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Abstract. We prove a common generalization to several mass partition results using
hyperplane arrangements to split Rd into two sets. Our main result implies the ham-
sandwich theorem, the necklace splitting theorem for two thieves, a theorem about
chessboard splittings with hyperplanes with fixed directions, and all known cases of
Langerman’s conjecture about equipartitions with n hyperplanes.

Our main result also confirms an infinite number of previously unknown cases of
the following conjecture of Takahashi and Soberón:

For any d+k−1 measures in Rd, there exist an arrangement of k parallel hyperplanes
that bisects each of the measures.

The general result follows from the case of measures that are supported on a finite
set with an odd number of points. The proof for this case is inspired by ideas of
differential and algebraic topology, but it is a completely elementary parity argument.

1. Introduction

Understanding how one can split families of measures on real spaces into pieces of
the same size is a central topic in topological combinatorics [RPS22, Živ17]. The classic
example, known as the ham sandwich theorem, states that given d smooth probability
measures on Rd, there exists a hyperplane simultaneously splitting each measure in half.

Early popularity of this theorem was likely due to the elegance of its proof and maybe
to the culinary reference. Before Tukey and Stone called it the ham sandwich theorem
(as we slice a ham and two pieces of bread simultaneously) Steinhaus used the motivation
of a leg of pork (as we slice fat, bone, and meat).

A myriad of related results have appeared since then, many of them recover the
foodie references (cakes [ANRCU98], spicy chickens [KHA14], pizzas [BPS19], etc.),
most of these results are proven with topological methods, which range from fixed point
and Borsuk–Ulam type theorems to more advanced techniques in algebraic topology
(cohomological index theory, equivariant obstruction theory, spectral sequences, etc).
Even splitting measures with families of few hyperplanes can lead to very rich topological
statements (see, for instance, the history of the Hadwiger–Grünbaum–Ramos theorem
[BFHZ18]).

Beyond their inherent interest, these results have numerous applications in various
fields like computational geometry [Mat94], combinatorial geometry [APP+05,FGL+12]
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convexity [Leh09,FHM+19], geometric analysis [Gro03,Gut10], harmonic analysis [Gut16]
and incidence geometry [GK15]. In these applications one may use partitions in which
one part avoids a hyperplane [YY85], partitions in which continuous functions on con-
vex bodies are equalized [Gro03,FHM+19], or partitions by the zero set of a polynomial
[ST42]. The current paper extends this last type of result for polynomials that are
products of affine functions satisfying certain constrains. As in the classical polynomial
ham sandwich theorem, the Veronese trick combined with our theorem imply non linear
avatars as corollaries.

Results which deal with partitions of Rd into two sets separated by a possibly singular
(d − 1)-dimensional manifold are known as “chessboard colorings”. The most studied
family of examples of chessboard colorings are the ones that have an hyperplane arrange-
ment as boundary. Depending on the number of hyperplanes used and conditions on
their position, there have been several important results in the area. The backbone of
the proof of each of these results is topological, most boiling down to the study of zeros
of certain equivariant maps (the group involved changes from theorem to theorem).

1.1. Our result. The main result of this manuscript is a common generalization to sev-
eral known results regarding chessboard colorings bounded by hyperplane arrangements.
A surprising aspect of the proof is that, rather than proving a common generalization
to a scattered set of Borsuk–Ulam-type theorems, our elementary proof was inspired by
one of the proofs of the Borsuk–Ulam theorem. The main idea is to study the parity of a
discrete set of partitions as we go through some geometric deformation of the measures.
The idea behind this approach, in the language of differential topology was used by
Hubard and Karasev to confirm new cases of a conjecture of Langerman [HK20]. Later,
Patrick Schnider managed to make the argument elementary in dimension two [Sch21].
We show how this elementary approach can be used in any dimension and involving
families of parallel hyperplanes, which increases significantly the number of results we
generalize. Let us first describe the main theorem in full generality, and then specify
how it implies several known results.

Given two positive integers m, k, let S(m, k) be the Stirling number of the second kind.
This counts the number of partitions of a set of m elements into k non-empty sets. Given
positive integers m1, . . . ,mn and M = m1 + · · ·+mk, let

(
M

m1,...,mn

)
be the multinomial

coefficient that counts the number of ordered partitions of a set of M elements into n
sets U1, . . . , Un such that |Ui| = mi for each i.

An oriented hyperplane h in Rd defines two closed halfspaces: h+ and h−, which we
refer to respectively as the positive and negative halfspace of h. A finite family F of
oriented hyperplanes in Rd defines a chessboard coloring, which is a pair of set (A,B)
defined as:

A = {x ∈ Rd : x is in an even number of positive halfspaces of hyperplanes of F}

B = {x ∈ Rd : x is in an odd number of positive halfspaces of hyperplanes of F}.

Notice that since a hyperplane is the zero set of an affine function, a : Rd → R,
given a family of hyperplanes, with corresponding affine functions {a1, a2, . . . aM} their
chessboard coloring can alternatively be succinctly described by

A = {x ∈ Rd : p(x) ≥ 0} and B = {x ∈ Rd : p(x) ≤ 0}, where,
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p(x) := ΠM
i=1ai(x).

Given a hyperplane arrangement, with corresponding chessboard partition (A,B),
and a finite Borel measure µ, we say that the arrangement bisects the measure if

min(µ(A), µ(B)) ≥ µ(Rd)

2
.

A central instance of this definition is when a finite measure µ is absolutely continuous
with respect to the Lebesgue measure (or more generally, µ(h) = 0 for every affine
hyperplane h), in this case the bisecting condition is simply:

µ(A) = µ(B).

