
EXTENSIONS OF DISCRETE HELLY THEOREMS FOR BOXES
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Abstract. We prove extensions of Halman’s discrete Helly theorem for axis-

parallel boxes in Rd. Halman’s theorem says that, given a set S in Rd, if F
is a finite family of axis-parallel boxes such that the intersection of any 2d

contains a point of S, then the intersection of F contains a point of S. We

prove colorful, fractional, and quantitative versions of Halman’s theorem. For
the fractional versions, it is enough to check that many (d + 1)-tuples of the

family contain points of S. Among the colorful versions we include variants

where the coloring condition is replaced by an arbitrary matroid. Our results
generalize beyond axis-parallel boxes to H-convex sets.

1. Introduction

The study of intersection patterns of convex sets in Euclidean spaces is a major
area in combinatorial geometry. One of the central results is Helly’s theorem,
which characterizes finite families of convex sets in Rd with non-empty intersection
[Hel23]. It states that if every d + 1 or fewer sets of a finite family of convex
sets in Rd have non-empty intersection, then so does the entire family. There are
now a myriad generalizations and extensions of Helly’s theorem. For example, we
might weaken the condition on intersections of small subfamilies, we might want to
guarantee that the intersection of the entire family is larger, or we might want to
replace the condition of convexity by another geometric or topological constraint
on the sets [ALS17,HW17,BK22].

A particular family of sets for which there are Helly-type theorems are axis-
parallel boxes [Eck88,Eck91]. As these are sets which are much more constrained,
we expect to be able to prove stronger results on their intersection structure. A sim-
ple folklore result, for example, states that a finite family of axis parallel-boxes has a
non-empty intersection if an only if every pair of boxes has non-empty intersection.
Helly-type results of this kind don’t give us much information about the points of
intersection of the whole family. However, a recent result of Halman [Hal08], the
discrete Helly theorem for axis-parallel boxes, gives insight in this direction.

Theorem 1.1 (Halman 2008). Let d be a positive integer. Let S ⊂ Rd be a finite
set, and F be a finite family of axis-parallel boxes in Rd. If every 2d boxes have a
point of S in their intersection, then

⋂
F has a point of S.

The goal of this manuscript is to extend Halman’s result in several directions
in which Helly’s theorem has been generalized. Notice that the Helly number, the
size of the subfamilies we need to check, grows from 2 to 2d once we have the set S
involved and 2d is optimal. One feature of Helly’s theorem for general convex sets
is that the important parameter in a vast number of generalizations is always d+1.
This can be seen in the fractional and colorful versions of this result. In contrast,
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2 EDWARDS AND SOBERÓN

many of the generalizations of Halman’s result will have different Helly numbers.
These results provide a concrete example that exhibits how different versions of
Helly’s theorem relate to each other. All the results in this manuscript generalize
to H-convex sets, which are a family of convex sets that contains axis-parallel boxes
[BM03]. As the literature for axis-parallel boxes is much more extensive, we first
state and prove our results for axis-parallel boxes, and in Section 5 we describe
their generalizations.

Our first result is a quantitative colorful version of Halman’s result. We prove
the result for several families of axis-parallel boxes. Moreover, we can also impose
how many points of S we want in the conclusion of the theorem.

Theorem 1.2. Let B1,B2, · · · ,B2d be finite families of axis parallel boxes in Rd.
Let S ⊆ Rd be a discrete set and n be a positive integer. Suppose that for every

choice of Bi ∈ Bi for each i ∈ [2d] we have
∣∣∣⋂2d

i=1 Bi ∩ S
∣∣∣ ≥ n. Then there exists

an index l ∈ [n] such that the intersection of Bl contains al least n points of S.

Statements like this are known as “colorful” theorems since we can consider
all sets in a family Bi as being drawn with a particular color. The main gist is
that hypotheses of the colorful 2d-tuples imply results on a monochromatic family.
Quantitative discrete Helly theorems for convex sets require conditions on the set
S. Additionally, the quantitative Helly number often depends on the number n of
S we guarantee in the intersection, while for axis-parallel boxes this is not the case
(see, e.g., [ALL14, LHRS17,CHZ18]). For general convex sets, the dependence of
the Helly number on n can be removed if we impose additional structural conditions
on the set of n points, such as being collinear [DS21].

Throughout the paper, we prove several other colorful versions of Halman’s the-
orem. A “very colorful” version of the theorem above (Theorem 2.8), a version
where the condition is replaced by a matroid (Theorem 3.3), and a version where
the number of color classes is reduced to d + 1 with a weaker conclusion (Theo-
rem 4.4). We also present two fractional versions of Halman’s theorem. The first
one, Theorem 3.2, says that if and α-fraction of 2d-tuples of B contain a point of
S in their intersection, then there is a β-fraction of B whose intersection contains
points of S, and β → 1 as α → 1. This shows a robustness of Halman’s theorem.

The second fractional version is perhaps the most interesting one, as we need to
check smaller subfamilies.

Theorem 1.3. Let d be a positive integer and α ∈ (0, 1). There exists β =
β(α, d) > 0 such that the following holds. If S is a finite set in Rd and B is a

finite family of axis-parallel boxes of Rd such that α
( |B|
d+1

)
of the (d+1)-tuples of B

satisfy that their intersection contains points of S, then there is a subfamily of at
least β|B| sets of B whose intersection contains a point of S.

