1 ´ c2q p1 ´ cq2 ` p1 ` cq2

p1 ´ cq2 ` p1 ` cq2 2p1 ´ c2q

˙

“ 2

ˆ
1 ´ c2 1 ` c2

1 ` c2 1 ´ c2

˙
,

it follows that Pppxq “ P
1

2

p pxq|Pppxq| 1

2 and furthermore these matrices commute.
Setting

Ψp :“ P
1

2

p Zp, (11.6)

the equation for Zp writes

p1 ` pp´ 3qKαpqΨp “ 0 where Kαp “ P
1

2

pH
´1

α |Pp| 1

2 .
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We expand

Kαp “ Lαp `Mαp with Mαp :“ P
1

2

pNα|Pp| 1

2 with integral kernels

Nαpx, yq “ 1

2α

ˆ
α
κ
e´κ|x´y| 0

0 e´α|x´y| ´ 1

˙
and

Lαppx, yq “ 1

2α
P

1

2

p pxq diagp0, 1q |Pppyq| 1

2 .

Here pp, αq Ñ Mαp is in C8pDR2pp3, 0q, δ1q, L2pR,C2qq for a small enough δ1 ą 0. The equation for
Ψp becomes

1

2α
p1 ` pp ´ 3qMαpq´1P

1

2

p pxqe2
A
e2, |Pp| 1

2Ψp

E
“ ´ 1

p´ 3
Ψp. (11.7)

To have a solution in (11.7) it is not restrictive to posit

Ψp “ p1 ` pp´ 3qMαpq´1P
1

2

p e2 P C8pDR2pp3, 0q, δ1q, L2pR,C2qq (11.8)

Ψp “ P
1

2

p p1 ` pp ´ 3qNαPpq´1e2, (11.9)

where the two formulas for Ψp are equivalent. With them, (11.7) is equivalent to

α “ ´p´ 3

2
spp, αq with spp, αq :“

A
e2, |Pp| 1

2 p1 ` pp´ 3qMαpq´1P
1

2

p e2

E
. (11.10)

Notice that sp¨, ¨q P C8pDR2pp3, 0q, δ1q,Rq with

spp, αq “ xe2,Ppe2y ´ pp´ 3q
A
e2, |Pp| 1

2MαpP
1

2

p e2

E
`O

`
pp´ 3q2

˘

“ xe2,Ppe2y ´ pp´ 3q xe2,PpNαPpe2y `O
`
pp´ 3q2

˘
.

Since, we have

xe2,Ppe2y “ p ´ 3

2pp` 1q

B
e2,

ˆ
´1 1
1 ´1

˙
φp´1

p e2

F
` 1

p` 1✭
✭✭✭✭✭✭

@
e2, φ

p´1

p σ1e2
D

“ ´ p´ 3

2pp` 1q

ż

R

φp´1

p dx “ ´ p´ 3

2pp´ 1q

ż

R

sech2 pxq dx “ ´p´ 3

p´ 1
,

with the canceled term null, and

xe2,PpNαPpe2y “ xe2,P3N0P3e2y `O ppp´ 3qq `O pαq
“ 4´2

@
e2, φ

2

3σ1N0φ
2

3σ1e2
D

`O ppp´ 3qq `O pαq
“ 2´42´ 1

2

@
φ23,T

D
`O ppp´ 3qq `O pαq ,

we obtain

spp, αq “ ´pp´ 3q
ˆ

1

p´ 1
` 2´52´ 1

2

@
φ23,T

D˙
`O

`
pp´ 3q3

˘
`O ppp´ 3qαq .

Applying the implicit function theorem to (11.10) we get (11.1).

In analogy to Martel [46] we give an expansion of a ξp.
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Lemma 11.5. There exists an open interval I containing 3 and for each p P I there exists a solution

ξp “ pξp,1, ξp,2q⊺ of (11.3) of the form

ξp,1 “ 1 ´ φ23 ` pp´ 3qR1 ` pp´ 3q2ξ̃p,1, (11.11)

ξp,2 “ i
´
1 ` pp´ 3qR2 ` pp´ 3q2ξ̃p,2

¯
, (11.12)

where

R1 “ ´xφ3φ1
3 ´ 1

4
?
2

p3 ´ φ23qT ´ φ1
3

2
?
2φ3

T1 and

R2 “ 1

2
φ23 ` 3

4
?
2
T ` φ1

3

2
?
2φ3

T1

and where furthermore, for any k ě 0 there exists a constant Ck such that

|rξpkq
p,j pxq| ď Ck xxy3 for all x P R and all p P I. (11.13)

