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ORTHOGONAL LAURENT POLYNOMIALS OF TWO REAL VARIABLES

LIDIA FERNÁNDEZ AND RUYMÁN CRUZ-BARROSO

Abstract. In this paper we consider an appropriate ordering of the Laurent monomials xiyj ,

i, j ∈ Z that allows us to study sequences of orthogonal Laurent polynomials of the real variables

x and y with respect to a positive Borel measure µ defined on R
2 such that {x = 0} ∪ {y = 0} /∈

supp(µ). This ordering is suitable for considering the multiplication plus inverse multiplication

operator on each varibale (x + 1

x
and y + 1

y
), and as a result we obtain five-term recurrence

relations, Christoffel-Darboux and confluent formulas for the reproducing kernel and a related

Favard’s theorem. A connection with the one variable case is also presented.

1. Introduction

Orthogonal Laurent polynomials with respect to a positive Borel measure supported on the
real line were introduced for the first time in [19], and also implicitly in [20] in relation to con-
tinued fractions and the solution of the strong Stieltjes moment problem (see also chronologically
[25, 18, 26, 5, 17]). An extensive bibliography has been produced after these works, giving rise
to a theory close to the well known theory of orthogonal polynomials on the real line (see e.g.
[3, 10, 11, 9, 12, 7]), with applications in moment problems, recurrence relations, reproducing
kernels, Favard’s theorem, interpolation and quadrature formulas along with denseness and con-
vergence, linear algebra and inverse eigenvalue problems, Krylov methods, model reduction, linear
prediction, system identification,. . .. This theory has been also considered for positive Borel mea-
sures supported on the unit circle (for the first time [33]), giving rise in particular to the well
known CMV theory ([4], see also e.g. [6, 8]) that has produced an important impulse in the theory
of orthogonal polynomials on the unit circle (see [31]). In particular, in the context of quadrature
formulas on the real line, the advantages of considering rules based on Laurent polynomials instead
of ordinary polynomials have been shown deeply in the literature, theoretically and numerically.

In the one variable case, there are few weight functions on the real line that give rise to explicit
expressions for the corresponding orthogonal Laurent polynomials. In practice these orthogonal
Laurent polynomials are computed recursively from a three-term recurrence relation that holds
for an arbitrarily ordered sequence of monomials {xi}i∈Z (induced from what is known in the
literature as “generating sequence”). In the particular case of the “balanced” ordering

L = span {1, x, 1
x
,x2,

1

x2
, . . .} , (1)

this recurrence is given by the following (see [11, 12])

Theorem 1.1. Let ω be a positive Borel measure on R
+ and let {ψk}k≥0 be the sequence of

orthonormal Laurent polynomials induced by the inner product ⟨f, g⟩ω = ∫ ∞0 f(x)g(x)dω(x) and
the balanced ordering (1). Then, setting ψ−1 ≡ 0, there exist two sequences of positive real numbers
{Ωn}n≥0 and {Cn}n≥0 such that for all n ≥ 0,

Cnψn+1(x) = (Ωnx − 1)ψn(x) −Cn−1ψn−1(x) if n is even,

Cnψn+1(x) = (1 − Ωn

x
)ψn(x) −Cn−1ψn−1(x) if n is odd.
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Furthermore, ψ0 ≡ 1√
m0

, Ω0 = m0

m1
and C0 =

√
m2m0−m2

1

m1
, mk = ⟨xk,1⟩ being corresponding moments

for ω, k ∈ Z.

On the other hand, the general theory of multivariate orthogonal polynomials is still far from
being considered an established field and has experienced delayed development, especially in fun-
damental aspects. In 1865, C. Hermite [15] explored a two-variable generalization of Legendre
polynomials, marking the initial appearance of orthogonal polynomial families in multiple vari-
ables in the literature. However, it was not until 1926 that a study on families of orthogonal
polynomials in two variables on the unit disk and the triangle appeared in the classic monograph
by Appell and Kampé de Fériet [1]. Since that moment, various authors have contributed to the
development of the general theory of polynomials in several variables; see, for example, [21, 24, 32].

Based on a vectorial representation, M. Kowalski ([23, 22]) proposed a novel approach in the
study of polynomials in multiple variables. This perspective has allowed the development of a
basic algebraic theory, which can be found in the monograph by C. F. Dunkl and Y. Xu ([14]).
In particular, it has been possible to extend fundamental properties to multiple variables, such
as the three-term relation, Favard’s theorem or the Christoffel-Darboux formula. The monograph
[14] comes highly recommended as reference for gaining insight into the current state of the art in
multivariate orthogonal polynomials.

Orthogonal polynomials in several variables find diverse applications across fields like physics,
quantum mechanics, and signal processing. One prominent application lies in optics and ophthal-
mology. Zernike polynomials are orthogonal polynomials on the unit disk [34] and were introduced
by Fritz Zernike (Nobel prize for physics in 1953) in 1934 to address optical challenges related to
telescopes and microscopes. In the year 2000, the Optical Society of America adopted them as
the standard pattern in ophthalmic optics.

The purpose of this paper is to consider for the first time in the literature (as far as we know) the
theory of sequences of orthogonal Laurent polynomials in several real variables. The advantages
of considering orthogonal Laurent polynomials (or more generally, orthogonal rational functions)
instead of ordinary orthogonal polynomials have been showed in a wide variety of contexts in the
literature of the one variable case. The growing interest in the study of orthogonal polynomials
in several variables undoubtedly motivates to consider generalizations to more general kind of
functions than ordinary polynomials, mainly due to their possible applications in many problems
like cubature rules, Fourier orthogonal series and summability of orthogonal expansions, moment
problems,. . . In [2], multivariate orthogonal Laurent polynomials in the unit torus are studied.

For simplicity, we will restrict to the case of two real variables, but all the results can be
extended to more variables by using a somewhat more involved notation. Here, the basic key is
to start from an appropriate ordering for the Laurent monomials xiyj, i, j ∈ Z that is inspired on
the “balanced case” (that is usually considered in the literature), but now for both real variables
simultaneously. The vectorial representation of the Laurent polynomials is necessary for the proof
of the main results.

The paper has been organized as follows. An appropriate ordering of the Laurent monomials
xiyj , i, j ∈ Z for the construction of Laurent polynomials sequences of two real variables with
respect to a linear functional is considered in Section 2. We concentrate in the positive-definite
case, dealing with orthogonality with respect to a positive Borel measure µ defined on R

2 such that
{x = 0}∪{y = 0} /∈ supp(µ). Five-term recurrence relations are obtained involving multiplication by
x+ 1

x
and y+ 1

y
. In Section 3 we deduce a Favard’s theorem and Christoffel-Darboux and confluent

formulas for the reproducing kernel, whereas in Section 4 we present a connection with the one
variable case when µ is supported in a rectangle and it is of the form dµ(x, y) = dµ1(x)dµ2(y).
Some conclusions are finally carried out.

We end this introduction with some remaining notation throughout the paper. We denote by
E[⋅] the integer part function, by δk,l the Kronecker delta symbol, by Mn,m the space of (real)
matrices of dimension n ×m, Mn being the space of square (real) matrices of dimension n, by
In the identity matrix of dimension n, by On,m and On the zero matrices in Mn,m and Mn,
respectively, and by diag(a1, . . . , an) ∈Mn the diagonal matrix with ordered entries in the main
diagonal a1, . . . , an.
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2. Orthogonal Laurent polynomials of two real variables. Five-term relations

In the one-variable situation it is usual to consider a nested sequence of subspaces of Laurent
polynomials {Ln} such that L0 = span{1}, Ln ⊂ Ln+1, dim (Ln) = n + 1 for all n ≥ 0, and

⋃n≥0 Ln =L . See e.g. [11, 13].
Having in mind the “balanced” ordering (1) in the one variable situation