Of course, in this theorem we cannot expect β → 1 as α → 1 since Halman’s
theorem is optimal. It mimics the behavior of Helly’s theorem for integer points. If
we want to check if a family of convex sets has an integer point in its intersection,
it’s sufficient to check the intersection of its 2d-tuples [Doi73,Sca77,Bel76], and 2d

is optimal. However, if we want to check that there is an integer point in a positive
fraction of the family, it’s enough to check that a positive fraction of the (d + 1)-
tuples have a point in their intersection [BM03b]. This result extends to families of
points with finite Helly number [AW12], for volumetric versions of Helly’s theorem
[FJT24], or set systems with topological conditions [GHP21].

The size of the sets we need to check to guarantee a fractional Halman is neither
the Helly number for axis parallel boxes (two), nor Halman’s number (2d). The
reason that d + 1 appears here is because it is the number for a colorful Helly for
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axis-parallel boxes. It is not enough to check d-tuples. Given positive integers n, d,
we can take S = Rd and make a family of axis-parallel boxes where ∼ n/d of the
boxes are the intersection of a hyperplane orthogonal to ei, the i-th element of
the canonical basis, with the unit square [0, 1]d. Then, we have roughly (n/d)d ∼
(d!/dd)

(
n
d

)
intersecting d-tuples, but no subset of size d+ 1 or lager intersects. We

can also make S finite while preserving the condition of the theorem.
As fractional Helly theorems are known to imply (p, q) variants [AK92,AK96],

we obtain the following (p, q) generalization of Halman’s theorem as a direct con-
sequence of Theorem 1.3.

Theorem 1.4. Let p, q, d be positive integers such that p ≥ q ≥ d+1. There exists
a positive integer c = c(p, q, d) such that the following holds. For any set S ⊂ Rd

and any finite family B of axis-parallel boxes, if out of every p boxes in B there are
q whose intersection contains a point of S, then there is a set of c points of S that
pierces every set in B.

The rest of the paper is organized as follows.

• In Section 2 we prove the colorful quantitative version of Halman’s theorem
and the “very colorful” version. We also give another proof of Halman’s
theorem using an argument similar to Radon’s theorem.

• In Section 3 we introduce a family of simplicial complexes arising from
Halman’s theorem and prove that they have bounded Leray numbers. With
this, we prove the matroid colorful Halman theorem and the our bounds
for the fractional Halman theorem when we check 2d-tuples.

• In Section 4 we prove the fractional version of Halman’s theorem for (d+1)-
tuples. We use a hypergraph saturation argument along with the colorful
version of Halman’s theorem for d+ 1 colors.

• Finally, in Section 5 we introduce H-convex sets and state how the results
of this manuscript generalize to those sets.

2. New proofs of Halman’s theorem

2.1. Colorful and quantitative Halman. Let us start by proving Theorem 1.2.
For this, we introduce the lexicographic order ≺ on Rd. Given two different points
x = (x1, . . . , xd) and y = (y1, . . . , yd) in R

d, we say x ≺ y if there exists an i ∈ [d]
such that xj = yj for all j < i and xi < yi. In other words, in the first coordinate
in which the points are different, x has the smaller value.

Proof of Theorem 1.2. We call a subfamily F ⊆ B1 ∪ · · · ∪ B2d colorful if no two
boxes in F come from the same indexed set Bi. For each k ∈ [n], consider a
function fk from the set of all colorful (2d − 1)-tuples to the set S. The function
fk assigns to each colorful (2d − 1)-tuple the k-th smallest point of S, under the
lexicographic order, which is contained in the intersection of this tuple. As S is
discrete and each colorful (2d − 1)-tuple must contain at least n points of S, the
function fk is well defined. Since there is a finite number of possible (2d−1)-tuples,
there is a (2d− 1)-tuple A on which fn attains its maximal value (again, under the
lexicographic order).

Without loss of generality, assume that A does not have a set of B2d and A =
{A1, · · · , A2d−1} where Ai ∈ Bi for each i ∈ [2d − 1]. Consider a set B ∈ B2d.
We claim that f1(A), . . . , fn(A) ∈ B. The intersection (∩A) ∩ B is also an axis-
parallel box, so its projection to the i-th coordinate is an interval, which we denote
by [bi, ci]. Let Bi be a box in A ∪ B which achieves bi as a left endpoint when
projected to the i-th coordinate. Similarly, let Ci be a box from this collection
which achieves ci as a right endpoint when projected to the i-th coordinate.
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Consider the subfamily A′ = {B1, . . . , Bd, C2, · · · , Cd} (note we are not using
C1). It may be the case that these sets are not all unique and hence |A′| < 2d− 1.
If this is the case, include additional arbitrary boxes from A∪B into A′ so that we
have |A′| = 2d−1. By construction, A′ is a colorful (2d−1)-tuple, and ∩A′ contains
only points of S which are either in (∩A)∩B or are lexicographically greater than
all the points in (∩A) ∩ B, since their first coordinate must be larger than c1. In
particular, we have fi(∩A′) = fi((∩A)∩B) for all i ∈ [n]. All points of S in ∩A∩B
are also in ∩A. In particular ∩A ∩B must contain the first n lexicographic points
of S of ∩A, or else fn(A′) > fn(A) which contradicts the maximality of fn(A).
This implies that f1(A), · · · , fn(A) ∈ B and therefore f1(A), · · · , fn(A) ∈ ∩B2d.
Thus | ∩ B2d ∩ S| ≥ n. □

Theorem 1.2 is both a colorful and quantitative in nature. By setting all the
color classes equal to each other B1 = B2 = · · · = B2d we obtain the following
monochromatic version.

