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Abstract. We consider linear search for an escaping target whose
speed and initial position are unknown to the searcher. A searcher (an
autonomous mobile agent) is initially placed at the origin of the real line
and can move with maximum speed 1 in either direction along the line.
An oblivious mobile target that is moving away from the origin with an
unknown constant speed v < 1 is initially placed by an adversary on the
infinite line at distance d from the origin in an unknown direction. We
consider two cases, depending on whether d is known or unknown. The
main contribution of this paper is to prove a new lower bound and give
algorithms leading to new upper bounds for search in these settings.
This results in an optimal (up to lower order terms in the exponent)
competitive ratio in the case where d is known and improved upper and
lower bounds for the case where d is unknown. Our results solve an
open problem proposed in [Coleman et al., Proc. OPODIS 2022].

Key words and phrases. Autonomous agent, Competitive ratio,
Linear Search, Oblivious Mobile Target, Searcher.

1 Introduction

Linear search is concerned with a searcher that wants to find a target located on
the infinite real line. The searcher is an autonomous mobile agent, henceforth
also referred to as the robot, that can move on the line in any direction with max
speed 1. A second agent, henceforth also referred to as the target, is oblivious (in

⋆ This is the full version of the paper which appeared in the Proceedings of IWOCA
2024: 35th International Workshop on Combinatorial Algorithms, SVLNCS, 1-3 July
2024 Ischia, Italy.
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particular, it cannot change direction), starts at an unknown (to the searcher)
location on the line, and moves with constant speed v < 1 away from the origin.
The goal is to design search algorithms that minimize the ratio of the target
capture time (i.e., the first time when the searcher and target are co-located on
the line) under the algorithm versus the minimum time required by an agent
that knows the speed and starting position of the target. We refer to this ratio
as the competitive ratio. For many problems, it is possible to design an algorithm
with a finite supremum competitive ratio amongst all problem instances. In our
case, however, the competitive ratio grows arbitrarily large for certain instances;
so, our goal will be to minimize the growth of the competitive ratio with respect
to the target’s initial parameters.

One would expect that the resulting competitive ratio of a search algorithm
should depend not only on the moving target’s initial parameters (speed v

and starting distance d), but also on whether those parameters are known to
the searcher prior to the execution of the algorithm. It would be natural to
speculate that the less the searcher knows about the target, the worse the
resulting competitive ratio. Our main focus in this paper is to understand how
the knowledge available to the searcher about d, v affects the competitive ratio of
linear search. More specifically, we ask: what is the competitive ratio of search
if the target is mobile and its speed is fixed but unknown to the searcher?
This question was first considered in [10], where the authors study the resulting
competitive ratios of search under the four possible knowledge scenarios of the
pair d, v. The main contribution of the present paper is to give new algorithms
and determine new upper and lower bounds for the competitive ratios when v

is unknown to the searcher, and thus answer one of the main open problems left
in [10].

1.1 Notation and Terminology

A robot with maximum speed 1 starts at the origin 0 on the real number line.
A target starts a distance d ≥ 1 from the origin in an unknown direction and
moves away from the origin with an unknown speed 0 ≤ v < 1. The goal is for
the robot to catch the target in a manner that is as efficient as possible. With
the knowledge that it has, the robot executes an algorithm until it becomes
collocated with the target. For simplicity, we define the positive direction of the
number line to be that in which the robot’s position reaches magnitude d first.

The only feedback that the robot receives during its search is either the
instruction to keep searching or the instruction to terminate (once it is collocated
with the target). As such, its motion is predetermined by the initial parameters
that are available to it. We will refer to this predetermined pattern of motion as
a “strategy” and define it as follows.

Definition 1. A strategy A is a function A(t) for t ≥ 0 that denotes the robot’s
position on the number line at time t. A(t) is continuous, does not violate the
speed limit of 1, and A(0) = 0. A strategy A is “successful” if for any possible
target, there exists some t at which the robot is collocated with that target.
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Since one strategy must account for all problem instances, it is useful to
imagine the targets from all problem instances as existing simultaneously. In
such a paradigm, the goal of a strategy is to “catch” all possible targets (whereas
only one is caught in reality). The time taken to catch each potential target can
be used to evaluate the efficiency of the strategy. We will use the word “reach”
to mean becoming collocated with a target whereas the word “catch” will mean
reaching a target for the first time.

The fraction u = 1
1−v

represents the so-called evasiveness of a target of speed
v. The evasiveness of a target is proportional to the minimum amount of time
that it takes for the robot to close a gap between itself and the target. Note
that v = 1 − 1

u
and by the bounds of v, we have 1 ≤ u < ∞. From here on

out, it is useful to frame the conversation in terms of evasiveness rather than
speed. Every variable denoted by the letter u will represent an evasiveness and
will implicitly be associated with a speed variable denoted by the letter v with
the same subscript or lack thereof.

The variable σ ∈ {0, 1} will be used to represent the positive side of the real
line if σ = 0 or the negative side if σ = 1. We define

T σ
A(u, d) = inf

{

t ≥ 0 : A(t) = (−1)σ
(

d+

(

1− 1

u

)

t

)}

as the time taken by strategy A to catch u on side σ and Topt(u, d) =
d

1−v
= ud

as the time taken by a robot running an offline algorithm to accomplish the same
task. The competitive ratio is defined as

CRσ
A(u, d) =

T σ
A(u, d)

Topt(u, d)
and CRA(u, d) = max

(

CR0
A(u, d), CR1

A(u, d)
)

.