L0 = span{1}, L2k = span { 1

xk
, . . . , xk} , L2k−1 =L2k−2 ⊕ span{xk}, ∀k ≥ 1,

(see e.g. [5, 9, 12, 18] for the real line case, and [33, 31, 4, 8] for the unit circle case), we can
proceed by defining the sequence

cn = (−1)n+1 ⋅E [n + 1
2
] , ∀n ≥ 0

and considering the Laurent monomials

pm,n(x, y) = xcmycn , ∀m,n ≥ 0
and the infinite matrix

p0,0 = x
c0y

c0 = 1 p1,0 = x
c1y

c0 = x p2,0 = x
c2y

c0 =
1

x
p3,0 = x

c3y
c0 = x

2
⋯

p0,1 = x
c0y

c1 = y p1,1 = x
c1y

c1 = xy p2,1 = x
c2y

c1 =
y

x
p3,1 = x

c3y
c1 = x

2
y ⋯

p0,2 = x
c0y

c2 =
1

y
p1,2 = x

c1y
c2 =

x

y
p2,2 = x

c2y
c2 =

1

xy
p3,2 = x

c3y
c2 =

x
2

y
⋯

⋮ ⋮ ⋮ ⋮ ⋱

(2)

Setting L = span{xiyj ∶ i, j ∈ Z}, the space of Laurent polynomials of real variables x and y, we
can order these elements pn,m by anti-diagonals in (2) as

L = span{ p0,0´¸¶
n+m=0

, p1,0, p0,1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+m=1

, p2,0, p1,1, p0,2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+m=2

, p3,0, p2,1, p1,2, p0,3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+m=3

, p4,0, p3,1, p2,2, p1,3, p0,4´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+m=4

,⋯ } (3)

and define

Ln = span {pi,j ∶ i + j ≤ n} , for all n ≥ 0, dim (Ln) = (n + 1)(n + 2)
2

, L = ⋃
n≥0
Ln. (4)

Consider

φk(x, y) =
⎛⎜⎜⎜⎝

pk,0(x, y)
pk−1,1(x, y)

⋮

p0,k(x, y)

⎞⎟⎟⎟⎠
∈Mk+1,1, ∀ k ≥ 0, (5)

that is, the components of the vector φk are the k + 1 linearly independent Laurent monomials of
Lk/Lk−1, ordered as they appear in the expansion (3). So, we can interpret Ln = span{φ0, . . . , φn},
for all n ≥ 0 so that if ψk ∈ Lk for some k ≥ 0, then ψk = ∑k

l=0 Clφl where Cl ∈M1,l+1 are constant
matrices (Ck being the leading coefficient matrix).

Observe that φ0 ≡ 1 and for all l ≥ 1,

φ2l(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x−ly0
xly

x−(l−1)y−1
⋮

xyl

x0y−l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

, φ2l−1(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xly0

x−(l−1)y
xl−1y−1
⋮

xy−(l−1)
x0yl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Thus,

xφ2l(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p2l−2,0 ∈ L2l−2/L2l−3
p2l+1,1 ∈ L2l+2/L2l+1
p2l−4,2 ∈ L2l−2/L2l−3

⋮

p0,2l−2 ∈ L2l−2/L2l−3
p3,2l−1 ∈ L2l+2/L2l+1
p1,2l ∈ L2l+1/L2l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 1
x
φ2l(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p2l+2,0 ∈ L2l+2/L2l+1
p2l−3,1 ∈ L2l−2/L2l−3
p2l,2 ∈ L2l+2/L2l+1

⋮

p4,2l−2 ∈ L2l+2/L2l+1
p0,2l−1 ∈ L2l−1/L2l−2
p2,2l ∈ L2l+2/L2l+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

xφ2l−1(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p2l+1,0 ∈ L2l+1/L2l
p2l−4,1 ∈ L2l−3/L2l−4
p2l−1,2 ∈ L2l+1/L2l

⋮

p0,2l−3 ∈ L2l−3/L2l−4
p3,2l−2 ∈ L2l+1/L2l
p1,2l−1 ∈ L2l/L2l−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 1
x
φ2l−1(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p2l−3,0 ∈ L2l−3/L2l−4
p2l,1 ∈ L2l+1/L2l

p2l−5,2 ∈ L2l−3/L2l−4
⋮

p4,2l−3 ∈ L2l+1/L2l
p0,2l−2 ∈ L2l−2/L2l−3
p2,2l−1 ∈ L2l+1/L2l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

yφ2l(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p2l,1 ∈ L2l+1/L2l
p2l−1,3 ∈ L2l+2/L2l+1
p2l−2,0 ∈ L2l−2/L2l−3

⋮

p2,2l−4 ∈ L2l−2/L2l−3
p1,2l+1 ∈ L2l+2/L2l+1
p0,2l−2 ∈ L2l−2/L2l−3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 1
y
φ2l(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p2l,2 ∈ L2l+2/L2l+1
p2l−1,0 ∈ L2l+1/L2l
p2l−2,4 ∈ L2l+2/L2l+1

⋮

p2,2l ∈ L2l+2/L2l+1
p1,2l−3 ∈ L2l−2/L2l−3
p0,2l+2 ∈ L2l+2/L2l+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

and

yφ2l−1(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p2l−1,1 ∈ L2l/L2l−1
p2l−2,3 ∈ L2l+1/L2l
p2l−3,0 ∈ L2l−3/L2l−4

⋮

p2,2l−1 ∈ L2l+1/L2l
p1,2l−4 ∈ L2l−3/L2l−4
p0,2l+1 ∈ L2l+1/L2l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 1
y
φ2l−1(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p2l−1,2 ∈ L2l+1/L2l
p2l−2,0 ∈ L2l−2/L2l−3
p2l−3,4 ∈ L2l+1/L2l

⋮

p2,2l−5 ∈ L2l−3/L2l−4
p1,2l ∈ L2l+1/L2l

p0,2l−3 ∈ L2l−3/L2l−4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

It follows from (6)-(7) and (8)-(9) that if ψk ∈ Lk/Lk−1, then xψk ∈ Lk+2, 1
x
ψk ∈ Lk+2 and

yψk ∈ Lk+2, 1
y
ψk ∈ Lk+2, respectively. However, the key fact in what follows is that (x + 1

x
)ψk ∈

Lk+2/Lk+1 and (y + 1
y
)ψk ∈ Lk+2/Lk+1.

A Laurent system in two variables {ϕn}n≥0 is a sequence of vectors of increasing size

ϕn ∈Mn+1,1, ϕn ∈ Ln/Ln−1, ∀ n ≥ 0
such that the components in the vector ϕn are linearly independent. It is clear that in this case

ϕn =
n

∑
i=0
Aiφi, with An invertible.

Let us consider a linear functional L defined in L by L(xiyj) = µi,j for i, j ∈ Z and extended by
linearity. It can be defined over product of vectors in the following way

L(f gT ) = (L(fi gj))i=1,...,k; j=1,...,m ∈Mk,m, where f = [f1, . . . , fk]T and g = [g1, . . . , gm]T . (10)

Definition 2.1. A Laurent system {ϕn}n≥0 is a system of orthogonal Laurent polynomials with
respect to the linear functional L if for all n ≥ 0

L(ϕnϕ
T
k ) = 0, k = 0, . . . , n − 1

L(ϕnϕ
T
n) =Hn with Hn an invertible matrix.

(11)

In the case when Hn = In+1 for all n ≥ 0, {ϕn}n≥0 is called a system of orthonormal Laurent
polynomials.



ORTHOGONAL LAURENT POLYNOMIALS OF TWO REAL VARIABLES 5

Observe that the orthogonality conditions are equivalent to

L(φkϕT
n ) = 0, k = 0, . . . , n − 1

L(φnϕT
n ) = Sn with Sn an invertible matrix.

(12)

For n ≥ 0, k, l ≥ 0, we define the matrices

Mk,l = L(φk φTl )
and the matrix

Mn = (Mk,l)nk,l=0 with ∆n = detMn.

We call Mn a moment matrix. Observe that

∆0 = ∣µ0,0∣, ∆1 =
RRRRRRRRRRRRRR

µ0,0 µ1,0 µ0,1

µ1,0 µ2,0 µ1,1

µ0,1 µ1,1 µ0,2

RRRRRRRRRRRRRR
, ∆2 =

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

µ0,0 µ1,0 µ0,1 µ−1,0 µ1,1 µ0,−1
µ1,0 µ2,0 µ1,1 µ0,0 µ2,1 µ1,−1
µ0,1 µ1,1 µ0,2 µ−1,1 µ1,2 µ0,0

µ−1,0 µ0,0 µ−1,1 µ−2,0 µ0,1 µ−1,−1
µ1,1 µ2,1 µ1,2 µ0,1 µ2,2 µ1,0

µ0,−1 µ1,−1 µ0,0 µ−1,−1 µ1,0 µ0,−2

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

, . . .