Corollary 2.1. Given a family B ⊆ Rd of axis parallel boxes and S ⊆ Rd a discrete
set, if every choice of 2d boxes from B contain n points of S in their intersection,
then ∩B contains n points of S.

This quantitative result is an extension of a result by Halman who proved the
n = 1 case in [Hal08]. Our work provides an alternate proof of Halman’s original
theorem.

The version above also has the following implication for quantitative Helly for
boxes.

Corollary 2.2. Let µ be a finite measure in Rd, absolutely continuous with respect
to the Lebesgue measure. Let B be a finite family of axis-parallel boxes. If the
intersection of any 2d boxes of B has µ-measure at least 1, then µ (

⋂
B) ≥ 1.

Proof. As any measure can be approximated by finite sets of points, consider a
sequence Sn of finite sets of Rd such that for each B′ ⊂ B we have

lim
n→∞

|Sn ∩ (
⋂

B′)|
|Sn|

→ µ(B′)

µ(Rd)
.

Let ε > 0. There exists a natural number N such that for n > N we have that
for every 2d-tuple B′ ⊂ B we have

|Sn ∩ (
⋂
B′)|

|Sn|
>

µ(∩B′)

µ(Rd)
− ε ≥ 1

µ(Rd)
− ε

∣∣∣Sn ∩ (
⋂

B′)
∣∣∣ > |Sn|

˙(
1

µ(Rd)
− ε

)
Applying Corollary 2.2, we have that∣∣∣Sn ∩ (

⋂
B)

∣∣∣ ≥ |Sn|
˙(

1

µ(Rd)
− ε

)
|Sn ∩ (

⋂
B)|

|Sn|
≥ 1

µ(Rd)
− ε.

As n → ∞, this implies that

µ(∩B)
µ(Rd)

≥ 1

µ(Rd)
,

giving us the conclusion we wanted. □
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This corollary is also a direct consequence of the quantitative Helly theorem
with boxes of Sarkar, Xue, and Soberón [SXS21]. However, the proof presented
here does not rely on the Brunn–Minkowski inequality, so it shows an alternate
way to achieve this result.

2.2. Proof using a Radon-style theorem.

Definition 2.3. For X ⊆ Rd let box(X) denote the intersection of all axis-parallel
boxes which contain X as a subset.

The following lemma is reminiscent of Radon’s theorem for convex hull. Notice
that the partition induced on the set always has one part as a singleton.

Lemma 2.4. Let X ⊆ Rd be a set such that |X| ≥ 2d+1. Then their exists x ∈ X
such that x ∈ box(X \ {x}).

Proof. If X is infinite, consider only a finite number of points of X. Let ai ∈ X
be a point with the minimum i-th coordinate. Similarly, let bi be a point with
the maximum i-th coordinate. Then box(X) = box({a1, b1, · · · , ad, bd}). As |X| ≥
2d + 1, there exists x ∈ X such that x /∈ {a1, b1, · · · , ad, bd}. Thus x ∈ box(X) =
box({a1, b1, · · · , ad, bd}) ⊆ box(X \ {x}). □

Remark 2.5. The set {±e1 , . . . ,±ed} where ei is the standard basis vector in
dimension i shows that Lemma 2.4 is sharp.

The above lemma is essentially a discrete version of radon’s lemma for boxes.
In 2023, Breen defined a function r(d) such that any set X ∈ Rd with |X| ≥ r(d),
admits a partition into two sets X1, X2 such that box(X1) ∩ box(X2) ̸= ∅. Our
above lemma is a discrete version of Breen’s lemma. We show that |X| ≥ 2d + 1
is the minimum number of points required to guarantee a partition into two sets
X1 = {x}, X2 = X \ {x} whose box hulls intersect and contain a point from the
original set in their intersection. That is box(X1) ∩ box(X2) ∩X ̸= ∅.

Next we provide an alternate proof of Halman’s Theorem. This proof is based
off induction, and it closely mirrors Radon’s proof of Helly’s Theorem. This proof
requires a finite family of boxes, but it also allows S to be any subset of Rd, not
necessarily discrete.

Theorem 2.6. Let B be a finite family of axis parallel boxes in Rd, and consider
any set S ⊂ Rd. If every subfamily of 2d or fewer boxes in B contains a point of S
in its intersection, then (

⋂
B) ∩ S ̸= ∅.

Proof. If |B| ≤ 2d, then the statement is true. Suppose that the theorem holds for
all families of boxes of size n for some n ≥ 2d. Consider a family of boxes B such
that |B| = n + 1. By the inductive hypothesis, there must be a point of S in the
intersection of every n-tuple of boxes in B.