In all cases, we will be using CRA(u, d) to evaluate the performance of search
strategies. When the starting distance d is known to the searcher (as is the case
in Section 2), we will suppress d in the definitions above and simply write T σ

A(u),
Topt(u), CRσ

A(u), or CRA(u), respectively to simplify the notation.

1.2 Related work

The study of linear search for a static target was first proposed independently in
[6,8] for stochastic and game theoretic models, while deterministic linear search
by a single mobile agent was investigated in [3,4]. There is extensive literature on
linear search for both stochastic and deterministic search models. For additional
information, the interested reader could consult the seminal books by Ahlswede
and Wegener [1] and Alpern and Gal [2].

The ultimate goal of linear search is to determine “precise bounds” on the
competitive ratio of a specific search model. As such, the competitive ratio may
play a primary role in determining the computational strength of a search model
as well as its relation to other existing models. This is particularly evident when
analyzing the impact of communication in various settings including multi-agent
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(group) search with or without faulty agents, different communication abilities,
etc. For example, see the work of [13,15] for linear group search with crash
faults, and [11,12,16] for the case of byzantine faults. Another example, is when
two agents can communicate only in the F2F (Face-to-Face) model (see [9]) as
well as [5] which analyzes the competitive ratio of linear search for two robots
with different speeds. It should also be noted that there is extensive literature
when different cost models are considered, e.g., [14] which takes into account the
number of turns.

Most of the known research on analyzing and determining the competitive
ratio of linear search is concerned with a static target. Alpern and Gal [2][p. 134,
Equation 8.25] were the first to analyze linear search for catching an escaping
oblivious target and proved that the optimal competitive ratio of search for a
moving target starting at an unknown starting distance and moving with known
(to the searcher) speed 0 ≤ v < 1 (where 1 is the speed of the searcher) away
from the origin is exactly 1 + 8 1+v

(1−v)2 . If both starting distance d and speed v

of the mobile target are known to the searcher, the competitive ratio is shown
in [10] to be 1 + 2

1−v
. This last publication was also the first work to consider

knowledge/competitive ratio tradeoffs in linear search for a moving target. In the
present paper, we consider the general problem of the impact of knowing either
d or v on the competitive ratio of search. In particular, we focus on determining
the competitive ratio of search for a moving target when its speed is unknown
to the searcher and solve one of the main open problems proposed in [10].

1.3 Contributions and Outline

Recall that, throughout the paper, we assume that the speed v of the mobile
target is unknown to the searcher and u = 1

1−v
is the evasiveness of v. The main

contributions are as follows.
In Section 2, we assume the starting distance d of the mobile target is known

to the searcher. In Subsection 2.1, we prove a lower bound in Theorem 1: that
no search strategy A can satisfy CRA(u) ∈ O

(

u4−ε
)

, for any constant ε > 0
(improving the lower bound of 1 + 2u in [10]). In Subsection 2.2, we define
strategyA1 (see Algorithm 1) and prove, in Theorem 2, that it obeys CRA1

(u) ≤
56.18u4−(log2 log2 u)−2

for u > 4, while CRA1
(u) = 9 for 1 ≤ u ≤ 4 (improving the

previous upper bound of 1 + 16u4(log2 u)
2 from [10] for all u > 4). Our results

for Section 2 are tight up to lower order terms in the exponent, thus answering
one of the main open problems proposed in [10].

In Section 3, we analyze the no-knowledge case whereby the searcher knows
neither the speed v nor the starting distance d of the target. We define a strategy
A2 (see Algorithm 2) and prove, in Theorem 3, that it obeys CRA2

(u, d) ≤
1+ 1

d

(

56.18(ud)4−(log2 log2(ud))
−2 − 1

)

for ud > 4, while CRA2
(u, d) ≤ 1+ 8

d
for

ud ≤ 4 (improving the previous best upper bound: O
(

1
d
M8 log22 M log2 log2 M

)

,
where M = max (u, d), in [10]). We also note that the lower bound in the case
where d is known extends trivially to the case where d is unknown, yielding
that no strategy A could satisfy CRA(u, d) ∈ O

(

u4−ε
)

, for any constant ε > 0.
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We conclude in Section 4 by summarizing our contributions and proposing some
open problems.

2 Unknown Speed and Known Starting Distance

In this section, we consider search when the speed 0 ≤ v < 1 of the target is
unknown but the starting distance d is known to the searcher. First, we prove a
lower bound in Subsection 2.1, followed by an upper bound in Subsection 2.2.

2.1 Lower Bound

In Definition 1, we defined the general concept of a search strategy. Next, we
define a particular class of search strategies: so-called zigzag strategies.

Definition 2. A zigzag strategy A is defined in terms of a sequence of
evasiveness values: (ui)

∞
i=0. This sequence must satisfy the additional stipulations

that ui+2 > ui for all i ≥ 0 and that limi→∞ ui = ∞. The movement of the robot
is divided into rounds with indices i ≥ 0. On round i, the robot travels from the
origin to position (−1)ixi and back to the origin where xi is the distance that is
just large enough to catch the target with evasiveness ui. For future convenience,
let si =

∑i

n=0 xn for all i ≥ −1. To be clear, s−1 = 0.

For any successful strategy, there exists a zigzag strategy that performs just as
well or better. This is because it is optimal for the robot to always be travelling to
the next new target that it intends to catch at top speed (see [2]). For this reason,
we will only be considering zigzag strategies as they are the best-performing class
of strategies. This subsection is dedicated to proving the following theorem.

Theorem 1. In the case where initial distance d is known but speed v is
unknown, no strategy A can satisfy CRA(u) ∈ O

(

u4−ε
)

, for any constant ε > 0.