Proof. From (11.6) and (11.9), and in particular expanding the latter, we have

Zp “ p1 ` pp ´ 3qNαPpq´1e2 “ e2 ´ pp´ 3qNαPpe2 ` pp ´ 3q2 rZ2

“ e2 ´ pp´ 3q2´22´ 1

2Te1 ` pp ´ 3q2 rZ with rZ “ rZ1 ` rZ2

rZ1 :“ ´
ż 1

0

Bp1

`
Nαpp1qPp1

˘ˇ̌
p1“3`tpp´3q e2dt

rZ2 :“ NαPpNα|Pp| 1

2 p1 ` pp ´ 3qMαpq´1P
1

2

p e2

where we used N0P3 “ 2´2Te1. By standard computations for any k ě 0 there exists a constant
Ck such that

|Bk
x
rZ2| ď Ck xxy for all x P R and all p near 3.

It is also elementary to see that for any k ě 0 there exists a constant Ck such that

|Bp
`
Nαppqpx, yqBk

yPppyq
˘
e2| À xx´ yy3 sech

ˆ
p´ 1

2
y

˙
for all x, y P R,

which implies for any k ě 0 there exists a constant Ck such that

|Bk
x
rZ| ď Ck xxy3 for all x P R and all p near 3. (11.14)

Going back to wp “ pwp,1, wp,2q⊺ and for rw “ U rZ we have

wp “ UZp “
ˆ

1
´i

˙
´ pp ´ 3q2´22´ 1

2T

ˆ
1
i

˙
` pp´ 3q2 rw.

Notice that the first term in the expansion is exactly what we get entering k “ 0 in (10.5).
Going back to ξp “ pξp,1, ξp,2q⊺ by means of (10.4) we have

ξp,1 “ pS˚
1 q2wp,1 “

ˆ
Bx `

φ1
p

φp

˙2

wp,1 “
˜

B2

x ` 2
φ1
p

φp
Bx `

ˆ
φ1
p

φp

˙1
` φ12

3

φ2p

¸
wp,1

“
ˆ

B2

x ` 2
φ1
p

φp
Bx `

φ2
p

φp

˙
wp,1.
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We will use also the expansion in [8]

φp´1

p “ φ23 ` pp ´ 3qq1 ` pp ´ 3q2qRpxq with q1pxq “ sech2pxq
`
2´1 ´ 2x tanhpxq

˘
(11.15)

where

qRpxq “
ż 1

0

B2

p1φ
p1´1

p1 pxq
ˇ̌
ˇ
p1“p1´tq3`tp

tdt “
ż 1

0

B2

p1

ˆ
p1 ` 1

2
sech2

ˆ
p1 ´ 1

2
x

˙˙ˇ̌
ˇ̌
p1“p1´tq3`tp

tdt.

Notice that for any k ě 0 there exists a constant Ck such that

|qpkq
R pxq| ď Ck xxy2 sech2

ˆ
min

"
p´ 1

2
, 1

*
x

˙
for all x P R and all p near 3. (11.16)

Recalling the identities

´ φ2
p ` φp ´ φpp “ 0 and

´ φ12
p ` φ2p ´ 2

p` 1
φp`1

p “ 0

we get

φ2
p

φp
“ 1 ´ φp´1

p “ 1 ´ φ23 ´ pp ´ 3qq1 ´ pp´ 3q2qR,

so that using also the expansion in (11.15) we have

ξp,1 “ 1 ´ φ23 ` pp ´ 3qR1 ` pp ´ 3q2rξ1
where, using the equation in (11.2),

R1 :“ ´q1 ´ 2´22´ 1

2

ˆ
B2

x ` 2
φ1
3

φ3
Bx ` 1 ´ φ23

˙
T

“ ´q1 ` 2´2φ23 ´ 2´22´ 1

2 p3 ´ φ23qT ` 2´12´ 1

2 tanhpxqT1

which by (11.15) yields the desired expression of R1 and

rξ1 :“ ´ 2´ 1

2

4pp´ 3q

ˆ
φ1
p

φp
´ φ1

3

φ3

˙
T1 ` 2´22´ 1

2 qRT ` pS˚
1 q2 rw1.