For each Bi ∈ B, let si ∈ (
⋂
(B \Bi))∩ S. If si = sj for some i ̸= j, then we are

done. Suppose otherwise. Then |{s1, · · · , sn+1}| ≥ 2d + 1. Hence by Lemma 2.4,
there exists sk such that sk ∈ box({si : i ̸= k}). But {si : i ̸= k} ⊆ Bk. Therefore
we have box({si : i ̸= k}) ⊆ Bk which implies sk ∈ Bk. Recall by definition, that
sk ∈ (

⋂
(B \Bk)) ∩ S, so sk ∈ (

⋂
B) ∩ S. □

This shows that Lemma 2.4 implies Halman’s theorem. The reverse implication
also holds.

Proposition 2.7. Lemma 2.4 is a direct consequence of Halman’s theorem.

Proof. Consider a finite point set X = {x1, · · · , xn} with n ≥ 2d + 1. Let Bi =
box(X \ {xi}). Let B = {Bi : i ∈ [n]}. As each Bi contains all but one of the
points in X, any subfamily of B of size 2d must contain at least one point of X
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because |X| ≥ 2d + 1. Therefore any subfamily of size 2d contains a point of X
in its intersection. Thus by Halman’s Theorem ∩B contains a point xk ∈ X in its
intersection. But xk ∈ ∩B implies xk ∈ Bk = box(X \ {xk}). □

The discrete nature of these results, which involves the set S, allows us to prove
some versions which have no non-discrete analogue. Consider the following “very
colorful” quantitative Halman. The key observation is that we can replace S by
several sets S1, . . . , Sm, and we can prescribe how many points we want to contain
of each set.

Theorem 2.8 (Very colorful Halman). Let B1,B2, · · · ,B2d be finite families of axis
parallel boxes in Rd. Let m be a positive integer, Let S1, . . . , Sm ⊆ Rd be a discrete
sets and n1, . . . , nm be a positive integers. Suppose that for every choice of Bi ∈ Bi

for each i ∈ [2d] we have
∣∣∣⋂2d

i=1 Bi ∩ Sj

∣∣∣ ≥ nj for each j ∈ [m]. Then there exists

an index l ∈ [n] such that the intersection of Bl contains nj points of Sj for all
j ∈ [m]. In other words, | ∩ Bl ∩ Sj | ≥ nj.

A direct application of Theorem 1.2 for each Sj gives us a similar result, but we
have no guarantee that the family Bl will be the same for all values of j.

Proof. The proof follows the same idea as the proof of Theorem 1.2. Order the set
Sj lexicographically. We identify the elements of S with the integers in [|Sj |]. We
call a subfamily F ⊆ B1 ∪ · · · ∪ B2d colorful if no two boxes in F come from the
same indexed set Bi. For each j ∈ [m] and k ∈ [nj ], consider a function f j

k from

the set of all colorful (2d − 1)-tuples to the set [|Sj |]. The function f j
k assigns to

each colorful (2d − 1)-tuple the label of the k-th smallest point of Sj , under the
lexicographic order, which is contained in the intersection of this tuple. As Sj is
finite and each colorful (2d − 1)-tuple must contain at least nj points of Sj , the

function f j
k is well defined.

Since there is a finite number of possible (2d−1)-tuples, there is a (2d−1)-tuple
A on which f :=

∑m
j=1 f

j
nj

attains its maximal value.
Without loss of generality, assume that A does not have a set of B2d and A =

{A1, · · · , A2d−1} where Ai ∈ Bi for each i ∈ [2d − 1]. Consider a set B ∈ B2d.

We claim that the points in Sj corresponding to f j
1 (A), . . . , f j

nj
(A) are contained

in B. The intersection (∩A) ∩ B is also an axis-parallel box, so its projection to
the i-th coordinate is an interval, which we denote by [bi, ci]. Let Bi be a box in
A ∪ B which achieves bi as a left endpoint when projected to the i-th coordinate.
Similarly, let Ci be a box from this collection which achieves ci as a right endpoint
when projected to the i-th coordinate.

Consider the subfamily A′ = {B1, . . . , Bd, C2, · · · , Cd} (note we are not using
C1). It may be the case that these sets are not all unique and hence |A′| < 2d− 1.
If this is the case, include additional arbitrary boxes from A∪B into A′ so that we
have |A′| = 2d− 1. As in the proof of Theorem 1.2, the value of f j

i in A′ can only
be larger than or equal to the one in A. If we didn’t have the same initial nj-tuple
of points as in A, we would contradict the maximaliy of A. This implies that B
contains the nj points of Sj we need. □

3. The topology of Halman’s theorem

One approach to study Helly’s theorem is to construct simplicial complexes asso-
ciated to families of convex sets. For Helly’s theorem, the nerve complex of a family
F of convex sets provides this link. Given a family F of sets, this is a simplicial
complex with a vertex for each set of F and a face for each set of vertices that
corresponds to an intersecting subfamily.
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For a face σ in a simplicial complex K, we define the dimension of σ as |σ| − 1.
One of the key operations on simplicial complexes are collapses. Given a simpli-

cial complex K and an integer m, an m-collapse is a modification of K to a new
simplicial complex K ′ such that there following properties are satisfied:

• There is a face σ of K that is contained in a unique inclusion-maximal face
η of K.