Proof. This proof will show that a contradiction arises from the assumption
that CRA(u) ∈ O

(

uk
)

for an arbitrary zigzag strategy A and for an arbitrary
constant k < 4. Part of the proof borrows work done by Beck and Newman [7]
regarding the cow path problem. Here is an outline of the proof:

1. Lemmas 1 through 3 will give a lower bound for CRA(u) in terms of ui for
various i.

2. This bound will be distilled into a key condition, but only under the
assumption that CRA(u) ∈ O

(

uk
)

for k < 4.
3. Lemma 4 will show that this condition is impossible to satisfy.

Note that Lemma 2 will also be useful in later proofs.

Lemma 1. For some zigzag strategy A, for any round number i ≥ 0, and for
any evasiveness value u ∈ (ui, ui+2], CRA(u) ≥ 1 + 2

d
si+1.
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Proof. Consider a round i ≥ 0 with parity σ. During round i+2, all u ∈ (ui, ui+2]
on side σ are caught (for the first time). At the start of round i+2, the robot is
at the origin but has spent 2si+1 time on previous rounds, giving all targets an
additional 2vsi+1 distance head start. The target with evasiveness u is caught
in time

T σ
A(u) = 2si+1 +

d+ 2vsi+1

1− v
=

d+ 2vsi+1 + 2si+1(1− v)

1− v
= ud+ 2usi+1.

It is true that T σ
A(u) ≤ max

(

T 0
A(u), T

1
A(u)

)

. Hence, by definition, CRA(u) ≥
Tσ
A
(u)

Topt(u)

= ud+2usi+1

ud
= 1 + 2

d
si+1 . This completes the proof of Lemma 1. ⊓⊔

Lemma 2. For any zigzag strategy A, for all i ≥ 0, si = uid+ (2ui − 1) si−1.

Proof. At the start of round i, the robot is at the origin and must catch
evasiveness values up to ui. The robot has spent 2si−1 time on previous rounds.
Therefore, the target with evasiveness ui is a distance d + 2visi−1 away from
the robot at the start of round i. Catching this target will take an amount of
time (and distance) equal to

xi = ui (d+ 2visi−1) = ui

(

d+ 2

(

1− 1

ui

)

si−1

)

= uid+ (2ui − 2)si−1.

By definition, si = xi + si−1 = uid+ (2ui − 2)si−1 + si−1 = uid+ (2ui − 1)si−1.

This proves Lemma 2. ⊓⊔

Lemma 3. For any zigzag strategy A, for all i ≥ 0, si ≥ d
∏i

n=0 un.

Proof. Lemma 2 states that si = uid+ (2ui − 1) si−1. Since ui ≥ 1,

si = uid+ (2ui − 1)si−1 ≥ uid+ (2ui − ui)si−1 = uid+ uisi−1 ≥ uisi−1.

In summary, for all i ≥ 0, si ≥ uisi−1. Using s0 = u0d as the base case, we
can unwrap the recurrence to yield si ≥ d

∏i

n=0 un. This completes the proof of
Lemma 3. ⊓⊔

Now, for the sake of contradiction, assume that there exists a zigzag strategy
A satisfying CRA(u) ∈ O

(

uk
)

for some k < 4. More specifically, assume that
there exists some a > 0 such that for all u ≥ c1 for some constant c1,

CRA(u) ≤ auk. (2.1)

We now examine a subset of all u values on which this condition must hold. For
each round numbered i ≥ 0, let us select an evasiveness u = αiui where

αi = min

(

ui+2

ui

,
k
√
2

)

. (2.2)
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Note that ui < ui+2 by definition and that we need only consider k > 0. With
this in mind, one can verify that αiui satisfies the following properties:

ui < αiui ≤ ui+2, (2.3)

(αiui)
k ≤ 2uk

i . (2.4)

Lemma 1 in conjunction with Equation (2.3) yields: CRA (αiui) ≥ 1 + 2
d
si+1.

Lemma 3, Equation (2.1), and Equation (2.4) yield:

1 + 2

i+1
∏

n=0

un ≤ 1 +
2

d
si+1 ≤ CRA (αiui) ≤ a (αiui)

k ≤ 2auk
i .

Now, let ui = 2wi where wi ≥ 0. Note that since ui goes to infinity by the
definition of a zigzag strategy, so does wi. Hence, 2a · 2kwi ≥ 1 + 2

∏i+1
n=0 2

wn ≥
2
∏i+1

n=0 2
wn . Dividing by 2 and applying log2 to both sides produces kwi +

log2(a) ≥
∑i+1

n=0 wn. We can remove log2(a) by swapping k with k2 = 1
2 (k + 4),

which is bigger than k but still less than 4. Since log2(a) is a constant and wi

goes to infinity, there will necessarily be some round j such that for all i ≥ j,

kwi+log2(a) ≤ 1
2 (k+4)wi. Alternatively, for all i ≥ j, wi ≥ 2 log2(a)

4−k
. Let c2 = uj .

We now have that for all i satisfying ui ≥ max(c2, c1),

k2wi ≥
i+1
∑

n=0

wn. (2.5)

We will now show that Equation (2.5) cannot hold using Lemma 4, which adapts
part of Lemma 2 from [7] to better suit the task at hand.

