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Classification of a class of planar quadrinomials

Chin Hei Chan and Maosheng Xiong

Abstract

Let p be an odd prime, k, ℓ be positive integers, q = pk, Q = pℓ. In this paper we characterise planar functions

of the form fc(X) = c0X
qQ+q + c1X

qQ+1 + c2X
Q+q + c3X

Q+1 over Fq2 for any c = (c0, c1, c2, c3) ∈ F4
q2

in

terms of linear equivalence.

Index terms— Planar polynomials, two-to-one polynomials, differential uniformity, linear equivalence,

rational functions.

I. INTRODUCTION

A. Background and motivation

Let p be any prime number, k a positive integer, q = pk, and Fq the finite field of order q. A function

F : Fq → Fq is called planar if all the equations

F (x+ a)− F (x) = b, ∀a, b ∈ Fq, a 6= 0 (1)

have exactly one solution. In other words, for any a ∈ F∗
q := Fq \ {0}, the function

DaF (x) = F (x+ a)− F (x),

called the derivative of F in the direction of a, is a permutation on Fq.

In the above definition, only the additive operation is involved, so planar functions can also be defined

on any finite dimensional vector space over Fp.

Planar functions were originally introduced by Dembowski and Ostrom in the seminar paper [14]

in connection with projective planes in finite geometry. This notion coincides with that of perfect

nonlinear (PN) functions in odd characteristic introduced by Nyberg [26] from cryptography. From this

perspective, planar functions have the best differential uniformity, hence if used as S-boxes, they offer

the best resistance to differential cryptanalysis, one of the most powerful attacks known today used
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against block ciphers. Besides their importance in cryptography, planar functions have applications in

coding theory [10], [34], combinatorics [1], [32] and some engineering areas [16]. Planar functions

also correspond to important algebraic and combinatorial structures such as commutative semifields

[13], [35]. All of these make the study of planar functions fruitful and important in a much broader

context in mathematics and computer science. Planar functions together with almost perfect nonlinear

(APN) functions in characteristic two have become a central topic in design theory, coding theory and

cryptography ([3], [8], [15], [28]).

Planar functions exist only for odd q. Currently there are less than 20 distinct infinite families of

planar functions (see [21] for a list and [11] for a recent construction of planar functions). One of the

main reasons why new planar functions are so difficult to construct and analyze is that planar functions

are classified up to a certain notion of equivalence, namely linear equivalence, EA-equivalence or CCZ-

equivalence, and to show that a given planar function is equivalent or inequivalent to some known ones

is usually rather difficult, most of such verification involves quite technical computation. For a flavor of

the techniques, interested readers may refer to a recent work [29].

Now let p be an odd prime, k, ℓ be some positive integers, q = pk, Q = pℓ, and Fq2 the finite field of

order q2. For any c := (c0, c1, c2, c3) ∈ F4
q2 , we define a quadrinomial fc(X) ∈ Fq2 [X ] given by

fc(X) = c0X
qQ+q + c1X

qQ+1 + c2X
Q+q + c3X

Q+1. (2)

In this paper we study planar functions from these fc(X) for all c ∈ F4
q2 .

We remark that when q is even, this class of quadrinomials fc(X) and some variations have been

studied extensively in the literature. In fact in this case these fc(X)’s have been the main object of

study in more than 40 papers and by more than 60 authors (see [17]). Now we have reached somewhat

satisfactory understanding of their various cryptographic properties. For example, when q is even, com-

plete characterization as to when fc(X) is a permutation on Fq2 was obtained in [17], [23]; complete

characterization as to when fc(X) is a permutation with optimal Boomerang uniformity was obtained in

[25], [33]. In another perspective, fc(X) satisfies the subfield property

fc(aX) = aQ+1f(X) for all a ∈ Fq.

By identifying (x, y) ∈ F2
q with X = x + ζy ∈ Fq2 for a fixed element ζ ∈ Fq2 \ Fq, one sees that the

class of fc(X) is linear equivalent to the class of (Q,Q)-biprojective functions f ∗(x, y) ∈ Fq[x, y]
2 given
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by

f ∗(x, y) =
(
a0x

Q+1 + a1x
Qy + a2xy

Q + a3y
Q+1, b0x

Q+1 + b1x
Qy + b2xy

Q + b3y
Q+1

)
, (3)

whose various properties were studied in depth in [19], [20]. In this language, in [20] Göloğlu provided

a complete characterization of APN functions from fc(X) under linear equivalence, hence giving a

satisfactory answer to a question of Carlet [7].

In view of all these papers and in particular of [7] and [20], it is natural for us to study and to

characterize planar functions from fc(X) for odd q.

B. Statement of main results

The main results of the paper are as follows.

Theorem 1. Let p be an odd prime, k and ℓ positive integers, q = pk and Q = pℓ. Consider the

quadrinomial fc(X) given in (2) for any c = (c0, c1, c2, c3) ∈ F4
q2 . Let µq+1 denote the set of (q + 1)-th

roots of unity in Fq2 . If fc(X) is planar over Fq2 , then it is linear equivalent to one of the polynomials

listed below (which are either univariate over Fq2 or (Q,Q)-biprojective over F2
q):

1) XQ+1;

2) XQ+q;

3) P2(x, y) = (xQy, xQ+1 + εyQ+1) for some ε ∈ F∗
q;

4) P3(x, y) = (xQ+1 − xQy, xyQ + εyQ+1) for some ε ∈ F∗
q \ {−1};

5) XQ+q + εXQ+1 for some ε ∈ F∗
q2 \ µq+1.

The next result gives criteria as to when the polynomials 1)-5) listed in Theorem 1 are indeed planar

functions:

Theorem 2. Let p be an odd prime, k and ℓ positive integers, q = pk and Q = pℓ.

(i) For Families 1) to 3) in Theorem 1:

1) XQ+1 is planar over Fq2 if and only if ℓ
gcd(k,ℓ)

is even;

2) XQ+q is planar over Fq2 if and only if kℓ
gcd(k,ℓ)2

is odd;

3) P2(x, y), ε ∈ F∗
q is planar over F2

q if and only if k
gcd(k,ℓ)

is odd and ε ∈ F∗
q is a non-square;

(ii) For Families 4) to 5) in Theorem 1 we only have partial results:
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4) if P3(x, y), ε ∈ F∗
q \ {−1} is planar over F2

q , then k
gcd(k,ℓ)

is odd and 1 + ε−1 ∈ F∗
q is a

non-square. Moreover, if k | ℓ, then this condition on ε is also sufficient for P3(x, y) to be

planar;

5) if k | ℓ, then XQ+q + εXQ+1, ε ∈ F∗
q2 \ µq+1 is planar over Fq2 if and only if q ≥ 5 and

1− ε(−1)1+ℓ/k(q+1) is a square in F∗
q .

Finally, when k | ℓ, it turns out planar functions fc(X) are all linear equivalent to X2. Here we also

describe the result in terms of the coefficients ci’s.

Theorem 3. Let p be an odd prime, k and ℓ positive integers such that k | ℓ, q = pk and Q = pℓ. For

any c = (c0, c1, c2, c3) ∈ F4
q2 , define

e =





cq+1
1 − cq+1

2 ( ℓ
k

is odd)

cq+1
3 − cq+1

0 ( ℓ
k

is even)

and

θ =





c1(c
q
0 + cq3)− cq2(c0 + c3) ( ℓ

k
is odd)

c3(c
q
1 + cq2)− cq0(c1 + c2) ( ℓ

k
is even).

Then fc(X) given in (2) is planar over Fq2 if and only if e2 − θq+1 is a square in F∗
q , and in this case

fc(X) is linear equivalent to X2.

C. Discussions

In Theorem 1, since fc(X) is a Dembowski-Ostrom (DO for short) polynomial, when fc(X) is planar,

the CCZ-equivalence, EA-equivalence and linear equivalence all coincide with each other [5]. Since planar

functions in odd characteristic are natural analogue of APN functions in characteristic two, Theorem 1

can be considered as both complementing and parallel to [20, Theorem 1.1], which gave a complete

classification of APN functions from the class of fc(X) for even q (by using the language of (Q,Q)-

biprojective functions).

In Theorem 2, when k ∤ ℓ, planar functions from Families 1)–3) are all known: XQ+1 and XQ+q

resemble the Albert family [2], and P2(x, y) is a subclass of the Zhou-Pott family [35]. As for Families

4) and 5) when k ∤ ℓ, we did experiments by MAGMA for some small values of p, k and ℓ but it seems no

such planar functions exist regardless of the choice of ε. It may be an interesting question to investigate
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whether or not there are planar functions from Families 4) and 5) of Theorem 1 when k ∤ ℓ. We leave

this as an open problem.

Next, we explain the method we use in proving Theorems 1–3. The polynomial fc(X) can be written

as fc(X) = XQ+1A (Xq−1) where

A(X) = c0X
Q+1 + c1X

Q + c2X + c3.

Define

B(X) = cq3X
Q+1 + cq2X

Q + cq1X + cq0, g(X) = B(X)/A(X).

It was well-known that when q is even, permutation properties of fc(X) are closely related to those of

the accompanying rational function g(X) defined over µq+1. Encompassing this idea, many techniques

were developed to study this g(X) over µq+1 in the literature, most of the techniques were elementary but

quite complex and involved a lot of computation. In a recent paper [17], Ding and Zieve provided a new

way of studying g(X): they employed advanced tools such as the Hurwitz genus formula from arithmetic

geometry to study geometric properties of g(X) (i.e. the type of branch points and ramification indices)

from which permutation properties of fc(X) follow in some natural way. This powerful technique allowed

them to resolve eight conjectures and open problems from the literature concerning fc(X) for q even

and to cover most of the previous results. In proving Theorem 1–3, we adopt their ideas to study fc(X)

for odd q. We do a careful analysis of geometric properties of g(X) for odd q and give a classification.

While the ideas and techniques are similar to that of [17], the study g(X) is more complex in this paper.

It turns out that the linear equivalence result comes naturally from this study of g(X), from which planar

functions in fc(X) can also be identified. We comment that this idea was already hinted in [17] (see [17,

Theorem 1.2]), though the authors may not be aware of it at the time.

It seems possible that the classification results of [20] can be obtained in this way. It might be interesting

to see if Theorem 1 can be obtained by adopting the approach of (Q,Q)-biprojective polynomials utilised

in [20] for odd characteristic.

