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Abstract

ReaxFF is a computationally efficient model for reactive molecular dynamics simu-

lations, which has been applied to a wide variety of chemical systems. When ReaxFF

parameters are not yet available for a chemistry of interest, they must be (re)optimized,

for which one defines a set of training data that the new ReaxFF parameters should re-

produce. ReaxFF training sets typically contain diverse properties with different units,

some of which are more abundant (by orders of magnitude) than others. To find the

best parameters, one conventionally minimizes a weighted sum of squared errors over

all data in the training set. One of the challenges in such numerical optimizations is to

assign weights so that the optimized parameters represent a good compromise between

all the requirements defined in the training set. This work introduces a new loss func-

tion, called Balanced Loss, and a workflow that replaces weight assignment with a more

manageable procedure. The training data is divided into categories with corresponding

“tolerances”, i.e. acceptable root-mean-square errors for the categories, which define the

expectations for the optimized ReaxFF parameters. Through the Log-Sum-Exp form

of Balanced Loss, the parameter optimization is also a validation of one’s expectations,

providing meaningful feedback that can be used to reconfigure the tolerances if needed.

The new methodology is demonstrated with a non-trivial parameterization of ReaxFF

for water adsorption on alumina. This results in a new force field that reproduces both

rare and frequent properties of a validation set not used for training. We also demon-

strate the robustness of the new force field with a molecular dynamics simulation of

water desorption from a γ-Al2O3 slab model.

1 Introduction

Reactive force fields are widely used in Molecular Dynamics (MD) simulations because they

combine low computational cost, close to that of Molecular Mechanics (MM) models, with

the ability to describe chemical events, similar to more expensive Quantum Mechanics (QM)

methods, such as Density Functional Theory (DFT). Unlike hybrid QM/MM schemes,1 re-
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active force fields handle many simultaneous chemical reactions throughout the simulation

cell, not just in one predefined active site. This is advantageous for the direct simula-

tion of reaction networks2 of complex chemical processes such as combustion,3 pyrolysis,4,5

chemisorption,6,7 catalysis,7 mechanochemistry,8 crack propagation,9 nucleation,10,11 and so

on. ReaxFF is one of the most established reactive force fields and is efficient enough to

perform multi-nanosecond MD of systems with thousands of atoms using only a single high-

performance compute node.12–14 Compared to other popular reactive force fields such as

Tersoff,15 AIREBO-M,16 or COMB3,17 ReaxFF has been parameterized for more diverse

chemical spaces.14 More recently, machine learning potentials have also been proposed for

reactive MD simulations.18–20 All of these models share the ambition to simulate complex

chemical systems at a computational cost that scales like MM models.

The computational efficiency of reactive force fields comes at a price. They are generally

empirical models, sometimes inspired by physical principles, whose parameters must be

fitted to reproduce a chemistry of interest. Such parameterization is fraught with challenges:

the collection of reference data sets for training and validation, the choice of numerical

optimization algorithm, the selection of parameters to optimize, the computational burden

of the parameter optimization, and so on. Specifically for ReaxFF, many optimization

algorithms have been proposed and tested,21–29 while the design of reference data sets has

received much less attention. For example, ReaxFF parameters are rarely published with

their training sets in a reusable form, save for a few exceptions.8,25,27,28,30,31 However, these

data are vital, as they specify the requirements for the optimized parameters and no models

will ever outperform the data it was trained on.

A conventional ReaxFF training set consists of various target properties of relevant molec-

ular or periodic structures, including internal coordinates, energy differences and atomic

forces. Reaction energies and barriers are obviously important for reactive force fields, but

for a training set of N systems, one has at most N − 1 independent energy differences and

many more internal coordinates and atomic forces. In the context of machine learning po-

3



tentials, this imbalance is addressed by weighting data categories (typically energies and

forces) inversely proportional to their prevalence,32–34 but this practice is less established in

the context of ReaxFF. Moreover, in ReaxFF, such weights are often adjusted empirically.

For example, one gives more weight to an important subset of the training data in order

to prioritize the performance of the trained model for that subset.26,35,36 Conversely, the

model of interest may also be inherently limited for some subsets of reference data, making

it pointless to give high weight to such subsets. These subjective motivations mean that

training set design requires expert judgment. To make this task more accessible to a broader

audience, this paper introduces a new loss function and an intuitive workflow for reweight-

ing training data, called Balanced Loss. It naturally takes into account data imbalance and

inherent strengths and weaknesses of the model being trained. A ReaxFF parameterization

is used as a case study in this paper, because we believe ReaxFF can greatly benefit from

Balanced Loss, but the methodology is general enough to be applied to other (even non-

chemical) parameterizations with similar challenges.29,37–42 As software tools and algorithms

for (re)parameterizating (reactive) force fields improve,24,26–29,43,44 we expect that more prac-

titioners to face the challenge of data imbalance, also for machine learning potentials that

are trained on increasingly large and diverse data sets.45–47

Alumina provides a great test case for ReaxFF parameterization because it is a versa-

tile and widely used material in the chemical industry with a complex chemistry,48–52 also

at scales out of reach for DFT. Alumina has many known polymorphs, including γ-Al2O3,

α-Al2O3, δ-Al2O3 and θ-Al2O3,53 of which γ-Al2O3 is the most relevant for catalytic appli-

cations.54,55 For example, alumina selectively adsorbs unwanted elements such as sulfur and

can be used as a catalyst for the dehydration of alcohols to ethers and olefins.56–61 However,

the main application of γ-Al2O3 is in the automotive and petrochemical industries, where

it serves as a support for other heterogeneous catalysts such as metals, metal sulfides or

metal oxides.54,62–64 Despite their massive use in industry, the design of alumina-supported

catalysts is an empirical process, partly due to the limited fundamental understanding of the
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materials involved. For example, the exact structure of γ-Al2O3 is still under discussion due

to its poor crystallinity.54,65 Also, the microscopic mechanisms at the water-alumina inter-

face during support preparation, metal phase impregnation, shaping and use as a catalyst

remain unclear.66

The formation, stability and structure of γ-Al2O3 are controlled by hydration and de-

hydration processes.51,52,67–70 The γ phase is formed upon dehydration of boehmite at tem-

peratures between 700K and 800K. Once formed, the γ polymporph remains stable up to

1100K under dry conditions.54,55,71 γ-Al2O3 transitions to other polymorphs upon further

increase in temperature and/or water partial pressure. Having both Lewis acid and basic

sites on the surface, alumina can react with water in several ways depending on temperature,

water partial pressure (for gas/solid interfaces) and pH (for liquid/solid interfaces).49–52,68,72

Water can adsorb without dissociation by forming an Al-O bond. One of the O-H bonds

of water may then dissociate and react with a surface Al-O pair, resulting in two hydroxyl

groups, called aluminols. Dissociative adsorption is reported to be more prevalent at crystal

surface defects, leading to an “etching”-like degradation at these positions.73,74 It is clear that

the chemistry at the H2O/γ-Al2O3interface is highly complex and depends on an interplay

of multiple microscopic mechanisms and external conditions.

Molecular simulation of the H2O/γ-Al2O3 interface is a promising but ambitious method

to improve our understanding of widely used supported catalysts and to pave the way to-

wards their rational design. DFT has often been used to model the H2O/γ-Al2O3 inter-

face.50,52,67,69,70,75,76 Ideally, sufficiently large atomistic models are considered to avoid artifi-

cial spatial correlations, to introduce defects at low concentrations, to include both support

and catalyst, and to mimic realistic water concentrations.77–79 Because larger models also

have a larger configurational space, with many local minima on the potential energy surface,

their properties can no longer be simulated with static calculations and one should resort to

MD to sample all relevant configurations.80 Linear-scaling DFT implementations81,82 have

enabled ab initio MD simulations of the H2O/γ-Al2O3 interface,83–85 but they are still com-
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putationally demanding compared to reactive force fields. Compared to linear-scaling DFT,

ReaxFF has a much lower computational cost, allowing for large-scale MD simulations of alu-

mina.86–94 The first alumina and water ReaxFF parameters were proposed by Zhang et al.,86

and these were later refined and extended by Joshi et al. for aluminosilicates and water,88,90

which is particularly relevant for simulations of alumina-supported catalysts. However, as

shown in the results, the state-of-the-art ReaxFF parameters by Joshi et al. poorly reproduce

DFT reference data for water adsorption on alumina. This motivated us to demonstrate the

relevance of Balanced Loss with a reparameterization of ReaxFF for H2O/γ-Al2O3 interac-

tions, using DFT data from the literature.70,76,83,95

The rest of the paper is structured as follows. Section 2 contains the methodological

details of the study: a brief overview of ReaxFF, the generation of the training and validation

data sets, the parameter selection and the optimization algorithm. The Balanced Loss

function and workflow are described and motivated in detail in section 3. Section 4 presents

the results of the ReaxFF training and validation, and it demonstrates the suitability of the

resulting force field for MD simulations. The last section formulates the main conclusions

and gives an outlook on future work.

2 Methodology

2.1 ReaxFF Reactive Force Fields

ReaxFF was developed and introduced in 2001 by van Duin et al. for reactive MD simulations,

initially of hydrocarbons,12 and has since been regularly extended to other chemistries.14 Like

all force fields, it is a mathematical model of the interactions between atoms in a molecule or

a condensed phase, as a function of the Cartesian coordinates of the atomic nuclei. Unlike

most classical force fields, it can describe bond breaking and formation.
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The ReaxFF potential energy of an atomistic model is defined as:

Esystem = Ebond + Eover + Eunder + Eval + Etors

+ EvdW + Echarge + Especific

(1)

where Ebond describes the energy of an atom pair in all relevant regimes: bonded, in transition

states and dissociated. Eover and Eunder are correction terms for over- and under-coordination,

respectively. Eval is the valence angle energy and Etors is the torsional angle energy between

four different particles. Non-covalent interactions are modeled with Echarge and EvdW, the

charge and the van der Waals interactions, respectively. The atomic charges are variable

and account for polarization and Coulomb forces.96,97 In addition to these commonly used

energy terms, ReaxFF contains additional contributions for specific use cases, grouped into

Especific, which are not used in this work.

The covalent terms depend on bond orders (BO), which are defined for each pair of atoms

and allow ReaxFF to describe bond breaking and formation processes in chemical reactions.

The uncorrected bond order of a pair of atoms consists of three terms, each corresponding

to one type of covalent bond, σ, π and ππ:

BO
′
ij = BO

′
ij,σ +BO

′
ij,π +BO

′
ij,ππ

= exp

(
pbo,1

(
rij
rσ0

)pbo,2
)
+ exp

(
pbo,3

(
rij
rπ0

)pbo,4
)
+ exp

(
pbo,5

(
rij
rππ0

)pbo,6
) (2)

where pbo,{x} represent tunable parameters that can be different for each pair of chemical

elements. rij is the interatomic distance and rσ0 , rπ0 and rππ0 are the element-specific σ, π and

ππ equilibrium bond lengths, respectively. The expression for the uncorrected bond orders

in Eq. (2) features only a small subset of all the adjustable ReaxFF parameters. ReaxFF

has additional equations (with more parameters) to convert uncorrected to corrected bond

orders, which are then used in expressions for the covalent energy terms. A full description

can be found in the AMS documentation98 and in the supporting information of Ref. 99.
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ReaxFF has been implemented in several software packages. The most established

ones are the original “Standalone ReaxFF” distributed by van Duin, the commercial im-

plementation in the Amsterdam Modeling Suite (AMS)100 and the open-source version in

the LAMMPS package.101,102 In this paper, the ReaxFF implementation from AMS (re-

lease 2023.101) is used. The parameter optimization, discussed below, is implemented with

ParAMS,43,103 which is a recently developed tool in AMS for the parameterization of ap-

proximate potential energy surfaces, such as ReaxFF or Density Functional Tight-Binding

(DFTB) models.39,104 In addition, the Atomistic Simulation Environment105 was used for

processing DFT calculations in the training and validation sets. Visual Molecular Dynamics

(VMD) is used for the 3D visualizations in this work.106

2.2 Training Set Development

The development of the training set goes through the following steps: (i) the selection of bulk,

(hydrated) surface and (hydrated) edge structures, (ii) periodic DFT reference calculations

on these structures and (iii) the selection of properties from these calculations as training

targets.