• The face σ has dimension at most m− 1.
• The complex K ′ is formed by removing σ and all faces that contain σ.

K ′ = K \ τ : σ ⊂ τ .

We say that a complex K is m-collapsible if there is a sequence of m-collapses
that starts with K and ends with the empty complex. A lot of properties of finite
families of convex sets follow from the fact that the nerve complex of a finite family
of convex sets in Rd is (d− 1)-collapsible [Tan12].

Now, given a finite family B of axis-parallel boxes in Rd and a finite set S ⊂ Rd,
we can create a simplicial complex K(B, S) as follows:

• We include a vertex in K(B, S) of each box B ∈ B that contains a point in
S.

• A set of vertices of K(B, S) forms a face if an only if the intersection of
their corresponding boxes contains a point of S.

Theorem 3.1. If B is a finite family of axis-parallel boxes in Rd and S ⊂ Rd is
finite, then K(B, S) is (2d− 1)-collapsible.

Proof. We prove this by induction on |S|. If S = ∅, then K(B, S) = ∅, which is
(2d − 2)-collapsible. Now assume that for each set S′ with |S| − 1 elements, the
complex K(B, S′) is (2d− 1)-collapsible.

If there is a point s ∈ S such that s is not the unique element of S in the
intersection of some boxes of B, then define S′ = S \ {s}. We have K(B, S) =
K(B, S′) and we are done.

Now assume that for each s ∈ S′, there is a family of boxes for which s is the
only point of S in their intersection. Let s0 be the lexicographic maximum of S,
and B0 ⊂ B be the set of boxes in B that contain s0. By construction, we know
that S ∩ (

⋂
B0) = {s0}. By the same arguments as in the proof of Theorem 1.2,

there exists a family B′ ⊂ B0 with at most 2d − 1 set such that the lexicographic
minimum of S ∩ (

⋂
B0) and S ∩ (

⋂
B′) are the same. In this case, they can only be

{s0}.
In other words, we have found a family B′ with at most (2d−1) whose intersection

has a single point s0 of S. Let σ be the corresponding face of K(B, S), of dimension
at most 2d − 2. Every face ρ ⊃ σ must have points of S in its intersection, and
therefore its intersection with S must be {s0}. This means that for the face η
corresponding to B0, we have η ⊃ ρ ⊃ σ. In other words, η is the unique inclusion-
maximal face that contains σ. We can do a collapse on σ, and obtain a new complex
K ′.

The final observation is that K ′ = K(B, S \ {s0}), as every removed face had s0
as their unique intersection with S. By induction, K ′ is (2d− 1)-collapsible, so K
must be too. □

The reason collapsibility of our complexes is important is because m-collapsility
of a complex gives bounds on its Leray number, and for complexes with bounded
Leray numbers there are many Helly-type results known. A complex K is m-Leray
if for every induced subcomplex L of K, the reduced homology group H̃i(L) over
Q vanishes for i ≥ m. In particular, if K is m-collapsible, then K is m-Leray since
each m-collapse does not affect H̃i(K) of i ≥ m.
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Therefore, we can apply directly the fractional Helly theorem for m-Leray com-
plexes of Kalai [Kal84] and the colorful Helly theorem for m-Leray complexes of
Kalai and Meshulam [KM05]. We include below the direct consequences of Theo-
rem 3.1.

Theorem 3.2 (Fractional Halman theorem for 2d-tuples). Let d be a positive in-
teger, α ∈ (0, 1) and β = 1− (1− α)1/(2d−1). Let B be finite family of axis-parallel

boxes in Rd and S ⊂ Rd be a finite set. If at least α
(|B|
2d

)
of the 2d-tuples of B

contain a point of S in their intersection, then there is a subfamily B′ ⊂ B of at
least β|B| set of B whose intersection contains a point of S.

Note that as α → 1, we have β → 1 as well. This means that Theorem 3.2 implies
Halman’s theorem. For the theorem below, a matroid complex is a particular
simplicial complex corresponding to the independent set of a matroid.

Theorem 3.3 (Matroid colorful Halman). Let S be a finite set in Rd and M be
a matroid complex with rank function ρ and vertex set V . For each v in V , we
are given an axis-parallel box Bv in Rd. For each independent set U ⊂ V , there
is a point of S in

⋂
v∈U Bv ⊂ Rd. Then, there exists a set T ⊂ V such that

ρ(V \ T ) ≤ 2d− 1 and such that there is a point of S in
⋂

v∈T Bv.

For example, we can consider M a matroid complex on a set of vertices V1∪V2∪
· · · ∪ V2d and define the elements of M as the sets V with at most one element of
Vi. The rank ρ of a set is just the number of sets Vi it intersects. For this matroid
M , we recover Theorem 1.2 for n = 1. The major upside is that we can use any
other matroid M .

4. Other fractional versions

To prove Theorem 1.3, we adapt the approach of Bárány and Matoušek to Hal-
man’s theorem. The main goal is that if we start with families B and S that do not
satisfy Theorem 1.3, then we can construct a family B′ ⊂ B that contradicts the
colorful Helly theorem (without involving S any more). We start with a technical
definition and a lemma.

Definition 4.1. Let ε > 0 and Z = Z1

⋃̇
. . .