The paper is organized as follows. In Section II we introduce some universal notations and recall some

background results that are needed for our proofs. In Section III we give detailed geometric properties

of the rational function g(X) under consideration and in Section IV we classify g(X) in terms of linear

equivalence. In Section V we derive the list of linear equivalence classes of fc(X) under the classification
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of g(X). Then in Section VI we prove Theorems 1–3. Finally in Section VII we conclude our paper and

provide some open problems.

II. PRELIMINARIES

Throughout this paper, we adopt the following notation:

• for any finite set S, ♯S is the cardinality of S;

• for any field K, K∗ = K \ {0}, P1(K) = K ∪ {∞} is set of K-rational points in P1, and K is an

algebraic closure of K;

• p is an (odd) prime, k is a positive integer, q = pk, Fq is the finite field of order q;

• for any positive integer d, µd is the set of d-th roots of unity in Fq;

• for any c ∈ Fq2 , c̄ = cq;

A. Self-conjugate reciprocal polynomials

Let D(X) ∈ Fq2 [X ]. Denote by D(q)(X) the polynomial in Fq2 [X ] formed by taking q-th powers (or

conjugates) on all the coefficients of D(X). The conjugate reciprocal of D(X) is defined as

D̂(X) := XdegDD(q)(1/X).

To be more precise, if D(X) =
∑r

i=0 aiX
i with ai ∈ Fq2 for all i and ar 6= 0 where r > 0, then

D(q)(X) =
∑r

i=0 āiX
i and D̂(X) =

∑r
i=0 ār−iX

i. Note that if D(0) = a0 = 0, then deg D̂ < r = degD.

Otherwise if D(0) 6= 0 then we have deg D̂ = degD.

A nonzero polynomial D(X) ∈ Fq2[X ] is called self-conjugate reciprocal (SCR for short) if D̂(X) =

αD(X) for some α ∈ F∗
q2 . In particular this implies D(0) 6= 0.

The following about conjugate reciprocals and SCR polynomials are immediate from the above defi-

nitions:

Lemma 4. All of the following hold:

• if D(X) ∈ Fq2 [X ] is SCR then D̂(X)/D(X) ∈ µq+1;

• if D(X) ∈ Fq2[X ] is nonzero and α ∈ F
∗

q , then the multiplicity of α as a root of D(X) equals the

multiplicity of α−q as a root of D̂(X);

• D(X) ∈ Fq2[X ] is SCR if and only if the multiset of roots of D(X) is preserved by the function

α 7→ α−q. In particular, if degD = 1 then it is SCR if and only if its unique root is in µq+1;
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• if α ∈ F∗
q2 and β ∈ Fq then αX2 + βX + ᾱ is SCR.

There are simple conditions describing the nature of the roots of a degree-2 SCR polynomial, but the

situation is quite different for p = 2 and for p ≥ 3 being odd. Here we focus on the case p ≥ 3. Interested

readers may refer to [17, Lemma 2.4] for the case p = 2.

Lemma 5. Assume p is odd and D(X) = αX2+βX+ ᾱ with α ∈ Fq2 and β ∈ Fq not both zero. Define

∆(D) := β2 − 4αᾱ. Then the following hold:

1) D(X) has a multiple root (which must be in µq+1) if and only if ∆(D) = 0;

2) D(X) has two distinct roots in µq+1 if and only if ∆(D) is a non-square in F∗
q;

3) D(X) has no roots in µq+1 if and only if ∆(D) is a square in F∗
q .

This result is quite elementary, since we cannot find it in the literature, for the sake of completeness,

we provide a proof here.

Proof. If α = 0 and β 6= 0, then D(X) = βX is a degree-one polynomial, with a unique root 0, which

is not in µq+1. We also have ∆(D) = β2 being a square in F∗
q . So 3) applies to this case.

Hence from now on we assume α 6= 0. By Lemma 4, D(X) is a degree-2 SCR polynomial. It is clear

that D has a multiple root if and only if ∆(D) = 0, and by Lemma 4, since its multiset of roots is

preserved by the function γ 7→ γ−q, this multiple root must satisfy γ = γ−q, that is, γ ∈ µq+1.

Now suppose ∆(D) 6= 0. Then D(X) has two distinct roots γ, δ. Note that γδ = ᾱ
α
∈ µq+1, so either

both γ, δ are in µq+1, or none of them are in µq+1. Noting that ∆(D) ∈ F∗
q , there is an θ ∈ F∗

q2 such that

θ2 = ∆(D). Easy to see that we have either θ̄ = θ or −θ, according to whether θ ∈ F∗
q or not. We may

take γ = −β+θ
2α

. We see that γ ∈ µq+1 if and only if γq+1 = 1, that is,

(
β + θ

2α

)(
β + θ̄

2ᾱ

)
= 1.

This can be further simplified as

β2 + β(θ + θ̄) + θθ̄ = 4αᾱ,

and again

β(θ + θ̄) + θθ̄ + θ2 = 0.
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Taking θ̄ = εθ where ε ∈ {±1} we have

θ(1 + ε)(β + θ) = 0.

Since θ 6= 0 and β + θ 6= 0 as γ 6= 0, this implies that ε = −1, that is θ /∈ F∗
q . Hence we conclude that

in this case γ, δ ∈ µq+1 if and only if θ /∈ F∗
q . This completes the proof of Lemma 5.

B. Rational Functions

Let K be a field and G(X) = N(X)/D(X) be a rational function in K where N,D ∈ K[X ]

and D is nonzero. Let C(X) = gcd(N(X), D(X)), the monic greatest common divisor of N(X) and

D(X) in K[X ]. We write N(X) = C(X)N0(X), D(X) = C(X)D0(X) with N0, D0 ∈ K[X ], so that

gcd(N0(X), D0(X)) = 1. We identify G(X) with G0(X) = N0(X)/D0(X) and view G(X) as the

function P1(K) → P1(K) defined by α 7→ G0(α), so G(X) is also well-defined at elements α ∈ K even

if N(α) = D(α) = 0. We refer to N0 and D0 as the numerator and denominator of G respectively, and

define the degree of G as degG = max{degN0, degD0} if G(X) 6= 0. G is called separable if the field

extension K(x)/K(G(x)) is a separable extension of function fields where x is transcendental over K.

In fact, G is separable if and only if G′(X) 6= 0 if and only if G /∈ K(Xp) where p = char(K) [18,

Lemma 2.2].

We say non-constant F,G ∈ K(X) are linearly equivalent over K (or K-linearly equivalent for short)

if there are degree-one ρ, σ ∈ K(X) such that G = ρ ◦ F ◦ σ.

The following are results about degree-one rational functions over Fq2 satisfying certain properties [17],

[36]. These are very useful when we study geometric properties of the accompanying function gc(X).

Lemma 6. A degree-one ρ(X) ∈ Fq2(X) permutes µq+1 if and only if ρ(X) = (β̄X + ᾱ)/(αX + β) for

some α, β ∈ Fq2 with αᾱ 6= ββ̄.

Lemma 7. A degree-one ρ(X) ∈ Fq2(X) maps µq+1 onto P1(Fq) if and only if ρ(X) = (δX+γδ̄)/(X+γ)

for some γ ∈ µq+1 and δ ∈ Fq2 \ Fq.

Given D(X) ∈ Fq2[X ] and r ≥ 0, define G0(X) := XrD(X)q−1. It is easy to see that G0(µq+1) ⊂

µq+1 ∪ {0}. Moreover, G0(µq+1) ⊂ µq+1 if and only if 0 /∈ D(µq+1), and under this situation G0 induces

the same function as the rational function G(X) := XrD(q)(1/X)/D(X) on µq+1. While G(X) is usually

defined over Fq2 , it can be transformed into a rational function defined over Fq as follows:



9

Lemma 8. [17, Lemma 2.11] Let G(X) = XrD(q)(1/X)/D(X) for some D(X) ∈ Fq2[X ] and r ≥ 0.

Let ρ, σ ∈ Fq2(X) be any degree-one rational functions mapping µq+1 onto P1(Fq), and define

h = ρ ◦ g ◦ σ−1.

Then we have h(X) ∈ Fq(X).

C. Branch points and ramification

Here we introduce the concepts of branch points and ramification, which are the main tools to describe

the geometric properties of the accompanying rational function gc(X) later on.

For a non-constant rational function G(X) ∈ Fq(X), write G(X) = N(X)/D(X) where N(X), D(X) ∈

Fq[X ] with gcd(N(X), D(X)) = 1. For any α ∈ Fq, define Hα(X) ∈ Fq[X ] as

Hα(X) :=





N(X)−G(α)D(X) (G(α) ∈ Fq),

D(X) (G(α) = ∞).

It is clear that Hα(α) = 0 for all α ∈ Fq. The ramification index eG(α) of α is then its multiplicity as

a root of Hα(X). The ramification index of ∞ is defined as eG(∞) := eG1
(0), where G1(X) := G( 1

X
).

Given any β ∈ P1(Fq), the ramification multiset EG(β) of G(X) over β is the multiset of ramification

indices eG(α) for any α ∈ G−1(β), that is, EG(β) := [eG(α) : α ∈ G−1(β)]. In particular, the elements

in EG(β) are positive integers whose sum is degG. We call α ∈ P1(Fq) a ramification point (or critical

point) of G(X) if eG(α) > 1, and its corresponding image G(α) a branch point (or critical value) of G.

Hence a point β ∈ P1(Fq) is a branch point of G if and only if EG(β) 6= [1degG], where [mn] denotes

the multiset consisting of n copies of m, or equivalently, ♯G−1(β) < degG.

One most important result regarding ramification is known as the Hurwitz genus formula (see [30,

Corollary 3.5.6]), which applying to the field extension Fq(x)/Fq(G(x)) for transcendental x over Fq

yields the following result used in our proof:

Lemma 9. Let G(X) ∈ Fq(X) be a rational function of degree n. Then

2n− 2 ≥
∑

α∈P1(Fq)

(eG(α)− 1)

with equality holds if and only if char(Fq) ∤ eG(α) for all α ∈ P1(Fq).
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D. Linear equivalence, EA-equivalence and CCZ-equivalence

Linear equivalence, EA-equivalence and CCZ-equivalence are equivalence relations of functions over

the finite field Fpn under which planar (or PN) and APN properties are invariant. Due to these equivalence

relations, one PN (or APN) function can generate a huge class of PN (resp. APN) functions. While the

notion of these equivalence relations was introduced in 2006 in [4], the ideas behind this notion appeared

much earlier [9], [27]. Let us first recall some definitions:

Definition 1. A function F : Fpn → Fpn is called

• linear if F (α+ β) = F (α) + F (β) for any α, β ∈ Fpn;

• affine if F is a sum of a linear function and a constant;

• affine permutation (or linear permutation) if F is both affine (resp. linear) and a permutation on

Fpn .