Proposition 2.2. A system of orthogonal Laurent polynomials with respect to the linear functional
L exists, if and only if, ∆n ≠ 0 for all n ≥ 0.
Proof. Using that ϕn = ∑n

i=0Aiφi we have

L(φkϕT
n ) =

n

∑
k=0

L(φkφTi )AT
i =

n

∑
k=0

Mk,iA
T
i

The orthogonality conditions (12) are equivalent to the following linear system of equations:

Mn

⎛⎜⎜⎜⎝

AT
0

⋮

AT
n−1
AT

n

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝

0
⋮

0
Sn

⎞⎟⎟⎟⎠
The system has a unique solution if the matrix Mn is invertible, that is, if ∆n ≠ 0. �

Definition 2.3. A linear functional L defined in L given by (3) is called quasi-definite if there
exists a system of orthogonal Laurent polynomials with respect to L. L is positive definite if it is
quasi-definite and L(ψ2) > 0, ∀ψ ∈ L, ψ ≠ 0.
Proposition 2.4. If L is a positive definite moment functional then there exists a system of
orthonormal Laurent polynomials with respect to L.

Proof. Suppose that L is positive definite. Let a = (a0, . . . ,an), (aj with j + 1 components)
be an eigenvector of the matrix Mn corresponding to eigenvalue λ. Then, on the one hand,
aTMn a = λ∥a∥2. On the other hand, aT Mn a = L(ψ2) > 0, where ψ = ∑n

j=0 ajTφj. It follows that
λ > 0. Since all the eigenvalues are positive, ∆n = det(Mn) > 0.

As a consequence, there exists a system {ϕn}n of orthogonal Laurent polynomials with respect
to L with Hn = L(ϕnϕ

T
n ). For any nonzero vector v, ψ = vϕn is a nonzero element of Ln. Then,

vHn v
T = L(ψ2) > 0, so Hn is a positive definite matrix. If we define ϕ̃n = (H1/2

n )−1ϕn, then

L(ϕ̃n ϕ̃
T
n ) = (H1/2

n )−1L(ϕnϕ
T
n )(H1/2

n )−1 = I. This proves that {ϕ̃n}n is a system of orthonormal
Laurent polynomials with respect to L. �

From now on, we will deal with a positive Borel measure µ(x, y) on R
2 such that {x = 0}∪ {y =

0} /∈ supp(µ) =∶ D. We consider the induced inner product

⟨f, g⟩µ =∬
D
f(x, y)g(x, y)dµ(x, y), f, g ∈ Lµ

2 = {h ∶ R2 → R ∶ ∬
D
h2(x, y)dµ(x, y) <∞} , (13)

and we suppose the existence of the moments

µi,j = ⟨xi, yj⟩µ, ∀ i, j ∈ Z. (14)
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Consider the inner product

⟨f, gT ⟩ = (⟨fi, gj⟩µ)i=1,...,k; j=1,...,m ∈Mk,m, where f = [f1, . . . , fk]T and g = [g1, . . . , gm]T .
(15)

From orthogonalization to Ln = span{φ0, . . . , φn} with respect to the inner product (15), for all
n ≥ 0, we can obtain an equivalent system Ln = span{ϕ0, . . . , ϕn} verifying ϕ0 ∈ L0, ϕl ∈ Ll/Ll−1,
ϕl ⊥ Ll−1, for all l = 1, . . . , n, and ⟨ϕk, ϕ

T
k ⟩ = Ik+1, for all k = 0, . . . , n. If this procedure is repeated

for all n ≥ 0, we get {ϕk}k≥0, a family of orthonormal Laurent polynomials of two real variables
with respect to the measure µ.

Remark 2.5. Observe that ϕn is uniquely determined up to left multiplication by orthogonal
matrices. Indeed, if Qn+1 ∈Mn+1 is an orthogonal matrix and ϕ̃n = Qn+1ϕn then ϕ̃n ⊥ Ln−1 and

⟨ϕ̃n, ϕ̃
T
n ⟩ = ⟨Qn+1ϕn, ϕ

T
nQ

T
n+1⟩ = Qn+1⟨ϕn, ϕ

T
n ⟩QT

n+1 = In.
We can write

ϕn =
n

∑
i=0
A
(n)
i φi, (16)

with A
(n)
i ∈Mn+1,i+1 constant matrices, A

(n)
n being regular.

From (6)-(7) we get

(x + 1

x
)φn = B(n)n+2,1φn+2 +B

(n)
n+1,1φn+1 +B

(n)
n−1,1φn−1 +B

(n)
n−2,1φn−2,

where by introducing zs = (0 ⋯ 0 1 0) ∈M1,s for all s ≥ 3, it follows for all n ≥ 2 that

B
(n)
n−2,1 =

⎡⎢⎢⎢⎢⎢⎣
In−1
O2,n−1

⎤⎥⎥⎥⎥⎥⎦
∈Mn+1,n−1, B

(n)
n−1,1 = [On+1,n−1∣zTn+1] ∈Mn+1,n,

B
(n)
n+1,1 =

⎡⎢⎢⎢⎢⎢⎣
On,n+2

zn+2

⎤⎥⎥⎥⎥⎥⎦
∈Mn+1,n+2, B

(n)
n+2,1 = [In+1∣On+1,2] ∈Mn+1,n+3.

(17)

These formulas are also valid to define B
(0)
i,1 and B

(1)
j,1 for i = 1,2 and j = 0,2,3 if we interpret

O0,2 = O2,0 = ∅ and z2 = (1 0). Here, the second subindex in the B
(n)
s,1 ∈Mn+1,s+1 matrices with

s ∈ {n − 2, n − 1, n + 1, n + 2} is used to separate the case of multiplication by (y + 1
y
), see further.

So, it is clear that

(x + 1

x
)ϕn(x, y) = A(n)n [B(n)n+2,1φn+2 +B

(n)
n+1,1φn+1 +B

(n)
n−1,1φn−1 +B

(n)
n−2,1φn−2] + l. t., (18)

where by “l. t.” we understand linear combinations of {φ0, . . . , φn+1}.
The main reason why multiplication by x + 1

x
should be considered is the fact that B

(n)
n+2,1

is full rank. So, for certain constant matrices C
(n+2)
k ∈ Mn+3,k+1, it holds that φn+2(x, y) =

∑n+2
k=0 C

(n+2)
k ϕk(x, y) with C(n+2)n+2 = (A(n+2)n+2 )−1 and then

(x + 1
x
)ϕn(x, y) = A

(n)
n B

(n)
n+2,1φn+2(x, y) + lower terms

= A
(n)
n B

(n)
n+2,1 (∑n+2

k=0 C
(n+2)
k ϕk(x, y)) + lower terms

= A
(n)
n B

(n)
n+2,1C

(n+2)
n+2 ϕn+2(x, y) + lower terms.

If we define

D
(n)
n+2,1 ∶= A(n)n B

(n)
n+2,1C

(n+2)
n+2 = A(n)n B

(n)
n+2,1 (A(n+2)n+2 )−1 ∈Mn+1,n+3,

and it has (full) rank n + 1.
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In short, we have proved that

(x + 1

x
)ϕn(x, y) = n+2

∑
k=0

D
(n)
k,1ϕk(x, y) where D

(n)
k,1 ∈Mn+1,k+1

and D
(n)
n+2,1 being of (full) rank n + 1. Now, using the orthogonality conditions and the property

(x + 1
x
)ϕk(x, y) ∈ Lk+2, it follows that
D
(n)
k,1 = ⟨(x + 1

x
)ϕn(x, y), ϕT

k (x, y)⟩ = ⟨ϕn(x, y),(x + 1

x
)ϕT

k (x, y)⟩ = 0 if k < n − 2.
This implies the following five-term recurrence relation that holds for n ≥ 2:

(x + 1
x
)ϕn(x, y) =D(n)n+2,1ϕn+2(x, y) +D(n)n+1,1ϕn+1(x, y) +D(n)n,1ϕn(x, y)

+D
(n)
n−1,1ϕn−1(x, y) +D(n)n−2,1ϕn−2(x, y), (19)

with

D
(n)
s,1 = ⟨(x + 1

x
)ϕn(x, y), ϕT

s (x, y)⟩ ∈Mn+1,s+1, s ∈ {n − 2, . . . , n + 2} (20)

and leading coefficient matrix D
(n)
n+2,1 of (full) rank n + 1. Moreover, for s ∈ {n − 2, . . . n + 2}

D
(n)
s,1 =⟨(x + 1

x
)ϕn(x, y), ϕT

s (x, y)⟩ = ⟨ϕn(x, y),(x + 1

x
)ϕT

s (x, y)⟩
=⟨ϕn,(D(s)s+2,1ϕs+2 +D(s)s+1,1ϕs+1 +D(s)s,1ϕs +D

(s)
s−1,1ϕs−1 +D(s)s−2,1ϕs−2)T ⟩ = (D(s)n,1)T

so we have proved that

D
(n)
s,1 = (D(s)n,1)T , s ∈ {n − 2, . . . n + 2} . (21)

This implies, in particular, that D
(n)
n,1 is symmetric and that the tailed coefficient matrix D

(n)
n−2,1 ∈Mn+1,n−1 in (19) is also of full rank, equal to n − 1.