Theorem 1.1. Let n, d be positive integers, and L1, L2 . . . , Ln be subspaces of Rd of
positive dimension. Let li = dimLi, and k1, . . . , kn be positive integers. Let G be the
subgroup of permutations of [n] = {1, . . . , n} such that for every g ∈ G, Lg(i) = Li and

kg(i) = ki for all i. Put mi := li + ki − 1, M :=
∑n

i=1mi. Suppose that

N :=
1

|G|

(
M

m1,m2 . . . ,mn

) n∏
i=1

S(mi, ki) ≡ 1 mod 2.

Then, for any M finite measures on Rd, there exist unit vectors v1 ∈ L1, v2 ∈ L2 . . . ,
vn ∈ Ln, and families of hyperplanes F1, . . . ,Fn such that for each i, each hyperplane
in Fi is orthogonal to vi, |Fi| = ki, and the chessboard coloring induced by the family⋃n

i=1Fi bisects each of the M measures.

In one case this condition was known to be necessary for the theorem to hold. The
case is n = 2, l1 = l2 = 1, k1 = k2 = 1, and a counterexample was constructed by
Karasev et al. [KRPS16]. In Section 4 we extend this known counterexample to many
instances with li = 1 for all i.

Question 1.2. Is the numeric condition condition of Theorem 1.1 necessary.

We now make a few remarks to shed some light on this condition. Firstly, the group
G is a direct product of symmetric groups. A subset I ⊂ {1, 2, . . . n} gives rise to a
factor SI , if and only if, for all i, j ∈ I, Li = Lj and ki = kj . Secondly, the multinomial

coefficient
(

M
m1,m2...,mn

)
is odd when the expressions of the numbers {m1,m2, . . .mn}

written in base two don’t share any non zero term (for instance if for each i, mi = 2i,
then the multinomial coefficient is odd, in contrast if e.g. m1 = 1,m2 = 3, then it is
even, since in binary m1 = 01 and m2 = 11). Finally, it is known that:

S(m, k) ≡
(
m−

⌈
k+1
2

⌉⌊
k−1
2

⌋ )
mod 2.

Combining the previous remarks one can precisely understand in which cases N is
odd. Let us specify some instances of the theorem above that give interesting known
results.

• The case n = 1, L1 = Rd, k1 = 1 is the ham sandwich theorem [Ste38]. Since
S(d, 1) = 1, we don’t impose any additional conditions.
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• The case d = 1, n = 1 and any k is the “necklace splitting theorem”. This was
originally proved by Hobby and Rice [HR65] and then rediscovered in the 80’s
with two new proofs [GW85,AW86]. As S(k, k) = 1, we don’t impose any new
requirement on k.

• The case n = 1, L1 = Rd, k1 = 2 is a recent result of Soberón and Takahashi
[ST22], which says that for any d + 1 measures in Rd, there are two parallel
hyperplane whose chessboard coloring bisects each measure. Notice that since
S(d+ 1, 2) is always odd for d ≥ 1, we don’t impose additional conditions on d.

• The case l1 = · · · = ln = 1 is a result of Karasev, Roldán-Pensado, and Soberón
[KRPS16], which describes chessboard colorings by families of hyperplanes with
fixed directions. The condition of parity of a multinomial coefficient is the same
in the theorem above as the one found by Karasev et al.

• The case L1 = · · · = Ln = Rd and k1 = · · · = kn = 1 is recent result of Karasev
and Hubard [HK20] which solved an infinite number of instances of a conjecture
of Langerman [BPS19] that states the following. For any dn measures in Rd there
exist n hyperplanes whose chessboard coloring bisects each of them. The condition
of parity of the multinomial coefficient boils down to the dimension being a power
of 2, like in the aforementioned paper [HK20]. Blagojević et al showed how the
same cases can be confirmed with a different approach [BDBKK22].

The case n = 1, L1 = Rd and any k confirms an infinite number of cases of the
conjecture below, due to Takahashi and Soberón [ST22]. This is one of many generaliza-
tions of the necklace splitting theorem to higher dimensions, see [LŽ08,BS18] for other
generalizations.

Conjecture 1.3. For any d+ k − 1 measures in Rd, there exist k parallel hyperplanes
whose induced chessboard coloring simultaneously bisects every measure.

We confirm Conjecture 1.3 when S(d + k − 1, k) is odd. Our theorem provides for
each d an infinite set of positive integers k, and for each k an infinite number of ds, for
which the pair (d, k) satisfies this conjecture. In fact, if we arrange the pairs (d, k) for
which Theorem 1.1 implies the Takahashi–Soberón conjecture in a triangular array we
obtain a Sierpinski triangle pattern.

1.2. Veronese trick. Since the regions are bounded by hyperplanes, we can replace
them by sets defined on the zeroes of a polynomial. This is better illustrated with an
example, as in the following corollary, in which we consider a line as a degenerate case
of a circle with center at infinity.

Corollary 1.4. Let µ1, . . . , µ7 be seven finite measures on R2, each absolutely continuous
with respect to the Lebesgue measure. There exist two concentric circles, a line and a
vertical line whose union induces a chessboard coloring that bisects each measure.

Proof. Consider the map (x, y) → (x, y, x2 + y2). This lifts each of the measures to a
regular paraboloid P in R3. Moreover, if H is a plane in R3, the projection of H ∩ P
onto the xy-plane is a circle. If H has a normal vector in the xy-plane, then H ∩ P
projects down to a line. Apply Theorem 1.1 to the lifted measures using n = 3 and:

• L1 = R
3, k1 = 2 (these two parallel planes will give the two concentric circles)
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• L2 equal to the the xy-plane, k2 = 1 (this will give us the line without conditions),
and

• L3 = span{(1, 0, 0)}, k3 = 1.