• Dembowski-Ostrom polynomial (DO polynomial) if

F (X) =
∑

0≤k,j<n

ak,jX
pk+pj , aij ∈ Fpn.

In particular, F is affine if and only if F (X) = b+
∑n−1

j=0 ajX
pj where aj , b ∈ Fpn for any j.

Definition 2. Two functions F and F ′ from Fpn to itself are called:

• affine equivalent (or linear equivalent) if F ′ = A1 ◦ F ◦ A2, where the mappings A1, A2 are affine

(resp. linear) permutations of Fpn;

• extended affine equivalent (EA-equivalent) if F ′ = A1 ◦ F ◦ A2 +A, where the mappings A,A1, A2

are affine, and where A1, A2 are permutations of Fpn;

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine permutation L of F2
pn the

image of the graph of F is the graph of F ′, that is, L(GF ) = GF ′ , where

GF = {(x, F (x)) : x ∈ Fpn} , GF ′ = {(x, F ′(x)) : x ∈ Fpn} .

It is obvious that linear equivalence is a particular case of affine equivalence, and affine equivalence is

a particular case of EA-equivalence. It was known that EA-equivalence is a particular case of CCZ-

equivalence and every permutation is CCZ-equivalence to its inverse [9]. CCZ-equivalence is more

general than EA-equivalence but there are particular cases of functions for which CCZ-equivalence can

be reduced to EA-equivalence. For instance, CCZ-equivalence coincides with linear equivalence for DO
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planar functions [5], [6]. Since the quadrinomial fc(X) (2) is a DO polynomial, we only consider linear

equivalence in this paper. For simplicity, if two such polynomials f1 and f2 are linear equivalent, we call

them equivalent to each other.

Definition 3. Two functions F and F ′ from Fpn to itself are called multiplicatively equivalent if there

are α, β ∈ F∗
pn and a positive integer k with gcd(k, pn − 1) = 1 such that

f1(X) ≡ αf2
(
βXk

)
(mod Xpn −X).

It is easy to see that if f1 and f2 are multiplicative equivalent with n being a power of p (including

the case n = 1), then f1 and f2 are also linear equivalent.

III. GEOMETRIC PROPERTIES OF g(X)

For any c = (c0, c1, c2, c3) ∈ F4
q2 , define

A(X) = Ac(X) := c0X
Q+1 + c1X

Q + c2X + c3. (4)

The quadrinomial fc(X) given in (2) can be written as fc(X) = XQ+1A (Xq−1).

Let us assume that c 6= 0. Denote

B(X) = Bc(X) := c̄3X
Q+1 + c̄2X

Q + c̄1X + c̄0, (5)

g(X) = gc(X) := Bc(X)/Ac(X). (6)

Here we use the notation c̄ := cq for any c ∈ Fq2 .

When q is even, geometric properties of gc(X) were given in [17] in order to study when fc(X) is a

permutation on Fq2 . In this Section, we refine and extend this work to give detailed geometric properties

of gc(X) for all q while focusing on the case that q is odd. This will be useful when we classify gc(X)
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in the next Section. To describe the result, let us define a few parameters





e1 := c0c̄0 − c1c̄1 − c2c̄2 + c3c̄3,

e2 := −c0c̄0 − c1c̄1 + c2c̄2 + c3c̄3,

e3 := −c0c̄0 + c1c̄1 − c2c̄2 + c3c̄3,

θ2 := c̄2c3 − c̄0c1,

θ3 := c̄1c3 − c̄0c2,

θ21 := e22 − 4θ2θ̄2,

(7)

and three polynomials





W (X) := (c1c2 − c0c3)X
2 + e1X + (c1c2 − c0c3) ,

U(X) := θ̄2X
2 + e2X + θ2,

V (X) := θ̄
1/Q
3 X2 + e

1/Q
3 X + θ

1/Q
3 .

(8)

Here for simplicity, we drop the subscript c in the notation when there is no ambiguity. It is easy to see

that e1, e2, e3, θ
2
1 ∈ Fq, θ1, θ2, θ3 ∈ Fq2 and W (X), U(X), V (X) ∈ Fq2 [X ] are SCR polynomials.

We first state some properties that relate the three polynomials U(X), V (X) and W (X) in (8) with

A(X) and B(X) given in (4) and (5) respectively:

Lemma 10. Assume c 6= 0 and q is odd. Denote C(X) = gcd(A(X), B(X)), the greatest monic common

divisor of A(X) and B(X).

1) If U(X) and V (X) are not both zero, then C(X) | gcd(U(X), V (X)) and C(X) is either X or a

monic SCR polynomial of degree at most two;

2) Assume none of U(X), V (X) or W (X) is the zero polynomial. Denote Γ = Γc the union of the set

of roots of V (X) and the set with (2− deg V ) copies of ∞ (this set is either empty if deg V = 2,

or {∞} if deg V = 1); denote Λ = Λc the union of the set of roots of W (X) and the set with

(2− degW ) copies of ∞.

a) ♯Γ = ♯Λ ∈ {1, 2}, and the cardinality is 1 if and only if θ1 = 0;

b) Either both Γ,Λ ⊂ µq+1, or both sets are of the form {α, ᾱ−1} for some α ∈ Fq2 \ µq+1;

c) Γ is the complete set of ramification points of g, and any branch point of g is in Λ;

d) Assume C(X) = 1. Then Λ gives the complete set of branch points of g. Moreover, the

g-ramification multiset of any λ ∈ Λ is either [Q + 1] or [1, Q].
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We remark when q is even, all the above statements of Lemma 10 remain true except 2(c) in the

special case that Q = 2 and C(X) 6= 1 and deg g = 1, in such as case Γ = ∅ since g has no ramification

or branch points.

Proof. Here we borrow ideas from the proof of [17, Theorem 3.1] and treat the case that q is odd.

For any polynomial of the form P (X) := αX2 + βX + γ with α, β, γ ∈ Fq2 , define

∆(P ) := β2 − 4αγ.

Thus if deg(P ) = 2 then ∆(P ) is the discriminant of P (X). Recall from [17] that U(X), V (X) and

W (X) stated in (8) satisfy the following identities:

U(X) = (c̄3X + c̄2)A(X)− (c0X + c1)B(X); (9)

V (X)Q = A(X)B′(X)−A′(X)B(X); (10)

∆(W ) = ∆(U) = ∆(V )Q = θ21; (11)

U(X)V (X)Q = W (g(X))A(X)2. (12)

It is immediate from (9) and (10) that C(X) | U(X) and C(X) | V (X)Q. Moreover, the second part of

Statement 1 easily follows from the fact that each of U(X) and V (X) is either a constant times X or a

degree-two SCR polynomial and the assumption that they are not both zero. Now assume C(X) ∤ V (X).

This implies C(X) is not square-free. In particular it must be the square of a linear SCR polynomial.

Hence U(X) is a constant multiple of C(X), which implies θ1 = 0. Then Equation (11) implies ∆(V ) = 0,

and C(X) | V (X)Q implies that the unique root of C(X) is a root of V (X), so V (X) is also a constant

multiple C(X), a contradiction. Hence we have C(X) | gcd(U(X), V (X)).

Statements 2(a) and 2(b) follow from Equation (11), Lemmas 4 and 5 in Section II. In addition, the

right hand side of (10) is simply A(X)2g′(X). Hence we see that any ramification point of g in Fq must

be in Γ. On the other hand, writing A(X) = A0(X)C(X) and B(X) = B0(X)C(X) for A0, B0 ∈ Fq2[X ],

so that gcd(A0(X), B0(X)) = 1. Then (12) can be rewritten as

U(X)V (X)Q = W (g(X))A0(X)2C(X)2. (13)

Here we note that W (g(X))A0(X)2 = W
(

B0(X)
A0(X)

)
A0(X)2 is a polynomial in Fq2 .

Denote Γ1 := Γ \ {∞}. If θ1 = 0, then U(X) = θ̄2(X − α)2, V (X) = θ̄
1/Q
3 (X − γ)2 and W (X) =
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c(X −λ)2 for some c ∈ F∗
q2 and α, γ, λ ∈ µq+1. We have Γ1 = {γ} and Λ = {λ}. Putting these into (13)

and taking square root on both sides, we have

(X − α)(X − γ)Q = c̃ (B0(X)− λA0(X))C(X)

for some c̃ ∈ F∗
q2 .

Here C(X) = 1 if α 6= γ, otherwise C(X) = (X − γ)i for some i ≤ 2. Upon dividing both sides by

C(X), it is easy to see that γ is a multiple root of the LHS (the factor X − γ appears with exponent at

least Q− 1 ≥ 2). Hence it is also so in the RHS, which is precisely equivalent to saying that γ ∈ Γ1 is

a ramification point of g(X), and its image is a branch point of g, that is, λ ∈ Λ.

Now assume θ1 6= 0. Then ♯Γ = ♯Λ = 2 and U(X), V (X) and W (X) are square-free. Writing

U(X) = U0(X)C(X) and V (X) = V0(X)C(X), and upon dividing both sides of (13) by C(X)2, we

obtain

U0(X)V0(X)QC(X)Q−1 = W (g(X))A0(X)2.

Now any γ ∈ Γ1 is a root of either V0(X) or C(X). Since Q ≥ 3, X − γ appears as a factor with

exponent at least two in LHS. Hence γ is a multiple root of LHS and hence also a root of RHS. This

clearly implies γ is a ramification point of g(X), whose image g(γ) is either a root of W (X) or ∞, and

is hence a branch point of g. Note that g(γ) = ∞ if and only if γ is a root of A0(X), whence this may

happen only if degW = 1. In either case, we see that the branch point g(γ) ∈ Λ.

To complete the proof of Statement 2(c), we need to show that ∞ is a ramification point of g if and only

if deg V = 1. This can be proved as follows: ∞ is a ramification point of g if and only if 0 is a ramification

point of g(1/X) = gc′(X) where c′ = (c3, c2, c1, c0). It is easy to verify that Vc′(X) = −V (q)(X) and

Wc′(X) = W (X). Hence 0 is a ramification point of gc′ if and only if 0 is a root of V (q) if and only if

0 is a root of V , which is equivalent to deg V = 1. In this case, the branch point g(∞) = gc′(0) is in

Λc′ = Λ.