Concerning the initial conditions, we may observe that the recurrence (19) is also valid for
n = 0,1 by setting ϕ−1 ≡ ϕ−2 ≡ 0. Indeed, recall first that

φ0(x, y) ≡ 1, φ1(x, y) = ( xy ) , φ2(x, y) = ⎛⎜⎝
1/x
xy

1/y
⎞⎟⎠ , φ3(x, y) =

⎛⎜⎜⎜⎝

x2

y/x
x/y
y2

⎞⎟⎟⎟⎠
.

For n = 0, we can find matrices D
(0)
i,1 ∈M1,i+1, i = 0,1,2 such that (19) holds. From (16) we can

write

(x + 1

x
)A(0)0 = [D(0)2,1A

(2)
2 ]φ2 + [D(0)1,1A

(1)
1 +D

(0)
2,1A

(2)
1 ]φ1 + [D(0)0,1A

(0)
0 +D

(0)
1,1A

(1)
0 +D

(0)
2,1A

(2)
0 ]φ0

where A
(i)
i are regular, for i = 0,1,2. Hence, since

(x + 1

x
)A(0)0 = B(0)2,1A

(0)
0 φ2 +B

(0)
1,1A

(0)
0 φ1,

it follows that

D
(0)
2,1 = B(0)2,1A

(0)
0 (A(2)2 )−1

D
(0)
1,1 = (B(0)1,1A

(0)
0 −D

(0)
2,1A

(2)
1 )(A(1)1 )−1

D
(0)
0,1 = −(D(0)1,1A

(1)
0 +D

(0)
2,1A

(2)
0 )(A(0)0 )−1 .

(22)
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Similarly when n = 1, we can find matrices D
(1)
i,1 ∈M2,i+1, i = 0,1,2,3 such that (19) holds. By

one hand, we can write from (16)

(x + 1

x
) [A(1)0 φ0 +A

(1)
1 φ1] = [D(1)3,1A

(3)
3 ]φ3 + [D(1)3,1A

(3)
2 +D

(1)
2,1A

(2)
2 ]φ2

+ [D(1)3,1A
(3)
1 +D

(1)
2,1A

(2)
1 +D

(1)
1,1A

(1)
1 ]φ1

+ [D(1)3,1A
(3)
0 +D

(1)
2,1A

(2)
0 +D

(1)
1,1A

(1)
0 +D

(1)
0,1A

(0)
0 ]φ0

with A
(i)
i regular matrices for i = 0, . . . ,3. By other hand,

(x + 1

x
) [A(1)0 φ0 +A

(1)
1 φ1] = A(1)1 B

(1)
3,1φ3 + [A(1)0 B

(0)
2,1 +A

(1)
1 B

(1)
2,1 ]φ2 +A(1)0 B

(0)
1,1φ1 +A

(1)
1 B

(1)
0,1φ0.

Hence,

D
(1)
3,1 = A(1)1 B

(1)
3,1 ⋅ (A(3)3 )−1

D
(1)
2,1 = (A(1)0 B

(0)
2,1 +A

(1)
1 B

(1)
2,1 −D

(1)
3,1A

(3)
2 ) ⋅ (A(2)2 )−1

D
(1)
1,1 = (A(1)0 B

(0)
1,1 −D

(1)
3,1A

(3)
1 −D

(1)
2,1A

(2)
1 ) ⋅ (A(1)1 )−1

D
(1)
0,1 = (A(1)1 B

(1)
0,1 −D

(1)
3,1A

(3)
0 −D

(1)
2,1A

(2)
0 −D

(1)
1,1A

(1)
0 ) ⋅ (A(0)0 )−1 .

(23)

As a consequence, we can give from (21) a matrix representation with respect to {ϕk}∞k=0 of the
multiplication plus inverse multiplication operator:

(x + 1

x
) ⋅ (ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ⋯)T = F1 ⋅ (ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ⋯)T (24)

where F1 is the block symmetric matrix given by

F1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D
(0)
0,1 D

(0)
1,1 D

(0)
2,1 O1,4 O1,5 O1,6 O1,7 O1,8 ⋯

(D(0)1,1)T D
(1)
1,1 D

(1)
2,1 D

(1)
3,1 O2,5 O2,6 O2,7 O2,8 ⋯

(D(0)2,1)T (D(1)2,1)T D
(2)
2,1 D

(2)
3,1 D

(2)
4,1 O3,6 O3,7 O3,8 ⋯

O4,1 (D(1)3,1)T (D(2)3,1)T D
(3)
3,1 D

(3)
4,1 D

(3)
5,1 O4,7 O4,8 ⋯

O5,1 O5,2 (D(2)4,1)T (D(3)4,1)T D
(4)
4,1 D

(4)
5,1 D

(4)
6,1 O5,8 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

A very similar analysis can be done from (8)-(9) when considering multiplication by y + 1
y
, we

omit most of the details. It is important to point out that the corresponding B
(n)
s,2 matrices in the

relation

(y + 1

y
)φn = B(n)n+2,2φn+2 +B

(n)
n+1,2φn+1 +B

(n)
n−1,2φn−1 +B

(n)
n−2,2φn−2

are given in this case (compare with (17)) for all n ≥ 2 by

B
(n)
n−2,2 =

⎡⎢⎢⎢⎢⎢⎣
O2,n−1

In−1

⎤⎥⎥⎥⎥⎥⎦
∈Mn+1,n−1, B

(n)
n−1,2 = [z̃Tn+1∣On+1,n−1] ∈Mn+1,n,

B
(n)
n+1,2 =

⎡⎢⎢⎢⎢⎢⎣
z̃n+2

On,n+2

⎤⎥⎥⎥⎥⎥⎦
∈Mn+1,n+2, B

(n)
n+2,2 = [On+1,2∣In+1] ∈Mn+1,n+3,

where z̃s = (0 1 0 ⋯ 0) ∈M1,s for all s ≥ 3 and z̃2 = (0 1). These formulas are again valid for
n = 0, s ∈ {1,2} and n = 1, s ∈ {0,2,3}. Thus,

D
(n)
n+2,2 ∶= [On+1,2∣A(n)n ] ⋅C(n+2)n+2 = A(n)n ⋅B

(n)
n+2,2 ⋅ (A(n+2)n+2 )−1 ∈Mn+1,n+3,
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also has (full) rank n + 1. The analog of (18) is

(y + 1

y
)ϕn(x, y) = A(n)n [B(n)n+2,2φn+2 +B

(n)
n+1,2φn+1 +B

(n)
n−1,2φn−1 +B

(n)
n−2,2φn−2] + lower terms. (26)

The corresponding five-term recurrence is now, for n ≥ 2:
(y + 1

y
)ϕn(x, y) =D(n)n+2,2ϕn+2(x, y) +D(n)n+1,2ϕn+1(x, y) +D(n)n,2ϕn(x, y)

+D
(n)
n−1,2ϕn−1(x, y) +D(n)n−2,2ϕn−2(x, y), (27)

with

D
(n)
s,2 = ⟨(y + 1

y
)ϕn(x, y), ϕT

s (x, y)⟩ ∈Mn+1,s+1, s ∈ {n − 2, . . . , n + 2}. (28)

Equation (27) is again valid for n = 0,1. The analog of (22) is

D
(0)
2,2 = B(0)2,2A

(0)
0 (A(2)2 )−1

D
(0)
1,2 = (B(0)1,2A

(0)
0 −D

(0)
2,2A

(2)
1 )(A(1)1 )−1

D
(0)
0,2 = −(D(0)1,2A

(1)
0 +D

(0)
2,2A

(2)
0 )(A(0)0 )−1 .