(i) Structures. A training set for optimizing ReaxFF parameters requires reference struc-

tures and associated training targets, such as internal coordinates or energies, that ReaxFF

should reproduce. The reference structures were taken from previous publications70,76,83,95

and can be divided into five groups, summarized in Table 1 and described in more detail

below. For clarity, the relevant crystal surfaces are shown in Figure 1. Note that γ-Al2O3 is

industrially the most relevant material, yet other forms of (hydrated) aluminum oxide were

included, most notably boehmite, to increase the diversity of the training data. A complete

list of structures is provided in Table S1 of the Supporting Information.

• The group of Bulk Structures contains 3D-periodic models of boehmite, γ-Al2O3

and α-Al2O3.67
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• The group of γ-Al2O3 Surfaces is based on three different slab models, cut along the

(100), (110) or (111) crystal planes. In addition to the bare surfaces, structures are

included with an increasing number of water molecules adsorbed on the surface.70 All

the structures were published before a distinction was made between the lateral (110)ℓ

and basal (110)b surfaces of γ-Al2O3, as shown in Figure 1.52,76 The (110) γ-Al2O3

surfaces in the training set are in fact all lateral (110)ℓ surfaces.

• The group of Boehmite Surfaces contains slabs with four surface orientations: (101),

(010), (100) or (001). Boehmite already contains water in its bulk structure, which is

preserved upon cleaving the slabs. In addition to the bare slabs, some have additional

water molecules adsorbed.83,95

• The group of γ-Al2O3 Edges comprises structures that represent the edge between

surface orientations (100) and (110). In addition to the bare edge structure, six struc-

tures with an increasing number of adsorbed water molecules are included.75

• The group of Small Molecules contains two structures: a γ-alumina monomer,

[Al(OH)4]–H+, and water.107

Figure 1: Overview of the crystal surfaces of boehmite and γ-Al2O3, with the relation
between the two as proposed in Ref. 52.

(ii) Periodic DFT calculations. The geometries of all structures in Table 1 are optimized

with DFT using periodic boundary conditions and the Perdew, Burke and Ernzerhof (PBE)

exchange-correlation functional as implemented in the Vienna Ab initio Simulation Package
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Table 1: Overview of the structures in the training set. For surface and edge
structures, the number of structures with additional water adsorbed on the sur-
face is mentioned in the last column.

Group Structure Nr. of structures with
additional water

Bulk Structures Bulk α-Al2O3 –
Bulk boehmite –
Bulk γ-Al2O3 –

γ-Al2O3 Surfaces γ-Al2O3 (100) 4
γ-Al2O3 (110) 6
γ-Al2O3 (111) 3

Boehmite Surfaces Boehmite (101) 1
Boehmite (010) 0
Boehmite (100) 2
Boehmite (001) 1

γ-Al2O3 Edges γ-Al2O3 (100-110) 6
Small molecules [Al(OH)4]–H+ monomer –

Water –

(VASP) version 5.4.108,109 The valence interactions are described with the Projected Aug-

mented Wave (PAW) method.110 An additional a posteriori density-dependent dispersion

correction dDsC is applied.111 The plane wave basis set cutoff is 600 eV, which is increased

compared to original works from which the structures were taken,70,76,83,95 to improve the

precision of the forces and to facilitate the geometry optimizations. The k-point spacing is

set to 0.5Å−1 and a Gaussian smearing is used with a width of 0.05 eV. The convergence

criterion for the self-consistent field calculation is set to 1×10−5 eV. The geometry optimiza-

tion is performed with the conjugate gradient algorithm and uses a convergence criterion of

0.02 eV/Å on the forces. The cell parameters were not allowed to change and were taken

from previous works.70,76,83,95

(iii) Property Extraction. The selection of internal coordinates, used as training targets,

consists of two phases: an analysis of interatomic distances to determine appropriate cutoffs

for relevant atom pairs, followed by a classification and enumeration of all relevant distances

and angles.
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In phase 1, histograms of all interatomic distances up to 5.0Å were constructed per pair

of chemical elements, as shown in Figure S1 in the supporting information. From these

histograms, cutoff distances were derived to classify and enumerate all relevant atom pairs.

All OH pairs with a distance below 1.2Å are classified as covalent O–H bonds. Remaining

OH distances below 2.1Å are identified as O· · ·H hydrogen bonds. The AlO distances below

2.8Å are treated as Al–O bonds. AlAl distances below 4.0Å are not directly bonded, but

are included because they are relevant for the local structure of alumina. No other distances

were included in the training set.

In phase 2, the distances defined in phase 1 are used to construct the final set of internal

coordinates. In addition to distances, valence angles are constructed by combining all pairs of

bonded atom pairs sharing one central atom. Dihedral angles are not included, because most

O–Al–O–X quartets, where X can be H or Al, contain nearly co-linear bonds, making the

dihedral angle ill-defined. Furthermore, H–O–H angles are not included because, for reasons

of backward compatibility explained in the following section, the corresponding valence angle

term parameters are kept fixed at the values of Joshi et al.88,90 To avoid obvious redundancies

in the training set, internal coordinates involving no hydrogen atoms were discarded for

structures with additional water molecules, as these internal coordinates already appear in

the bare surface and edge structures. The final set comprises four categories of distances

(Al–O, Al–Al, O–H and O· · ·H) and six categories of valence angles (O–Al–O, Al–O–Al,

Al–O–H, Al–O· · ·H, H–O· · ·H and H· · ·O· · ·H). Note that the last two categories are still

relevant to include, unlike H–O–H angles, because hydrogen bonding angles are sensitive

to the structure of the boehmite and alumina surfaces.

Histograms of the final selection of internal coordinates can be found in Figures S2

(combined) and S3 (per material) of the Supporting Information. The internal coordinates

of boehmite are somewhat similar to those of γ-Al2O3, with larger deviations related to

hydrogen bonds. Hence, the inclusion of boehmite in the training set increases the diversity

of hydrogen bonding information. The prevalence of each class of internal coordinates per
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structure is given in Table S1.

Energies in a ReaxFF training set are conventionally formulated as internal energy dif-

ferences between reactant and product states. A full list of reaction energies in the training

set is provided in Table S2 of the Supporting Information. These energies are grouped into

five classes, denoted with three-letter codes: BSH, GEH, GSH, SUR and FOR. A short

summary of the included reactions and their classification is given below.

For a given alumina surface or edge structure X, all unique pair of adsorption states

are used to construct adsorption energy training data, to avoid bias towards a particular

reference state. Let mi and mj > mi be the number of water molecules adsorbed in states Xi

and Xj, respectively, then the corresponding adsorption energy in the training set is defined

as:

∆rEads,Xj ,Xi =
EXj − EXj

mj −mi

− EH2O (3)

Thus, if there are N states with water adsorbed for a given structure, there are (N − 1)N/2

corresponding adsorption energies in the training set. By normalizing the adsorption energies

on the number of H2O molecules added, they all have approximately the same order of

magnitude. The adsorption energies were grouped into three classes: adsorption on boehmite

surfaces (BSH), on γ-Al2O3 edges (GEH) and on γ-Al2O3 surfaces (GSH).

While the water adsorption energies are of primary interest, also other energies were

included to diversify the training set: the transformation from bulk to a slab models (class

SUR) and the formation of bulk and slab models from the alumina monomer (class FOR)

are included. Such “reactions” do not correspond to specific reactive events, but they do

provide useful information for the covalent ReaxFF parameters.

The resulting training set contains 12931 distances, 13409 angles, 63 water adsorption

energies and 19 other energies, for a total of 26422 training targets. Notably, the geometrical

features, such as angles and distances, far outnumber the energy entries in the training set.

The categories of internal coordinates and energies will be used in the remainder of the paper

for a detailed statistical analysis and in the construction of the Balanced Loss function.
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It is worth noting that our training set is considerably larger than those of previous

ReaxFF parameterizations, which typically contain hundred to a several thousand training

targets.8,23,28,30,31,112–114 To the best of our knowledge, the only exception is the ReaxFF

model by Trnka et al. for enzyme chemistry, which was trained with 385826 entries.25 Note

that their training set consists of single-point energies and forces, making it computation-

ally less expensive, whereas ReaxFF is normally trained by optimizing geometries at each

iteration of the parameter optimization.29

2.3 Parameter Selection

When calibrating ReaxFF parameters, a careful selection of adjustable parameters must be

made. Some parameters can be taken from previous works without refinement, others are not

intended to be adjusted, such as the atomic mass, and some parameters are not meaningful for

the application of interest. In addition, simply optimizing all parameters would result in an

intractable high-dimensional optimization problem. The total number of ReaxFF parameters

depends on the number of chemical elements in the system. The parameters are typically

grouped into blocks, most of which can be repeated several times for different combinations

of chemical elements. Parameter blocks can be independent of chemical elements (41 general

parameters), defined per chemical element (32 atomic parameters), per pair (16 bond and

6 off-diagonal parameters), per triplet (7 angle and 4 hydrogen-bond parameters), or per

quartet of elements (7 torsion parameters).

In this work, the selection of parameters follows a top-down approach. Initially, all

parameters from a literature force field are considered,88,90 after which several selection

criteria are introduced to fix parameters to their literature values, leaving only the remainder

to be refined. The selection process aims for a trade-off between an acceptable dimensionality

of the optimization problem and a sufficient model flexibility to obtain a good fit. In the

following paragraphs, we motivate our selection criteria, which may be helpful for future

ReaxFF calibrations.
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Our starting point is the aluminosilicate force field by Joshi et al.88,90 These ReaxFF

parameters were calibrated to improve the description of water adsorption at acid sites,

Si –O(H)–Al, in the H-ZSM-5 zeolite.115 The literature ffield file contains parameters for

13 chemical elements and one dummy element, resulting in a set of 2961 parameters, many

of which are irrelevant to aluminosilicates. For this work, we only consider parameter blocks

that contain at least one Al element, and otherwise only allow O or H. All other parameters

are kept fixed, including those related to Si, or those describing water.

Ideally, our reparameterization would maintain backward compatibility with the Joshi et

al. model, changing only parameters specific to alumina and irrelevant to acid sites in zeolites.

However, this severely restricts the adjustable parameters to those of atom pairs and valence

angles involving at least two Al atoms, namely the Al–Al pairs, and the Al–X–Al and

Al–Al–X angles, where X can be Al, O or H. Of this selection, only Al–O–Al angles and

Al–Al pairs (≥ 2.5Å) appear in the training set. As a result of this mismatch, no satisfactory

reproduction of our training data was possible when imposing backward compatibility. To

avoid this mismatch, we made a pragmatic selection that includes some parameters related

to acid sites in zeolites, but also excludes parameters that are only remotely related to our

training data. This selection includes Al atom parameters, Al–X bond or pair parameters

and Al–H–O, Al–O–H, Al–O–Al, H–Al–O and O–Al–O valence angle parameters.

We further narrow down the parameter selection using the recommendations from the

ParAMS documentation.43,103 In the ParAMS, each parameter is classified with one of the

following three labels: “Standard”, “Expert” or “DoNotOptimize”. The first label indicates

that the parameter is generally safe to optimize. The second label is used for parameters that

should not be changed without a strong motivation. Parameters with the “DoNotOptimize’

label should never be touched, e.g., because they contain boolean values or atomic data.103

In this paper, only bond and angle parameters with the “Standard” label are considered for

optimization.

Finally, some parameters are (de)activated for very specific reasons:
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• The atomic parameter r_0ˆsigma, which is rσ0 in Eq. (2), for Al is deactivated because

it can be overruled by corresponding pair parameters for Al–H and Al–O bonds.

• Because no Al–Al bonds are present, of the Al–Al parameters, only D_eˆsigma is op-

timized. This introduces some freedom to tune the weak bonding interactions between

pairs of Al atoms that are not directly bonded.