Finally, assume C(X) = 1. Then deg g = max{degA, degB}. Note that the latter is not Q+ 1 if and

only if c0 = c3 = 0, whence in this case C(X) 6= 1. Hence deg g = Q+ 1. By (12), for any ramification

point γ ∈ Γ, eg(γ) is either Q+1 or Q according to whether it is a root of U(X) or not. This implies that

the g-ramification multiset of the corresponding branch point g(γ) ∈ Λ is [Q+ 1] or [1, Q]. Hence each

branch point corresponds to exactly one ramification point. By Statements 2(a) and (c), then g(Γ) = Λ,
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so Λ gives the complete set of branch points of g.

Armed with Lemma 10, we can give more detailed information about geometric properties of gc(X).

We remark that Lemma 11 are still true when p = 2, though we focus on the case that q is odd.

Lemma 11. Assume c 6= 0 and q is odd. Then we have

1) g(X) is constant if and only if U(X) and V (X) are both zero;

2) g(X) is non-constant and A(X) has a root in µq+1 if and only if at least one of U(X), V (X) is

a nonzero polynomial with roots in µq+1 and deg g 6= Q+ 1;

3) g(X) is non-constant and A(X) has no roots in µq+1 if and only if one of the following is true:

a) g(X) is Fq-linearly equivalent to Xn where n ∈ {Q + 1, Q − 1}; this occurs if and only

U(X)/V (X) ∈ F∗
q2; or

b) g(X) has at least one branch point in P1(Fq) with ramification multiset [1, Q].

Proof. For 1), if g(X) is constant, then there is λ ∈ F∗
q2 such that c̄3 = λc0, c̄2 = λc1, c̄1 = λc2 and

c̄0 = λc3. Putting into the formulas in (7) implies e2 = e3 = θ2 = θ3 = 0. Hence U(X) and V (X) are

both zero; Next assume that both U(X) and V (X) are zero. By using (9), we see that g(X) = c̄3X+c̄2
c0X+c1

,

so deg g ≤ 1. By using (10), we see that A(X)B′(X) − A′(X)B(X) = 0, so g(X) is non-separable.

This shows that g(X) is constant. So we have proved 1) of Lemma 11.

For 2), let us first assume that g(X) is non-constant and A(X) has a root α in µq+1. Then at least

one of U(X) and V (X) is nonzero. Note that the multiset of roots of B(X) in F
∗

q is the same as the

multiset of (−q)-th powers of roots of A(X) in F
∗

q . Hence α = α−q is also a root of B(X), which

implies C(X) = gcd(A(X), B(X)) has a root in µq+1. On the other hand, if C(X) has a root in µq+1,

then obviously so does A(X). Hence to prove Statement 2), it suffices to show that C(X) has a root in

µq+1 if and only if any nonzero member among U(X), V (X) have roots in µq+1 and deg g 6= Q+1. This

follows from Statement 1 of Lemma 10 by simply noting that whenever U(X) (resp. V (X)) is nonzero,

then either all its roots are in µq+1 or none of the roots are, and also that deg g 6= Q + 1 if and only if

C(X) 6= 1. This proves 2) of Lemma 11.

As for 3), let us assume that g(X) is non-constant, and A(X) has no roots in µq+1. We first know by

1) of Lemma 11 that at least one of U(X) and V (X) is nonzero.

If U(X) = 0 and V (X) 6= 0, then θ1 = 0. By (13), ∆(V ) = 0. By Lemma 5, V (X) has a multiple

root in µq+1. Moreover, U(X) = 0 implies that deg g ≤ 1 < Q + 1 and so A(X) has a root in µq+1 by
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Statement 2) of Lemma 11.

If V (X) = 0 and U(X) 6= 0, then ∆(V ) = 0. By (13), θ1 = 0. By Lemma 5, U(X) has a multiple

root in µq+1. Moreover, V (X) = 0 implies that g is non-separable, so that deg g 6= Q+ 1. Hence A(X)

has a root in µq+1 by Statement 2) of Lemma 11.

From now on we assume both U(X) and V (X) are nonzero, so that max{degU, deg V } ≤ 2, and

so degC ≤ 2 by Statement 1 of Lemma 10. If deg g = Q + 1 then C(X) = 1 and Statement 2) of

Lemma 11 implies A(X) has no roots in µq+1. Moreover, by Statement 2) of Lemma 10, there are one or

two branch points of g, each with ramification multiset [Q+ 1] or [1, Q]. If at least one has ramification

multiset [1, Q] then we are done. Now assume all branch points of g have ramification multiset [Q+1]. In

particular p ∤ eg(α) for all α ∈ P1(Fq). By the Hurwitz genus formula (Lemma 9), we see that there must

be exactly two such branch points. Both have a unique g-preimage in P1(Fq). Hence g(X) is Fq-linearly

equivalent to XQ+1.

Finally assume deg g 6= Q + 1, so that C(X) 6= 1. By Statement 2) of Lemma 11, then V (X) (and

U(X)) has no roots in µq+1. Hence the set Γ as defined in Lemma 10 is of the form {α, ᾱ−1} for some

α ∈ Fq2 \µq+1. This could happen only if C(X) is a nonzero constant multiple of V (X) (and hence also

U(X)). If C(X) = X , then c0 = c3 = 0 while at least one of c1 or c2 is nonzero, so max{degA, degB} =

Q. If degC = 2, then at least one of c0 or c3 is nonzero, so max{degA, degB} = Q+ 1. In either case

we have deg g = Q− 1. Putting these into (13) and dividing both sides by C(X)2 we have

V (X)Q−1 = c̃ W (g(X))A0(X)2

for some constant c̃ ∈ F∗
q2 .

This immediately implies that eg(γ) = Q − 1 = deg g for all γ ∈ Γ. Since Q ≥ 3, g has two branch

points with unique preimages in P1(Fq), and thereby is Fq-linearly equivalent to XQ−1. This proves 3)

a) and b) of Lemma 11.

Finally, if g(X) is Fq-linearly equivalent to XQ+1, then C(X) = 1, by counting multiplicity of the

term X − γ for all γ ∈ Γ on both sides of (13), we see that U(X)/V (X) ∈ Fq2; if g(X) is Fq-linearly

equivalent to XQ−1, then degC = 2, we also have U(X)/V (X) ∈ F∗
q2 . If U(X)/V (X) 6∈ F∗

q2 , clearly

g(X) is not Fq-linearly equivalent to Xn for n ∈ {Q + 1, Q − 1}. Now the proof of Lemma 11 is

complete.
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IV. CLASSIFICATION OF g(X)

We will see in later sections that Cases 1) and 2) of Lemma 11 do not yield planar functions, which

are the main interest of this paper. So we examine g(X) further according to Case 3) of Lemma 11. We

first consider Case 3) a).

Lemma 12. Let c 6= 0. Assume that A(X) has no roots in µq+1 and g(X) is Fq-linearly equivalent to

Xn where n ∈ {Q + 1, Q− 1}. Then one of the following holds:

1) g(X) = ρ−1 ◦XQ+1 ◦ σ for some degree-one ρ, σ ∈ Fq2(X) both of which map µq+1 onto P1(Fq);

2) g(X) = ρ−1 ◦XQ+1 ◦ σ for some degree-one ρ, σ ∈ Fq2(X) both of which permute µq+1;

3) g(X) = ρ−1 ◦XQ−1 ◦σ for some degree-one ρ, σ ∈ Fq2(X) both of which permute µq+1, and there

exists α ∈ Fq2 \µq+1 such that σ({α, ᾱ−1}) = {0,∞} and gcd(A(X), B(X)) is a constant multiple

of (ᾱX − 1)(X − α).

The proof of Theorem 12 was essentially given by following and combining the proofs of [17, Lemma

5.1 and Proposition 5.3], though in their proofs some extra assumptions were made on some other

parameters to fit their purpose. For the convenience of readers, we provide a detailed proof here.

Proof of Lemma 12. Let Γ and Λ be defined as in Lemma 10.

First, we know that g(X) has 2 branch points in P1(Fq), so that ♯Γ = ♯Λ = 2. We first assume

Γ ⊂ µq+1. Then we also have Λ ⊂ µq+1. Since A(X) has no roots in µq+1, n = deg g = Q + 1 by

Lemma 11. Let Γ = {α1, α2} and Λ = {β1, β2}. Since each point in Γ is the unique g-preimage of a

point in Λ, we may assume g(α1) = β1 and g(α2) = β2. Now define

σ(X) :=
γ(X − α2)

X − α1

and

ρ̃(X) :=
δ(X − β2)

X − β1
,

where γ, δ ∈ F∗
q2 such that γ̄/γ = α2/α1 and δ̄/δ = β2/β1 respectively. Then we have

σ(X) =
γX − α1γ̄

X − α1

and

ρ̃(X) =
δX − β1δ̄

X − β1
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respectively, that is, σ(µq+1) = ρ̃(µq+1) = P1(Fq) by Lemma 7. In addition, σ(α1) = ∞ = ρ̃(β1) and

σ(α2) = 0 = ρ̃(β2). This implies that the function h(X) := ρ̃ ◦ g ◦ σ−1(X) maps P1(Fq) into P1(Fq),

and 0 and ∞ are the unique h-preimages of 0 and ∞ respectively. In addition, deg h = deg g = Q + 1.

Together with Lemma 8, we conclude that h(X) = εXQ+1 for some ε ∈ F∗
q . Finally, we have g(X) =

ρ̃−1 ◦ h ◦ σ(X) = ρ−1 ◦ XQ+1 ◦ σ(X), where ρ(X) := ε−1ρ̃(X) ∈ Fq2(X) is of degree-one and maps

µq+1 onto P1(Fq). This proves 1) of Lemma 12.

Next we assume Γ ∩ µq+1 = ∅. By Statement 2(b) of Lemma 10, we have Γ = {α, ᾱ−1} and Λ =

{β, β̄−1} for some α, β ∈ P1(Fq2)\µq+1. Again each point in Γ is the unique g-preimage of a point in Λ,

so we may assume that g(α) = β and g(ᾱ−1) = β̄−1. Now define σ(X) = − ᾱX−1
X−α

if α ∈ Fq2 \ µq+1 and

σ(X) = X if α = ∞. Similarly, define ρ̃(X) = − β̄X−1
X−β

if β ∈ Fq2 \µq+1 and ρ̃(X) = X if β = ∞. In all

these cases σ, ρ̃ both permute µq+1. In addition, σ(α) = ∞ = ρ̃(β) and σ(ᾱ−1) = 0 = ρ̃(β̄−1). Combining

these we conclude that the function h(X) := ρ̃ ◦ g ◦ σ−1(X) maps µq+1 into µq+1, and 0 and ∞ are the

unique h-preimages of 0 and ∞ respectively. Hence h(X) = εXn for some ε ∈ F
∗

q , where n := deg g.