⋃̇
Zr be a disjoint union of multisets (we

allow repetition of elements). The multisets Z1, · · · , Zr are called ε-box-intermixed
if for every halfspace H which is orthogonal to an element of the canonical basis,
we have |H ∩ Z| ≥ ε|Z| implies that H ∩ Zj is nonempty for all j ∈ [r].

Lemma 4.2 (Intermixing Box Lemma). Let S1, · · · , Sr be finite point multisets in
Rd that are 1

2d -box-intermixed. Then

r⋂
j=1

box(Sj) ∩ S ̸= ∅.

Proof. Let S = S1 ∪ · · · ∪ Sr. Define the following set of boxes B = {box(X) : X ⊆
S and |X| > 2d−1

2d |S|}. Note that for an arbitrary set box(X) in this family we

have |S \ box(X)| < |S|
2d . The complements of any 2d sets in B cannot contain all

the points of S, so any 2d sets of B contain a point of S in their intersection.
As the sets of B are closed axis parallel boxes, by Theorem 1.1 there is a point

s ∈ S such that s ∈ ∩B. Suppose s /∈ box(Si) for some i. Then there exists a
hyperplane H orthogonal to one of the canonical basis vectors which contains s
and separates S from box(Si).

Let A be the closed halfspace generated by this hyperplane which contains s

and is disjoint from box(Si). Then |S ∩ A| ≥ |S|
2d , otherwise box(S \ A) would

be a box in B that does not contain s. Therefore, A is a half-space containing
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at least 1
2d |S| points of S and no points of Si. This contradicts S1, · · · , Sr being

(1/2d)-box-intermixed. □

The following lemma is key to go from intersection properties of families of boxes
involving S to intersection properties of families of boxes that do not involve S.

Lemma 4.3 (The intermixing lemma). Let S1, · · · , Sr be finite sets of points in
Rd of the same cardinality and S be another set of points in Rd. Let I be a set of
indices used to label each Sj, so that Sj = {sij : i ∈ I}. Then one of the following
holds:

(1)

n⋂
j=1

box(Sj) ∩ S ̸= ∅.

(2) There exists I ′ ⊆ I and indices m,n ∈ [r] such that |I ′| ≥ |I|
2d and box(S′

m)∩
box(S′

n) = ∅. Here S′
j = {sij : i ∈ I ′}.

Proof. If S1, · · · , Sr are
1
2d -box-intermixed, then (1) follows immediately from Lemma

4.2. If not, then there exists a hyperplane H orthogonal to one of the canonical
basis vectors such that one of the closed half-spaces X formed by this hyperplane

contains r|I|
2d points from all the sets but no points from some Sm. Thus, there

must be some index n for which X contains at least r|I|
(r−1)2d ≥ |I|

2d of the points of

Sn. That is, |X ∩ Sn| ≥ |I|
2d . Let I

′ = {i ∈ I : sin ∈ X}. As H is orthogonal to one
of the axes, we have box(S′

m) ∩ box(S′
n) = ∅ as desired. □

Once Lemma 4.3 is established, the rest of the proof of Theorem 1.3 follows the
structure of the Bárány–Matoušek proof of their fractional Helly theorem for lattice
convex sets. The intermediary steps contain interesting results, which may also be
interesting to the readers, so we include the details below.

To prove Theorem 1.3, we need yet another colorful version of Halman’s theorem.
In this one we will use only d+ 1 color classes. Since the colorful Halman theorem
is optimal (as Halman’s theorem is optimal), the downside is that we won’t be able
to conclude that one color class has a point of S in its intersection. Instead, we
will be able to guarantee that there are many sets in a single color class that have
a point of S in their intersection.

Theorem 4.4 (Colorful Halman with few colors). Given integers r, d, there exists
an integer t such that the following holds. Let B1,B2, · · · ,Bd+1 be finite families
of axis parallel boxes in Rd, each with cardinality t. Let S ⊆ Rd be a discrete set.

Suppose that for every choice of Bi ∈ Bi for each i ∈ [d+1] we have
⋂d+1

i=1 Bi is not
empty and has at least one point of S. Then there exists an index l ∈ [d+ 1] such
that there are r boxes in Bl whose intersection contains at least one point of S.

We will only use Theorem 4.4 with r = 2d, but we prove it for any r. Since the
colorful Halman theorem is optimal, we cannot expect t = r if we use fewer than
2d colors. We will use the following theorem by Erdős and Simonovits [ES83]:

Theorem 4.5 (Erdős, Simonovits 1983). For every α > 0 and positive integers
d, t, there exists a δ > 0 such that the following holds. Let H be a (d+ 1)-uniform
hypergraph on n vertices, with at least α

(
n

d+1

)
edges. Then, H contains at least

δn(d+1)t copies of Kd+1(t), the complete (d+1)-partite (d+1)-uniform hypergraph
with each part having t elements, as a subgraph.

Proof of Theorem 4.4. Given a finite family of axis-parallel boxes B in Rd and a
finite set S ⊂ Rd, recall the definition of the simplicial complex K(B, S). We
consider the hypergraph HS(B, E) made of the faces of K(B, S) with d+1 vertices,
and let E be the set of hyperedges of this hypergraph.
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For B =
⋃d+1

i=1 Bi, we have that HS(B, E) contains the complete (d+ 1)-uniform
(d + 1)-partite hypergraph Kd+1(t), where each of the components has t vertices
(corresponding to some Bi). We say that the i-th class of HS(B, E) is the set of
vertices corresponding to Bi.