• π and ππ bond parameters are deactivated because no such bonds are present in our

training data. This includes parameters with labels containing any of the following

strings: pi, p_bo3, p_bo4, p_bo5 or p_bo6.

• The following “Expert” parameters were activated to improve the angular energy terms:

p_val3, p_val4 and p_val5.

These selection criteria result in a subset of 36 activate parameters. For each parameter,

lower and upper bounds of suitable values are determined and used to restrict the search

space during the parameter optimization. For each parameter, the bounds are set equal to

the corresponding range of historical values in the ReaxFF parameter database curated by

Software for Chemistry & Materials B.V. (SCM).100 Subsequently the bounds are extended

to also include a window of ±20% around the values from the Joshi et al. force field. Note

that such choices are subjective for lack of a better alternative: there are no established

defaults for the parameter bounds. The list of active parameters and their bounds can be

found in Table S3 of the Supporting Information.

2.4 Optimization Settings

ReaxFF parameters are typically calibrated by minimizing a loss function with a numerical

optimizer. We have developed a novel loss function for this work, which will be discussed in

section 3. Here we focus on the details of the numerical optimization algorithm.

Several optimization algorithms have been proposed to refine ReaxFF parameters. The

original method proposed by van Duin was a deterministic algorithm that optimized one
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parameter at a time with a parabolic extrapolation.116 More recent algorithms are stochas-

tic, which makes them more robust to the non-trivial structure of a standard ReaxFF loss

function, such as many local minima and discontinuities.21–25,27 These difficulties arise from

the small discontinuities in the ReaxFF energy itself, and the noisy sensitivity of geom-

etry optimizations (while training) to the ReaxFF parameters.27,44 These difficulties are

still present in this work, and therefore we use a stochastic derivative-free optimizer that

has proven its effectiveness, i.e. the Covariance Matrix Adaptation Evolutionary Strategy

(CMA-ES).27,117–119

The CMA-ES settings in this work follow the best practices from the literature.117–119

The algorithm is repeated 40 times, starting from the Joshi’s parameters, to reduce the risk

of getting stuck in an unfavorable local minimum. These repetitions are also used to test the

robustness of the new loss function proposed in Section 3. The CMA population size is set

to the value recommended by Hansen, ⌊4+3 lnNpar⌋ = 14, where Npar = 36 is the number of

activated force field parameters.117–119 ParAMS communicates dimensionless parameters to

CMA-ES, by linearly transforming the original parameters so that their bounds all become

[0, 1]. The initial CMA-ES step size, in these dimensionless parameters, is set to 0.2. This

is sufficient to let the algorithm randomize the parameters in the first few CMA iterations,

after which it starts to converge, thereby guaranteeing an initial exploration of the parameter

space. Each CMA run is terminated after 1000 iterations and the parameters with the lowest

loss value are selected for further analysis.

Before evaluating the loss function in each CMA iteration, all structures in the training set

are optimized with the parameters generated by CMA. The maximum number of geometry

iterations is set to 500, which is much higher than the default value of 30 in ParAMS. For the

training set in this work, a lower setting, such as 50, 100 or 200, produces force fields that are

overfitted to this lower number of geometry steps. Each CMA run is performed on 18 cores

(Intel Xeon Gold 6140), with ParallelLevels ParameterVectors=14 and Jobs=2. This

results in a slight over-commitment of the cores, which is normally not recommended, but it
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improves the overall efficiency in this case, which can be understood as follows. The CMA-

ES algorithm synchronizes after each iteration, resulting in idle time when the members of

the population require different CPU times. This is generally the case for ReaxFF, since the

number of required geometry steps depends strongly on the parameters. By over-committing

the cores, the idle time is reduced, resulting in a more efficient use of resources.

2.5 Validation Set

(i) Structures The validation set is taken from a dataset by Raybaud et al., available

on NOMAD, containing alumina structures optimized with VASP, using the same level of

theory as the training data,52,120 except that a plane-wave cutoff of 400 eV was used. This

set contains 53 new γ-Al2O3 surface structures not used for parameter optimization, with

different numbers of adsorbed water molecules. The surface orientations comprise (001),

(111), (110)ℓ and (110)b as shown in Fig. 1. The subscripts ℓ and b are used to distinguish

between lateral and basal surfaces, respectively, which feature different Brønsted and Lewis

acid sites.52,76 The set also includes a bulk γ-Al2O3 model and an isolated water molecule

was added in this work, using consistent VASP settings. A complete list of structures is

provided in Table S4 of the Supporting Information.

Recent developments in alumina characterization have revealed an ambiguity in the ter-

minology used in older works. In particular, earlier spinel models considered the (100),

(010) and (001) surfaces to be equivalent, but it has recently been shown from non-spinel

models that this is not the case.52 To remain consistent with published datasets and with

the optimizations performed in this work, the notation remains (001) for surfaces with this

orientation in the validation set and (100) for surfaces with this orientation in the training

set. However, they are structurally equivalent.

(ii) Property Extraction Properties are extracted using the same methodology and clas-

sification as described in Section 2.2. The resulting validation set contains 16745 distances,
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9513 angles, 101 adsorption energies, and 6 other energies, for a total of 26365 validation

targets. Figures S3, S5, S6 and S7 in the Supporting Information show the histograms of

these data, whereas Table S5 lists the individual reaction energies. The final force field in this

work and the original one by Joshi et al.88,90 are validated by comparing these geometrical

properties and energies to the VASP reference data.

3 Balanced Loss function and optimization workflow

ReaxFF parameters are conventionally calibrated by minimizing a loss function L, which is

often a weighted Sum-of-Squares Error (SSE) or Root-Mean-Squared Error (RMSE):

LSSE(x) =
N∑

i=1

wisi(x) (4)

LRMSE(x) =

√√√√ 1

N

N∑

i=1

wisi(x) (5)

where si are the squared residuals:

si(x) = r2i (x) =

(
yi − ŷi(x)

σi

)2

(6)

and where the sum over i runs over all items in the training set. In every term, the property

value i is calculated with a reference method (yi) and ReaxFF (ŷi). Through the ReaxFF

property values, the loss function depends on a vector of adjustable ReaxFF parameter

vector x. Note that CMA-ES is insensitive to the application of any monotonically increasing

transformation of the loss function, so from CMA’s perspective, LRMSE(x) and LSSE(x) are

equivalent.

The constant σi is a configurable scaling factor with the same unit as the property of yi

to make the residual ri dimensionless. In ParAMS, σi is only used as a reasonable order of

magnitude for the corresponding yi.103 The weight wi controls the importance of each training
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set entry in the total loss function. In principle, one can absorb wi into σi or vice versa. The

main motivation for supporting both factors in ParAMS is to cater to different user groups,

some of which may prefer one over the other. This may seem surprising, since textbook

treatments of the least-squares method do not mention the weights wi and only introduce σi

as a measurement error. However, a basic assumption of the standard least-squares method

does not hold here: Our data have no measurement errors. Any discrepancies between the

training data and ReaxFF are due to systematic errors, mainly in ReaxFF and, in principle,

also in the model used to compute the training data.

At first glance, setting the weights seems straightforward: the more important an item in

the training set, the higher its weight should be. However, there are different (possibly com-

peting) motivations for adjusting the weights. A first purpose of the weights is to compensate

for an imbalance in the training set. For example, our training set contains many more dis-

tances and angles than energies, while the energies are also important. This imbalance can

be addressed by classifying the data into categories and setting the weight to the inverse of

the number of elements in each category. This strategy is common in the context of machine

learning potentials, e.g. when atomic forces are much more abundant than molecular ener-

gies.32–34 A second purpose of the weights is to emphasize the importance of some residuals.

For example, when an initial optimization leads to parameters for which some residuals ri are

perceived to be too large, one may increase the corresponding weights wi and re-optimize.

Assigning different weights to subsets of data is also known in the field of multi-objective

optimization as the “scalarization” of multiple objectives into a single loss function.121 Unlike

scalarization methods, multi-objective evolutionary algorithms do not assume any tradeoffs

between categories a priori and instead find many Pareto-optimal solutions.122

While seemingly intuitive, manual weight adjustment becomes intractable when many

weights need to be adjusted differently. Due to the non-linear response of the residuals to

the weights,37 multiple combinations of weights must be tried before one reaches the residuals

of interest. If the model has insufficient functional flexibility, it may even be impossible to
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reach the desired residuals. In addition, when some residuals of interest decrease, others will

inevitably increase. It is difficult to predict which residuals will increase and by how much,

and this can force the operator to keep adjusting the weights. In practice, this resembles

a cat-and-mouse game between weights and residuals. Manually adjusting the weights also

provides little insight into the optimization problem: If some residuals are large, there is

no straightforward way to understand whether their weights should be increased further, or

whether the model is simply unable to reproduce the training data.

It is clear that the development of a training set alone is rarely sufficient to find the

optimal parameters. Only if the training data are completely homogeneous, one can simply

set all weights equal. This is typically not the case for ReaxFF training set, which contain

different types of data, such as distances, angles and energies in this work. Assigning weights

to the data is therefore an unavoidable and potentially tedious task before and during a

ReaxFF parameter optimization.26,35,36

To simplify the tedious adjustment of weights, we introduce a new method, hereafter

called “Balanced Loss”. As will be demonstrated in the results, this method allows for a

swift balancing of the training set, and we believe that this methodology will be equally

beneficial for other optimization problems facing similar challenges. The Balanced Loss

method introduces a new loss function and an intuitive workflow to balance the data and to

gain more insight into how well the model can reproduce subsets of the training data.

Balanced Loss requires a classification of the training data into categories. Technically,

the categories are C mutually exclusive and exhaustive subsets: Sc ∀c ∈ {1 . . . C}. They

should be defined so that residuals within a category respond in roughly the same way to a

change in the model parameters. For example, one might expect that all O–H bond lengths

in a training set, while not exactly the same, do respond similarly to changes in the ReaxFF

parameters. With this partitioning, the Balanced Loss function is defined as:

LBL = τf−1

(
C∑

c=1

f

(
Rc

τ

))
(7)
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where Rc is the RMSE on the entries in category c:

Rc =

√
1

|Sc|
∑

i∈Sc

si (8)

LBL is dimensionless by construction. The function f and its inverse must be monotonically

increasing functions, and by default f(x) = exp(x) is used, which will be denoted as the

Log-Sum-Exp (LSE) form, referring to the mathematical operations in Eq. (7). To illus-

trate the benefits of the Log-Sum-Exp form, all parameterizations will be repeated with two

other forms of f : f(x) = x2, denoted as Root-Sum-Square (RSS) and f(x) = x, denoted as

Identity-Sum-Identity (ISI). Note that the RSS form makes Balanced Loss formally equiva-

lent with a standard loss function in Eq. (5), with wi =
N
Sc

, where c is the category to which

training set item i belongs.

By default, LBL is thus a Log-Sum-Exp function, a well-established smooth approximation

of the maximum over multiple inputs. It is popular in the machine learning context123 and it

has been used for scalarization of multi-objective problems.124 Here, the inputs to Log-Sum-

Exp are all the Rc values. The hyperparameter τ , sometimes called the effective temperature,

controls the smoothness of the approximation of the maximum. In the “cold” limit τ → 0,

Log-Sum-Exp loses its smoothness and reduces to the maximum over all Rc. The parameter

τ appears in two places, such that LBL = LRMSE in the trivial case of one category and

wi = 1∀i. Throughout this paper we have used τ = 1.

Unlike LSSE and LRMSE, user-defined weights wi are missing from LBL, which implies that

σi must play a slightly different role. We propose to set each σi to the desired accuracy of the

corresponding entry yi in the training set, which resembles its meaning in conventional least-

squares methods. To make the distinction with σi in other contexts, we call them “tolerances”

in the context of Balanced Loss, because they represent the magnitudes of residuals one is

willing to tolerate. At this stage, simply defining tolerances may seem like wishful thinking,

but it will become clear later that Balanced Loss helps finding a consistent set of ReaxFF
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parameters and tolerances. Our definition of σi (as the desired accuracy) also facilitates the

interpretation of Rc: It expresses, in the RMS sense, the average ratio between the actual

and the desired accuracy. In the ideal case, after optimizing the parameters, one obtains

Rc = 1∀c.