Since h(µq+1) ⊂ µq+1, we must have ε ∈ µq+1. This implies that g(X) = ρ̃−1◦h◦σ(X) = ρ−1◦Xn◦σ(X),

where ρ(X) := ε−1ρ̃(X) ∈ Fq2(X) is of degree-one and permutes µq+1. In addition, by Lemma 11,

n = Q + 1 or Q− 1 according to whether C(X) = 1 or not. The case C(X) = 1 corresponds to 2) of

Lemma 12. If C(X) 6= 1, then n = Q− 1, we also know that C(X) is a constant multiple of V (X). If

deg V = 1, then C(X) = X = −(ᾱX − 1)(X − α) with α = 0, and σ({0,∞}) = {0,∞}. Otherwise

C(X) = (X − α)(X − ᾱ−1) = ᾱ−1(ᾱX − 1)(X − α). This proves 3) of Lemma 12. Now the proof of

Lemma 12 is complete.

Next we consider g(X) in Case 3) b) of Lemma 11.

Lemma 13. Let c 6= 0. Assume g(X) has at least one branch point with ramification multiset [1, Q].

Then either one of the following holds:

1) g(X) = ρ−1 ◦ XQ+1

X+1
◦ σ for some degree-one ρ, σ ∈ Fq2(X) both of which map µq+1 to P1(Fq);

2) g(X) = ρ−1 ◦ XQ

XQ+1+ε
◦ σ for some degree-one ρ, σ ∈ Fq2(X) both of which map µq+1 to P1(Fq),

and ε ∈ F∗
q;

3) g(X) = ρ−1 ◦ XQ(X−1)
X+ε

◦ σ for some degree-one ρ, σ ∈ Fq2(X) both of which map µq+1 to P1(Fq),

and ε ∈ F∗
q \ {−1};

4) g(X) = ρ−1 ◦ XQ(ε̄X+1)
X+ε

◦ σ for some degree-one ρ, σ ∈ Fq2(X) both of which permute µq+1, and
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ε ∈ F∗
q2 \ µq+1.

Proof. Since deg g = Q+ 1, from Lemma 11, we see that C(X) = 1, A(X) has no roots in µq+1 U(X)

and V (X) are both nonzero, U(X)/V (X) /∈ F∗
q2 , and g(X) is not Fq-linearly equivalent to a monomial.

We first consider the case where gcd(U, V ) 6= 1. Since U(X)/V (X) /∈ F∗
q2 , we must have degU =

deg V = 2. In addition, U(X) and V (X) only have one common root, say α. If α is not in µq+1, then

α−q will also be a common root of U(X) and V (X) since they are SCR polynomials, a contradiction.

Hence α ∈ µq+1. It cannot be a multiple root either. Hence θ1 ∈ Fq2 \ Fq by Lemma 5, which in turn

implies that U(X), V (X) and W (X) all have two distinct roots in µq+1 by (11). Let β1 and β2 be the

other roots of U(X) and V (X) respectively. In addition, let Λ = {γ1, γ2} be the set of roots of W . Using

Equation (13), we see that α has multiplicity Q+1 as a ramification point of g, while β2 has multiplicity

Q. Lemma 10 implies that α is the unique g-preimage of some element in Λ. Let us assume that this

root is γ2. Then γ1 is the unique branch point with g-ramification multiset [1, Q]. In fact Equation (13)

implies that g(β1) = γ1 = g(β2). Define

σ̃(X) :=
δ1(X − α)

X − β2

and

ρ̃(X) :=
δ2(X − γ2)

X − γ1
,

where δ1, δ2 ∈ F∗
q2 such that δ̄1/δ1 = α/β2 and δ̄2/δ2 = γ2/γ1 respectively. By Lemma 7, σ̃, ρ̃ both map

µq+1 onto P1(Fq). In addition, σ̃(β2) = ∞ = ρ̃(γ1) and σ̃(α) = 0 = ρ̃(γ2). Combining these results, we

find that the rational function h(X) := ρ̃ ◦ g ◦ σ̃−1(X) has degree Q + 1 and maps P1(Fq) into P1(Fq),

and 0 is the unique h-preimage of 0, and ∞ is another branch point of h, with ∞ as an h-preimage

of multiplicity Q. Together with Lemma 8, we conclude that h(X) = λXQ+1

X+ε
for some λ, ε ∈ F∗

q . This

implies g(X) = ρ̃−1◦h◦ σ̃(X) = ρ−1◦ XQ+1

X+1
◦σ(X), where σ(X) := ε−1σ̃(X) and ρ(X) := λ−1ε−Qρ̃(X)

are both of degree-one in Fq2(X) and map µq+1 onto P1(Fq). This proves 1) of Lemma 13.

From now on we assume gcd(U, V ) = 1. We first assume U(X) has a root in µq+1. If this is the

unique root of U , then θ1 = 0 by Lemma 5, and V (X) and W (X) both have a unique multiple root in

µq+1 by Equation (11) too. Let us denote by α1, α2 and β the unique roots of U(X), V (X) and W (X)

respectively. Since gcd(U, V ) = 1, α1 6= α2. Since W has only one root, by Lemma 10, we must have

g(α1) = β = g(α2), and β is the unique branch point of g, whose ramification multiset is [1, Q]. Now
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define

σ(X) :=
γ(X − α1)

X − α2

and

ρ̃(X) :=
X − β

δX − βδ̄
,

where γ, δ ∈ Fq2 \Fq, with γ̄/γ = α2/α1. Then both σ and ρ̃ map µq+1 onto P1(Fq). In addition, σ(α1) =

∞ and σ(α2) = 0 = ρ̃(β). Combining these we find that the rational function h(X) := ρ̃ ◦ g ◦ σ−1(X)

has degree Q+ 1 and maps P1(Fq) into P1(Fq), 0 is the unique branch point of h, with 0 and ∞ as its

h-preimages of multiplicity Q and 1 respectively. By Lemma 8, h(X) ∈ Fq(X). Hence h(X) = XQ

D(X)
for

some D(X) ∈ Fq[X ] of degree Q+1 with D(0) 6= 0. Since g(X) = B(X)
A(X)

, we must have D(X) = Ac0
(X)

for some c0 = (c00, c01, c02, c03) ∈ F4
q , with c00c03 6= 0. Then D(X)2h′(X) = −XQ(c00X

Q + c02). Since

0 is the unique critical point of h, we must have c02 = 0. Hence h(X) = XQ

c00XQ+1+c01XQ+c03
. This

implies g(X) = ρ̃−1 ◦ h ◦ σ(X) = ρ−1 ◦ XQ

XQ+1+ε
◦ σ(X), where ρ(X) = (c00ρ̃(X))/(1 − c01ρ̃(X)) and

ε = c03/c00 ∈ F∗
q , so ρ(µq+1) = P1(Fq). This proves 2) of Lemma 13.

Now we assume U has two distinct roots in µq+1. By Lemma 5, this implies θ1 ∈ Fq2 \ Fq, and

V (X),W (X) have two distinct roots in µq+1 too by Equation (11). Denote by Σ = {α1, α2},Γ = {β1, β2}

and Λ = {γ1, γ2} the set of roots of U(X), V (X) and W (X) respectively. Since gcd(U, V ) = 1, we have

Σ ∩ Γ = ∅. By Lemma 10, Γ is the set of ramification points of g, each of which has multiplicity Q. In

addition, we may assume g(αi) = γi = g(βi) for i = 1, 2. Then both elements of Λ have g-ramification

multiset [1, Q]. Now define

σ̃(X) :=
δ1(X − β2)

X − β1

and

ρ̃(X) :=
δ2(X − γ2)

X − γ1
,

where δ1, δ2 ∈ F∗
q2 such that δ̄1/δ1 = β2/β1 and δ̄2/δ2 = γ2/γ1 respectively. Then σ̃, ρ̃ both map µq+1

onto P1(Fq). In addition, σ̃(β1) = ∞ = ρ̃(γ1) and σ̃(β2) = 0 = ρ̃(γ2). Combining these we find

that the rational function h(X) := ρ̃ ◦ g ◦ σ̃−1(X) has degree Q + 1, maps P1(Fq) into P1(Fq), 0 and

∞ are the branch points of h, as h-preimages of 0 and ∞ of multiplicity Q respectively. Together

with Lemma 8, we have h(X) = λXQ(X+ε1)
X+ε2

for some λ, ε1, ε2 ∈ F∗
q , with ε1 6= ε2. This implies that

g(X) = ρ̃−1 ◦h◦ σ̃(X) = ρ−1 ◦ XQ(X−1)
X+ε

◦σ(X), where σ(X) := −ε−1
1 σ̃(X) and ρ(X) := −λ−1ε−Q

1 ρ̃(X)
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are both of degree-one in Fq2(X) and map µq+1 onto P1(Fq), and ε = −ε2/ε1 ∈ F∗
q \ {−1}. This proves

3) of Lemma 13.

Finally we assume U has no roots in µq+1. By Lemma 5, this implies θ1 ∈ F∗
q , and V (X),W (X)

both have no roots in µq+1 by Equation (11). If degU = 1, define Σ = {0,∞}. If degU = 2, define

Σ as the set of roots of U(X), which is of the form {α, ᾱ−1} for some α ∈ F∗
q2 \ µq+1. To combine

these two cases, let us simply write Σ = {α, ᾱ−1} where α ∈ P1(Fq2) \µq+1. Assume Γ = {β, β̄−1} and

Λ = {γ, γ̄−1} as defined in Lemma 10 respectively, where β, γ ∈ P1(Fq2) \ µq+1. Since gcd(U, V ) = 1,

we have Σ ∩ Γ = ∅. Hence by Lemma 10, Γ is the set of ramification points of g, each of which has

multiplicity Q. In addition, we may assume g(α) = γ = g(β). Since g(X̄−1) = g(X)
−1

, we automatically

have g(ᾱ−1) = γ̄−1 = g(β̄−1). Then both elements of Λ have g-ramification multiset [1, Q]. Now define

σ(X) := − β̄X−1
X−β

if β ∈ Fq2 \ µq+1 and σ(X) := X if β = ∞. Similarly, define ρ̃(X) = − γ̄X−1
X−γ

if γ ∈ Fq2 \ µq+1 and ρ̃(X) = X if γ = ∞. In all these cases σ, ρ̃ both permute µq+1. In addition,

σ(β) = ∞ = ρ̃(γ) and σ(β̄−1) = 0 = ρ̃(γ̄−1). Combining these we find that the rational function

h(X) := ρ̃◦g ◦σ−1(X) ∈ Fq2(X) has degree Q+1, maps µq+1 into µq+1, 0 and ∞ are the branch points

of h, as h-preimages of 0 and ∞ of multiplicity Q respectively. Hence h(X) = XQh1(X) for some

degree-one h1(X) ∈ Fq2(X) such that h1(0), h1(∞) /∈ {0,∞}. Since both h(X) and XQ map µq+1 to

µq+1, so is h1(X). Therefore h1(X) permutes µq+1 and by Lemma 6 it must be of the form ε̄2X+ε̄1
ε1X+ε2

for

some ε1, ε2 ∈ F∗
q2 , such that ε1ε̄1 6= ε2ε̄2. This implies g(X) = ρ̃−1 ◦ h ◦ σ(X) = ρ−1 ◦ XQ(ε̄X+1)

X+ε
◦ σ(X),

where ρ(X) := ε1
ε̄1
ρ̃(X) ∈ Fq2(X) is of degree-one and permutes µq+1, and ε = ε2

ε1
∈ F∗

q2 \ µq+1. This

proves 4) of Lemma 13. Now the proof of Lemma 13 is complete.