Lemma 4. Consider a sequence (zi)
∞
i=0 where zi > 0 for all i ≥ 2 and zi ≥ 0

for i = 0, 1. For h < 4, no such sequence is able to satisfy the following condition
for all i larger than a sufficiently large m:

hzi ≥
i+1
∑

n=0

zn. (2.6)

Proof. For the sake of contradiction, assume that a sequence (zi)
∞
i=0 can satisfy

the above conditions. Consider a modified sequence (yi)
∞
i=0 given by

yi = 2−i

i
∑

n=0

zn. (2.7)
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The conditions of the lemma ensure that yi > 0 for all i ≥ 2. We can derive a
useful bound for the second difference of this sequence for all i ≥ m.

2i+2(yi + yi+2) = 4

i
∑

n=0

zn +

i+2
∑

n=0

zn

≤ 4

i
∑

n=0

zn + hzi+1 (Equation (2.6))

= 4

i+1
∑

n=0

zn − (4− h)zi+1

= 2i+3yi+1 − (4− h)zi+1 (Equation (2.7))

≤ 2i+3yi+1 −
(

4− h

h

) i+2
∑

n=0

zn (Equation (2.6))

= 2i+3yi+1 − 2i+2

(

4− h

h

)

yi+2. (Equation (2.7))

Let γ = 4−h
h

> 0. Observe that

2i+2(yi + yi+2) ≤ 2i+3yi+1 − 2i+2γ · yi+2,

yi+2 − 2yi+1 + yi ≤ −γ · yi+2. (2.8)

Hence, for any i ≥ max(m, 2), the decrease in slope that occurs between the
indices i and i+ 2 in (yi)

∞
i=0 has a magnitude no less than γ · yi+2 > 0.

A sequence that is both positive and concave down can never decrease. If
it ever did, then the slope could never increase again and the sequence would
eventually cross the y axis, contradicting its positivity. This means that the
second difference of (yi)

∞
i=0 must tend to 0, lest the slope decrease to arbitrarily

low values. According to Equation (2.8), this can only happen if yi itself tends to
0. However, being a positive sequence, it must decrease at some point in order
to tend to 0. Hence, the existence of a sequence (yi)

∞
i=0 satisfying the above

conditions is contradictory, proving Lemma 4. ⊓⊔

Lemma 4 shows that Equation (2.5) is contradictory: take zi = wi, m =
max(c1, c2), and h = k2 < 4. Note that wi > wi−2 ≥ 0 for all i ≥ 2. The
only unfounded assumption made in the derivation of Equation (2.5) was that
CRA(u) ∈ O

(

uk
)

for k < 4. Therefore, this assumption is false. This completes
the proof of Theorem 1. ⊓⊔

2.2 Upper Bound

In this subsection, we present an algorithm and prove an upper bound on its
performance in Theorem 2. Algorithm 1 follows a zigzag strategy A given by
ui = 23·2

i
√
i+1−1.
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Algorithm 1 (Search with unknown speed and known initial distance)

1: input: initial target distance d

2: terminate at any point if collocated with target
3: t← 0
4: for i← 0, 1, 2, ...,∞ do

5: ui ← 23·2
i√

i+1−1

6: vi ← 1− u−1

i

7: xi ← ui (d+ vit)
8: move to position (−1)ixi and back to the origin
9: t← t+ 2xi

10: endfor

Theorem 2. In the case where initial distance d is known but speed v is
unknown, Algorithm 1 has the following bounds on its performance:

∀ 1 ≤ u ≤ 4 CRA(u) = 9 (2.9)

∀ u > 4 CRA(u) ≤ 56.18u4−(log2 log2 u)−2

(2.10)

Before proceeding with the proof of Theorem 2, we prove the six lemmas 5
through 10. Lemma 9 only helps to prove Lemma 10 and does not appear in the
rest of the proof.

Lemma 5. For any zigzag strategy A, CRσ
A(u) = 1 + 2

d
sk−1, where k is the

round on which the target with evasiveness u on side σ is caught.

Proof. The robot begins round k at the origin. A total of 2sk−1 time has been
spent on previous rounds, giving the target an additional 2vsk−1 distance head
start. Therefore, the time required to catch the target is:

T σ
A(u) = 2sk−1 + u (d+ 2vsk−1) = 2sk−1 + ud+ 2(uv)sk−1

= 2sk−1 + ud+ 2(u− 1)sk−1 = ud+ 2usk−1

CRσ
A(u) =

1

ud
T σ
A(u) = 1 +

2

d
sk−1

This proves Lemma 5. ⊓⊔

Lemma 6. Consider a zigzag strategy A whose defining sequence of evasiveness
values (ui)

∞
i=0 is strictly increasing. For a round number k ≥ 0, if a function F (u)

is increasing for all u ≥ uk, then statement (2.11) implies statement (2.12).

1 +
2

d
si+1 ≤ F (ui) ∀i ≥ k, (2.11)

CRA(u) ≤ F (u) ∀u > uk. (2.12)

Proof. Consider any round i with parity σ. We know that all evasiveness values
ui < u ≤ ui+2 on side σ are caught on round i + 2. By Lemma 5, CRσ

A(u) =
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1+ 2
d
si+1 for all ui < u ≤ ui+2. Consequently, if F (ui) ≥ 1+ 2

d
si+1 and F (ui) is

increasing within the interval [ui, ui+2], then F (u) ≥ CRσ
A(u) for all ui < u ≤

ui+2. Let σk denote the parity of k. Statement (2.11) allows us to apply our prior
reasoning to all rounds i ≥ k, collectively yielding the following:

F (u) ≥ CRσk

A (u) ∀u > uk,

F (u) ≥ CR1−σk

A (u) ∀u > uk+1.