Given the interpretation of Rc, the Log-Sum-Exp form of Balanced Loss is easily mo-

tivated. If one of the Rc values is much higher than all others, one finds LBL ≈ Rc, i.e.,

category c dominates the loss function. If the optimization algorithm explores a region of

the parameter space where category c dominates, it will focus only on reducing Rc, with

other categories acting at best as a form of regularization. This is a desirable feature, since

category c is then the worst reproduced subset of the training data, and therefore deserves

the optimizer’s full attention.

One may also understand the effect of Log-Sum-Exp by comparing the gradients of LBL

and LRMSE with respect to the ReaxFF parameters:

∂LBL

∂xk

=
N∑

i=1

∂LBL

∂si

∂si
∂xk

(9)

∂LRMSE

∂xk

=
N∑

i=1

∂LRMSE

∂si

∂si
∂xk

(10)

Both loss gradients are linear combinations of the gradients of squared residuals, ∂si
∂xk

, but

they combine them with different “weights”:

∂LBL

∂si
=

exp
(
Rd

τ

)
∑C

c=1 exp
(
Rc

τ

) τ

2|Sd|Rd

with i ∈ Sd (11)

∂LRMSE

∂si
=

wi

2NLRMSE
(12)

In the case of LRMSE, the weight ∂LRMSE
∂si

is simply proportional to the user-defined weight
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wi. For Balanced Loss, however, the weight ∂LBL
∂si

contains a new and crucial factor:

Pd =
exp Rd

τ∑C
c=1 exp

Rc

τ

(13)

with

C∑

d=1

Pd = 1. (14)

This factor is known as SoftMax, a continuous generalization of the ArgMax function, used

to identify the position of a maximum in an ordered list.125 This shows how Balanced Loss

borrows a strategy from reinforcement learning, known as the Gradient Bandit Algorithm: At

each iteration in the optimization, the most violated subset of the training data determines

the action,126 in this context action being the direction in which the parameters must evolve.

The analogy between Pd (in LBL) and the user-defined weights wi (in LRMSE) also suggests

another interpretation. Instead of a human operator tuning the weights wi, as in the cat-

and-mouse metaphor introduced above, Balanced Loss adjusts the weights algorithmically

within a single optimization run.

So far, we have assumed that one simply sets the tolerances σi to the desired accu-

racy of the corresponding yi. However, such a choice may be subjective and incompatible

with the capabilities of the ReaxFF model to be trained. In practice, we recommend such

“naive” tolerances σi as a first guess. Parameter optimization can then be used to test these

expectations. To do so, we recommend the following workflow:

W1. First gather all the elements of a conventional parameter optimization: (i) the model,

(ii) the training data, (iii) a selection of parameters to optimize and their bounds, (iv)

an initial guess of the parameters, and (v) an optimization algorithm. In this paper,

all these elements are described in Section 2.

W2. Then define the additional elements needed for Balanced Loss: the categories of train-
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ing data and an initial configuration of the tolerances σi. Such choices are domain-

specific, but a few general recommendations can be given, in addition to the ones

discussed above. It is convenient to have data with consistent units within one cate-

gory c and to assign the same tolerance to all its members, for which the symbol σc will

be used below. Furthermore, it is useful to introduce categories for data that deserve

special attention, e.g. with key properties for the intended application of the force

field, or with properties that are harder to reproduce than others. By placing these

data in separate categories, their RMSEs are easily monitored and large errors within

these categories will be prioritized during the optimization.

For ReaxFF, one can introduce different categories for distances, angles and energies. In

this paper, the categories are more fine-grained: All internal coordinates are classified

by the chemical elements and the bond types involved. In fact, we categorize all

training data as they were introduced in Section 2.2: the 4 bond categories are Al–O,

Al–Al, O–H and O· · ·H, the 6 angle categories are O–Al–O, Al–O–Al, Al–O–H,

Al–O· · ·H, H–O· · ·H and H· · ·O· · ·H, and the energy categories are BSH, GEH,

GSH, SUR and FOR. Note that a regular covalent bond is denoted by minus sign

(−) and a hydrogen bond by three dots (· · · ). The tolerances σc will be described in

Section 4.

W3. Finally, minimize the Balanced Loss function and analyze the Rc values of the optimal

parameters. When one category keeps dominating the loss function throughout the

optimization, the only possible explanation is that the corresponding tolerances σc

were set too small. There is no way to lower Rc because LBL already ignores all other

categories. The only option left is to accept that the model cannot reproduce items in

category c with the desired accuracy, and to adjust one’s expectations by increasing

the corresponding tolerances σc. One can now repeat the parameter optimization and

re-evaluate the result, possibly repeating the exercise a few times. Unlike tuning the

weights in a conventional loss function, these repeated optimizations provide insight:
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They inform the human operator about the capabilities of the model and help manage

expectations. It may also happen that some Rc end up well below 1, in which case we

do not recommend decreasing the corresponding σc. Such a fortuitous outcome should

not affect the desired accuracy.

Note that steps W2 and W3 in the above workflow involve (possibly subjective) human deci-

sions, and therefore cannot be replaced by an autonomous algorithm. This is an unavoidable

aspect of multi-objective problems: One has to decide on a compromise between different

categories. The overall goal of Balanced Loss is to facilitate finding suitable compromises.

4 Results and Discussion

4.1 Balanced Loss Optimization Procedure

This section illustrates how the optimization workflow of Balanced Loss leads to a competitive

ReaxFF parameterization, using the alumina training set as a realistic example. In addition

to the final force field, the intermediate steps provide insight into the capabilities of ReaxFF.

Table 2: Tolerances used in the Balanced Loss optimization

Category Unit Initial σc Final σc

Al–O Å 0.05 0.07
Al–Al Å 0.05 0.10
O–H Å 0.05 0.05
O· · ·H Å 0.05 0.12

Al–O–Al deg 2.0 5.0
Al–O–H deg 2.0 5.0
O–Al–O deg 2.0 5.0
Al–O· · ·H deg 2.0 7.0
H–O· · ·H deg 2.0 7.0
H· · ·O· · ·H deg 2.0 7.0

BSH kcalmol−1 1.25 4.0
GEH kcalmol−1 1.25 4.0
GSH kcalmol−1 1.25 4.0
SUR kcalmol−1 1.25 3.0
FOR kcalmol−1 1.25 3.0
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The data in the training set, described in Section 2.2, have been grouped into categories

as described in Section 3 and as summarized in the leftmost column of Table 2. The opti-

mizations are carried out in two stages, initial and final, which differ only in the tolerances

σc.

Each entry is given an initial chemically relevant tolerance, σc, equal to the default sigma

value from ParAMS, as shown in Table 2. With these tolerances, the ReaxFF parameters

were optimized 40 times using different random seeds to produce independent solutions.

Figure 2(a) shows the evolution of the Balanced Loss during the 40 CMA runs. Figure 2(c)

presents the Rcσc values (category RMSEs with units) for the 40 optimized parameter vec-

tors. The curves and data points are colored according to the loss value of the best parameter

vector of each run. Of the 40 CMA runs in the initial stage, two are clearly worse than all

others, presumably converging to unfavorable local minima. All 38 remaining runs produce

comparable RMSE values, but are not identical, which is the expected behavior. ReaxFF loss

functions are known to exhibit many local minima and apparent noise due to high sensitivity

of the geometry optimizations in the training set to the ReaxFF parameters.27 Adsorption

energies in the categories BSH and GSH are the highest relative to their tolerance, σc. The

performances in all other categories have less effect on the optimized parameters, simply

because these errors are closer to their tolerance. This means that, in this initial stage, the

CMA runs train almost exclusively on the adsorption energies. It is therefore highly un-

likely to find ReaxFF parameters that can further lower RMSE on the adsorption energies,

let alone reach the tolerance of 1.25 kcalmol−1. Also, for all other categories, the initial

tolerances seem too optimistic, which will be addressed in the next stage.

For the second (and final) stage, the tolerances are revised, as shown in the last column

of Table 2, to be more consistent with what ReaxFF could achieve in the initial stage.

Without Balanced Loss, these tolerances can only be set by expert judgment, which is

greatly facilitated here by the feedback from the initial stage. Figure 2(b) shows that the

revised tolerances result in more consistent loss values across all 40 parameterizations. This
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Figure 2: The Balanced Loss as a function of CMA iteration (lowest value within the popula-
tion) of the 40 parameterizations in the initial (a) and final (b) stage. The lowest value along
each trajectory is indicated by a black square. The dimensioned category RMSEs, Rcσc, of
the best parameter vector of each of the 40 parameterizations in the initial (c) and final (d)
stage. All data are color coded by the loss value of the best point along the trajectory. The
color bar of panel (c)/(d) is also applicable to panel (a)/(b). Grey vertical lines in panel
(c)/(d) denote the tolerances for the corresponding category.
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is also reflected in the RMSEs in Figure 2(d), most of which exhibit less scatter. In other

words, for most categories, the 40 parameterizations in the final stage are comparable, with

the category GEH being the most notable exception. Note that the absolute value of the

Balanced Loss values cannot be compared between Figures 2(a) and 2(b), because the two

optimization stages use different tolerances. One could slightly tweak the tolerances further

to bring them closer to the errors on the training set, but this would amount to relatively

small adjustments that we do not expect to lead to significant improvements.

To illustrate the importance of the Log-Sum-Exp form of Balanced Loss, we have per-

formed the 40 CMA optimizations in six different ways: with initial and final tolerances and

using different functions f : f(x) = exp(x) (Log-Sum-Exp or LSE, the default, same results as

above), f(x) = x2 (Root-Sum-Square or RSS) and f(x) = x (Identity-Sum-Identity or ISI).

For comparison, the LSE form of Balanced Loss is computed for all the 240 optimized param-

eter vectors, and their distribution is shown in Figure 3(a). In the initial stage, the function f

has a significant influence. The choice of the function f determines the compromise between

the RMSEs of the individual categories: In the case of RSS and ISI, the parameterization

no longer exclusively prioritizes the adsorption energies in the categories BSH and GSH,

resulting in higher RMSEs for these categories, as illustrated in Figure 3(b). The results in

this figure do not reveal whether the poor performance of ReaxFF for the categories BSH

and GSH can be remedied by giving these categories a higher weight in the loss function,

or whether they are high due to intrinsic limitations of the model. The Log-Sum-Exp form

automatically resolves this ambiguity. Since this form approximates the maximum over all

Rc, this loss function is dominated by the categories BSH and GSH, resulting in the lowest

possible RMSE for these categories. It is simply impossible to give these categories a higher

weight, leaving no other option than to assign more humble tolerances.

Figure 3(a) reveals two additional insights. First, the results become less sensitive to the

choice of the function f in the final stage. The RMSEs for all categories are close to the

final tolerances, meaning that the argument of the function f (for the optimized parameters)
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Figure 3: (a) Distribution of Balanced Loss values, computed with f(x) = exp(x), for
parameter vectors optimized with different functions f in Eq. (7): f(x) = exp(x) (LSE),
f(x) = x2 (RSS) and f(x) = x (ISI). The histograms are computed for both the initial and
final tolerances defined in Table 2. (b) The dimensioned category RMSEs, Rcσc, of the best
parameter vector of each of the 40 parameterizations in the initial stage using f(x) = x (ISI).
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is close to one, reducing the importance of the non-linearity of f . Second, with f(x) = x2

(RSS), the loss function is mathematically equivalent to Eq. (5), a standard loss functions

used for ReaxFF. This implies that the optimized parameters in this work can also be found

with a more conventional loss function, when the weights and sigmas are set consistently with

the tolerances in Balanced Loss. Hence, the added value of Balanced Loss is essentially the

feedback provided from the initial stage, which facilitates the configuration of the tolerances.

Figure 4 shows the distribution of the 40 optimized parameter vectors, after transforming

them to their dimensionless form. Although the 40 CMA runs converge to approximately

the same Balanced Loss value, the corresponding parameters are not necessarily similar.