Since
(

7
4,2,1

)
= 105, S(4, 2) is odd, and S(3, 1) = S(2, 1) = 1, we meet the conditions

of Theorem 1.1. □

The idea of using this trick for ham sandwich type results is already implicit in the
seminal paper [ST42] of Stone and Tukey. We can combine the Veronese trick with careful
choices for the spaces L1 to get chessboard partitions induced by curves of seemingly
very different polynomials.

1.3. Notation. To shorten some statements in the rest of the paper use the notation
of Theorem 1.1 throughout, we also use the following notation and terms:

• k := (k1, . . . , kn), l := (l1, . . . , ln) are positive integer vectors with n entries each
(in a lemma we will take n = 1).

• BL1 , . . . , BLn are basis of the orthogonal subspaces L⊥
1 , . . . , L

⊥
n

• H = ∪n
i=1Hi, where for each i, Hi := {hi,1, hi,2 . . . hi,ki} is an arrangement of ki

parallel hyperplanes.
• µ− = {µ1, µ2, . . . , µM} is a family measures on Rd.

1.4. Summary. The proof of Theorem 1.1 has three steps. First, we construct a par-
ticular family of measures supported in sets of an odd number of points for which the
number of bisecting arrangements is exactly N . Second, we show that for any deforma-
tion of these point sets the parity of the number of bisecting hyperplane arrangements
is invariant.

Finally, we show that the result for measures supported on an odd set of points implies
the general result.

2. The ham sandwich theorem revisited

In this section we show how our method give a new and elementary proof of the
ham sandwich theorem. This is a particular case of the general proof described in the
next sections, but may help the reader build intuition about this approach. Due to the
equivalence of the Borsuk–Ulam theorem and the ham sandwich theorem [KS17], this
can be used as one of the ingredients of a new convoluted proof of the Borsuk–Ulam
theorem.

First, we state the version of the ham sandwich we will prove.

Theorem 2.1. If U1, . . . , Ud are d sets of points in Rd, each with an odd cardinality and
such that their union is in general position. Then, there exist points p1 ∈ U1, . . . , pd ∈ Ud

such that the hyperplane spanned by p1, . . . , pd halves each of the sets U1, . . . , Ud.

Proof. We will show that the number of such halving hyperplanes is odd, so it cannot
be zero. It is not difficult to show (see [BHJ08]) that if the sets M1, . . . ,Md are well
separated (the convex hull of the union of any collection is disjoint from the convex hull
of the union of the rest), then there is exactly one halving hyperplane. We consider each
of U1, . . . , Ud as a different color.
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• r1

◦ r(t)◦

•
•

•
•

•
•

•
◦

•b

•

•

Figure 1. Here U(t) = U1(t) ∪ U2(t) ⊂ Rd, represented by red and
black points. The red hollowed point r(t) moves right along the arrows
line. It is represented at three different times. Before the movement the
dashed blue line h containing r1 and b bisects the point sets. When r(t)
is incident to h, the line h′(t) spanned by r(t) and b is almost bisecting
and coincides with h. When r(t) passes to the right of h, the line h′(t)
becomes bisecting, and h stops being bisecting.

Suppose we have another configuration of points U ′
1, U

′
2, . . . , U

′
d such that |Ui| = |U ′

i |
for each i. Consider a bijection between Ui and U ′

i for each i. We are going to move
continuously the points of (U1, . . . , Ud) to their corresponding points in (U ′

1, . . . , U
′
d).

For each point p ∈
⋃

i Ui this gives us a function p : [0, 1] → Rd such that p(0) = p
and p(1) is the corresponding point in

⋃
i U

′
i . Let (U1(t), . . . , Ud(t)) be the induced

configurations of points at time t. We may assume without loss of generality that only
for a finite number exceptional times the configuration is not in general position, and
when the configuration is not in general position, there is a unique (d+1)-tupe of points
contained in a hyperplane.

Each halving hyperplane at a time when (U1(t), . . . , Ud(t)) is in general position goes
through one point of each color. For each colorful d-tuple X(t) at time t, let hX(t) be
the hyperplane they span. Consider a colorful d-tuple A(t), corresponding to a halving
hyperplane. If A stops being a halving hyperplane at time t0, it means that there is an
ε > 0 such that hA(t0 − ε) is a halving hyperplane, and hA(t0 + ε) is not. Moreover,
hA(t0) must contain a point p of the configuration that is not in A. Suppose that the
point is of color i, and let B be the colorful d-tuple formed by replacing the point pi of
color i from A by p. Note that hB(t0) = hA(t0), so it halves all colors except i, which is
almost balanced. Moreover, pi is on different sides of hB(t) for t = t0 − ε and t = t0 + ε,
so exactly at one of those times hB(t) is a halving hyperplane.

If hB(t + ε) is a halving hyperplane, then the total number of halving hyperplanes
did not change. If hB(t − ε) is a halving hyperplane, then the total number of halving
hyperplanes decreased exactly by two. An analogous analysis shows that when a hyper-
plane starts being a halving hyperplane, then the total number of halving hyperplanes
either stays constant or increases by two. Therefore, the parity of halving hyperplanes
does not change. Since there is a configuration with exactly one halving hyperplane, we
are done. □
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Once we involve families of parallel hyperplanes, there will be more nuance for the
parity analysis. The key ideas remain the same.

3. Proof

We will say that a measure is oddly supported if it is the sum of an odd number of
delta masses. Generic families of oddly supported measures are central to our approach,
because in this case, one of the points of each measure lies in the hyperplane arrangement,
and each of the open chessboard regions contains exactly half of the remaining points. In
consequence, the number of bisecting arrangements for generic oddly supported measures
is finite.