The latter statement can be extended to all u > uk as follows. Statement (2.11)
yields the following in conjunction with the fact that sk+1 ≥ sk:

F (u) ≥ 1 +
2

d
sk+1 ≥ 1 +

2

d
sk ∀uk < u ≤ uk+2.

Recall the stipulation that (ui)
∞
i=0 is strictly increasing. We can reduce the

applicable range of the statement above to uk < u ≤ uk+1, which is a subset of
the range uk−1 < u ≤ uk+1 on which 1 + 2

d
sk = CR1−σk

A (u). In the event that
k = 0, this range is instead 1 ≤ u ≤ uk+1, which still contains all uk < u ≤ uk+1.
From this, we can conclude that F (u) ≥ CR1−σk

A (u) for all uk < u ≤ uk+1.

F (u) ≥ CRσk

A (u) , F (u) ≥ CR1−σk

A (u) ∀u > uk,

F (u) ≥ max
(

CRσk

A (u), CR1−σk

A (u)
)

= CRA(u) ∀u > uk.

This proves Lemma 6. ⊓⊔

Lemma 7. Given a zigzag strategy, for any i ≥ 0, si ≤ 2i+1 · d
∏i

j=0 uj .

Proof. Lemma 2 states that si = uid+(2ui − 1) si−1. One can easily verify that
this recurrence unwinds as follows:

si = d

i
∑

j=0

uj

i
∏

k=j+1

(2uk − 1).

For the purpose of finding an upper bound, let us ignore the −1 and simplify.

si ≤ d

i
∑

j=0



2i−j

i
∏

k=j

uk



 .

Note that since j ≥ 0 and uk ≥ 1 for any k,
∏i

k=j uk ≤∏i

k=0 uk. Therefore,

si ≤ d

(

i
∏

k=0

uk

)

i
∑

j=0

2i−j = d

(

i
∏

k=0

uk

)

(

2i+1 − 1
)

≤ 2i+1 · d
i
∏

k=0

uk.

This proves Lemma 7. ⊓⊔
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The following notation will be used in the upcoming Lemmas. For
n ≥ 0, let f<n>(x) denote the “n-th difference” of a function f at x as
f<0>(x) = f(x), f<n>(x) = f<n−1>(x) − f<n−1>(x − 1). There are obvious
parallels between f<n>(x) and the n-th derivative, f (n)(x). Note that difference
operations tend to alter the domain of f more significantly than differentiation.
The useful properties listed below apply only where the result is defined. Just
like with regular derivatives, (f<a>)

<b>
(x) = f<a+b>(x). Additionally, by the

linearity of differentiation,

(

f<1>
)(1)

(x) =
d

dx
(f(x)− f(x− 1)) = f (1)(x)− f (1)(x− 1) =

(

f (1)
)<1>

(x).

In conjunction with the properties of regular derivatives, the above two
properties reveal that when a function f(x) is differentiated a times and has
b first difference operations applied, the order in which all a + b operations
are applied does not matter. Let us write the result of such a procedure as
f (a)<b>(x) or f<b>(a)(x).

Lemma 8. Consider two arbitrary functions f(x) and g(x) defined on integers
x ≥ 0. Let G(x) be shorthand for

∑x

j=0 g(j) where G(0) = g(0) and G(−1) = 0.
For any constants n ≥ 0 and m ≥ 0,

n
∑

j=0

g(j)f<m>(j) = G(n)f<m>(n)−
n−1
∑

j=0

G(j)f<m+1>(j + 1).

Proof. The following sum transformations are valid for all n ≥ 0.

n
∑

j=0

g(j)f<m>(j)

= G(0)f<m>(0) +

n
∑

j=1

g(j)f<m>(j)

=
n
∑

j=0

G(j)f<m>(j)−
n
∑

j=1

G(j)f<m>(j) +
n
∑

j=1

g(j)f<m>(j)

=

n
∑

j=0

G(j)f<m>(j)−
n
∑

j=1

G(j − 1)f<m>(j)

= G(n)f<m>(n) +

n−1
∑

j=0

G(j)f<m>(j)−
n−1
∑

j=0

G(j)f<m>(j + 1)

= G(n)f<m>(n)−
n−1
∑

j=0

G(j)f<m+1>(j + 1).

This proves Lemma 8. ⊓⊔
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Lemma 9. For the function f(x) =
√
x and for any integers k ≥ 1 and 0 ≤

m ≤ k, (−1)k+1f (k−m)<m>(x) is non-negative for all x > m.

Proof. Consider some integer k ≥ 1. With basic calculus, one can show that
(−1)k+1f (k)(x) is non-negative within its domain of x > 0. This proves the case
where m = 0. The remaining cases follow using induction. For the sake of clarity,
let g(x) = (−1)k+1f(x). Suppose that for some 0 ≤ m ≤ k − 1, g(k−m)<m>(x)
is non-negative for all x > m. This means that g(k−m−1)<m>(x) is increasing
within the interval x > m. Hence, for all x > m+ 1,

g(k−m−1)<m>(x) ≥ g(k−m−1)<m>(x− 1)

g(k−m−1)<m>(x)− g(k−m−1)<m>(x− 1) ≥ 0

g(k−m−1)<m+1>(x) ≥ 0

By induction, g(k−m)<m>(x) = (−1)k+1f (k−m)<m>(x) is non-negative for all
x > m for any 0 ≤ m ≤ k, proving Lemma 9. ⊓⊔

Lemma 10. For the function f(x) =
√
x specifically, f<k>(x) is subject to the

following upper and lower bounds for any integer k ≥ 1 for all real x > k:

(−1)k+1f (k)(x− 1

2
k) ≤ (−1)k+1f<k>(x) ≤ (−1)k+1f (k)(x− k).