By (11.14) and (11.16), we have (11.13) for j “ 1. Next, by (10.4), we have ´ip1´α2qξp,2 “ L`pξp,1.
Substituting the expansions (11.11) and

L`p “ L`3 ´ pp ´ 3qpφ23 ` 3q1q ´ pp ´ 3q2 p3qR ` q1 ` pp ´ 3qq1qRq ,

which follows from (11.15), we have

´iξp,2 “ L`pξp1 ` pp ´ 3q2
ˆ

α2

pp ´ 3q2
1

1 ´ α2
L`pξp,1

˙

“ L`3p1 ´ φ23q ` pp ´ 3q
`
L`3R1 ´ pφ23 ` 3q1qp1 ´ φ23q

˘

` pp´ 3q2
´
L`3ξ̃1 ´ pφ23 ` 3q1q

´
R1 ` pp ´ 3qξ̃1

¯
´ p3qR ` q1 ` pp´ 3qq1qRq ξp,1

¯

` pp´ 3q2
ˆ

α2

pp ´ 3q2
1

1 ´ α2
L`pξp,1

˙
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By looking the coefficients of pp ´ 3q0 and pp ´ 3q1 we have (11.12). Further, the estimate of ξ̃2
follows from the estimate of ξ̃1 given by (11.13), (11.16) and the explicit form of R1 and q1.

Now, Lemma 5.1 is a direct consequence of the following lemma.

Lemma 11.6. For |p ´ 3| ! 1, we have

γpp, 1q “ π?
2 coshpπ{2q

pp´ 3q ` opp ´ 3q.

Proof. We set

E :“ Bp|
p“3

φp “ 1

2
φ3

ˆ
1

4
´ logφ3

˙
` 1

2
xφ1

3,

F :“ Bp|
p“3

φp´2

p “ E ` φ3 logφ3.

Further, we set

F̃ “ φp´2

p ´ φ3 ´ pp´ 3qF. (11.17)

Recall,

γpp, 1q “
@
φp´2

p ppξ2p,1 ` ξ2p,2q, gp,1
D

` 2
@
φp´2

p ξp,1ξp,2, gp,2
D

and setting, following notation and argument in Martel [46],

Gp,1 :“ φp´2

p ppξ2p,1 ` ξ2p,2q,
Gp,2 :“ ´2iφp´2

p ξp,1ξp,2,

we have

Gp,1 “ φ3
`
3p1 ´ φ23q2 ´ 1

˘
` pp´ 3q∆1 ` ∆̃1,

1

2
Gp,2 “ φ3p1 ´ φ23q ` pp ´ 3q∆2 ` ∆̃2,

where

∆1 “ F
`
3p1 ´ φ23q2 ´ 1

˘
` φ3p1 ´ φ23q2 ` 6φ3p1 ´ φ23qR1 ´ 2φ3R2,

∆2 “ F p1 ´ φ23q ` φ3R1 ` φ3p1 ´ φ23qR2

and ∆̃1, ∆̃2 are remainder terms of pp´ 3q2 order. Since it is easy to verify that the F̃ in (11.17) is
decaying exponentially, we see from Lemma 11.5 that the contribution of ∆̃1 and ∆̃2 to γpp, 1q are
pp´ 3q2 order. Thus, we can ignore these terms.
We have xφp, gp1y “ 0 like in Martel [46]. Now, by gp,2 “ i

2λpp,1qLp`gp,1, we have

γpp, 1q “ xGp,1, gp,1y `
B
Gp,2,

1

2λpp, 1qLp`gp,1

F

“
B
Gp,1 ` 1

2λpp, 1qLp`Gp,2, gp,1

F
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By direct computation, see the proof of Lemma 20 of [46], we have

G3,1 ` 1

2
p´B2

x ` 1 ´ 3φ23qG3,2 “ φ3
`
3p1 ´ φ23q2 ´ 1

˘
` 1

2
p´B2

x ` 1 ´ 3φ23q
`
φ3p1 ´ φ3q2

˘
“ 2φ3.

Thus, we see γp3, 1q “ 0. Further, expanding Gp,1, Gp,2 and Lp`, we have

γpp, 1q “
B
2φ3 ` pp´ 3q

ˆ
∆1 ` L3`∆2 ` 1

2

´
Bp|

p“3
Lp`

¯
G3,2

˙
, gp,1

F
` opp ´ 3q

“ pp´ 3q
ˆ

´2 xE, g3,1y ` x∆1, g3,1y ` 2 x∆2,´ig3,2y ´ 1

2

B
φ3

ˆ
7

4
φ3 ` 3xφ1

3

˙
G3,2, g3,1

F˙

` opp ´ 3q.