Some parameters, such as Al.O:D_eˆsigma or Al.O:p_ovun1, have a delineated range of

optimal values. However, most parameters can be found across the entire interval of allowed

values. This does not mean that all these parameters are completely random: They could

be correlated, which is not apparent in the individual histograms. In any case, the optimal

parameters are degenerate to some degree, which has also been observed in previous ReaxFF

parameterizations on other chemical systems.21,27,31,44

Since ReaxFF is at least partially inspired by physical principles, one might hope that

all parameters always converge to the same values. However, Sethna et al. have extensively

shown in their work on “sloppy models” that broad parameter distributions are virtually

always found for models with more than a few parameters, across different scientific disci-

plines.127–130 This is a universal pattern, regardless of the degree of physical interpretation

that the model parameters may have. It is observed that some degrees of freedom in the

parameter space of complex models are systematically ill-defined, not due to a lack of data,

but because nearly the same model predictions (for all possible inputs) are found for different

parameter vectors. As a consequence, predictions on unseen data are robust, despite uncer-

tainties in the parameters. For the Electronegativity Equalization Method (EEM), which

is included in ReaxFF, this parameter degeneracy has been investigated in more detail.131

ReaxFF also has the characteristics of “a sloppy model”, as illustrated by Figure S8 in the
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Supporting Information: All the optimized parameter vectors of the 40 CMA runs (LSE,

final stage) perform reasonably well for the validation set, despite the fact that they repre-

sent different local minima in the parameter space. This in itself is not a limitation when

the model is used for simulations, but it obviously makes any direct interpretation of the

parameters impossible.

It is also noticeable that several parameters have a high probability of converging close to

the bounds. One might deduce that the parameter bounds are too narrow and the optimizer

is trying to move the parameters to an optimum beyond the bounds, but this is not the

only possible cause. Note that the components of the best parameter vector over all 40

runs, the circles in Figure 4, are not necessarily close to the bounds, even if the remaining

near-optimal values cluster near the edges. Examples of this pattern are “Al.O:p_be1”

and “Al.O.H:Theta_0,0”. A deeper investigation, beyond the scope of the current work, is

needed to understand why a disproportionate number of near-optimal solutions is found near

the bounds. For example, this could also be related to an optimizer inefficiency when the

parameters approach their bounds, and addressing this problem may make the optimization

more efficient. It should also be noted that some initial parameter values start of close

to the interval bounds regardless of the boundary extension as explained in Section 2.3.

Since some of the initial parameters have values close to zero, the effect of the boundary

extension is negligible. The most prominent examples are “Al.O:p_be2”, “Al.H.O:p_val1”,

“Al.H.O:p_val2” and “Al.O.H:p_val2”.

For the remainder of this work, the best parameter vector from the final stage is used

for all calculations, i.e. corresponding to the lowest square in Figure 2(b) and the circles in

Figure 4. The selected parameters are given in the last column of Table S3 in the Supporting

Information.
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Figure 4: Histograms of the 36 components of the 40 optimized dimensionless parameter
vectors in the final stage. The parameter components are made dimensionless by a linear
transformation, such that zero corresponds to the lower bound and one corresponds to the
upper bound. The bounds are listed in Table S3 in the Supporting Information. The initial
values are marked with vertical black bars. The values corresponding to the lowest loss (over
all 40 runs) are marked with circles.
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4.2 Force field validation

Figure 5 offers a first visual impression of how the new force field improves the prediction

of dissociative water adsorption on alumina. It shows a high-hydration structure of the

γ-Al2O3 (001) slab model, labeled gamma_surf-001_03w in the validation set, geometry-

optimized with the reference method (DFT calculation with VASP), the initial force field

by Joshi et al.90 and the new force field in this work. The Joshi et al. force field predicts

a severe deformation of the alumina structure, and already desorbs water molecules in this

static calculation while all water should be adsorbed according to reference calculation. In

contrast, the new force field in this work predicts a geometry that is visually deviating only

slightly from the DFT reference, and the water molecules remain adsorbed on the surface.

The performance of the new force field can be evaluated more in detail by analyzing the

distributions of categorized data in the training and validation sets, and their deviations from

the DFT reference. Table 3 shows the RMSEs between force field and reference data, for each

category, for the training and validation set, and for the initial force field by Joshi et al.88,90

and the one optimized in this work. To make the RMSEs directly comparable, only data

related to γ-Al2O3 were taken from the training set since the validation set also contains only

γ-Al2O3. In addition, only data categories (rows) are included that exist in both data sets.

For reference, also the standard deviations on the reference data per category are reported.

Figure 6 shows parity plots for all categories of internal coordinates in the validation set. In

addition, water adsorption energies on γ-Al2O3 surfaces in the training and validation sets

are shown in Figure 7. Not all data categories from the training set exist for the validation

set, because the validation set is focused on adsorption on γ-Al2O3 only. This is reflected in

the Table 3, Figure 6 and Figure 7 by only considering γ-Al2O3 structures. Table S6 and

Figure S3 in the Supporting Information contain the results omitted here, i.e. not involving

γ-Al2O3 surfaces, for which a direct comparison to the validation set is not possible.

The RMSEs in Table 3 show that new force field significantly reduces the errors on the

bond lengths compared to the Joshi et al. force field.88,90 A subset of the bonds is broken after
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Figure 5: Optimized structures of the γ-Al2O3 (001) surface from the validation set at
an OH coverage of 13.0 nm−2, computed with different models: (a) DFT reference, (b)
ReaxFF parameters by Joshi et al. and (c) ReaxFF parameters obtained with Balanced
Loss. Al=gray, O=red, H=white.
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Figure 6: Parity plots of the reference internal coordinates from the validation set versus the
force field predictions: initial parameters by Joshi et al.88,90 (orange) and optimal parameters
obtained with Balanced loss (blue). Distances: (a) Al–O, (b) Al–Al, (c) O–H and (d)
O· · ·H. Angles: (e) Al–O–Al, (f) Al–O–H, (g) O–Al–O, (h) Al–O· · ·H, (i) Al–O· · ·H
and (j) Al· · ·O· · ·H. The parity line is plotted as a black solid line. In panels (a) and (c)
the vertical axis is manually limited to only show bonded distances. The initial parameters
from Joshi result in many broken bonds, which are omitted for the sake of clarity.
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Figure 7: Water adsorption energy per water molecule on γ-Al2O3 surfaces as a function
of the OH coverage, using the bare surface as the reference, i.e. using mi = 0 in Eq. (3).
Results are computed with DFT (gray circle), Joshi FF (orange plus), FF from this work
(blue cross). Panels (a) to (c) are adsorption energies from the training set, whereas (d) to
(h) are derived from the validation set. The nomenclature of the surfaces in the validation
set is described in Ref. 52.
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Table 3: Comparison of root-mean-square-errors (RMSEs) of the initial force
field by Joshi et al.88,90 and the force field optimized in this work (BL). The
RMSEs are computed for training and validation sets and are grouped per data
category. For reference, the standard deviation (SD) on the reference data is
included.

Category Unit Training Validation
Ref. Joshi BL Ref. Joshi BL
SD RMSE RMSE # SD RMSE RMSE #

Al–O Å 0.16 0.45 0.09 1405 0.10 0.40 0.06 2102
Al–Al Å 0.30 0.40 0.11 6759 0.31 0.40 0.11 13 588
O–H Å 0.03 0.31 0.07 352 0.02 0.18 0.06 704
O· · ·H Å 0.18 0.85 0.17 203 0.18 0.90 0.25 351

Al–O–Al deg 21.2 17.0 4.4 1756 20.0 16.6 3.8 2744
Al–O–H deg 12.2 20.4 6.9 598 9.3 18.7 8.3 1217
O–Al–O deg 29.4 16.7 4.5 2943 30.9 17.4 3.9 4656
Al–O· · ·H deg 18.4 16.9 6.5 301 17.6 17.6 6.6 554
H–O· · ·H deg 17.5 27.4 12.7 142 17.3 29.4 14.7 254
H· · ·O· · ·H deg 31.1 28.9 4.4 65 38.0 33.7 7.7 88

GSH kcalmol−1 15.0 55.7 6.6 37 16.4 54.4 8.3 101
SUR kcalmol−1 6.1 11.3 2.9 8 1.4 4.7 1.4 6

geometry optimization with the force fields, which is not fully visible in Figures 6(a) and 6(c),

because this would require an impractical scale for the vertical axes. In the validation set,

14.3% of the Al–O bonds and 1.1% of the O–H bonds are broken with the Joshi et al. force

field. With the new force field proposed here, these percentages reduce to 0.0% and 0.3%,

respectively. These percentages are consistent with the visualization in Figure 5(b) and

confirm that the Joshi γ-Al2O3 surfaces force field cannot preserve the structural integrity

of the (hydrated) γ-Al2O3 slabs. By consequence, this force field also performs poorly for

other categories (angles and energies), for which a correct bonding topology is required.

The parity plots of the distances in Figures 6(a), 6(c) and 6(d) also reveal that even

the new force field captures the variations in bond lengths only approximately. This is also

confirmed by the fact that the RMSEs of the distances in Table 3 are of the same order

as the standard deviation on the distances in the reference data. For the O–H and O· · ·H

distances, this was to be expected, because the corresponding bond parameters in ReaxFF

were not re-optimized for the sake of compatibility with the silicate parameters in the Joshi et
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al. force field. For the Al–O distances, the performance is slightly better, which is consistent

with the fact that several Al–O parameters were re-optimized.

The new force field also improves upon the Joshi et al. force field in terms of valence

angles, again with a somewhat better performance when no hydrogen atoms are involved. It

is remarkable that the multimodal distributions of the Al–O–Al, O–Al–O and Al–O· · ·H

angles are reproduced well by the new force field, despite only having a single energy term

for these angles in the ReaxFF force field. Also the improvements of the H–O· · ·H and

H· · ·O· · ·H angles, compared to the initial force field, are remarkable, because no corre-

sponding valence angle of hydrogen bonding terms were reparameterized.

In line with the previous categories, also the RMSEs on the energies are significantly

smaller with the new force field. Before discussing the adsorption energies, it should be

noted that the category SUR was mainly introduced to improve the diversity of the training

set. (It comprises reaction energies between bulk and slab models, normalized on the number

of Al atoms.) A few data points in the same category can be derived from the validation

structures and are included here for the sake of completeness. The error on these data points

has also decreased compared to the initial force field, confirming the ability of Balanced Loss

to account for underrepresented categories in the training set.

The new force field reduces the error on the adsorption energies (category GSH) by more

than a factor 6 in the validation set. The improvements are also immediately clear in Figure

7, which shows the adsorption energy on γ-Al2O3 surfaces as a function of OH coverage. In

most cases, the new force field predicts the correct trends in the adsorption energy, with some

exceptions at low OH coverage in Figures 7(d) and 7(f). For the (001) and the (110)b slabs in

the validation set, it is unclear why these surfaces exhibit larger errors in adsorption energy

at low coverage. The Joshi et al. force field incorrectly predicts water desorption for 12

out of 53 surface structures in the validation set, which hampers reliable energy predictions.

With, the new force field, this problem is far less prevalent: Only one water molecule (out

of six) from only one surface structure spontaneously desorbs. The new force field can also
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predict the magnitude of the adsorption energy, with an RMSE of 8.3 kcalmol−1, compared

to a standard deviation of 16.4 kcalmol−1 of the adsorption energies in the validation set.

For all categories of data discussed above, the errors on static calculations are very

similar for the training and the validation sets, indicating that the significant improvements

of the new ReaxFF force field generalize to structures not used for training. The errors on

distances, valence angles and energy differences are also comparable to those reported for

previous ReaxFF models.8,25,132–135

Because the training set only includes equilibrium geometries, it should be tested to

what extent the new parameters can also reproduce non-equilibrium energies. To this

end, a constant-temperature DFT molecular dynamics run was performed on structure

gamma_surf-110l_A1_06w from the validation set, using the same level of theory as the

training data. An elevated temperature of 1000K stimulates the desorption of water, which

is observed during the first 200 fs. Section S2 of the Supporting Information presents a

detailed comparison of the DFT and ReaxFF energies computed for snapshots from this tra-

jectory. In summary, the instantaneous DFT adsorption energy computed with Eq. (3) as a

function of time is reproduced qualitatively by the ReaxFF parameters obtained with Bal-

anced Loss: The relative error of about 25% over the first 200 fs is comparable to the RMSE

on the training set for GSH category. Our new parameters also show a clear improvement

compared to the ReaxFF energies obtained with the parameters of Joshi et al. The thermal

energy fluctuations due to vibrations within the alumina slab are not well reproduced, which

is expected, since no corresponding data was used for training.