Instances of (−1)k+1 can be removed by appropriately alternating the direction
of the inequality.

Proof. Let the following statement be labelled S(m) for some integer 0 ≤ m ≤ k:
for any integer k ≥ 1 and all real x > k,

(−1)k+1f (m)<k−m>(x−1

2
m) ≤ (−1)k+1f<k>(x) ≤ (−1)k+1f (m)<k−m>(x−m).

We will prove statement S(m) for all 0 ≤ m ≤ k in order of increasing m using
induction. The final case, S(k), is equivalent to Lemma 10. Our base case, S(0),
is a trivial statement as all three members of the inequality are equal.

As an inductive hypothesis, assume that S(m) holds for some 0 ≤ m ≤ k−1.
Consider the function g(x) = (−1)k+1f (m)<k−m−1>(x) where it is guaranteed
that k −m− 1 ≥ 0. g(x) is at least defined for all x > k −m− 1. According to
Lemma 9, g(x) is concave down, meaning that

g(x) ≤ g(x− 1) + g′(x− 1) x > k −m

g<1>(x) ≤ g′(x− 1) x > k −m

g<1>(x−m) ≤ g′(x−m− 1) x > k

(−1)k+1f (m)<k−m>(x−m) ≤ (−1)k+1f (m+1)<k−m−1>(x−m− 1) x > k

In conjunction with the inductive hypothesis, this proves the upper bound
portion of statement S(m + 1). Next, we consider the lower bound portion.
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g<1>(x) can be interpreted as the area under g′(x) within the interval from
x − 1 to x. According to Lemma 9, g′(x) is non-negative and concave up. As
a result, g′(x) is always at or above the line tangent to g′(x) at the point
(

x− 1
2 , g

′(x− 1
2 )
)

. Within the interval from x − 1 to x, the signed area under
that tangent line (regardless of its slope) is equal to g′(x− 1

2 ). Since the tangent
line is always at or below g′(x), we can conclude that g<1>(x) ≥ g′(x − 1

2 ), for
x > k −m, and that g<1>(x − 1

2m) ≥ g′(x − 1
2 (m + 1)), for k − 1

2m < k < x.
Therefore,

(−1)k+1f (m)<k−m>(x− 1

2
m) ≥ (−1)k+1f (m+1)<k−m−1>(x − 1

2
(m+ 1))

for x > k. Together with the inductive hypothesis, this proves the lower bound
portion of statement S(m + 1). By induction, S(k) is true, which proves
Lemma 10. ⊓⊔
Proof (Theorem 2). With all of the important lemmas proven, let us proceed
with the proof of Theorem 2. Let us formulate our hypothetical upper bound in
terms of some function h(u) as follows:

CRA(u) ≤ F (u) = cu4−h(u) ∀u > ucrit. (2.13)

The bulk of the proof will show that this inequality is satisfied with h(u) =
(log2 log2 u)

−2, c = 56.18, and ucrit = u1 ≈ 179.18. Cases where u ≤ u1 will be
addressed at the end of the proof.

To begin, Lemma 6 reveals that Equation (2.13) can be satisfied for all u > u1

with the following:

1 +
2

d
si+1 ≤ cu

4−h(ui)
i ∀i ≥ 1. (2.14)

The values of c and h(u) will be gradually derived. h(ui) can be isolated as
follows:

h(ui) ≤
4 log2(ui)− log2

(

1 + 2
d
si+1

)

+ log2 c

log2(ui)
∀i ≥ 0. (2.15)

Our approach from this point forward will be to repeatedly replace the right
hand side of Equation (2.15) with expression that are lesser or equal in value.
This ensures that the h(u) we derive satisfies Equation (2.15). Let the following
portion of Equation (2.15) be dubbed H(i):

H(i) = 4 log2(ui)− log2

(

1 +
2

d
si+1

)

. (2.16)

We will derive a lower bound for H(i) in which many parts have cancelled one
another, then substitute it into Equation (2.15). First, we use Lemma 7 to obtain
an upper bound on si+1.

H(i) ≥ 4 log2(ui)− log2



1 + 8 · 2i
i+1
∏

j=0

uj



 .
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Since uj ≥ 1 for all j ≥ 0,

H(i) ≥ 4 log2(ui)− log2



9 · 2i
i+1
∏

j=0

uj





= 4 log2(ui)− log2 9− i−
i+1
∑

j=0

log2(uj).

Substituting in the concrete value of log2(uj) yields

H(i) ≥ 4
(

3 · 2i
√
i+ 1− 1

)

− log2 9− i−
i+1
∑

j=0

(

3 · 2j
√

j + 1− 1
)

= 3 · 2i+2
√
i+ 1− 4− log2 9− i+ (i+ 2)− 3

i+1
∑

j=0

2j
√

j + 1

= 3 · 2i+2
√
i+ 1− 2− log2 9− 3

i+1
∑

j=0

2j
√

j + 1. (2.17)

Next, we focus on rewriting the sum.

We will apply Lemma 8 three times to Equation (2.17). Let f(n) =
√
n+ 1.

For integers n ≥ 0, let g0(n) = 2n and gk(n) =
∑n

j=0 gk−1(j) for 1 ≤ k ≤ 3.
Given this, one can verify the following:

g1(n) = 2n+1 − 1, g2(n) = 2n+2 − n− 3, g3(n) = 2n+3 − 1

2
n2 − 7

2
n− 7.