3.1. Points in generic position. We say that a finite set of points S inRd is in generic
position if the set of all d|S| coordinates of the points is algebraically independent. In
other words, the only multinomial with integer coefficients that has a zero if we evaluate
it using only values of the d|S| coordinates is the constant zero. In particular, if S is
in generic position any d vectors formed by the differences of d different pairs of S that
don’t form any cycles is a linearly independent set. Notice that this condition is much
stronger than general position, in which we require that no d+ 1 points of S contained
by a hyperplane. Indeed, if we have x0, . . . , xd points in a hyperplane, the d vectors of
the for xi − x0 would be linearly dependent. It is easy to show that if {x1, x2, . . . xm} is
a point set and {ξ1, ξ2, . . . ξm} is a set of independent random vectors, chosen uniformly
from the ball B(0, δ) of radius δ > 0, then {x1 + ξ1, x2 + ξ2, . . . xm + ξm} is in generic
position almost surely.

Whenever we have a partition of a set, its core consists of all the subsets of the
partition that have more than one element. In the following discussion, we intentionally
use language loosely and conflate a partition of a point set with the corresponding
partition of the finite set that indexes the point set.

Lemma 3.1. Let L be a subspace of Rd of dimension l, BL a basis of L⊥, and P a set
of m = l − 1 + k points such that P ∪BL is in generic position in Rd. The set k-tuples
of parallel hyperplanes whose union contain P and whose normal vector is contained in
L is in bijection with the partitions of P into k non-empty sets.

Proof. Suppose that h1, . . . , hk are parallel hyperplanes whose union contains P and
whose normal vector v is contained in L. We claim that none of the sets of the partition
χ = (h1 ∩ P, . . . , hk ∩ P ) is empty. Let r be the number of non-empty sets in this
partition. For each i ≤ k such that hi ∩ P is in χ choose some element pi ∈ hi ∩ P . Put
ki := |hi ∩ P |. Let V be the union ∪iVi, where Vi is the set of vectors of the form q − pi
with q ∈ hi ∩ (P \ {pi}). Then

|V | =
r∑

j=1

(kj − 1) = (l + k − 1)− r.

If r ≤ k−1, this means that we have constructed a set V of at least l vector differences,
contained in v⊥. Since BL contains d−l vectors, and BL∪V ⊂ v⊥, then the set BL∪V is
linearly dependent, contradicting the generic position assumption. Hence r ≥ k, showing
that each hyperplane contains at least one point.
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Now, consider a partition χ of P into k non-empty sets P1, . . . , Pk. For any Pi, consider
a point pi ∈ Pi, and then take the |Pi|−1 vectors q−pi for q ∈ Pi\{pi}. We have formed

a total of
∑k

i=1(|Pi| − 1) = l − 1 vectors. These vectors together with BL are linearly
independent, so they form a basis of a hyperplane h. Then, consider hi the translate of
h through pi. By construction, Pi ⊂ hi ∩ P . By the arguments above, it is not possible
to cover P with fewer than k translates of h, so Pi = hi ∩ P . This means that for
every partition of P into k non-empty subsets, there exists a k-tuple of translates of a
hyperplane that induces that partition with perpendicular vector in L.

In fact the two functions we described from partitions to arrangements, and from
arrangements to partitions are inverses of each other. □

Before generalizing this lemma to arrangements with several sub-arrangements of
parallel hyperplanes, we prove a similar lemma that will be used in Section 3.3.

Lemma 3.2. Let L be a subspace of Rd of dimension l, BL a basis of L⊥, and P a set
of m = l − 2 + k points such that P ∪BL is in generic position in Rd. Let X be a fixed
partition of P into k non-empty subsets. There is a unique subspace K of dimension
d− 2 such that there exists a vector v ∈ L orthogonal to K and there are k translates of
K that cover P inducing X as a partition of P .

Proof. The proof is analogous to the one for Lemma 3.1. Let X = X1 ∪ · · · ∪Xk. Pick
a point pi ∈ Xi for each i = 1, . . . , k, and consider the l − 2 vectors of the form p − pi
for p ∈ Xi \ {pi}. These, together with BL, form d − 2 linearly independent vectors,
which gives us the basis for K. The k translates of K containing each of p1, . . . , pk are
the affine spaces we were looking for. □

Let l and k be two non negative integer vectors of length n. A valid (l, k)-partition
of a finite set [M ], consists of a labeled partition of [M ] into n subsets, each of which is
refined to an unlabeled partition of non-empty subsets. The i-th set of the first partition
must have cardinality li−1+ki, which is refined into ki non-empty subsets in the second
partition.

For example if M = 7, and l = (2, 2), k = (3, 2), then a valid (l, k) partition of the set
[7] = {1, 2, 3, 4, 5, 6, 7}, can be represented by

14|3|7||25|6,
where the first ordered partition is 1347|256 and the subset 1347 is partitioned to

14|3|7, while the set 256 to 25|6. As a valid partition, it is equivalent to

3|41|7||6|52,
since the order of the refined partition is irrelevant, but different from,

25|6||14|3|7.
since the order of the first partition is relevant.

Given a point set P in Rd with cardinality M , we say that a hyperplane arrangement
H := H1 ∪ H2 ∪ . . . ∪ Hn is (L, k, P )-valid, if each hyperplane contains at least one
point of P , Hi consists of ki parallel hyperplanes all of which are perpendicular to
some vi ∈ Li. We also say that two such arrangements H := H1 ∪ H2 ∪ . . . ∪ Hn and
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H′ := H′
1 ∪H′

2 ∪ . . .∪H′
n are equivalent if there is a permutation g : [n] → [n] such that

Hi = Hg(i), Lg(i) = Li, and kg(i) = ki for all i ∈ [n].