(29)

As in (21) it holds

D
(n)
s,2 = (D(s)n,2)T for s ∈ {n − 2, . . . , n + 2} (30)

and hence, D
(n)
n,2 is symmetric and the tailed coefficient matrix D

(n)
n−2,2 ∈Mn+1,n−1 in (27) is also

of full rank, equal to n − 1.
The matrix representation with respect to {ϕk}∞k=0 of the multiplication plus inverse multipli-

cation operator in the variable y is

(y + 1

y
) ⋅ (ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ⋯)T = F2 ⋅ (ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ⋯)T (31)

where F2 is a block symmetric matrix like F1 in (25) but replacing the second subindexes 1 in the

D
(n)
s,1 matrices by 2.
The results of this section can be summarized in the following

Theorem 2.6. Let {ϕk}k≥0 be a family of orthonormal Laurent polynomials with respect to the

measure µ. Then, for all n ≥ 0 there exist constant matrices D
(n)
s,i ∈Mn+1,s+1, s ∈ {n−2, . . . , n+2},

i ∈ {1,2} given by (20) and (28) when n ≥ 2, s ∈ {0,1,2} if n = 0 and s ∈ {0,1,2,3} if n = 1, such
that the following five-term relations hold:

(x + 1

x
)ϕn(x, y) =D(n)n+2,1ϕn+2(x, y) +D(n)n+1,1ϕn+1(x, y)

+D
(n)
n,1ϕn(x, y) +D(n)n−1,1ϕn−1(x, y) +D(n)n−2,1ϕn−2(x, y),

(y + 1

y
)ϕn(x, y) =D(n)n+2,2ϕn+2(x, y) +D(n)n+1,2ϕn+1(x, y)

+D
(n)
n,2ϕn(x, y) +D(n)n−1,2ϕn−1(x, y) +D(n)n−2,2ϕn−2(x, y),

(32)

with ϕ−1 ≡ ϕ−2 ≡ 0. Moreover, for i ∈ {1,2}, D(n)s,i = (D(s)n,i)T , for all n ≥ 2, s ∈ {n − 2, n − 1, n},
D
(1)
0,i = (D(0)1,i )T and the matrices D

(n)
n+2,i and D

(n)
n−2,i are full rank.

We conclude this section with the following elementary result that will be used in the next
section.

Lemma 2.7. For all n ≥ 1, the matrices

D
(n)
n+2 ∶=

⎡⎢⎢⎢⎢⎢⎢⎣
D
(n)
n+2,1

D
(n)
n+2,2

⎤⎥⎥⎥⎥⎥⎥⎦
∈M2(n+1),n+3 and B

(n)
n+2 ∶=

⎡⎢⎢⎢⎢⎢⎢⎣
B
(n)
n+2,1

B
(n)
n+2,2

⎤⎥⎥⎥⎥⎥⎥⎦
∈M2(n+1),n+3
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have full rank, equal to n + 3. This full rank properties are also valid for n = 0, but in this case
they are equal to 2, instead of 3.

Proof. The result trivially follows for the matrix B
(n)
n+2 since we have already seen that

B
(n)
n+2,1 = [In+1∣On+1,2] ∈Mn+1,n+3, B

(n)
n+2,2 = [On+1,2∣In+1] ∈Mn+1,n+3.

We can write

D
(n)
n+2 = ⎛⎝

A
(n)
n On+1,2

On+1,2 A
(n)
n

⎞
⎠ ⋅ (A(n+2)n+2 )−1 ,

so the result follows directly by using Sylvester inequality (see e.g. [16, p. 13]). Finally, the result
for n = 0 holds since

D
(0)
2 = B(0)2 ⋅ (A(2)2 )−1 .

�

3. Favard’s theorem and Christoffel-Darboux formula

From the results of Section 2 we have all the necessary technical modifications to adapt the
proofs of Favard’s theorem and Christoffel-Darboux formula presented in [14, Section 3.3] for the
ordinary polynomials in several variables to the Laurent case.

Our first observation is that since for all n ≥ 1, the matrix D
(n)
n+2 ∈M2(n+1),n+3 defined in Lemma

2.7 is of full rank n + 3, it has a generalized inverse

(D(n)n+2)
T = ((D(n)n+2,1)

T ∣ (D(n)n+2,2)
T) ∈Mn+3,2(n+1), (D(n)n+2,i)

T ∈Mn+3,n+1, i = 1,2,
that is not unique. This means

(D(n)n+2)
T

⋅D
(n)
n+2 = (D(n)n+2,1)

T

⋅D
(n)
n+2,1 + (D(n)n+2,2)

T

⋅D
(n)
n+2,2 = In+3.

We need also the following auxiliary result.

Proposition 3.1. Let (D(n)n+2)
T

be a generalized inverse of D
(n)
n+2. Then, there exists constant

matrices Ei
n ∈Mn+3,n+3−i, i = 1,2,3,4 such that

ϕn+2 = [(x + 1

x
)(D(n)n+2,1)

T

+ (y + 1

y
)(D(n)n+2,2)

T ]ϕn +E
1
nϕn+1 +E2

nϕn +E
3
nϕn−1 +E4

nϕn−2.

Proof. If we add (19) multiplied by the left by (D(n)n+2,1)
T

and (27) multiplied by the left by

(D(n)n+2,2)
T

, we get

[(x + 1
x
) (D(n)n+2,1)

T

+ (y + 1
y
)(D(n)n+2,2)

T ]ϕn = [(D(n)n+2,1)
T

D
(n)
n+2,1 + (D(n)n+2,2)

T

D
(n)
n+2,2]ϕn+2

+ [(D(n)n+2,1)
T

D
(n)
n+1,1 + (D(n)n+2,2)

T

D
(n)
n+1,2]ϕn+1 + [(D(n)n+2,1)

T

D
(n)
n,1 + (D(n)n+2,2)

T

D
(n)
n,2]ϕn

+ [(D(n)n+2,1)
T

D
(n)
n−1,1 + (D(n)n+2,2)

T

D
(n)
n−1,2]ϕn−1 + [(D(n)n+2,1)

T

D
(n)
n−2,1 + (D(n)n+2,2)

T

D
(n)
n−2,2]ϕn−2.

So, the result follows by considering

Ei
n = − [(D(n)n+2,1)

T

D
(n)
n+2−i,1 + (D(n)n+2,2)

T

D
(n)
n+2−i,2] ∈Mn+3,n+3−i, i = 1,2,3,4.

�

Now we are in position to prove a Favard-type theorem by following the ideas presented in [14,
Section 3.3]. We concentrate in the positive-definite case.
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Theorem 3.2 (Favard). Let L and Ln be given by (2)-(4), {ϕn}∞n=0 be an arbitrary sequence in
L written in the form (16) with φk defined in (5) for all k ≥ 0, ϕn ∈ Ln/Ln−1, for all n ≥ 1 where
ϕ0 ≡ 1 and set ϕ−2 ≡ ϕ−1 ≡ 0.