One can also verify that gk(n) is non-negative for any non-negative integers n

and k. To begin, Equation (2.17) can be rewritten as follows:

H(i) ≥ 3 · 2i+2f(i)− 2− log2 9− 3

i+1
∑

j=0

g0(j)f(j).

Given that i ≥ 1, applying Lemma 8 three times to the above equation yields
the following:

H(i) ≥ 3 · 2i+2f(i)− 2− log2 9− 3g1(i+ 1)f(i+ 1) + 3g2(i)f
<1>(i + 1)

− 3g3(i− 1)f<2>(i+ 1) + 3

i−2
∑

j=0

g3(j)f
<3>(j + 3).

Let us rewrite this in a more coherent fashion and substitute in concrete values
for f and g where needed. Note that the concrete values for g can be broken up
into two terms: a positive and a negative one.
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H(i) ≥− 2− log2 9 + 3 · 2i+2f(i) (Terms 1,2)

− 3 · 2i+2f(i+ 1) + 3f(i+ 1) (Terms 3,4)

+ 3 · 2i+2f<1>(i + 1) − 3(i+ 3)f<1>(i + 1) (Terms 5,6)

− 3 · 2i+2f<2>(i + 1) + 3

(

1

2
i2 +

5

2
i+ 4

)

f<2>(i+ 1) (Terms 7,8)

+ 3

i−2
∑

j=0

g3(j)f
<3>(j + 3). (Term 9)

We will examine each of the above Terms 1-9 individually. By definition, f<1>(i+
1) − f(i + 1) + f(i) = 0. As a result, terms 2, 3, and 5 sum to 0. Term 9 is
non-negative since both g3(j) and f<3>(j + 3) are non-negative for all j ≥ 0.
This means that term 9 can be discarded in the pursuit of a simpler lower bound
on H(i). Let Φ(i) represent the sum of terms 4, 6, and 8:

Φ(i) = 3f(i+ 1)− 3(i+ 3)f<1>(i+ 1) + 3

(

1

2
i2 +

5

2
i+ 4

)

f<2>(i + 1).

We will show that across all integers i ≥ 1, Φ(i) has a minimum value of Φ(1),
which equals 12

√
3 − 30

√
2 + 21 ≈ −0.642. Lemma 10 provides the following

lower bound for Φ(i) which is valid for i ≥ 1:

Φ(i) ≥ 3
√
i+ 2− 3(i+ 3) · 1

2
√
i+ 1

− 3

(

1

2
i2 +

5

2
i+ 4

)

· 1
4
i−

3
2

≥ 3
√
i− 3(i+ 3) · 1

2
√
i
− 3

(

1

2
i2 +

5

2
i+ 4

)

· 1
4
i−

3
2

=
9

8

√
i− 51

8
i−

1
2 − 3i−

3
2 .

This lower bound is clearly increasing since all constituent terms are increasing.

At i = 5, the binding function reaches a value of − 27
√
5

100 ≈ −0.604 which exceeds
Φ(1). This guarantees that Φ(i) exceeds Φ(1) for all i ≥ 5. From here, one
can simply evaluate Φ(i) at the remaining values i = 2, 3, 4 to discover that
Φ(i) ≥ −0.642 for all integers i ≥ 1. This allows us to replace terms 4,6,8 with a
lower bound of −0.642 in H(i), leaving only Term 7 (see last Inequality for H(i)
above) and a few constants: H(i) ≥ −2 − log2 9 − 0.642 − 3 · 2i+2f<2>(i + 1).
Lemma 10 allows us to place the needed upper bound on f<2>(i+ 1):

f<2>(i+ 1) ≤ −1

4
(i + 1)−

3
2

−3 · 2i+2f<2>(i+ 1) ≥ 3 · 2i(i+ 1)−
3
2

H(i) ≥ 3 · 2i(i+ 1)−
3
2 − 2− log2 9− 0.642
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We now have a satisfactory lower bound on H(i) that can be substituted into
Equation (2.15):

h(ui) ≤
−2− log2 9− 0.642 + 3 · 2i(i+ 1)−

3
2 + log2 c

log2(ui)
∀i ≥ 1.

Selecting c = 56.18 is sufficient to cancel out all other constant terms.
Substituting the concrete value of log2(ui) yields

3 · 2i(i+ 1)−
3
2

3 · 2i
√
i+ 1− 1

≥ 3 · 2i(i+ 1)−
3
2

3 · 2i
√
i+ 1

= (i+ 1)−2.

For i ≥ 1,

3 · 2i
√
i+ 1− 1 ≥ 2i+1

log2(ui) ≥ 2i+1

log2 log2(ui) ≥ i+ 1

(log2 log2(ui))
−2 ≤ (i+ 1)−2

In summary, h(u) = (log2 log2(u))
−2 and c = 56.18 are sure to satisfy the

following statement, which is a key criteria for Lemma 6:

1 +
2

d
si+1 ≤ cu

4−h(ui)
i ∀i ≥ 1.

u1 has the exact value 26
√
2−1 ≈ 179.18. F (u) = cu4−h(u) is definitely increasing

for all u > 2 because h(u) is positive and decreasing while u is greater than 1
and increasing. This justifies applying Lemma 6 to conclude the following:

CRA(u) ≤ 56.18u4−(log2 log2(u))
−2 ∀u > u1.

This is almost sufficient to prove statement (2.10) of Theorem 2; it covers all
u > u1.