Lemma 3.3. Let n, d be positive integers, and L1, L2 . . . , Ln be subspaces of Rd of posi-
tive dimension. Let li = dimLi, and k1, . . . , kn be positive integers. Let G be the subgroup
of permutations of [n] = {1, . . . , n} such that for every g ∈ G, Lg(i) = Li and kg(i) = ki
for all i. Put mi := li + ki − 1, M :=

∑n
i=1mi. Let P := {p1, p2 . . . pM} be a set of

points, such that P ∪BLi is generic for i = 1, . . . , n. For every (l, k)-valid partition χ of
P , there exists a unique (L, k, P )-valid hyperplane arrangement F = F1 ∪ · · · ∪ Fn such
that the induced refined partition {h ∩ P : h ∈ F} is the valid partition χ. Additionally,
the number of equivalence classes of (L, k, P )-valid partitions is N .

Proof. By Lemma 3.1, if a hyperplane arrangement is (L, k, P )-valid, the condition on
each Hi imply that |P ∩ Hi| = li + ki − 1 for all i. So H corresponds to an (l, k)-valid
partition of P : we must first find an ordered partition of P into sets of size l1 + k1 −
1, . . . , ln + kn − 1 to determine the sets Hi ∩P . Then, to find the hyperplanes of Hi ∩P
we must find a partition of Hi into ki non-empty parts.

Notice that for each maximal subset of indices I such that for all i, j ∈ I, Li = Lj and
ki = kj , we are over-counting the corresponding arrangements |I|! times. The number
of equivalence classes follows directly.

□

In what follows, l, k, L and P are always fixed in advance, so to unclutter notation we
just talk about valid partitions, and valid arrangements but we insist that we are
actually talking about a partition and a refinement of it, on the one hand, and about a
hyperplane arrangement with certain constrains on their directions coming from L and
k.

3.2. Well separated families of almost symmetric measures. Now we construct a
particular family of generic oddly supported measures. Suppose we are given the family
L of subspaces and the vectors k, l. We say that a family of sets {K1,K2, . . .KM} in Rd

for M > d is well separated if for each i = 1, . . . , n a set of ki parallel hyperplanes,
whose normal vector is in Li, can intersect at most ki+ li− 1 sets of the form conv(Kj).

We say that a point set X is symmetric around x if for any point x′ ∈ X, the point
2x − x′ is also in X. It follows directly that a linear projection of a point set which
is symmetric around x, is itself symmetric around the image of x. We will say that a
pointset X is roughly symmetric around x if for any linear projection π : Rd → R,
π(x) is the median of π(X).

Notice that given a set of point sets in generic position P , it is easy to construct a
colored point set, with one color for each point in P , such that the color classes are well
separated and each color class is roughly symmetric around a point in P . One chooses
ϵ small enough so that the balls {B(p, ϵ) : p ∈ P} are well separated, choosing for each
such ball B(p, ϵ) a sample of random points together with their antipodals with respect
to p, yields a set symmetric with respect to p. Perturbing the whole construction, each
point independently at random, without moving any of them more than a very small
constant δ > 0, makes each color class roughly symmetric around a point in the set and
the union with some fixed subset in generic position.
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Lemma 3.4. Let L be an ordered set of n sub-spaces of positive dimension of Rd, put
li = dim(Li), (k1, k2, . . . kn) ∈ Nn, and P a set of M points such that for each i, P ∪BLi

is in generic position. Let U be a well separated M -colored point set, such that for each
j ∈ [M ], Uj is roughly symmetric around pj, Uj ⊂ B(pj , ϵ), and for each i ∈ [n], U ∪BLi

is generic. The set of labelled valid arrangements that bisect each measure equals the set
of (l, k)-valid partitions of [M ].

Proof. By Lemma 3.3,there exists a bijection between valid arrangements and pairs
(χ, S) where χ is a valid partition of [M ] and S ⊂ U a colorful subset. We claim a valid
arrangement is bisecting, if and only if, the corresponding pair (χ, S) has S = P . Indeed,
the well separated condition implies that the partiton of Uj induced by the cheesboard
regions depends only on the unique hyperplane h ∈ H, for which h ∩ Uj ̸= ∅. Since Uj

is roughly symmetric, h bisects Uj if and only if h ∩ Uj = pj . □

In particular, the number of equivalence classes of valid arrangements that bisect each
set of points is N .

3.3. Parity under deformation. This section contains the key step in the proof of
Theorem 1.1. We refer to a smooth family of colored point sets parameterized by [0, 1]
as a path of point sets, which we denote by U(t) := {Ui(t)}Mi=1. As before, we assume
that each color class has an odd number of (paths of) points. We say that a path of
point sets is generic with respect to an n-tuple of sets of vectors {BLi}i∈[n] if for at
most a finite set of times t, which we call exceptional times there is a unique i, such
that U(t) ∪BLi is not generic. Moreover we assume that at an exceptional time tj , the
pointset U(tj) is almost generic, in the following sense. There exists a colorful set S of
M points and a valid partition P of S such that the hyperplane arragement they induce
contains exactly M + 1 points. Moreover, this set of M + 1 points and the partition
generated is uniquely determined in the sense that there exist a unique index i ≤ M ,
and a set of vectors V (tj) ⊂ U(tj) such that for every subset U ′(tj) ⊂ U(tj), such that
U(tj)

′ ∪ BLi is not generic, then V (tj) ⊂ U ′(tj), and V (tj) ∪ BLi is non generic and
|V (tj)| = li + ki. We say that Hi is the oversaturated family of H.

Lemma 3.5. Let L be a family of n subspaces, and U(t) a generic path of odd point sets
of Rd. The parity of the number of valid bisecting arrangements does not depend on t.

Assuming this lemma we are ready to give a proof of Theorem 1.1 for generic oddly
supported measures.