The proofs of Lemma 12 and 13 actually provided detailed conditions as to which family that g(X)

belongs. We record the results here for future references.

Proposition 14. Let c 6= 0. Assume that g(X) is non-constant and A(X) has no roots in µq+1. Then both

U(X) and V (X) are nonzero.

(i) If U(X)/V (X) ∈ F∗
q2 is constant, then

(1) Γ ⊂ µq+1 ⇐⇒ g(X) belongs to Family 1) of Lemma 12;

(2) Γ ∩ µq+1 = ∅, C(X) = 1 ⇐⇒ g(X) belongs to Family 2) of Lemma 12;

(3) Γ ∩ µq+1 = ∅, C(X) 6= 1 ⇐⇒ g(X) belongs to Family 3) of Lemma 12;

(ii) If U(X)/V (X) is non-constant, then
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(1) gcd(U(X), V (X)) 6= 1 ⇐⇒ g(X) belongs to Family 1) of Lemma 13;

(2) gcd(U(X), V (X)) = 1, U(X) has a unique root in µq+1 ⇐⇒ g(X) belongs to Family 2) of

Lemma 13;

(3) gcd(U(X), V (X)) = 1, U(X) has two distinct roots in µq+1 ⇐⇒ g(X) belongs to Family 3)

of Lemma 13;

(4) gcd(U(X), V (X)) = 1, U(X) has no roots in µq+1 ⇐⇒ g(X) belongs to Family 4) of Lemma

13.

V. LINEAR EQUIVALENCE CLASSES OF f(X)

In this section we turn Lemmas 12 and 13 about the classification of g(X) into linear equivalence

classes of f(X).

Lemma 15. We use notation from Section III. For c 6= 0, suppose deg g = Q+ 1.

1) If g(X) = ρ−1◦
Ac1

(X)

Ac0
(X)

◦σ for some degree-one ρ, σ ∈ Fq2(X) both of which map µq+1 to P1(Fq) and

some c0, c1 ∈ F4
q , then f(X) is linear equivalent to the (Q,Q)-biprojective function P : F2

q → F2
q

defined by

P (x, y) =
(
yQ+1Ac1

(x/y), yQ+1Ac0
(x/y)

)
.

2) If g = ρ−1 ◦ gc0(X) ◦ σ for some degree-one ρ, σ ∈ Fq2(X) both of which permute µq+1 and some

c0 ∈ F4
q2 , then f(X) is linear equivalent to fc0(X).

Proof. 1). Since ρ, σ map µq+1 to P1(Fq), there exist α, β ∈ Fq2 \ Fq and γ, δ ∈ µq+1 such that

σ(X) =
αX + γᾱ

X + γ

and

ρ(X) =
βX + δβ̄

X + δ
.

Clearly

ρ−1(X) = −
δ(X − β̄)

X − β
.
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We may expand the expression g(X) = ρ−1 ◦
Ac1

(X)

Ac0 (X)
◦ σ and obtain

g(X) = −
δ(X − β̄)

X − β
◦
Ac1

(X)

Ac0
(X)

◦
αX + γᾱ

X + γ

= −
δ
[
Ac1

(
αX+γᾱ
X+γ

)
− β̄Ac0

(
αX+γᾱ
X+γ

)]

Ac1

(
αX+γᾱ
X+γ

)
− βAc0

(
αX+γᾱ
X+γ

) .

Multiplying (X + γ)Q+1 on both the numerator and denominator of the right side, we obtain

g(X) = −
δγQ+1XQ+1D(q)(1/X)

D(X)
, (14)

where

D(X) := (X + γ)Q+1

[
Ac1

(
αX + γᾱ

X + γ

)
− βAc0

(
αX + γᾱ

X + γ

)]
.

Since Ac1
(X), Ac0

(X) ∈ Fq[X ], we have D(X) ∈ Fq2 [X ].

Comparing (14) with the expression g(X) = B(X)
A(X)

and using the condition deg g = Q + 1, we shall

have

max {degB, degA} = max
{
degXQ+1D(q)(1/X), degD

}
= Q+ 1,

gcd (B(X), A(X)) = gcd
(
XQ+1D(q)(1/X), D(X)

)
= 1.

This implies that

A(X) = λD(X),

for some λ ∈ F∗
q2 . Now using

f(X) = XQ+1A
(
Xq−1

)
= XQ+1A

(
X̄/X

)
,

we obtain

f(X) = λ(X̄ + γX)Q+1

[
Ac1

(
αX̄ + γᾱX

X̄ + γX

)
− βAc0

(
αX̄ + γᾱX

X̄ + γX

)]
.

The above expression of f(X) can be further simplified. Writing γ = ε̄/ε for some ε ∈ F∗
q2 , and letting





x = εαX̄ + ε̄ᾱX,

y = εX̄ + ε̄X,
(15)



24

clearly x, y ∈ Fq for any X ∈ Fq2 , we can write f(X) as

f(X) =
λ

εQ+1
yQ+1

[
Ac1

(
x

y

)
− βAc0

(
x

y

)]
= L1 ◦ P ◦ L2(X),

where

L1(x, y) =
λ

εQ+1
(x− βy) : F2

q → Fq2

and

L2(X) = (x, y) =
(
εαX̄ + ε̄ᾱX, εX̄ + ε̄X

)
: Fq2 → F2

q.

Clearly L1 and L2 are linear functions. They are also permutation: L1 is bijective since λε 6= 0 and

β ∈ Fq2 \ Fq; L2 is bijective since

det


εα ε̄ᾱ

ε ε̄


 = εε̄(α− ᾱ) 6= 0.

Therefore f is linear equivalent to P over Fq2 .

2). Since ρ, σ permute µq+1, there exist αi, βi ∈ Fq2 for i = 1, 2 such that α1ᾱ1 6= α2ᾱ2, β1β̄1 6= β2β̄2,

σ(X) =
ᾱ2X + ᾱ1

α1X + α2

, ρ(X) =
β̄2X + β̄1

β1X + β2

.

As gc0(X) =
Bc0

(X)

Ac0 (X)
and g(X) = ρ−1 ◦ gc0(X) ◦ σ, we have

g(X) = −
β2X − β̄1

β1X − β̄2

◦
Bc0

(X)

Ac0
(X)

◦
ᾱ2X + ᾱ1

α1X + α2

= −
β2Bc0

(
ᾱ2X+ᾱ1

α1X+α2

)
− β̄1Ac0

(
ᾱ2X+ᾱ1

α1X+α2

)

β1Bc0

(
ᾱ2X+ᾱ1

α1X+α2

)
− β̄2Ac0

(
ᾱ2X+ᾱ1

α1X+α2

) .

Similarly we can obtain

g(X) =
XQ+1D(q)(1/X)

D(X)
,

where

D(X) := (α1X + α2)
Q+1

[
β1Bc0

(
ᾱ2X + ᾱ1

α1X + α2

)
− β̄2Ac0

(
ᾱ2X + ᾱ1

α1X + α2

)]
∈ Fq2[X ].

Also using similar argument as in 1), and noting that deg g = Q+1, we have A(X) = γD(X) for some
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γ ∈ F∗
q . This further implies that

f(X) = γ(α1X̄ + α2X)Q+1

[
β1Bc0

(
ᾱ2X̄ + ᾱ1X

α1X̄ + α2X

)
− β̄2Ac0

(
ᾱ2X̄ + ᾱ1X

α1X̄ + α2X

)]

= L1 ◦ fc0(X) ◦ L2,

where L1, L2 are given by

L1(X) = γ(β1X̄ − β̄2X), L2(X) = α1X̄ + α2X.

The maps L1, L2 : Fq2 → Fq2 are linear permutations because α1ᾱ1 6= α2ᾱ2 and

(γβ1)(γβ1) = γ2β1β̄1 6= γ2β2β̄2 = (−γβ̄2)(−γβ̄2).

Hence f(X) is linear equivalent to fc0(X) over Fq2 . This completes the proof of Lemma 15.

Assuming that g(X) is non-constant and A(X) has no roots in µq+1, we can list and prove all the

possible linear equivalence classes of f(X) as follows.

Theorem 16. If g(X) is non-constant and A(X) has no roots in µq+1, then f(X) is linear equivalent

to one of the following functions:

1) P0(x, y) = (xQ+1, yQ+1) : F2
q → F2

q;

2) f0(X) = XQ+1;

3) f1(X) = XQ+q;

4) P1(x, y) = (xQ+1, xyQ + yQ+1) : F2
q → F2

q;

5) P2(x, y) = (xQy, xQ+1 + εyQ+1) : F2
q → F2

q for some ε ∈ F∗
q;

6) P3(x, y) = (xQ+1 − xQy, xyQ + εyQ+1) : F2
q → F2

q for some ε ∈ F∗
q \ {−1};

7) f2(X) = XQ+q + εXQ+1 for some ε ∈ F∗
q2 \ µq+1.

Proof. By 3) of Lemma 11, we know that g(X) must be in one of the families in Lemmas 12 or 13.

We first look at cases when g(X) is in Family 1) of Lemma 12 or Families 1) to 3) of Lemma 13.

In all these four families deg g = Q + 1 and g(X) is of the form ρ−1 ◦
Ac1 (X)

Ac0
(X)

◦ σ for some c0, c1 ∈ F4
q

and degree-one ρ, σ ∈ Fq2(X) both of which map µq+1 to P1(Fq). Hence 1) of Lemma 15 applies, and

f(X) is linearly equivalent to functions listed in 1), 4), 5) and 6) of Theorem 16 respectively.