Despite our improvements, it remains interesting to explore further refinements, e.g. to

further reduce errors in adsorption energies or to improve the vibrational states of alumina.

One avenue is to activate more parameters during the training that are now fixed for the

sake of backward compatibility. Giving up backward compatibility would only be useful

when extending the chemical space of the training set to aluminosilicates and water, such

that all parameters of the Joshi et al. force field can be re-optimized. However, this would
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be a daunting enterprise, because the current training set size is already computationally

demanding: A single CMA run in this work already took more than 24 hours. In addition to

the increased cost of the training set, more active parameters also imply more local minima

and a slower convergence of CMA-ES, further exacerbating the computational cost. This

avenue is therefore only feasible when one can drastically speed up the training of ReaxFF

parameters. It is encouraging that efficiency gains were reported in recent publications,

e.g. by parallel optimization management,44 or by machine learning surrogates of the loss

function.28,136,137 One may also reduce the dimensionality of the parameter space through

sensitivity analysis to speed up the CMA runs.31

As a final check of the new force field, a molecular dynamics (MD) simulations is per-

formed on (110)ℓ γ-Al2O3 slab with a cross section of 6.0 nm2, a thickness of 1.8 nm and

surrounded by a vacuum layer of 5.7 nm wide. In the initial structure, the maximal num-

ber of water molecules is dissociatively adsorbed on both sides of the slab, such that the

chemical formula is Al504O864H216. The MD simulation follows a NVT -ensemble and uses a

Nosé-Hoover thermostat138 with a time step of 0.2 fs, a temperature of 500K, a time-constant

of 500 ps and a fixed periodic box size. Figure 8 shows the initial and final states of the MD

trajectory, as well as the evolution of the kinetic energy, total energy (kinetic + potential)

and the conserved quantity. The conserved quantity (green) exhibits a slow linear increase,

which is acceptable for long ReaxFF MD simulations at a constant temperature. ReaxFF

forces are imperfect due to numerical convergence of the variable charges and small discon-

tinuities in the ReaxFF energy surface. Such small force errors are practically tiny random

kicks on the nulcei, which slowly pump energy into the system, but this is easily compen-

sated for by the thermostat and results in a slowly increasing conserved quantity. The 3D

visualizations show that some of the water molecules desorb, as expected at a temperature

of 500K. This test shows that the new force field can also be used for MD simulations, even

though it is only trained on optimized geometries. A complete study of water adsorption,

with larger slabs, different alumina surfaces and temperatures, goes beyond the scope of this
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work. We expect that the new force field will make such simulations possible, at time and

length scales that are infeasible for DFT methods.
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Figure 8: The initial (a) and final (b) states of a constant-temperature MD trajectory of
a (110)ℓ γ-Al2O3 with water initially adsorbed on the surface. Al=gray, O=red, H=white.
See text for details. (c) The kinetic energy (blue), total energy (kinetic + potential, orange)
and the conserved quantity (green).

5 Conclusion and Outlook

This work addresses the difficulty of assigning fitting weights (or their inverses, often called

sigmas) in a conventional ReaxFF loss function. Balanced Loss is proposed as a new cost

function as well as a workflow to reformulate the weight assignment in terms of more man-

ageable concepts. One starts by classifying the training data into meaningful categories with

a corresponding tolerance, which is the root-mean-square error (between ReaxFF predictions

and reference data in that category) that one is willing to tolerate. When the error on one

category exceeds the corresponding tolerance more than other categories, the Log-Sum-Exp

form of Balanced Loss guarantees that this error will completely dominate the loss function,

effectively forcing the optimizer to reduce this error first. If one or more of such dominating

categories remain after the parameters converge, it is guaranteed that these errors cannot be

reduced further at the expense of making larger errors in other categories. As a result, the

parameter optimization also assesses whether ReaxFF can meet the expectations defined by

the tolerances. If necessary, the expectations can be adjusted, followed by a new parameter

optimization. The methodology is applied to a realistic and challenging reparameterization
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of ReaxFF for water adsorption on alumina surfaces. This not only results in a competitive

force field, but also provides insight into the performance that can be expected from ReaxFF

for each category of training data.

The new force field derived in this work is a refinement of the alumina parameters in

the aluminosilicate force field of Joshi et al.88,90 The training and validation data consisted

of geometry and energy data from previous Density Functional Theory (DFT) studies of

water adsorption on boehmite and γ-Al2O3 surfaces. While γ-Al2O3 is industrially the most

relevant, boehmite structures were included in the training set to improve the data diversity.

Parameter selection focused on maintaining backward compatibility with the ReaxFF model

of Joshi et al. as much as possible, while still activating sufficient parameters to reproduce

the training data. Covariance Matrix Adaptation (CMA) is used to minimize Balanced Loss

as a function of the selected parameters. 40 independent CMA runs were performed to test

the robustness of the optimized parameters. Of all these runs, the result with the lowest

error on the training set is used for validation. Static calculations confirm that the optimized

force field produces very similar errors on the γ-Al2O3 properties present in the training and

validation sets. The force field can be used for MD simulations, and we expect it to be

applicable to extensive simulations of water adsorption on alumina surfaces, at time and

length scales inaccessible to DFT methods.

This study also revealed several challenges and new avenues for future method devel-

opment. Obviously, it should be validated whether the Balanced Loss workflow is equally

helpful for other ReaxFF parameterizations. Even beyond the scope of ReaxFF, Balanced

Loss may facilitate optimization problems involving multiple (possibly competing) categories

of training data. In addition, this study confirmed known pitfalls of ReaxFF parameteriza-

tion and suggested new ones. Despite our careful and relatively small selection of parameters,

the minimum of the loss function is still degenerate, suggesting that the number of active

parameters can be reduced further with a sensitivity analysis. Finally, it was observed that

parameters often converge to near-optimal values close to the bounds. A better understand-
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ing of this phenomenon may help to speed up the convergence to better parameters.

6 Data and Code availability

A data set as made available at https://doi.org/10.5281/zenodo.10491516 comprising:

the training and validation data, the results of the 240 CMA optimizations, and scripts used

to select parameters, convert datasets and perform the training and validation.

Acknowledgement

The authors thank the company Software for Chemistry & Materials B.V. (SCM) for pro-

viding an AMS developer license at no cost. In particular, we are grateful to Matti Hell-

ström and Tomáš Trnka from SCM for their technical support. The authors also thank

members of the Center for Molecular Modelling at Ghent University, especially Tom Braeck-

evelt, Leonid Komissarov and Michael Gustavo as well as Pascal Raybaud from IFP En-

ergies nouvelles for the insightful discussions. Computational resources and services used

were provided by Ghent University (Stevin and Hortense Supercomputer Infrastructures),

the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders

(FWO), and IFP Energies nouvelles (ENER440). Funding was provided by IFPEN and

UGent (BOF/24J/2023/121). T.V. Acknowledges the Special Research Fund (BOF) of

Ghent University for its continuous support.

Supporting Information Available

The Supporting Information contains two files:

• A PDF document with (i) additional figures and tables describing the training and val-

idation sets, (ii) the ReaxFF parameters selected for optimization, and (iii) additional

performance metrics on the training set that have no counterpart in the validation set.

43



• A ZIP file with the optimized parameters used for the force field validation, and ex-

ample input files for the MD simulations in this work.

References

(1) Brunk, E.; Rothlisberger, U. Mixed Quantum Mechanical/Molecular Mechanical

Molecular Dynamics Simulations of Biological Systems in Ground and Electronically

Excited States. Chem. Rev. 2015, 115, 6217–6263.

(2) Döntgen, M.; Przybylski-Freund, M.-D.; Kröger, L. C.; Kopp, W. A.; Ismail, A. E.;

Leonhard, K. Automated Discovery of Reaction Pathways, Rate Constants, and Tran-

sition States Using Reactive Molecular Dynamics Simulations. J. Chem. Theory Com-

put. 2015, 11, 2517–2524.

(3) Chenoweth, K.; van Duin, A. C. T.; Dasgupta, S.; III, W. A. G. Initiation Mechanisms

and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel. J. Phys.

Chem. A 2009, 113, 1740–1746.

(4) Ding, J.; Zhang, L.; Zhang, Y.; Han, K.-L. A Reactive Molecular Dynamics Study of

n-Heptane Pyrolysis at High Temperature. J. Phys. Chem. A 2013, 117, 3266–3278.

(5) Li, X.; Zheng, M.; Ren, C.; Guo, L. ReaxFF Molecular Dynamics Simulations of

Thermal Reactivity of Various Fuels in Pyrolysis and Combustion. Energy & Fuels

2021, 35, 11707–11739.

(6) Fogarty, J. C.; Aktulga, H. M.; Grama, A. Y.; van Duin, A. C. T.; Pandit, S. A. A

reactive molecular dynamics simulation of the silica-water interface. J. Chem. Phys.

2010, 132, 174704.

(7) Mueller, J. E.; van Duin, A. C. T.; Goddard, W. A. Application of the ReaxFF

44



Reactive Force Field to Reactive Dynamics of Hydrocarbon Chemisorption and De-

composition. J. Phys. Chem. C 2010, 114, 5675–5685.

(8) Müller, J.; Hartke, B. reaxFF Reactive Force Field for Disulfide Mechanochemistry,

Fitted to Multireference ab Initio Data. J. Chem. Theory Comput. 2016, 12, 3913–

3925.

(9) Rimsza, J. M.; Jones, R. E.; Criscenti, L. J. Crack propagation in silica from reactive

classical molecular dynamics simulations. J. Am. Ceram. Soc. 2017, 101, 1488–1499.

(10) Mao, Q.; van Duin, A. C.; Luo, K. Formation of incipient soot particles from polycyclic

aromatic hydrocarbons: A ReaxFF molecular dynamics study. Carbon 2017, 121,

380–388.

(11) Lei, T.; Guo, W.; Liu, Q.; Jiao, H.; Cao, D.-B.; Teng, B.; Li, Y.-W.; Liu, X.; Wen, X.-

D. Mechanism of Graphene Formation via Detonation Synthesis: A DFTB Nanoreac-

tor Approach. J. Chem. Theory Comput. 2019, 15, 3654–3665.

(12) van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. ReaxFF: A Reactive

Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409.

(13) van Duin, A. C. T.; Strachan, A.; Stewman, S.; Zhang, Q.; Xu, X.; Goddard, W. A.

ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems. J. Phys. Chem.

A 2003, 107, 3803–3811.

(14) Senftle, T. P.; Hong, S.; Islam, M. M.; Kylasa, S. B.; Zheng, Y.; Shin, Y. K.; Junker-

meier, C.; Engel-Herbert, R.; Janik, M. J.; Aktulga, H. M. et al. The ReaxFF reactive

force-field: development, applications and future directions. npj Comput. Mater. 2016,

2, 15011.

(15) Tersoff, J. Empirical Interatomic Potential for Carbon, with Applications to Amor-

phous Carbon. Phys. Rev. Lett. 1988, 61, 2879–2882.

45



(16) O’Connor, T. C.; Andzelm, J.; Robbins, M. O. AIREBO-M: A reactive model for

hydrocarbons at extreme pressures. J. Chem. Phys. 2015, 142, 024903.

(17) Zhang, D.; Fonseca, A. F.; Liang, T.; Phillpot, S. R.; Sinnott, S. B. Dynamics of

graphene/Al interfaces using COMB3 potentials. Phys. Rev. Mater. 2019, 3, 114002.

(18) Rowe, P.; Deringer, V. L.; Gasparotto, P.; Csányi, G.; Michaelides, A. An accurate

and transferable machine learning potential for carbon. J. Chem. Phys. 2020, 153,

034702.