Proof of Theorem 1.1. It is easy to see that any two generic families of point sets

{U1, U2, . . . UM}
and

{U ′
1, U

′
2, . . . U

′
M}

such that |Ui| = |U ′
i | can be connected by a generic path of point sets. One might

achieve this by choosing arbitrary bijections and moving one point at the time on a path
that avoids the (d− 2)-flats that contain more than d− 1 points of U . So if U(0) is an
arbitrary generic point set, with M color classes, with an odd number of points in each,
there exists a generic path of odd point sets U(t) such that the colored point set U(1) is
generic and the color classes are very well separated. By Lemma 3.5 the number of valid
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bisecting arrangements of U(0) has the same parity as the number of such arrangements
of U(1). By Lemma 3.3 the latter equals N . In particular if N is odd, at least one valid
bisecting arrangement should exist for U(0). □

If at an exceptional time there exists a hyperplane arrangement H, that is valid except
from the fact that it intersects two points of the same color, we call it, almost valid. For
non exceptional times we defined a bijection that takes each valid partition of a colorful
point set to a valid hyperplane arrangement. At exceptional times, this function is still
well defined but cannot be inverted. When we refer to a path of valid arrangements
H(t), we assume that the valid partition, and the colorful subset are fixed.

We will say that a valid arrangement is almost bisecting if it is bisecting for every
color class except for one that we call the unbalanced color. This color class is assumed
to contain two points that are incident to the arrangement and the number of points of
this color in the interiors of the chessboard regions differ by exactly one.

Claim 3.6. Let L be a family of n subspaces, and U(t) a generic path of M -colored
odd point sets of Rd, let t∗ be an exceptional time, so that H(t∗) is an almost bisecting
arrangement of U(t∗). If a point of the unbalanced color q(t∗) is contained in U(t∗)∩h(t∗)
for some h(t∗) ∈ H(t∗), but for ϵ > 0 small enough, q(t∗ − ϵ) /∈ h(t∗ − ϵ), then exactly
one of the arrangements H(t∗ − ϵ), H(t∗ + ϵ) is a valid bisecting arrangement.

Proof. Since the problem is local, we might parameterize in a neighbourhood around t∗
so that all the points of U(t) are fixed except for q(t) with a trajectory that is transversal
to h(t∗). From the definition of almost bisecting it follows that exactly one of the two
directions balances the color of q □

LetH be a valid or almost valid arrangement, andHi a sub-arrangement with common
perpendicular direction v in Li. The core of Hi, is the set of points in U that determine
the direction v, in other words a point in U ∩ Hi is in the core, if it is contained in a
hyperplane h ∈ Hi, such that |h ∩ U | > 1.

Lemma 3.7. If U(t) is a generic point set path, t∗ an exceptional time, and H(t∗) an
almost bisecting arrangement, then there exists a unique valid arrangement path F(t) ̸=
H(t), such that F(t∗) is almost bisecting, and the oversaturated family of F(t∗) has the
same core as the oversaturated family of H(t∗).

Before going into the proof of this key lemma, let us show how combining it with
Claim 3.6 we obtain Lemma 3.5.

Proof. Again we might think of q(t) moving and the rest of the points being fixed. Since
the path is generic any bisecting arrangement at time tj − ϵ that is not almost bisecting
at time tj , is bisecting in an interval that contains the interval [tj−1, tj+1]. So we only
need to analyze the paths of arrangements that are almost bisecting at tj . By Lemma 3.7
if there are any such arrangements, then there are exaclty two, H(tj + ϵ) and F(tj + ϵ).
Now we use Claim 3.6 to analyse the four cases: if both are bisecting, the number of
bisecting arrangements increases by two at tj , if both are non bisecting then number of
bisecting arrangements decreases by two at tj . If one of them is bisecting and the other
one is not (this can happen in two ways), then the number of bisecting arrangements
stays invariant at tj . □



12 HUBARD AND SOBERÓN

Our final step is proving Lemma 3.7.

Proof of Lemma 3.7. Assume that H(tj) is almost bisecting. We are going to stop the
movement of the points, and move continuously H(tj) along a path of arrangements
until we find another valid almost bisecting arrangement, F(tj).

We denote the resulting path of valid almost bisecting hyperplane arrangements by
A(s). So A(0) := H(t∗), A(1) := F(t∗) and for every s ∈ [0, 1], the point set U(t∗) is
fixed.

Denote by (S1, P1) the colored set of points and valid partition that induced H(tj−ε).
Find the unique hyperplane h1(t∗ − ϵ) ∈ H(t∗ − ϵ) that contains the point p1 of the
unbalanced color not in S1 at time tj . This is the only point contained by H(t∗) that is
not in S1. We denote by S = S1 ∩ {p1} the set of M + 1 points contained by H(t∗) and
by P the partition induced by H(t∗) on S, which consists of adding p1 to one of the sets
in the second layer of P1.

We call this h1, the moving hyperplane. It will remain the moving hyperplane until
we reach a point of U(t∗) and we might switch moving hyperplane. Denote by H(t∗) the
group of parallel hyperplanes that contains h1(t∗). Note that H(t∗) is the oversaturated
family of H(t∗).

Let h(t∗) the hyperplane of H(t∗) that contains the point p0 of S1 of the same color as
p1. It might be that h(t∗) = h1(t∗), this is what happens in the ham-sandwich theorem.
In this case, we can put F(t∗) = H(t∗). The arrangement F(t) will be induced by
replacing p0 by p1 in both S1 and P1. In general, if p0 is in the core of H(t∗), then we
can simply replace p0 by p1 in both S and P to obtain F(t∗). Otherwise, we will start
moving h(t∗), with the process described below, until we reach a new point of U(t∗).

We now explain how to define a path A(s) moving h1(s) (and sometimes the hyper-
planes parallel to it) until we reach a new point that defines a new unbalanced color,
which defines a new moving hyperplane h2(s). We repeat this process until we reach
a point that is in the core of H(t∗), at which point the process terminates. We first
describe the movement process, than then show that it always terminates.