Thus, it suffices to compute the coefficient of p ´ 3, which we denote γ1 (i.e. γpp, 1q “ pp ´ 3qγ1 `
opp ´ 3q). Following Martel [46] we will consider the following constants,

pk “
ż
sechk cos,

qk “
ż
sechk log ˝sech cos

rk “
ż
sechkT cos

sk “
ż
sechkT tanh sin

ak “
ż
xsechk tanh cos

bk “
ż
sechk tanh sin

ck “
ż
sechk log ˝sech tanh sin

dk “
ż
xsechk sin

ek “
ż
sechk tanhT1 cos

fk “
ż
sechkT1 sin .
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Then, after a quite long but elementary computation, we arrive to

γ1 “
?
2

ˆ
´3

2
p2 log 2 ` 1qp5 ` 3

2
p2 log 2 ` 1qp7 ` 3

2
q3 ´ 6q5 ` 6q7 ´ 3

2
a3 ` 6a5 ´ 6a7

˙

`
?
2

ˆ
3

2
p2 log 2 ` 1qb3 ´ 3

2
p2 log 2 ` 1qb5 ´ 3

2
c1 ` 6c3 ´ 6c5

˙

`
?
2

ˆ
3

2
d1 ´ 3

2
d3 ´ 6d3 ` 6d5 ` 6d5 ´ 6d7q

˙

`
?
2

ˆ
´1

2
q3 ` 1

2
a3 ` 1

2
c1 ´ 1

2
d1 ` 1

2
d3

˙

`
?
2 p´4p5 ` 4p7 ` 4b3 ´ 4b5 ` 12a5 ´ 24a7 ´ 12d3 ` 36d5 ´ 24d7 ´ 2p5 ` 2b3q

´ 9

2
r3 ` 12r5 ´ 6r7 ` 3e3 ´ 6e5 ` 9

2
s1 ´ 12s3 ` 6s5 ´ 3f1 ` 9f3 ´ 6f5 ´ 3

2
r3 ` e3 ` 3

2
s1 ´ f1 ` f3.

We can further simplify this quantity. First, we can eliminate bk, ck, dk, ek and fk by the identities
obtained by integration by parts,

bk “ pk ` 1qpk`2 ´ kpk,

ck “ pk ` 1qqk`2 ´ kqk ` pk`2 ´ pk,

dk “ ´kak ` pk,

ek “ sk ` krk ´ pk ` 1qrk`2,

fk “ ´rk ` ksk.

The expression given by pk, qk, rk, sk and ak (k “ 1, 3, 5, 7) can be reduced to p1, q1, rk, s1 and a1 by
the identities, again obtained by integration by parts,

pk`2 “ 1 ` k2

kpk ` 1qpk,

qk`2 “ 1

kpk ` 1q
`
p1 ` k2qqk ´ p2k ` 1qpk`2 ` pk ` 1qpk

˘
,

rk`2 “ 1

kpk ` 1q
´

pk2 ´ 3qrk ` 2ksk ` 2
?
2pk`2

¯
,

sk`2 “ 1

pk ` 1qpk ` 2q
´

pk2 ´ 3qsk ` 2pk ` 1qrk`2 ´ 2krk ` 2
?
2pk ` 3qpk`4 ´ 2

?
2pk ` 2qpk`2

¯
,

ak`2 “ 1

pk ` 1qpk ` 2q
`
pk2 ` 1qak ´ 2kpk ` 2pk ` 1qpk`2

˘
.

Now, as in Martel [46], a quite surprising simplification occurs. That is, after reducing the expression
to a linear combination of p1, q1, r1, s1 and a1 by means of lengthy but nonetheless very elementary
computations, the coefficients of q1, r1, s1 and a1 vanish and we are left with the very simple formula

γ1 “ 1?
2
p1,

like in Martel [46]. We have p1 “ π{ coshpπ{2q, see Martel [46]. We have the relation p1 “
p1,Martel{

?
2. This completes the proof of Lemma 11.6. We will provide all the elementary compu-

tations which we have skipped here in the forthcoming note [18].

42



Acknowledgments

C. was supported by the Prin 2020 project Hamiltonian and Dispersive PDEs N. 2020XB3EFL.
M. was supported by the JSPS KAKENHI Grant Number 19K03579, G19KK0066A, 23H01079 and
24K06792. The authors are very grateful to prof. Dmitry Pelinovsky for the information and the
computations he provided for the plane waves of the linearization of the cubic NLS and for his
comments on the manuscript.

References

[1] M. Borghese, R. Jenkins and K. D. T.-R. McLaughlin, Long time asymptotic behavior of the
focusing nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018),
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