Now consider the case when g(X) is in Family 2) of Lemma 12 or Family 4) of Lemma 13. In both
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families deg g = Q+1 and g(X) is of the form ρ−1 ◦gc0(X)◦σ for some degree-one ρ, σ ∈ Fq2(X) both

of which permute µq+1, and c0 = (0, 0, 0, 1) and (0, 0, 1, ε) respectively. Hence 2) of Lemma 15 applies,

and f(X) is linearly equivalent to functions listed in 2) and 7) of Theorem 16 respectively.

It remains to investigate the case when g(X) is in Family 3) of Lemma 12. Here deg g = Q − 1, so

we cannot apply Lemma 15 directly. Instead, we can find the linear equivalence of f(X) directly, as in

the proofs of Lemma 15. Writing σ, ρ explicitly as

σ(X) =
ᾱ2X + ᾱ1

α1X + α2

, ρ(X) =
β̄2X + β̄1

β1X + β2

,

where αi, βi ∈ Fq2 for i = 1, 2 such that α1ᾱ1 6= α2ᾱ2, β1β̄1 6= β2β̄2, we have

g(X) = ρ−1 ◦XQ−1 ◦ σ = −
β2X − β̄1

β1X − β̄2

◦XQ−1 ◦
ᾱ2X + ᾱ1

α1X + α2

= −
β2(ᾱ2X + ᾱ1)

Q−1 − β̄1(α1X + α2)
Q−1

β1(ᾱ2X + ᾱ1)Q−1 − β̄2(α1X + α2)Q−1
.

This can be further written as

g(X) =
XQ+1D(q)(1/X)

D(X)
, (16)

where

D(X) := (α1X + α2)(ᾱ2X + ᾱ1)
[
β1(ᾱ2X + ᾱ1)

Q−1 − β̄2(α1X + α2)
Q−1

]
.

Again by using g(X) = B(X)
A(X)

and deg g = Q − 1, we conclude that A(X) = γD(X) for some γ ∈ F∗
q .

Now from f(X) = XQ+1A
(
X̄/X

)
, we have

f(X) = γ(α1X̄ + α2X)(ᾱ2X̄ + ᾱ1X)
[
β1(ᾱ2X̄ + ᾱ1X)Q−1 − β̄2(α1X̄ + α2X)Q−1

]

= γ[β1(α1X̄ + α2X)(ᾱ2X̄ + ᾱ1X)Q − β̄2(α1X̄ + α2X)Q(ᾱ2X̄ + ᾱ1X)]

= L1 ◦X
QX̄ ◦ L2(X),

where

L1(X) = γ
(
β1X̄ − β̄2X

)

and

L2(X) = α1X̄ + α2X.
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Since α1ᾱ1 6= α2ᾱ2 and

(γβ1)(γβ1) = γ2β1β̄1 6= γ2β2β̄2 = (−γβ̄2)(−γβ̄2),

the maps L1, L2 : Fq2 → Fq2 are linear permutations, and hence f(X) is linear equivalent to XQX̄ , that

is, the function in 3) of Theorem 16. Now the proof of Theorem 16 is complete.

We remark here that all results in this section work for p = 2 as well. Moreover, this classification also

provides an alternative proof to the main result in [20] that all permutation quadrinomials fc(X) given

in the form of (2) are linear equivalent to Gold or “doubly-Gold” functions.

VI. PROOFS OF THEOREMS 1–3

We are now in a position to prove Theorems 1–3. Let us first define two-to-one functions.

Definition 4. Given finite sets R and S, a map F : R → S is said to be two-to-one (or 2-to-1 for short)

if one of the following holds:

1) if ♯R is even, then for any s ∈ S, ♯F−1(s) ∈ {0, 2};

2) if ♯R is odd, then there is a unique s0 ∈ S such that ♯F−1(s0) = 1, and for any s ∈ S \ {s0},

♯F−1(s) ∈ {0, 2}.

The following result was known.

Theorem 17. [12, Theorem 1.1] Let Fq be a finite field of odd order q and f(x) be a DO polynomial

over Fq. The following statements are equivalent:

(i) f(x) is planar;

(ii) f(x) is a two-to-one map, f(0) = 0 and f(x) 6= 0 for any x ∈ F∗
q .

Note that the quadrinomial fc(X) is a DO polynomial. To make sure that Theorem 17 applies, we

need to show that if f is 2-to-1, then 0 is the only f -preimage of 0 in Fq2 . This is a partial consequence

of the following lemma.

Lemma 18. Let p be odd and c 6= 0. If f(X) is 2-to-1 over Fq2 , then g(X) is non-constant and A(X)

has no roots in µq+1.
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Proof. Obviously f(0) = 0. Now suppose A(α) = 0 for some α ∈ µq+1. Then for any x ∈ F∗
q2 such that

xq−1 = α, the number of such x is exactly q − 1, we have

f(x) = xQ+1A
(
xq−1

)
= xQ+1A (α) = 0,

so ♯f−1(0) ≥ (q − 1) + 1 = q ≥ 3, so f can not be 2-to-1 over Fq2 .

Next suppose g(X) = B(X)
A(X)

= λ is a constant λ ∈ F∗
q2 . For any fixed α ∈ µq+1 and any x ∈ F∗

q2 such

that xq−1 = α, we have

f(x)q−1 = x(q−1)(Q+1)A
(
xq−1

)q−1
= αQ+1A(α)q−1.

Noting that since α ∈ µq+1, the right hand side can be written as

αQ+1A(α)q−1 = αQ+1A(α)
q

A(α)
=

B(α)

A(α)
= λ,

that is (since α ∈ µq+1 is arbitrary),

f(x)q−1 = λ, ∀x ∈ F∗
q2.

Noting that f(x) takes at most q − 1 distinct values and x varies in the set F∗
q2 which has cardinality

q2 − 1, there is one value y ∈ F∗
q2 with yq−1 = λ such that ♯f−1(y) ≥ q2−1

q−1
= q + 1 ≥ 4, so f is not

2-to-1 over F∗
q2 .

Now we can give a proof of Theorems 1 and 2. For simplicity, we prove them together here.

A. Proof of Theorems 1 and 2

For c 6= 0, if f(X) is planar, Lemma 18 ensures that g(X) is nonconstant and A(X) has no roots

in µq+1, then by Theorem 16, we know that f(X) must be in one of the linear equivalence classes

1)–7). Note that 2-to-1 and planar properties are preserved under linear equivalence. Therefore it suffices

to check the functions listed in Theorem 16 to see whether or not they are planar (the number labels

correspond to the family numbers in Theorem 16).

Case 1). P0(x, y): since Q+1 is even, it is easy to see that P0(±1,±1) = (1, 1), that is, ♯P−1
0 ((1, 1)) ≥

4, so P0 can never be 2-to-1.

Case 2). f0(X) = XQ+1: f0 is 2-to-1 on Fq2 if and only if gcd(Q+1, q2− 1) = 2, which holds if and

only if ℓ
gcd(k,ℓ)

is even, since q = pk, Q = pℓ and p is odd.
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Case 3). f1(X) = XQ+q: f1 is 2-to-1 one Fq2 if and only if gcd(Q+ q, q2−1) = 2. It is easy to check

that this is equivalent to kℓ
gcd(k,ℓ)2

is odd.

Case 4). P1(x, y): since Q + 1 is even, 1 and −1 are two distinct solutions of xQ+1 = 1 in F∗
q . At

the same time, xyQ + yQ+1 = 0 has two solutions y = 0,−x for each fixed nonzero x. Hence all the

four points (1, 0), (−1, 0), (1,−1) and (−1, 1) are P1-preimages of (1, 0) in F2
q . Therefore P1 cannot be

2-to-1.

Case 5). P2(x, y): suppose P2(x, y) is 2-to-1 on F2
q . Since xQ+1 = 1 has d = gcd(Q + 1, q − 1) ≥ 2

solutions x ∈ F∗
q , say x1, · · · , xd, and obviously P2(xi, 0) = (0, 1) for any i, so d = 2, that is, k

gcd(k,ℓ)
is

odd. Moreover, if ε ∈ F∗
q is a square, then the equation εyQ+1 = 1 has two solutions y1, y2 ∈ F∗

q , and

we have P2(±1, 0) = P2(0, y1) = P2(y2) = (0, 1), so P2(x, y) cannot be 2-to-1 on F2
q . So if P2(x, y) is

2-to-1 on F2
q then k

gcd(k,ℓ)
is odd and ε ∈ F∗

q is a non-square.

From now on we assume k
gcd(k,ℓ)

is odd and ε ∈ F∗
q is a non-square. Then gcd(Q + 1, q − 1) = 2.

It is easy to see that ♯P−1
2 ((0, b)) = 2 for any b ∈ F∗

q . Next, for any α ∈ F∗
q and β ∈ Fq, we consider

(x, y) ∈ F2
q such that

xQy = α, xQ+1 + εyQ+1 = β. (17)

Since α 6= 0, we have x, y 6= 0, and the above equations are equivalent to y = αx−Q and

εαQ+1
(
x−Q−1

)Q+1
− βx−Q−1 + 1 = 0. (18)

So the number of solutions (x, y) ∈ F2
q to Equations (17) is the same as the number of solutions x ∈ Fq

to Equation (18). We claim that this number is always 0 or 2 for any α ∈ F∗
q and any β ∈ Fq, so that

P2(x, y) is 2-to-1 on F2
q .

First consider the case β = 0: If q ≡ 1 (mod 4), then −ε ∈ F∗
q is a non-square, so Equation (18) is

not solvable for x ∈ Fq; if q ≡ 3 (mod 4), then −ε ∈ F∗
q is a square, Equation (18) is solvable, and the

number of roots x ∈ Fq is gcd((Q+ 1)2, q − 1) = 2. So the claim is prove in this case.

Next consider the case β 6= 0: Let z = x−Q−1, then we have

εαQ+1zQ+1 − βz + 1 = 0. (19)
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Using the substitution z = −[β(εαQ+1)−1]1/Qz1, we obtain

zQ+1
1 + z1 + [ε(α/β)Q+1]1/Q = 0. (20)

Note that a := [ε(α/β)Q+1]1/Q is a non-square in F∗
q . By [22, Theorems 8–9 and Lemma 5], (20) has at

most 2 solutions for z1 in F∗
q , and if (20) does have solutions in F∗

q , then they are precisely the roots,

say x1, x2 of the quadratic polynomial H(x) = F (a)x2 + G(a)x + aF (a)Q, where F,G are specified

polynomials with coefficients in Fq such that F (a) 6= 0. Note that x1 · x2 = aF (a)Q−1, which is a non-

square in F∗
q . Hence either x1, x2 6∈ F∗

q , i.e., H(x) has no roots in F∗
q , which implies that (20) and hence

(18) has no roots in F∗
q , or one of the roots of H(x) is a square in F∗

q and the other is a non-square in F∗
q .