Suppose that for all n ≥ 0, there exist matrices D
(n)
k,i ∈Mn+1,k+1, i = 1,2, k ∈ {n − 2, . . . , n + 2}

when n ≥ 2, k ∈ {0,1,2} when n = 0 and k ∈ {0,1,2,3} when n = 1, such that

(1) the L-polynomials ϕn satisfy the recurrences (32) with D
(n)
s,i = (D(s)n,i)T , for all n ≥ 2,

s ∈ {n − 2, n − 1, n}, D(1)0,i = (D(0)1,i )T and i ∈ {1,2}.
(2) the matrices in the relation satisfy the rank conditions:

rankD
(n)
n+2,i = rankD(n+2)n,i = n + 1, n ≥ 0, i = 1,2,

rankD
(n)
n+2 = n + 3, n ≥ 1

rankD
(0)
1 = 2,

with D
(n)
n+2 ∈M2(n+1),n+3 introduced in Lemma 2.7 and D

(0)
1 ∈M2 given by

D
(0)
1 ∶=

⎡⎢⎢⎢⎢⎢⎢⎣
D
(0)
1,1

D
(0)
1,2

⎤⎥⎥⎥⎥⎥⎥⎦
∈M2 . (33)

Then, there exist a linear functional L which defines a positive-definite functional on L and which
makes {ϕn}∞n=0 an orthonormal basis in L.
Proof. We first prove that {ϕn}∞n=0 forms a basis of L. Using the expression (16), it suffices to

prove that the leading coefficient A
(n)
n is regular, for all n ≥ 0. For n ≥ 2 we see that comparing

the coefficient matrices of φn+2 in (18), (26) and (19), (27) we get

diag (A(n)n , A(n)n ) ⋅B(n)n+2 =D(n)n+2 ⋅A
(n+2)
n+2 ,

where B
(n)
n+2,D

(n)
n+2 are the matrices of rank n+3 that have been introduced in Lemma 2.7. To prove

that rankA
(n)
n = n + 1 we proceed by induction by showing that from the two initial conditions

n = 0,1 (that holds by hypothesis) we get that if rankA
(n)
n = n+1, then rankA

(n+2)
n+2 = n+3. Indeed,

if A
(n)
n is invertible, then diag(A(n)n , A

(n)
n ) is also invertible,

rank (diag (A(n)n , A(n)n ) ⋅B(n)n+2) = rankB(n)n+2 = n + 3,
and hence, rank (D(n)n+2 ⋅A

(n+2)
n+2 ) = n + 3. By using Sylvester inequality we get

rankA
(n+2)
n+2 ≥ rank (D(n)n+2 ⋅A

(n+2)
n+2 ) ≥ rankD(n)n+2 + rankA

(n+2)
n+2 − (n + 3) = rankA(n+2)n+2 .

So, we conclude rankA
(n+2)
n+2 = rank (D(n)n+2 ⋅A

(n+2)
n+2 ) = n + 3 and the induction is complete.

Since {ϕn}∞n=0 is a basis of L, the linear functional L defined on L by L(1) = 1 and L(ϕn) = 0,
for all n ≥ 1 is well defined. We now use induction to prove that

L(ϕkϕ
T
j ) = 0, for all k ≠ j. (34)

For n ≥ 0 assume that (34) hold ∀k, j such that 0 ≤ k ≤ n and j > k. The induction process is
directly obtained from Proposition 3.1 since we have for all l > n + 1 that

L(ϕn+1ϕT
l ) = L [(D(n−1)n+1,1)

T

ϕn−1 (x + 1

x
)ϕT

l ] +L [(D(n−1)n+1,2)
T

ϕn−1 (y + 1

y
)ϕT

l ] = 0.
Let us see finally that Hn ∶= L(ϕnϕ

T
n ) = In+1. Notice from (19) that

D
(n)
n+2,1Hn+2 = L [(x + 1

x
)ϕnϕ

T
n+2] = L [ϕn ((x + 1

x
)ϕn+2)T ] =Hn (D(n+2)n,1 )T

= HnD
(n)
n+2,1, ∀n ≥ 0.
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We get a similar result from (27) when multiplying by (y + 1
y
), and both relations can be written

together as

D
(n)
n+2 ⋅Hn+2 = diag (Hn , Hn) ⋅D(n)n+2. (35)

We proceed again by induction over n. It is clear from construction that it holds for n = 0 and the
proof is concluded if we prove it for n = 1. Indeed, in such case if we suppose that the property

holds for all 0 ≤ k ≤ n + 1, it follows from (35) that D
(n)
n+2 ⋅Hn+2 =D(n)n+2. Since D

(n)
n+2 is of full rank

it has a generalized inverse, so Hn+2 = In+2.
Taking n = 0,1 in (19) we see that

L [(x + 1

x
)ϕ0ϕ

T
1 ] =D(0)2,1L[ϕ2ϕ

T
1 ] +D(0)1,1L[ϕ1ϕ

T
1 ] +D(0)0,1L[ϕ0ϕ

T
1 ] =D(0)1,1L[ϕ1ϕ

T
1 ]

and

L [(x + 1

x
)ϕ0ϕ

T
1 ] = L[ϕ3] (D(1)3,1)

T

+L[ϕ2] (D(1)2,1)
T

+L[ϕ1] (D(1)1,1)
T

+L[ϕ0] (D(1)0,1)
T

= (D(1)0,1)
T =D(0)1,1 .

The same argument can be used to prove L [(y + 1
y
)ϕ0ϕ

T
1 ] = D(0)1,2L[ϕ1ϕ

T
1 ] = D(0)1,2 , so we get

D
(0)
1 L [ϕ1ϕ

T
1 ] = D(0)1 with D

(0)
1 introduced in (33). Thus, the proof follows since D

(0)
1 is regular.

�

Let us introduce now the reproducing kernel

Kn(x1, y1, x2, y2) =
n

∑
k=0

ϕT
k (x1, y1)ϕk(x2, y2).

This definition is clearly independent on the election of the orthonormal family {ϕn}n≥0 (recall it
is uniquely determined up to left multiplication by orthogonal matrices). The name reproducing
kernel is justified as in the ordinary polynomial situation because it is easy to verify the reproducing
property ψ(x, y) = ⟨ψ(u, v),KT

n (x, y, u, v)⟩, ∀ψ ∈ Ln. The extension of the well known Christoffel-
Darboux formula for the ordinary polynomial situation (see [14, Section 3.6.1]) is given by the
following

Theorem 3.3 (Christoffel-Darboux). Under the above conditions it holds

Kn(x1, y1, x2, y2) = Ωn,1 +Λn,1 +Λn−1,1
(x1 + 1

x1
) − (x2 + 1

x2
) =

Ωn,2 +Λn,2 +Λn−1,2
(y1 + 1

y1
) − (y2 + 1

y2
) ,

whenever x1 +
1
x1
≠ x2 + 1

x2
in the first equality, y1 +

1
y1
≠ y2 + 1

y2
in the second one, and where for

i = 1,2 and k ≥ 0,
Λk,i = ϕT

k+2(x1, y1) (D(k)k+2,i)T ϕk(x2, y2) − ϕT
k (x1, y1)D(k)k+2,iϕk+2(x2, y2),

Ωk,i = ϕT
k+1(x1, y1) (D(k)k+1,i)T ϕk(x2, y2) − ϕT

k (x1, y1)D(k)k+1,iϕk+1(x2, y2). (36)

Proof. From (19) and (21) we can write for all k ≥ 2 and x1 +
1
x1
≠ x2 + 1

x2
,

[(x1 + 1

x1
) − (x2 + 1

x2
)]ϕT

k (x1, y1)ϕk(x2, y2) = Λk,1 +Ωk,1 −Λk−2,1 −Ωk−1,1.

Taking n = 0,1 in (19) it follows that the relation also holds for k = 0 and k = 1 respectively (recall
ϕ−1 ≡ ϕ−2 ≡ 0), if we define Λ−2,1 = Λ−1,1 = Ω−1,1 = 0. So,

n

∑
k=0
[(x1 + 1

x1
) − (x2 + 1

x2
)]ϕT

k (x1, y1)ϕk(x2, y2) = Ωn,1 +Λn,1 +Λn−1,1

and the first equality of the statement is deduced. The second equality follows in a similar way
from (27) and (30). �
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Corollary 3.4 (Confluent formula). Under the above conditions it holds

Kn(x, y, x, y) = x2

x2 − 1
[Ω̃n,1 + Λ̃n,1 + Λ̃n−1,1] = y2

y2 − 1
[Ω̂n,2 + Λ̂n,2 + Λ̂n−1,2]

whenever x2 ≠ 1 in the first equality, y2 ≠ 1 in the second one, and

Λ̃k,1 = ϕT
k+2(x, y) (D(k)k+2,1)T ∂

∂x
ϕk(x, y) −ϕT

k (x, y)D(k)k+2,1 ∂
∂x
ϕk+2(x, y),

Λ̃k,2 = ϕT
k+2(x, y) (D(k)k+2,2)T ∂

∂y
ϕk(x, y) −ϕT

k (x, y)D(k)k+2,2 ∂
∂y
ϕk+2(x, y),

Ω̃k,1 = ϕT
k+1(x, y) (D(k)k+1,1)T ∂

∂x
ϕk(x, y) −ϕT

k (x, y)D(k)k+1,1 ∂
∂x
ϕk+1(x, y),

Ω̃k,2 = ϕT
k+1(x, y) (D(k)k+1,2)T ∂

∂y
ϕk(x, y) −ϕT

k (x, y)D(k)k+1,2 ∂
∂y
ϕk+1(x, y).