For each edge e ∈ E, let se be a point in S in the intersections of the boxes
corresponding to e. For a vertex v, let Sv = {se : v ∈ e ∈ E} and Gv = box(Sv)∩S.
Note that the box corresponding to v contains all the points of Gv. We want to
prove that there is a collection R of r points of some class of HS(B, E) such that⋂

v∈R Gv ̸= ∅. If we don’t find such a set R of vertices, we are going to construct a
sequence of sub-hypergraphs HS(B, E) = H0 ⊃ H1 ⊃ · · · ⊃ Hk ⊃ . . . . As we trim
vertices and edges from our graphs, the sets Sv, Gv get updated. If at no point we
find the collection R of r vertices, we aim to reach a set of axis-parallel boxes of
the form box(Sv) that contradict the colorful Helly theorem.

For any sub-hypergraph H of HS(B, E), we can construct the sets Sv, Gv as
above, restricting to the edges of H. We say that the i-th class of H is (r, 2)-
disjoint if among any r sets of the form box(Sv) there are two that are disjoint.

Lemma 4.6. Let d, r, q be positive integers. There exists an integer Q = Q(d, r, q)
such that the following holds. Let i ∈ [d + 1] and H = Kd+1(Q). Assume that
for each edge e of H, a point se ∈ S is given, and we construct the sets Sv, Gv as
above. Then, at least one of the following two statements holds:

• there is a set R of r vertices of the i-th class of H such that
⋂

v∈R Gv ̸= ∅;
• there is a subhypergraph of H ′ of H whose i-th class is (r, 2)-disjoint.

Establishing Lemma 4.6 finishes the proof of Theorem 4.4. Provided t is large
enough, as long as we don’t find a class of vertices R as in the first statement (in
which case we would be done), we can start using Lemma 4.6 iteratively to try
to make each class (r, 2)-disjoint. If every class is (r, 2)-disjoint, we choose two
vertices in each class corresponding to disjoint boxes of the form box(Sv) in Rd.
By construction, if we pick one box from each pair, they correspond to an edge
e of our hypergraph, so se is contained in each of the corresponding boxes. This
construction contradicts Helly’s colorful theorem.

Now let’s prove Lemma 4.6. Denote by Kd+1(x1, . . . , xd+1) the complete (d +
1)-partite (d + 1)-uniform hypergraph in which the j-th class has xj vertices.
We assume without loss of generality that i = 1. Our starting hypergraph is
Kd+1(Q,Q, . . . , Q). We pick any q vertices of the first class and restrict ourselves
to them, so we have a new hypergraph H0 = Kd+1(q,Q,Q, . . . , Q). Denote by V1

the q vertices of the first class of H0. Let R1 be an r-tuple of vertices of V1.
Consider the r (multi)sets Sv for v ∈ R1. Note that the cardinality of each Sv

does not depend on v, as we get one point for each edge containing v. In other
words, the set Sv is indexed by Kd(Q) (call this set I). We can apply Lemma 4.3
to them. If item (1) holds, we have found our r sets Gv that intersect. If the
second happens, we can keep a subset I ′ ⊂ I with at least (1/2d) such that two of
the corresponding boxes box(S′

v) are disjoint. Now look at the subgraph of Kd(Q)
induced by this set I ′ of edges. Since it contains a (1/2d)-fraction of the edges of
Kd(Q), by the Erdős-Simonovitz theorem, there is a number q1 = q1(Q) such that
there is a Kd(q1) induced in this subgraph. Now, restrict H0 = K(q,Q, . . . , Q) to
H1 = K(q, q1, . . . , q1), by restricting the j-th class of H0 to the (j + 1)-th class of
this Kd(q1) for all j ∈ [d].

What we have achieved is that now, the r-tuple R1 induces a pair of disjoint
boxes. We repeat this process

(
q
r

)
times, once for each r-tuple of V1. If we never

found an r-tuple of vertices of V1 that induce an intersecting r tuple of sets of the
form Gv for v, we get a sequence of hypegraphs Hk = Kd+1(q, qk, . . . , qk) for a
decreasing sequence Q > q1 > · · · > qk > . . . . Provided that Q is large enough, we
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Figure 1. An example of a set H and two H-convex sets. Note
that an H convex set does not need to have a facet for each element
of H.

will have qk ≥ q for k =
(
q
r

)
. At this point, we can assume without loss of generality

that qk = q for k =
(
q
r

)
, and we have proven the lemma. □

5. H-convex sets

If we want to generalize the discrete Helly-type theorems of this manuscript to a
wider family of sets that axis-parallel boxes, we can use H-convex sets. These sets
have been studied before for their Helly-type properties [BM03,SXS21].

Definition 5.1 (H-convex set). Let H ⊆ Sd−1 be a set of vectors in the unit ball
which are not contained in any closed half sphere. A set is H-convex if it can be
written as the intersection of halfspaces of the form H(h, c) = {x ∈ Rd : ⟨x, h⟩ ≤ c}
where h ∈ H and c ∈ R.