We will define a sequence of hyperplanes h1, . . . , hr, . . . and time intervals

[s1, s2], . . . , [sr, sr+1]

such that hr is the moving hyperplane exactly in [sr, sr+1]. The path of arrangements
A(s) is the concatenation of all these movements. Below, we explain how hr(s) moves
when s ∈ [sr, sr+1]. We denote by j(r) the color that is unbalanced at time r. Through-
out this process

If hr−1 at time sr reaches a point whose color is not in the core of H(t∗):
Let hr(sr) be the hyperplane containing the other point of color j(r)
Case 1 : hr(sr) contains a single point.
In this case we translate hr(s) along its perpendicular direction. Among the two oppo-

site possible directions there is one along which the balance of color j(r) is immediately
fixed. We continue translating hr(s) in the same direction until we hit another point not
covered by the arrangement. We are allowed to pass the translation through infinity and
come back on the parallel hyperplane which arrives to convex hull of the points from
the opposite side. So eventually we hit a new point. The new point defines the new
unbalanced color j(r + 1), we let hr+1(s) be the hyperplane containing the other point
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of the new unbalanced color j(r+ 1). We update S and P and reiterate this procedure.
See Fig. 2.

Case 2 : hr(sr) contains more than one point.
Let p be the point of color j(r) in hr(sr). Let H

′ be the family of hyperplanes parallel
to hr(sr). Note that p is in the core of H ′. Since p is not in the core of H(t∗), this is
a different group of parallel hyperplanes. Denote by Lir the space that determines the
possible normal vectors for hr(sr), and ki(r) be the number of hypeplanes of H ′. Let X
be the set of points covered by H ′.

Consider the set X \ {p}. By Lemma 3.2, there is a unique (d− 2)-dimensional space
K and k translates of K that cover X \ {p} inducing the same partition as H ′ on them.
Let K1 be the translate that covers X ∩ hr(sr). Note that K⊥ is a two-dimensional
space. Under the orthogonal projection to K⊥, X \ {p} is mapped to k distinct points
p1, . . . , pk. The way we form H ′ is by joining p1 with the projection of p, forming a line
ℓ, and then take the inverse of the orthogonal projection of the k translates of ℓ that
contain each of p1, . . . , pk.

To rotate hr, we simply rotate ℓ around p1, doing the same for its k − 1 translates,
and then take the inverse image. As before, of the two possible directions to start the
rotation, there is a unique direction that balances color j(r). We continue this rotation
until the time sr+1 that a hyperplane of H ′ contains a point not previously contained by
A(sr) for s > sr. We update P, S and repeat this process. See Fig. 3 for an illustration.

This finishes the description of the algorithm to construct A(s).
Correctness
We now finish the proof of Lemma 3.7 Notice that every time we switch the moving

hyperplane, we obtain a new almost bisecting arrangement. We claim that the process
terminates by eventually reaching a new point in a color of the core of H(T∗).

Assume the contrary in search for a contradiction. The sequence of moving hyper-
planes is finite, since they are all almost valid, eventually we have to repeat a pair made
by a configuration and an unbalanced color, forcing us into a cycle.

However, the path A(s) is one dimensional and can be reversed all the way to H(t∗),
so there cannot be a cycle. □

3.4. From oddly supported to general measures. Our theorem follows for the
particular case in which each of the measures is of the form 1

|X|
∑

x∈X δx, and X ⊂ Rd

is a finite set with an odd number of points. An advantage of this case, which we call a
oddly supported measure, is that every family of parallel hyperplanes that bisects a set
with an odd number of points, must have one of the hyperplanes passing though one of
the points. Any affine hyperplane is the zero set of an affine function of the form

(x1, x2, . . . xd) → ⟨(x1, x2, . . . xd), (v1, v2, . . . vd)⟩+ vd+1,

where (v1, v2, . . . vd, vd+1) ∈ Sd. The cases where the first d coordinates of v are zero
corresponds to the the empty set when vd+1 = −1 and the whole space when vd+1 = 1.

Now for any Borel measure µ, ifX is a sample of 2r+1 points independently at random
from µ and form the measure µr := 1

|X|
∑

x∈X δx, then, as r tends to infinity, µ-almost

surely µr converges weakly to µ. That is, for every closed set C, lim supr→∞ µr(C) ≤
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H1 H1 H1

H2 H2 H2

p1
p1 p1

p2 p2 p2

p3 p3 p3

p(t− ε) p(t) p(t)

Figure 2. Example of a case when we a translation is needed. In this
case, p belongs to suppµ1 and will cross the hyperplane H2 of the ar-
rangement, which contains p2, p3. If p1, the point in the arrangement
from suppµ1, is contained in a hyperplanes H2 that contains no other
point of the arrangement, we need to translate H2 until it hits a new
point of U(t) not already contained in A(t). The direction we translate
H2 is uniquely determined by which region lost p(t − ε), as p1 should
replace p(t− ε) in that region.
This figure exemplifies the case when H2 is in the class of hyperplanes
parallel to H1. The same process follows if this is not the case. The
square boxes indicate the candidates for the points generating the new
arrangement B(t). If the first point H2 arrives to is in the support of
µ1(t), µ2(t), µ3(t), we would replace p(t), p2, or p3 by it, as needed. If it is
in the support of another measure, further translations or rotations are
needed to arrive to B(t).

µ(C). Assume that we have shown the theorem for oddly supported measures, let Ar, Br

be the corresponding (closed) chessboard regions.