Proof. Since ϕT
s (x1, y1) (D(k)s,i )T ϕk(x1, y1) is a scalar function for s ∈ {k + 1, k + 2} and i ∈ {1,2},

we can write (compare with (36))

Λk,i = ϕT
k+2(x1, y1) (D(k)k+2,i)T [ϕk(x2, y2) − ϕk(x1, y1)]

−ϕT
k (x1, y1)D(k)k+2,i [ϕk+2(x2, y2) − ϕk+2(x1, y1)] ,

Ωk,i = ϕT
k+1(x1, y1) (D(k)k+1,i)

T [ϕk(x2, y2) − ϕk(x1, y1)]
−ϕT

k (x1, y1)D(k)k+1,i [ϕk+1(x2, y2) − ϕk+1(x1, y1)] .
Also, (x1 + 1

x1
) − (x2 + 1

x2
) = (x1 − x2) x1x2−1

x1x2
, so if x1 +

1
x1
≠ x2 + 1

x2
,

Kn(x1, y1, x2, y2) = Ωn,1+Λn,1+Λn−1,1

(x1+ 1
x1
)−(x2+ 1

x2
) = x1x2

x1x2−1 × [

ϕT
n+1(x1, y1) (D(n)n+1,1)

T

⋅
ϕn(x2,y2)−ϕn(x1,y1)

x1−x2
− ϕT

n(x1, y1)D(n)n+1,1 ⋅
ϕn+1(x2,y2)−ϕn+1(x1,y1)

x1−x2
+

ϕT
n+2(x1, y1) (D(n)n+2,1)

T

⋅
ϕn(x2,y2)−ϕn(x1,y1)

x1−x2
− ϕT

n(x1, y1)D(n)n+2,1 ⋅
ϕn+2(x2,y2)−ϕn+2(x1,y1)

x1−x2
+

ϕT
n+1(x1, y1) (D(n−1)n+1,1)

T

⋅
ϕn−1(x2,y2)−ϕn−1(x1,y1)

x1−x2
−ϕT

n−1(x1, y1)D(n−1)n+1,1 ⋅
ϕn+1(x2,y2)−ϕn+1(x1,y1)

x1−x2
] .

The first equality follows letting (x2, y2) → (x1, y1) = (x, y) and the second one is obtained in a
similar way. �

4. A connection with the one variable case

Consider the rectangle R = [a, b] × [c, d], 0 < a < b < ∞, 0 < c < d < ∞, and a positive Borel
measure on R that can be factorized in the form dµ(x, y) = dµ1(x)dµ2(y). Let ⟨⋅, ⋅⟩µ be the inner
product given by (13) and ⟨⋅, ⋅⟩µi

the corresponding inner products for the measures dµi, i = 1,2:
⟨f, g⟩µ1

= ∫ b

a f(x)g(x)dµ1(x), f, g ∈ Lµ1

2 = {h ∶ [a, b]→ R ∶ ∫ b

a h
2(x)dµ1(x) <∞} ,

⟨f, g⟩µ2
= ∫ d

c f(y)g(y)dµ2(y), f, g ∈ Lµ2

2 = {h ∶ [c, d]→ R ∶ ∫ d

c h
2(y)dµ2(y) <∞} .

Notice that the corresponding moments m
(i)
k are strictly positive, for all k ∈ Z and i ∈ {1,2}. Let

us denote by {ψ(i)n }
n≥0 for i = 1,2 the families of orthogonal Laurent polynomials in one variable

with respect to me measures µi and the “balanced” ordering (1). Thus we can prove how from
these two families we can construct an orthonormal basis of Laurent polynomials in two variables.

Proposition 4.1. Under the above conditions, let ϕn,k be given by

ϕn,k(x, y) = ψ(1)n−k(x)ψ(2)k (y), for all n ≥ 0 and k ∈ {0,1, . . . , n}.
Then the set {ϕn,k ∶ n ≥ 0, k = 0, . . . , n} is an orthonormal basis of L.
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Proof. Recall Lk = span {φ0, . . . , φk}. It is clear from the construction of the ordering (2) and

(3)-(5) that ψ
(1)
n−k(x) ∈ Ln−k/Ln−k−1, ψ(2)k (y) ∈ Lk/Lk−1 and ψ

(1)
n−k(x)ψ(2)k (y) ∈ Ln/Ln−1. Thus, for

fixed n ≥ 0 and k, l ∈ {0, . . . , n}, it is clear from Fubini’s theorem that

⟨ψ(1)n−k(x)ψ(2)k (y), ψ(1)n−l(x)ψ(2)l (y)⟩µ = ⟨ψ(1)n−k(x), ψ(1)n−l(x)⟩µ1
⋅ ⟨ψ(2)k (y), ψ(2)l (y)⟩µ2

= δk,l.
Also for n ≠m, n,m ≥ 0, k ∈ {0 . . . , n} and l ∈ {0 . . . ,m}, we get by the same reason

⟨ψ(1)n−k(x)ψ(2)k (y), ψ(1)m−l(x)ψ(2)l (y)⟩µ = ⟨ψ(1)n−k(x), ψ(1)m−l(x)⟩µ1
⋅ ⟨ψ(2)k (y), ψ(2)l (y)⟩µ2

= 0.
This concludes the proof. �

The aim of this section is to make use of Theorem 1.1 and Proposition 4.1 to obtain explicitly
the relations (32) in this particular situation. We start with the following

Lemma 4.2. Let {Ω(2)n }n≥0 and {C(2)n }n≥0 be the sequences of positive real numbers appearing
in Theorem 1.1, associated with the measure dµ2. Then, under the above conditions the family{ϕn}n≥0 satisfies the recurrence realations

C
(2)
2mϕn,2m+1(x, y) = (Ω(2)2my − 1)ϕn−1,2m(x, y) −C(2)2m−1ϕn−2,2m−1(x, y),

for 0 ≤ 2m − 1 ≤ n − 2,
C
(2)
2m+1ϕn+1,2m+2(x, y) = (1 − Ω

(2)
2m+1
y
)ϕn,2m+1(x, y) −C(2)2mϕn−1,2m(x, y),

for 0 ≤ 2m ≤ n − 1,
C
(2)
0 ϕ1,1(x, y) = (Ω(2)0 y − 1)ϕ0,0(x, y).

(37)

Proof. From Theorem 1.1 we have

C
(2)
2mψ

(2)
2m+1(y) = (Ω(2)2my − 1)ψ(2)2m(y) −C(2)2m−1ψ

(2)
2m−1(y),

and multiplying in both sides of this equality by ψ
(1)
n−(2m+1)(x) we get from Proposition 4.1 the

first relation in (37). We can prove the second and third relations in (37) proceeding in a similar
way. �

Remark 4.3. A similar result can be proved involving only the coefficients {Ω(1)n }n≥0 and {C(1)n }n≥0
related to the measure dµ1, we omit these details. It should be clear to the reader that despite
the recurrence in Lemma 4.2 only involves the coefficients related to the measure dµ2, there is
no relation between the families {ϕn}n≥0 and {ϕ̃n}n≥0 associated with two measures of the form
dµ(x, y) = dµ1(x)dµ2(y) and dµ̃(x, y) = dµ̃1(x)dµ2(y) respectively, since the influence of the first
measure is due to

ϕ0,0 ≡ 1√
m
(1)
0

m
(2)
0

,

ϕn,0(x, y) = 1√
m
(2)
0

ψ
(1)
n (x), ϕn,1(x, y) = 1

C
(2)
0

√
m
(2)
0

(Ω(2)0 y − 1)ψ(1)n−1(x), ∀n ≥ 1.
(38)

From Lemma 4.2 we see actually how the combination of (38) and the relations in (37) let us
compute the full sequence {ϕn}n≥0.

Next, let us see how explicit expressions for the matrices F1 and F2 in (24)-(25) and (31)
respectively, can be found from Lemma 4.2. We present a proof for F2, the corresponding for F1

follows in a similar way.