We present an illustration of H-convex sets in Fig. 1. For any fixed H, the
intersection of finite number of H-convex sets is also a H-convex set. This key
observation allows us to generalize the proofs of the previous sections to this class
of polytopes. The case of axis parallel boxes can be recovered by letting H =
{±e1, · · · ,±ed} where e1, · · · , ed are the elements of the canonical basis of Rd.

Let us state a Halman-type theorem for H-convex sets.

Theorem 5.2. Let H be a finite set of unit direction vectors in Rd which are not
contained in any closed half unit sphere. Let k = |H| and S ⊂ Rd be a discrete point
set. Let F be a finite family of H-convex sets such that |F| ≥ k. If the intersection
of any k sets of F contains a point of S then ∩F contains a point of S.

Proof. Assume without loss of generality that −e1 ∈ H, and order the points of S
lexicographically. For each (k−1)-tuple A of sets in F , consider their lexicographic
maximum s ∈ S in

⋂
A. Let A0 be the (k−1)-tuple whose lexicographic maximum

s0 is minimal.
Let B be any other set in F . We will show that s0 ∈ B. Assume for the sake

a contradiction that B does not contain s0. Then, notice that R = B ∩ (
⋂

A0) is
an H-convex set. Each facet of R is determined by a hyperplane. For each such
hyperplane π, there must be a set in {B}∪A0 that has π as a support hyperplane.
Let B ⊂ {B} ∪ A0 be the family of sets constructed this way for each facet of
R, except the facet in direction −e1 (if there is one). Therefore, B has at most
k − 1 sets. If B has fewer than k − 1, we can complete it to a (k − 1)-tuple using
sets of {B} ∪ A0. Notice that all points in

⋂
B are in R ⊂

⋂
A0 or have smaller
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first coordinate. Since R must have points of S, it means that the lexicographic
maximum of

⋂
B is smaller than s0, giving us the contradiction wanted.

As every other set B must contain s0, we have the desired result. □

Another interesting example of H-convex sets is when H = d + 1. In this case,
all H-convex sets are homothetic simplices.

Note that the argument of the proof above is identical to the one in the proof
of Theorem 1.2, so a colorful quantitative version of Theorem 5.2 follows, which we
include below.

Theorem 5.3. Let H be a finite set of unit direction vectors in Rd which are not
contained in any closed half unit sphere. Let k = |H|, n be a positive integer, and
S ⊂ Rd be a discrete point set. Let F1, . . . ,Fk be finite families of H convex sets
such that the intersection of every k-tuple F1 ∈ F1, . . . , Fk ∈ Fk contains at least n
points of S. Then, there exists i ∈ [n] such that

⋂
Fi contains at least n points of

S.

Just as the quantitative Halman theorem implied a version for measure, the case
F1 = · · · = Fd implies a quantitative version of Theorem 5.2 for any measure. This
improves earlier quantitative results for H-convex sets, as the methods only worked
for log-concave measures [SXS21, Theorem 2.3.2].

The same construction of discrete nerve complexes as in Section 3 shows that the
corresponding discrete nerve complexes for H-convex sets are (|H| − 1)-collapsible.
Therefore, we obtain for free colorful matroid versions of Theorem 5.2 and fractional
versions of Theorem 5.2.

Theorem 5.4. Let H be a finite set of unit direction vectors in Rd which are not
contained in any closed half unit sphere and k = |H|. Let S be a finite set in Rd

and M be a matroid complex with rank function ρ and vertex set V . For each v
in M , we are given an H-convex set Kv in Rd. For each independent set U ⊂ V ,
there is a point of S in

⋂
v∈U Kv ⊂ Rd. Then, there exists a set T ⊂ V such that

ρ(V \ T ) ≤ k − 1 and such that there is a point of S in
⋂

v∈T Kv.

Just as the methods of Bárány and Matoušek carry over to axis-parallel boxes,
if we apply the arguments of Section 4 to H-convex sets we prove the following
result.

Theorem 5.5. Let H be a finite set of unit direction vectors in Rd which are not
contained in any closed half unit sphere and k = |H|. Let d be a positive integer
and α ∈ (0, 1). There exists β = β(α, d, k) > 0 such that the following holds. If

S is a finite set in Rd and B is a finite family of H-convex sets such that α
( |B|
d+1

)
of the (d + 1)-tuples of B satisfy that their intersection contains points of S, then
there is a subfamily of at least β|B| sets of B whose intersection contains a point of
S.

In this case, even though we can make the Helly number for H-convex sets as
large as we want, the fractional version only requires us to verify (d+ 1)-tuples.
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[Hel23] Eduard Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkte., Jahres-

bericht der Deutschen Mathematiker-Vereinigung 32 (1923), 175–176.

[HW17] Andreas F. Holmsen and Rephael Wenger, Helly-type theorems and geometric transver-
sals, 2017, pp. 91–123.

[Kal84] Gil Kalai, Intersection patterns of convex sets, Israel journal of mathematics 48 (1984),

no. 2-3, 161–174.
[KM05] Gil Kalai and Roy Meshulam, A topological colorful Helly theorem, Advances in Math-

ematics 191 (2005), no. 2, 305–311.
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