Earlier values of CRA(u) can be calculated manually using Lemma 2: si =
uid+ (2ui − 1)si−1, meaning that

u0 = 4, u1 = 26
√
2−1 ≈ 179.18, u2 = 212

√
3−1 ≈ 903152.25

s−1 = 0, s0 = 4d, s1 =

(

9

2
· 26

√
2 − 4

)

d ≈ 1608.64d.
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Substituting these values into Lemma 5 yields the following:

CR0
A(u) = 1 +

2

d
s−1 ∀ 1 ≤ u ≤ u0

= 1 ∀ 1 ≤ u ≤ 4

CR1
A(u) = 1 +

2

d
s0 ∀ 1 ≤ u ≤ u1

= 9 ∀ 1 ≤ u ≤ 26
√
2−1 ≈ 179.18

CR0
A(u) = 1 +

2

d
s1 ∀ u0 < u ≤ u2

= 9 · 26
√
2 − 7 ∀ 4 < u ≤ 212

√
3−1 ≈ 903152.25

≈ 3218.27.

From this, we can conclude the following about CRA(u):

CRA(u) = 9 1 ≤ u ≤ 4

CRA(u) ≈ 3218.27 4 < u ≤ u1.

The latter statement finishes the proof of statement (2.10). We know that F (u)
is increasing for all u > 2 and that F (4) = 3595.52 > 3218.27, meaning that
F (u) ≥ CRA(u) for all 4 < u ≤ u1. This concludes the proof of Theorem 2 and
all of the statements comprising it. ⊓⊔

3 Unknown Speed and Starting Distance

In this section, we analyze the competitive ratio of search when both the speed
and starting distance of the mobile target are unknown to the searcher. Our
proof of the upper bound will make use of the following lemma.

Lemma 11. T σ
A(u, d) ≤ T σ

A(ud, 1) for σ ∈ {0, 1} and CRA(u, d) ≤ CRA(ud, 1),
for all strategies A.

Proof. Consider two moving targets: the first with u1 = u, d1 = d and the second
with u2 = ud, d2 = 1, and respective speeds v1 = 1 − 1

u
and v2 = 1 − 1

ud
. The

first target is not further from the origin than the second target at all times
t ≥ ud, and this is also the earliest time at which either target can be caught by
the searcher. If we note that

t ≥ ud ⇔ t
(

u−1 − (ud)−1
)

≥ d− 1 ⇔ 1 + (1− (ud)−1)t ≥ d+ (1− u−1)t

then we conclude that the first target cannot be caught after the second target.
This implies that T σ

A(u, d) ≤ T σ
A(ud, 1) for σ ∈ {0, 1}. It follows that

max
{

T 0
A(u, d), T

1
A(u, d)

}

ud
≤ max

{

T 0
A(ud, 1), T

1
A(ud, 1)

}

ud

implying that CRA(u, d) ≤ CRA(ud, 1), which proves Lemma 11. ⊓⊔
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Motivated by Lemma 11, one is led to consider running the previous search
Algorithm 1 under the assumption that the target’s initial distance is 1.

Algorithm 2 (Search with unknown speed and initial distance)

1: Execute Algorithm 1 as though d = 1 (regardless of the true value of d)

Theorem 3. In the case where both initial distance d and speed v are unknown,
the competitive ratio of Algorithm 2 satisfies the following bounds:

CRA(u, d) ≤
{

1 + 8
d

if ud ≤ 4

1 + 1
d

(

56.18(ud)4−(log2 log2(ud))
−2 − 1

)

if ud > 4
(3.1)

Proof. By the same reasoning as in Lemma 5, CRA(u, d) = 1+ 2
d
sk−1 where k is

the round on which the target with evasiveness u and initial distance d on side
σ is caught. By extension, sk−1 = d

2 (CRA(u, d)− 1). Consider two targets: the
first with u1 = u, d1 = d and the second with u2 = ud, d2 = 1. By Lemma 11,
TA(u, d) ≤ TA(ud, 1), meaning that target 2 is caught no sooner than target 1.
If we define k1, k2 to be the rounds on which each respective target is caught,
we can conclude that k1 ≤ k2 and that sk1−1 ≤ sk2−1. It follows from our
prior reasoning that d

2 (CRA(u, d)− 1) ≤ 1
2 (CRA(ud, 1)− 1). Finally, isolating

CRA(u, d) yields CRA(u, d) ≤ 1 + 1
d
(CRA(ud, 1)− 1) .

Algorithm 2 runs Algorithm 1 under the assumption that the starting
distance of the mobile target is 1, meaning that Theorem 2 provides an
upper bound on CRA(u, 1). Since we are interested in CRA(ud, 1), we replace
occurrences of u with ud. Doing so provides us with statement (3.1), concluding
the proof of Theorem 3. ⊓⊔

We note that since ud ≤ max {u, d}2 = M2, the upper bound presented
in Theorem 3 is a strict improvement (asymptotically) over the previous best
known bound, O

(

1
d
M8 log22 M log2 log2 M

)

, in [10]. Also the lower bound in the
case where d is known extends trivially to the case where d is unknown, yielding
that no strategy A could satisfy CRA(u, d) ∈ O

(

u4−ε
)

, for any constant ε > 0.

4 Conclusion

In this paper, we considered linear search for an escaping oblivious mobile target
by an autonomous mobile agent. Based on the competitive ratio, our algorithm
and its analysis indicates optimality up to low order terms in the exponent for the
case when the speed 0 ≤ v < 1 of the mobile target is unknown to the searcher,
thus answering an open problem in [10]. We also analyzed and improved on
previous results in [10] when both d, v are unknown; however, tight bounds for
this case remain elusive. A most interesting (and challenging) direction for future
research is group search (in the context of linear search) by a multi-agent system
of searchers with various communication behaviours and capabilities.
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