(19) Xue, L.-Y.; Guo, F.; Wen, Y.-S.; Feng, S.-Q.; Huang, X.-N.; Guo, L.; Li, H.-S.; Cui, S.-

X.; Zhang, G.-Q.; Wang, Q.-L. ReaxFF-MPNN machine learning potential: a combi-

nation of reactive force field and message passing neural networks. Phys. Chem. Chem.

Phys. 2021, 23, 19457–19464.

(20) Schreiner, M.; Bhowmik, A.; Vegge, T.; Busk, J.; Winther, O. Transition1x - a dataset

for building generalizable reactive machine learning potentials. Sci. Data 2022, 9, 779.

(21) Pahari, P.; Chaturvedi, S. Determination of best-fit potential parameters for a reactive

force field using a genetic algorithm. J. Mol. Model. 2011, 18, 1049–1061.

(22) Deetz, J. D.; Faller, R. Parallel Optimization of a Reactive Force Field for Polycon-

densation of Alkoxysilanes. J. Phys. Chem. B 2014, 118, 10966–10978.

(23) Jaramillo-Botero, A.; Naserifar, S.; Goddard, W. A. General Multiobjective Force

Field Optimization Framework, with Application to Reactive Force Fields for Silicon

Carbide. J. Chem. Theory Comput. 2014, 10, 1426–1439.

(24) Dittner, M.; Müller, J.; Aktulga, H. M.; Hartke, B. Efficient global optimization of

reactive force-field parameters. J. Comput. Chem. 2015, 36, 1550–1561.

(25) Trnka, T.; Tvaroška, I.; Koča, J. Automated Training of ReaxFF Reactive Force Fields

for Energetics of Enzymatic Reactions. J. Chem. Theory Comput. 2017, 14, 291–302.

46



(26) Furman, D.; Carmeli, B.; Zeiri, Y.; Kosloff, R. Enhanced Particle Swarm Optimization

Algorithm: Efficient Training of ReaxFF Reactive Force Fields. J. Chem. Theory

Comput. 2018, 14, 3100–3112.

(27) Shchygol, G.; Yakovlev, A.; Trnka, T.; van Duin, A. C. T.; Verstraelen, T. ReaxFF

Parameter Optimization with Monte-Carlo and Evolutionary Algorithms: Guidelines

and Insights. J. Chem. Theory Comput. 2019, 15, 6799–6812.

(28) Sengul, M. Y.; Song, Y.; Nayir, N.; Gao, Y.; Hung, Y.; Dasgupta, T.; van Duin, A.

C. T. INDEEDopt: a deep learning-based ReaxFF parameterization framework. npj

Comput. Mater. 2021, 7, 68.

(29) Kaymak, M. C.; Rahnamoun, A.; O’Hearn, K. A.; van Duin, A. C. T.; Merz Jr., K. M.;

Aktulga, H. M. JAX-ReaxFF: A Gradient-Based Framework for Fast Optimization of

Reactive Force Fields. J. Chem. Theory Comput. 2022, 18, 5181–5194.

(30) Komissarov, L.; Krep, L.; Schmalz, F.; Kopp, W. A.; Leonhard, K.; Verstraelen, T.

A Reactive Molecular Dynamics Study of Chlorinated Organic Compounds. Part I:

Force Field Development. ChemPhysChem 2023, 24, e202200786.

(31) Gustavo, M. F.; Hellström, M.; Verstraelen, T. Sensitivity Analysis for ReaxFF

Reparametrization Using the Hilbert–Schmidt Independence Criterion. J. Chem. The-

ory Comput. 2023, 19, 2557–2573.

(32) Wang, H.; Zhang, L.; Han, J.; E, W. DeePMD-kit: A deep learning package for

many-body potential energy representation and molecular dynamics. Comput. Phys.

Commun. 2018, 228, 178–184.

(33) Unke, O. T.; Meuwly, M. PhysNet: A Neural Network for Predicting Energies, Forces,

Dipole Moments, and Partial Charges. J. Chem. Theory Comput. 2019, 15, 3678–

3693.

47



(34) Cools-Ceuppens, M.; Dambre, J.; Verstraelen, T. Modeling Electronic Response Prop-

erties with an Explicit-Electron Machine Learning Potential. J. Chem. Theory Com-

put. 2022, 18, 1672–1691.

(35) Fedkin, M. V.; Shin, Y. K.; Dasgupta, N.; Yeon, J.; Zhang, W.; van Duin, D.; van

Duin, A. C. T.; Mori, K.; Fujiwara, A.; Machida, M. et al. Development of the ReaxFF

Methodology for Electrolyte–Water Systems. J. Phys. Chem. A 2019, 123, 2125–2141.

(36) Brown, I.; Smith, R.; Kenny, S. D. A ReaxFF potential for Al–ZnO systems. Model.

Simul. Mater. Sci. Eng. 2022, 30, 035001.

(37) Verstraelen, T.; Sukhomlinov, S. V.; Van Speybroeck, V.; Waroquier, M.;

Smirnov, K. S. Computation of Charge Distribution and Electrostatic Potential in

Silicates with the Use of Chemical Potential Equalization Models. J. Phys. Chem. C

2012, 116, 490–504.

(38) Bureekaew, S.; Amirjalayer, S.; Tafipolsky, M.; Spickermann, C.; Roy, T. K.;

Schmid, R. MOF-FF – A flexible first-principles derived force field for metal-organic

frameworks. Phys. Status Solidi B 2013, 250, 1128–1141.

(39) Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding

Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent

Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z

= 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009.

(40) Komissarov, L.; Verstraelen, T. Improving the Silicon Interactions of GFN-xTB. J.

Chem. Inf. Model. 2021, 61, 5931–5937.

(41) Li, J.; Song, X.; Li, P.; Herzfeld, J. A Carbon Is a Carbon Is a Carbon: Orbital-

Free Simulations of Hydrocarbon Chemistry without Resort to Atom Types. J. Phys.

Chem. A 2022, 126, 8468–8475.

48



(42) Włodarczyk, A.; Uchroński, M.; Podsiadły-Paszkowska, A.; Irek, J.; Szyja, B. M.

Mixing ReaxFF parameters for transition metal oxides using force-matching method.

J. Mol. Model. 2022, 28, 8.

(43) Komissarov, L.; Rüger, R.; Hellström, M.; Verstraelen, T. ParAMS: Parameter Op-

timization for Atomistic and Molecular Simulations. J. Chem. Inf. Model. 2021, 61,

3737–3743.

(44) Gustavo, M. F.; Verstraelen, T. GloMPO (Globally Managed Parallel Optimization):

a tool for expensive, black-box optimizations, application to ReaxFF reparameteriza-

tions. J. Cheminformatics 2022, 14, 7.

(45) Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: an extensible neural network potential

with DFT accuracy at force field computational cost. Chem. Sci. 2017, 8, 3192–3203.

(46) Chen, C.; Ong, S. P. A universal graph deep learning interatomic potential for the

periodic table. Nat. Comput. Sci. 2022, 2, 718–728.

(47) Takamoto, S.; Shinagawa, C.; Motoki, D.; Nakago, K.; Li, W.; Kurata, I.; Watan-

abe, T.; Yayama, Y.; Iriguchi, H.; Asano, Y. et al. Towards universal neural network

potential for material discovery applicable to arbitrary combination of 45 elements.

Nat. Commun. 2022, 13, 2991.

(48) Hart, L. D.; Lense, E. Alumina Chemicals: Science and Technology Handbook ; John

Wiley & Sons, 1990.

(49) Lefèvre, G.; Duc, M.; Lepeut, P.; Caplain, R.; Fédoroff, M. Hydration of γ-Alumina

in Water and Its Effects on Surface Reactivity. Langmuir 2002, 18, 7530–7537.

(50) Arrouvel, C.; Digne, M.; Breysse, M.; Toulhoat, H.; Raybaud, P. Effects of morphology

on surface hydroxyl concentration: a DFT comparison of anatase–TiO2 and γ-alumina

catalytic supports. J. Catal. 2004, 222, 152–166.

49



(51) Lagauche, M.; Larmier, K.; Jolimaitre, E.; Barthelet, K.; Chizallet, C.; Favergeon, L.;

Pijolat, M. Thermodynamic Characterization of the Hydroxyl Group on the γ-Alumina

Surface by the Energy Distribution Function. J. Phys. Chem. C 2017, 121, 16770–

16782.

(52) Pigeon, T.; Chizallet, C.; Raybaud, P. Revisiting γ-alumina surface models through

the topotactic transformation of boehmite surfaces. J. Catal. 2022, 405, 140–151.

(53) Levin, I.; Brandon, D. Metastable Alumina Polymorphs: Crystal Structures and Tran-

sition Sequences. J. Am. Ceram. Soc. 1998, 81, 1995–2012.

(54) Trueba, M.; Trasatti, S. P. γ-Alumina as a Support for Catalysts: A Review of Fun-

damental Aspects. Eur. J. Inorg. Chem. 2005, 2005, 3393–3403.

(55) Euzen, P.; Raybaud, P.; Krokidis, X.; Toulhoat, H.; Le Loarer, J.-L.; Jolivet, J.-P.;

Froidefond, C. In Handbook of Porous Solids ; Schüth, F., Sing, K. S. W., Weitkamp, J.,

Eds.; John Wiley & Sons, Ltd, 2002; pp 1591–1677.

(56) Knözinger, H. Dehydration of Alcohols on Aluminum Oxide. Angew. Chem. Int. Ed.

Engl. 1968, 7, 791–805.

(57) Knözinger, H.; Bühl, H.; Kochloefl, K. The dehydration of alcohols on alumina: XIV.

Reactivity and mechanism. J. Catal. 1972, 24, 57–68.

(58) Phung, T. K.; Lagazzo, A.; Rivero Crespo, M. Á.; Sánchez Escribano, V.; Busca, G.

A study of commercial transition aluminas and of their catalytic activity in the dehy-

dration of ethanol. J. Catal. 2014, 311, 102–113.

(59) Kohl, A. L.; Nielsen, R. B. In Gas Purification (Fifth Edition); Kohl, A. L.,

Nielsen, R. B., Eds.; Gulf Professional Publishing: Houston, 1997; pp 670–730.

(60) Larmier, K.; Chizallet, C.; Cadran, N.; Maury, S.; Abboud, J.; Lamic-Humblot, A.-F.;

Marceau, E.; Lauron-Pernot, H. Mechanistic Investigation of Isopropanol Conversion

50



on Alumina Catalysts: Location of Active Sites for Alkene/Ether Production. ACS

Catal. 2015, 5, 4423–4437.

(61) Jain, J. R.; Pillai, C. N. Catalytic dehydration of alcohols over alumina: Mechanism

of ether formation. J. Catal. 1967, 9, 322–330.

(62) Raybaud, P.; Toulhoat, H. Catalysis by Transition Metal Sulphides: From Molecular

Theory to Industrial Application; Editions TECHNIP, 2013.

(63) Copéret, C.; Comas-Vives, A.; Conley, M. P.; Estes, D. P.; Fedorov, A.; Mougel, V.;

Nagae, H.; Núñez-Zarur, F.; Zhizhko, P. A. Surface Organometallic and Coordination

Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Struc-

tures, and Activities. Chem. Rev. 2016, 116, 323–421.

(64) Boudart, M. In Advances in Catalysis ; Eley, D. D., Pines, H., Weisz, P. B., Eds.;

Academic Press, 1969; pp 153–166.

(65) Prins, R. On the structure of γ-Al2O3. J. Catal. 2020, 392, 336–346.

(66) Valero, M. C.; Raybaud, P. Computational chemistry approaches for the preparation

of supported catalysts: Progress and challenges. J. Catal. 2020, 391, 539–547.

(67) Krokidis, X.; Raybaud, P.; Gobichon, A.-E.; Rebours, B.; Euzen, P.; Toulhoat, H.

Theoretical Study of the Dehydration Process of Boehmite to γ-Alumina. J. Phys.

Chem. B 2001, 105, 5121–5130.