Lemma 3.8. Let L1, L2, . . . Ln be subsapces of Rd, and µ be a Borel measure in Rd.
Let µr a sequence of measures converging weakly to µ. If for each r, (Ar, Br) is a valid
chessboard partition of Rd that bisects µr, then there exists a subsequence of chessboard
partitions that converges to a chessboard partition (A,B) that bisects µ.

Proof. The chessboard partition (Ar, Br) is determined by a valid hyperplane arrange-

ment Hr. Valid hyperplane arrangements are parametrised by a closed subset of (Sd)|Hr|,
which is a compact space. Hence, a subsequence of arrangements (and of chessboard
regions) converges to a hyperplane arrangement H.

Let A and B be the corresponding limiting chessboard regions. Then for any δ > 0
there exists r0 large enough, so that for every r > r0,

µ(A) ≥ µr(A)− δ ≥ µr(Ar)− µr(Ar \A)− δ ≥

µr(Ar)− µ(Ar \A)− 2δ ≥ µr(Ar)− 3δ ≥ 1

2
− 3δ,

hence µ(A) ≥ 1
2 , and similary for B. □
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p2

p3

p1

p(t− ε)

p2

p3

p1
p2

p3

p1

p(t) p(t)

H1 H1 H1

H2 H2
H2

p4 p4p4

Figure 3. A similar setting as Fig. 2, but now p1, the point of A(t) in
the same measure as p(t) is a hyperplane which has additional point of
the support (p3 in the figure above). In this case, we rotate the class of
hyperplanes parallel to H2. The rotation of H2 is around p3, and every
hyperplane parallel to H2 has a unique rotation point. The direction of
the rotation is uniquely determined, as p1 must be at time t in the same
region as p(t−ε) was at time t−ε. The rotation continues until the class
of hyperplanes parallel to H2 contain as new point of U(t) that is not
contained in A(t).

To derive Theorem 1.1 as claimed, we apply this lemma to each of the measures µi,
refining the converging subsequence of cheesboard regions. Since we do this a finite
number of times, the final subsequence converges. Notice that we are allowing for one
or more hyperplanes to escape to infinity.

4. Necessity of conditions

We show that for the case l1 = · · · = ln = 1, if L1, . . . , Ln are all different and at least
two of the numbers k1, . . . , kn are odd, then Theorem 1.1 may fail. Note that the parity
condition for Theorem 1.1 in that instance is that the mulitnomial coefficient(

M

k1, . . . , kn

)
must be odd. This happens if and only iff the numbers k1, . . . , kn do not share 1’s in the
same position when written in base two. If two of them are odd, then we are breaking
this property in the first instance.

Claim 4.1. Let l1 = · · · = ln = 1, and L1, . . . , Ln be n different lines in Rd through the
origin. Let k1, . . . , kn such that at k1, k2 are odd. Then, there is a set of M = k1+· · ·+kn
measures on Rd such that no set of M hyperplanes such that for each i ∈ [n], exactly ki
of the hyperplanes are orthogonal to li induces a chessboard coloring that bisects each
measure.

Proof. We will divide the proof into two cases, when M is even and when M is odd.
Case 1. M is even.
In this case, consider a set of M/2 segments in Rd such that none of them is parallel

nor orthogonal to an Li, and their midpoints are in general position. Assume that the
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segments are sufficiently short so that no hyperplane orthogonal to an Li can intersect
two of the constructed segments.

Finally duplicate each segment and translate their copy orthogonally in a direction
that is neither parallel nor orthogonal to any Li. This gives us in total M/2 small pairs
of parallel hyperplanes. We distribute each measure uniformly in one of these M little
segments.

For any two directions Li, Lj , if we project a pair of parallel segments onto Π =
span(Li, Lj), we obtain exactly the two-dimensional example constructed by Karasev,
Roldá-Pensado, and Soberón [KRPS16]. It is impossible to bisect both projected seg-
ments using a line orthogonal to L1 and a line orthogonal to L2.

Now we go back to Rd, and assume we have a valid hyperplane arrangement. If any
pair of segment is intersected by three or more hyperplanes, since we have M/2 pairs of
segments and M hyperplanes, there mus be another pair of segments that is intersected
by 1 or less hyperplane. Using just one hyperplane it is impossible to bisect the pair, and
we would be done. If every pair of segments is intersected by exactly two hyperplanes,
by construction we can only bisect all of them if each pair is intersected by a pair of
parallel hyperplanes. Since there is an odd number of hyperplanes orthogonal to L1, at
least one of them will be paired with a hyperplane with another fixed direction, so there
will be a pair of parallel segments we are not bisecting.

Case 1. M is odd.
In this case, we construct (M + 1)/2 pairs of parallel segments as before, and then

remove one segment of the final pair. Assume that we have a valid arrangement of
hyperplanes that bisects this last segment. If at least two hyperplanes cut this last
segment, then we do not have enough hyperplanes to bisect the remaining (M − 1)/2
pairs of tiny parallel segments. If exactly one hyperplane cuts the last segment, we may
assume without loss of generality that is is not one of the hyperplanes orthogonal to L1

(otherwise, replace the roles of L1 and L2 in the rest of the argument). Then, since we
still have to use an odd number of hyperplanes orthogonal to L1, the argument follows
as in case 1. □

5. Acknowledgments

This work started during the 2022 “Extremal Combinatorics and Geometry” workshop
at BIRS, we thank both BIRS and the workshop organizers. We also thank Xavier Goaoc,
Edgardo Roldán-Pensado, and Patrick Schnider for the helpful discussions.

References

[ANRCU98] Jin Akiyama, Gisaku Nakamura, Eduardo Rivera-Campo, and Jorge Urrutia, Perfect Divi-
sions of a Cake, 1998.

[APP+05] Noga Alon, János Pach, Rom Pinchasi, Radoš Radoičić, and Micha Sharir, Crossing patterns
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