Theorem 4.4. Under the above conditions, let us introduce the constants

Γl = C
(2)
l

C
(2)
l+1

Ω
(2)
l+1

> 0, ∆l = (−1)lC(2)l ( 1

Ω
(2)
l

−
1

Ω
(2)
l+1
) ,

Ξl = Ω(2)l +
1

Ω
(2)
l

+
(C(2)

l
)2

Ω
(2)
l+1
+
(C(2)

l−1)
2

Ω
(2)
l−1
> 0, ∀l ≥ 0,
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with C
(2)
−1 = 0 and Ω

(2)
−1 an arbitrary nonzero constant. Then, the matrix F2 in (31) is explicitly

given for all n ≥ 1 by

D
(n−1)
n+1,2 = (On,2 ∣ diag (Γ0,Γ1, . . . ,Γn−1)) ,

D
(n−1)
n,2 = (On,1 ∣ diag (∆0,∆1, . . . ,∆n−1)) ,

D
(n−1)
n−1,2 = diag (Ξ0, . . . ,Ξn−1) .

The matrices D
(n−1)
n−2,2 (n ≥ 2) and D

(n−1)
n−3,2 (n ≥ 3) are the transpose of D

(n−2)
n−1,2 and D

(n−3)
n−1,2 .

Proof. The initial conditions D
(n)
s,2 with n = 0 (s = 0,1,2) and n = 1 (s = 0,1,2,3) are deduced by

direct computations derived from Theorem 1.1 and Proposition 4.1, in an analog procedure as in
(22)-(23).

For n ≥ 2 we have to consider separately the cases that involves the two-term relation for ψ
(2)
0

and ψ
(2)
1 in Theorem 1.1. So, from Theorem 1.1 and Proposition 4.1 we can write

C
(2)
0 ϕn,1 = (Ω(2)0 y − 1)ϕn−1,0 ⇒ 1

y
ϕn−1,0 = Ω(2)0 ϕn−1,0 −C(2)0

1

y
ϕn,1 (39)

and

C
(2)
1 ϕn+1,2 = ⎛⎝1 −

Ω
(2)
1

y

⎞
⎠ϕn,1 −C

(2)
0 ϕn−1,0

⇒ 1

y
ϕn,1 = 1

Ω
(2)
1

ϕn,1 −
C
(2)
1

Ω
(2)
1

ϕn+1,2 −
C
(2)
0

Ω
(2)
1

ϕn−1,0.
(40)

If we substitute in (39) the term 1
y
ϕn,1 in (40) and we add yϕn−1,0 we get

(y + 1

y
)ϕn−1,0 = Ξ0ϕn−1,0 +∆0ϕn,1 + Γ0ϕn+1,2.

In a similar way, we can write (40) with n replaced by n − 1 as

yϕn−1,1 = C(2)1 yϕn,2 +Ω
(2)
1 ϕn−1,1 +C(2)0 yϕn−2,0 (41)

and we also have from Theorem 1.1 and Proposition 4.1 the relation

yϕn,2 = C
(2)
2

Ω
(2)
2

ϕn+1,3 +
1

Ω
(2)
2

ϕn,2 +
C
(2)
1

Ω
(2)
2

ϕn−1,1. (42)

If we substitute in (41) the terms yϕn,2 in (42) and yϕn−2,0 in (39) with n replaced by n − 1 we
get

(y + 1

y
)ϕn−1,1 = Γ1ϕn+1,3 +∆1ϕn,2 + Ξ1ϕn−1,1 +∆0ϕn−2,0.

For the general case n ≥ 3 and l = 2,3, . . . , n − 1 we start writing the first equation of (37) as

1

y
ϕn−1,2m(x, y) = −C(2)2m

1

y
ϕn,2m+1(x, y) +Ω(2)2mϕn−1,2m(x, y) −C(2)2m−1

1

y
ϕn−2,2m−1(x, y) (43)

and the second equation of (37) as

1
y
ϕn,2m+1(x, y) = 1

Ω
(2)
2m+1
[−C(2)2m+1ϕn+1,2m+2(x, y) +ϕn,2m+1(x, y)
−C
(2)
2mϕn−1,2m(x, y)] ,

1
y
ϕn−2,2m−1(x, y) = 1

Ω
(2)
2m−1
[−C(2)2m−1ϕn−1,2m(x, y)
+ϕn−2,2m−1(x, y) −C(2)2m−2ϕn−3,2m−2(x, y)] .

(44)
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Thus, if we substitute (44) in (43) and we add the term yϕn−1,2m(x, y) from the first equation of
(37) we get

(y + 1
y
)ϕn−1,2m(x, y) = Γ2mϕn+1,2m+2(x, y) +∆2mϕn,2m+1(x, y) +Ξ2mϕn−1,2m(x, y)

+∆2m−1ϕn−2,2m−1(x, y) + Γ2m−2ϕn−3,2m−2(x, y).
A similar relation is obtained for (y + 1

y
)ϕn−1,2m−1(x, y), yielding for all l = 2,3, . . . , n − 1 and

n ≥ 3,
(y + 1

y
)ϕn−1,l(x, y) = Γlϕn+1,l+2(x, y) +∆lϕn,l+1(x, y) +Ξlϕn−1,l(x, y)

+∆l−1ϕn−2,l−1(x, y) + Γl−2ϕn−3,l−2(x, y).
�

As it is indicated in [13, Section 2], the families {ψk}k≥0 of orthogonal Laurent polynomials in the
one variable case computed from Theorem 1.1 are related to the families of ordinary polynomials
satisfying Laurent orthogonal conditions (that have been considered in the literature, e.g. by A.
Sri Ranga and collaborators, see [27, 28, 29, 30]). So, we can make use of some of the results
available in those references to get explicit expressions for the coefficients {Ωn}n≥0 and {Cn}n≥0
related to some particular absolutely continuous measures, like

dω1(x) = dx√(b−x)(x−a) , dω2(x) = dx√
x
, dω

µ
3 (x) = [(b−x)(x−a)]µ−

1
2

(√b−√a)xµ
dx,

dω4(x) = x(1+√ab
x
)2√(b−x)(x−a)dx, dω5(x) = dx

(x+√ab)√(b−x)(x−a) , dωκ
6 (t) = 1

2κ
√
π
(1 + 1

t
) e−( log(t)

2κ
)2
dt,

with x ∈ (a, b), 0 < a < b < ∞, t > 0, κ > 0 and µ > −1/2. Thus, if the measure dµ(x, y) =
dµ1(x)dµ2(y) defined on the rectangle R is of the form µ1, µ2 ∈ {ωi}6i=1 we can recover directly
from the results of this section the recurrence relations for {ϕn}n≥0 explicitly.

5. Conclusions

We have introduced for the first time in the literature the theory of sequences of orthogonal
Laurent polynomials in two real variables (x, y) (for the sake of simplicity, but it can be generalized
to several variables) with respect to a positive Borel measure µ defined on R

2 such that {x =
0} ∪ {y = 0} /∈ supp(µ). We have considered an appropriate ordering for the Laurent monomials
xiyj , i, j ∈ Z that let us to obtain five term relations involving multiplication by x + 1

x
and y + 1

y
.

The corresponding matrices representations of these operators are block symmetric five diagonals.
Our approach enables us to extend some known results for the ordinary polynomials to the Laurent
case. In this respect, we have included a Favard’s theorem and Christoffel-Darboux and confluent
formulas. Also, a connection with the one variable is done when the measure µ is a product measure
of separate variables defined on the rectangle R = [a, b] × [c, d], 0 < a < b <∞, 0 < c < d <∞.

In the one variable case, there are very few measures that gives rise to explicit expressions
for sequences of orthogonal Laurent polynomials. We could almost say that the only ones are
practically the weight functions {ωi}6i=1 mentioned at the end of Section 4. In general, these families
are computed making use of Theorem 1.1, under the knowledge of the corresponding moments. In
the several variables case, there is not any sequence of orthogonal Laurent polynomials explicitly
known, except in the situations described in Section 4. However, these families can always be
obtained from the five-term relations obtained in Section 2 as long as the moments (14) exist
and are computable. Also, unlike the situation in the one variable case, there are not known
applications in the literature for the moment of orthogonal Laurent polynomials in two or more
real variables. All these questions will be considered in a forthcoming paper, mainly focused
in the applications of orthogonal Laurent polynomials of two real variables in the construction
and characterization of cubature formulas for the numerical estimation of integrals of the form

∬D f(x, y)dµ(x, y).
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