Say x1 is a square and x2 is a non-square in F∗
q . For these x1, x2, the total number of solutions of x ∈ Fq

such that x−Q−1 = −[β(εαQ+1)−1]1/Qx1 or −[β(εαQ+1)−1]1/Qx2 is still 2. So in this case Equation (18)

still has either 0 or 2 solutions in Fq. Now the claim is proved, so P2(x, y) is 2-to-1.

Case 6). P3(x, y): First, noting that for any x, y ∈ F∗
q ,

P3 : (x, 0) 7→
(
xQ+1, 0

)
, (0, y) 7→

(
0, εyQ+1

)
, (y, y) 7→

(
0, (1 + ε)yQ+1

)
,

by using similar argument for P2(x, y), we see that if P3(x, y) is 2-to-1 on F2
q , then k

gcd(k,ℓ)
is odd and

ε−1(1 + ε) = 1 + ε−1 ∈ F∗
q is a non-square.

From now on we assume 1+ε−1 is a non-square in F∗
q and k

gcd(k,ℓ)
is odd. Under this general condition

we are unable to conclude anything. So we assume that k | ℓ. Then xQ = x for any x ∈ Fq. We claim

that in this case P3(x, y) = (x2 − xy, xy + εy2) is 2-to-1 on F2
q , that is, the number of (x, y) ∈ F2

q such

that

x2 − xy = α, xy + εy2 = β (21)

is either 0 or 2 for any (α, β) ∈ F2
q \ {(0, 0)}. The proof is as follows.

Consider (α, β) ∈ F2
q with α 6= 0. Then x(x − y) = α implies x 6= 0, and y = x − αx−1. Hence

y(x+ εy) = β becomes (x− αx−1)[(1 + ε)x− αεx−1] = β, or equivalently,

(1 + ε)x4 − (α + 2αε+ β)x2 + α2ε = 0. (22)
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Let z = x2, then we have

(1 + ε)z2 − (α + 2αε+ β)z + α2ε = 0. (23)

The product of the two roots of (23) is α2ε
1+ε

= α2(1 + ε−1)−1 is a non-square in F∗
q . Hence at most one

of them makes the equation x2 = z solvable in Fq for x (and if so then there are 2 solutions), which

in turn gives 2 solutions to the equation (22). Each such solution gives one corresponding value of y.

Hence (α, β) has 0 or 2 P3-preimages in F2
q for each choice of α ∈ F∗

q and β ∈ Fq. If α = 0 but β 6= 0,

the result is obvious. Combining all possible cases, we see that P3 is 2-to-1 if and only if 1 + ε−1 is a

non-square in F∗
q .

Case 7). For f2(X) = XQ+q + εXQ+1 for some ε ∈ F∗
q2 \µq+1: Under the genral condition we are not

able to conclude anything except that gcd(Q+ 1, q − 1) = 2, that is, k
gcd(k,ℓ)

is odd.

Let us assume that k | ℓ. We consider first that ℓ
k

is even. Then for any x ∈ Fq2 , we have f2(x) =

xx̄+ εx2. We will use this expression to find conditions on ε ∈ F∗
q2 \ µq+1 such that f2 is planar on Fq2 .

f2 is planar if and only if for any a ∈ F∗
q2 and any b ∈ Fq2 , the equation f(x+ a)− f(x) = b always

has a unique root x ∈ Fq2 . Replacing x by ax, and dividing aQā on both sides, we obtain for any a ∈ F∗
q2

and any b ∈ Fq2 , the equation

x+ x̄+
2εa

ā
x =

b

aQā
− 1−

εa

ā
(24)

always have a unique solution x ∈ Fq2 . The left hand side of (24) is linear in x, so this is equivalent to

the statement that for any a ∈ F∗
q2 , x = 0 is the only solution of the equation

x+ x̄+
2εa

ā
x = 0 (25)

in Fq2 , so, for any a ∈ F∗
q2 and any x ∈ F∗

q2 , we have x+ x̄+ 2εa
ā
x 6= 0, that is,

2ε
a

ā
6=

−x− x̄

x
= −1−

x̄

x
.

As x runs over F∗
q2 , z := x̄

x
runs over µq+1. Since a ∈ F∗

q2 is also arbitrary here, we need to have

2ε2ε = 4εε̄ 6= (1 + z)(1 + z̄) = (1 + z)
(
1 + z−1

)
, ∀z ∈ µq+1,

or equivalently, the equation

4εε̄ = (1 + z)
(
1 + z−1

)
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has no roots in µq+1. This is equivalent to that

z2 + (2− 4εε̄) z + 1 = 0 (26)

has no roots in µq+1. By Lemma 5, this is equivalent to that

∆ = (2− 4εε̄)2 − 4 = (4εε̄)2
(
1− (εε̄)−1

)

is a square in F∗
q , that is, 1− (εε̄)−1 ∈ F∗

q is a square. This proves the case ℓ
k

is even.

If ℓ
k

is odd, noting that in this case f2(x) = x̄2 + εxx̄ for any x ∈ Fq2 and x̄2 + εxx̄ = ε(xx̄+ ε̄−1x2),

by using the result for ℓ
k

being even, we conclude that in this case f2 is planar if and only if 1− εε̄ ∈ F∗
q

is a square. This proves the case ℓ
k

is odd. Now we have proved Theorems 1 and 2. �

B. Proof of Theorem 3

Now we assume k | ℓ. This implies that Q = pℓ = qℓ/k. Then XQ induces the same function on Fq2

as X̄ or X according to whether ℓ
k

is odd or even. Therefore fc(X) induces the same function on Fq2 as

Fc(X) :=





c2X̄
2 + (c0 + c3)XX̄ + c1X

2 ( ℓ
k

is odd)

c0X̄
2 + (c1 + c2)XX̄ + c3X

2 ( ℓ
k

is even).

(27)

This leads us to study a simpler form of polynomials, namely f̃(X) = f̃a(X) = a0X̄
2+a1XX̄+a2X

2 ∈

Fq2 [X ] for a = (a0, a1, a2) ∈ F3
q2 . We see that f̃(X) = X2Ã(Xq−1) where Ã(X) = Ãa(X) = a0X

2 +

a1X + a2.

We first introduce some notations. For a = (a0, a1, a2) ∈ F3
q2 , define

B̃(X) = B̃a(X) := ā2X
2 + ā1X + ā0 = X2Ã(q)(1/X),

G̃(X) = G̃a(X) :=
B̃(X)

Ã(X)
,

ẽ = ẽ(a) := a2ā2 − a0ā0, (28)

θ̃ = θ̃(a) := ā1a2 − ā0a1. (29)

Then we have the following result, and Theorem 3 follows immediately by the relation (27).

Lemma 19. Let a = (a0, a1, a2) ∈ F3
q2 . Then f̃(X) = f̃a(X) = a0X̄

2+a1XX̄+a2X
2 ∈ Fq2[X ] is 2-to-1

over Fq2 if and only if ẽ2 − θ̃q+1 is a square in F∗
q . Moreover, in this case f̃(X) is equivalent to X2.
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Proof of Lemma 19. Since gcd(2, q − 1) = 2, as similar to Lemma 18, we see that Ã(X) has no roots

in µq+1 and G̃(X) is non-constant on µq+1. Since deg G̃ ≤ 2, we actually must have deg G̃ = 2, that

is, gcd(Ã(X), B̃(X)) = 1. In particular, no points have ramification index divisible by p = char(Fq).

By Hurwitz genus formula (Lemma 9), G̃ must have exactly two branch points in P1(Fq), each having

a unique preimage in P1(Fq). Hence in particular G̃ is Fq-linearly equivalent to X2.

Define Ṽ (X) := B̃′(X)Ã(X)− B̃(X)Ã′(X). It is easy to see that

Ṽ (X) = θ̃qX2 + 2ẽX + θ̃,

where θ̃ and ẽ are given in (29) and (28) respectively. The ramification points of G̃ are the roots of Ṽ

in Fq (and ∞ if deg Ṽ = 1). Since G̃ is separable, we have Ṽ (X) 6= 0, that is, at least one of ẽ and

θ̃ is nonzero. Moreover, G̃ has two distinct ramification points. Hence ∆̃ := 1
4
∆(Ṽ ) = ẽ2 − θ̃q+1 6= 0.

Furthermore, by Lemma 5, Ṽ has no roots in µq+1 if and only if ∆̃ is a square in F∗
q .

We first assume ∆̃ is a non-square in Fq, so both ramification points of G̃ are in µq+1. Following

the proof of Lemma 12 in Section III, we see that G̃(X) = ρ−1 ◦ X2 ◦ σ for some degree-one ρ, σ ∈

Fq2 [X ] mapping µq+1 onto P1(Fq). Following the proof of Lemma 15 in Section V, we see that f̃(X)

is equivalent to (x, y) 7→ (x2, y2) : F2
q → F2

q . This map is not 2-to-1 since the four distinct points

(1, 1), (−1, 1), (1,−1), (−1,−1) ∈ F2
q are all mapped to the same point (1, 1) ∈ F2

q .

Now we assume ∆̃ is a square in F∗
q , so neither ramification points of G̃ are in µq+1. Following the

proof of Lemma 12 in in Section III, we see that G̃(X) = ρ−1◦X2◦σ for some degree-one ρ, σ ∈ Fq2 [X ]

permuting µq+1. Following the proof of Lemma 15 in Section V, we see that f̃(X) is equivalent to X2,

which is indeed 2-to-1 and hence planar. This completes the proof of Lemma 19, and also the proof of

Theorem 3.

VII. CONCLUSION

In this paper, we listed all possible equivalence classes of planar functions from a class of quadrinomials.

This supplements the classification result of APN functions [20] from this class of quadrinomials in

characteristic 2. We adopted a “geometric method” developed by Ding and Zieve [17] in odd characteristic

to study this problem, and the linear equivalence result followed naturally from this method. It may be

interesting to see if other results can be obtained in this way. The following question is on our mind

when writing this paper:
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Is it true that the condition k | ℓ is necessary for polynomials in Families 4 or 5 in Theorem 1 to be

planar? If the answer is positive, then it implies that the quadrinomials of the form (2) do not yield new

planar functions (up to CCZ-equivalence).
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