(68) Wischert, R.; Laurent, P.; Copéret, C.; Delbecq, F.; Sautet, P. γ-Alumina: the essen-

tial and unexpected role of water for the structure, stability, and reactivity of "defect"

sites. J. Am. Chem. Soc. 2012, 134, 14430–14449.

(69) Digne, M.; Sautet, P.; Raybaud, P.; Euzen, P.; Toulhoat, H. Hydroxyl Groups on

γ-Alumina Surfaces: A DFT Study. J. Catal. 2002, 211, 1–5.

51



(70) Digne, M.; Sautet, P.; Raybaud, P.; Euzen, P.; Toulhoat, H. Use of DFT to achieve a

rational understanding of acid–basic properties of γ-alumina surfaces. J. Catal. 2004,

226, 54–68.

(71) Paglia, G.; Buckley, C. E.; Rohl, A. L.; Hart, R. D.; Winter, K.; Studer, A. J.;

Hunter, B. A.; Hanna, J. V. Boehmite Derived γ-Alumina System. 1. Structural Evo-

lution with Temperature, with the Identification and Structural Determination of a

New Transition Phase, γ’-Alumina. Chem. Mater. 2004, 16, 220–236.

(72) Réocreux, R.; Girel, É.; Clabaut, P.; Tuel, A.; Besson, M.; Chaumonnot, A.;

Cabiac, A.; Sautet, P.; Michel, C. Reactivity of shape-controlled crystals and metady-

namics simulations locate the weak spots of alumina in water. Nat. Commun. 2019,

10, 3139.

(73) Mardilovich, P. P.; Govyadinov, A. N.; Mukhurov, N. I.; Rzhevskii, A. M.; Paterson, R.

New and modified anodic alumina membranes Part I. Thermotreatment of anodic

alumina membranes. J. Membr. Sci. 1995, 98, 131–142.

(74) Brown, G. E.; Henrich, V. E.; Casey, W. H.; Clark, D. L.; Eggleston, C.; Felmy, A.;

Goodman, D. W.; Grätzel, M.; Maciel, G.; McCarthy, M. I. et al. Metal Oxide Surfaces

and Their Interactions with Aqueous Solutions and Microbial Organisms. Chem. Rev.

1999, 99, 77–174.

(75) Batista, A. T. F.; Wisser, D.; Pigeon, T.; Gajan, D.; Diehl, F.; Rivallan, M.; Catita, L.;

Gay, A.-S.; Lesage, A.; Chizallet, C. et al. Beyond γ-Al2O3 crystallite surfaces: The

hidden features of edges revealed by solid-state 1H NMR and DFT calculations. J.

Catal. 2019, 378, 140–143.

(76) Batista, A.; Pigeon, T.; Meyet, J.; Wisser, D.; Rivallan, M.; Gajan, D.; Catita, L.;

Diehl, F.; Gay, A.; Chizallet, C. et al. Structure, Location and Spatial Proximities of

52



Hydroxyls on γ-Alumina Crystallites by High-Resolution Solid-State NMR and DFT

Modelling: Why Edges hold the Key. ACS Catal. 2023, 13, 6536–6548.

(77) Pitman, M. C.; van Duin, A. C. T. Dynamics of Confined Reactive Water in Smectite

Clay–Zeolite Composites. J. Am. Chem. Soc. 2012, 134, 3042–3053.

(78) Rimsza, J. M.; Yeon, J.; van Duin, A. C. T.; Du, J. Water Interactions with

Nanoporous Silica: Comparison of ReaxFF and ab Initio based Molecular Dynam-

ics Simulations. J. Phys. Chem. C 2016, 120, 24803–24816.

(79) Porter, A. J.; O’Malley, A. J. A Classical Molecular Dynamics Study on the Effect

of Si/Al Ratio and Silanol Nest Defects on Water Diffusion in Zeolite HY. J. Phys.

Chem. C 2021, 125, 11567–11579.

(80) van Gunsteren, W. F.; Berendsen, H. J. C. Computer Simulation of Molecular Dy-

namics: Methodology, Applications, and Perspectives in Chemistry. Angew. Chem.

Int. Ed. Engl. 1990, 29, 992–1023.

(81) Nakata, A.; Baker, J. S.; Mujahed, S. Y.; Poulton, J. T. L.; Arapan, S.; Lin, J.;

Raza, Z.; Yadav, S.; Truflandier, L.; Miyazaki, T. et al. Large scale and linear scaling

DFT with the CONQUEST code. J. Chem. Phys. 2020, 152, 164112.

(82) Kühne, T. D.; Iannuzzi, M.; Ben, M. D.; Rybkin, V. V.; Seewald, P.; Stein, F.;

Laino, T.; Khaliullin, R. Z.; Schütt, O.; Schiffmann, F. et al. CP2K: An electronic

structure and molecular dynamics software package - Quickstep: Efficient and accurate

electronic structure calculations. J. Chem. Phys. 2020, 152, 194103.

(83) Raybaud, P.; Digne, M.; Iftimie, R.; Wellens, W.; Euzen, P.; Toulhoat, H. Morphology

and Surface Properties of Boehmite (γ-AlOOH): A Density Functional Theory Study.

J. Catal. 2001, 201, 236–246.

53



(84) Motta, A.; Gaigeot, M.-P.; Costa, D. AIMD Evidence of Inner Sphere Adsorption of

Glycine on a Stepped (101) Boehmite AlOOH Surface. J. Phys. Chem. C 2012, 116,

23418–23427.

(85) Ngouana-Wakou, B. F.; Cornette, P.; Corral Valero, M.; Costa, D.; Raybaud, P.

An Atomistic Description of the γ-Alumina/Water Interface Revealed by Ab Initio

Molecular Dynamics. J. Phys. Chem. C 2017, 121, 10351–10363.
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S1 Additional Display Items

Table S1: Structures in the training set and contributions to each category of data. Bonds are represented by
pairs of chemical elements, angles by triplets. The symbol · · · denotes a hydrogen bond. Internal coordinates
with oxygen not bound to aluminum are discarded. For hydrated alumina surfaces and edges, and for boehmite
surfaces, the internal coordinates without hydrogen are not considered.

Structure Chem. Form. O–H O· · ·H Al–O Al–Al O–Al–O Al–O–Al Al–O–H Al–O· · ·H H–O· · ·H H· · ·O· · ·H
alpha_bulk Al12 O18 72 84 180 108
boehm_bulk Al32 O64 H32 32 32 192 128 480 224 64 64 32

boehm_surf-001_00w Al48 O96 H48 48 32 272 160 640 288 96 64 32
boehm_surf-001_08w Al48 O112 H80 80 40 160 160 80 40
boehm_surf-010_00w Al72 O144 H72 72 48 432 288 1080 504 144 96 48
boehm_surf-100_00w Al48 O96 H48 48 48 256 160 576 272 80 80 48
boehm_surf-100_12w Al48 O120 H96 96 80 160 128 112 96 24
boehm_surf-100_16w Al48 O128 H112 112 89 160 144 137 98 24
boehm_surf-101_00w Al48 O96 H48 49 33 254 168 560 250 100 68 18 6
boehm_surf-101_12w Al48 O120 H96 96 66 156 156 102 72 18

gamma_bulk Al16 O24 88 88 204 120
gamma_edge-100-110_00w Al96 O144 481 424 1003 598
gamma_edge-100-110_01w Al96 O145 H2 2 425 3
gamma_edge-100-110_02w Al96 O146 H4 4 1 426 6 2
gamma_edge-100-110_03w Al96 O147 H6 6 2 422 10 4
gamma_edge-100-110_04w Al96 O148 H8 8 3 426 13 6 1
gamma_edge-100-110_05w Al96 O149 H10 10 4 424 17 8 2
gamma_edge-100-110_07w Al96 O151 H14 14 7 424 23 13 2 2

gamma_surf-100_00w Al64 O96 320 280 656 384
gamma_surf-100_01w Al64 O100 H8 8 4 284 16 4 4
gamma_surf-100_02w Al64 O104 H16 16 8 282 24 8 8 4
gamma_surf-100_03w Al64 O108 H24 24 16 280 40 16 16 8
gamma_surf-100_04w Al64 O112 H32 32 20 280 52 28 20 8
gamma_surf-110_00w Al64 O96 304 240 600 368
gamma_surf-110_01w Al64 O100 H8 8 4 232 16 8
gamma_surf-110_02w Al64 O104 H16 16 8 240 24 16
gamma_surf-110_03w Al64 O108 H24 24 12 240 44 16 8 4
gamma_surf-110_04w Al64 O112 H32 32 24 240 52 44 12 8
gamma_surf-110_05w Al64 O116 H40 40 28 240 60 52 12 12
gamma_surf-110_06w Al64 O120 H48 48 32 236 88 32 32 12
gamma_surf-111_00w Al40 O60 212 190 480 286
gamma_surf-111_04w Al32 O56 H16 16 8 144 30 14 6
gamma_surf-111_05w Al32 O58 H20 20 10 146 36 14 10 2
gamma_surf-111_06w Al32 O60 H24 24 12 146 44 16 12 2

monomer AlO4 H5 5 4 6 5
water OH2
total 990 671 2887 8383 6465 3402 1675 1104 626 137
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Figure S1: Histograms of all interatomic distances in the training set up to 5Å, grouped per
pair of chemical elements. Cutoffs for OH and AlO pairs depicted as vertical red lines: 1.2Å
for O–H bonds, 2.1Å for hydrogen bonds and 2.8Å for Al–O bonds. See main text for a
more detailed description.
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Figure S2: Histograms of internal coordinates in the training set. In the labels on the
horizontal axis, a dash represents a regular bond and a tilde represents a hydrogen bond.
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Figure S3: Histograms of internal coordinates, using the notation of Figure S2, per material.
Histograms for the training set: α=α-Al2O3 (blue), b= boehmite (orange), γ= γ-Al2O3

(green). Histograms for the validation set: γ′= γ-Al2O3 (green). The number of internal
coordinates within each class is shown to the right of the corresponding histogram.
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Table S2: Overview of all chemical equations in the training set. Reactants
are given negative coefficients. For each reaction, three reaction energies are
in kcalmol−1: the reference DFT result (R), the prediction with the Joshi force
field (J) and the prediction with the new force field in this work (B). Water
adsorption energies are normalized to the number of water molecules. All other
reaction energies are normalized on the number of Al atoms. The categories are
defined in the main text.

Category Coeff. Structure Chem. Form. Reaction energy
BSH −1/16× boehm_surf-001_00w Al48 O96 H48 R −24.7

−1× water O H2 J 28.0
1/16× boehm_surf-001_08w Al48 O112 H80 B −21.9

BSH −1/24× boehm_surf-100_00w Al48 O96 H48 R −46.0
−1× water O H2 J −1.7

1/24× boehm_surf-100_12w Al48 O120 H96 B −38.0
BSH −1/32× boehm_surf-100_00w Al48 O96 H48 R −38.0

−1× water O H2 J −4.2
1/32× boehm_surf-100_16w Al48 O128 H112 B −32.2

BSH −1/8× boehm_surf-100_12w Al48 O120 H96 R −14.0
−1× water O H2 J −11.9
1/8× boehm_surf-100_16w Al48 O128 H112 B −15.1

BSH −1/24× boehm_surf-101_00w Al48 O96 H48 R −41.0
−1× water O H2 J −4.3

1/24× boehm_surf-101_12w Al48 O120 H96 B −39.3
GEH −1× gamma_edge-100-110_00w Al96 O144 R −104.1

−1× water O H2 J −101.6
1× gamma_edge-100-110_01w Al96 O145 H2 B −103.0

GEH −1/2× gamma_edge-100-110_00w Al96 O144 R −81.2
−1× water O H2 J −86.6
1/2× gamma_edge-100-110_02w Al96 O146 H4 B −80.3

GEH −1× gamma_edge-100-110_01w Al96 O145 H2 R −58.3
−1× water O H2 J −71.5
1× gamma_edge-100-110_02w Al96 O146 H4 B −57.5

GEH −1/3× gamma_edge-100-110_00w Al96 O144 R −72.1
−1× water O H2 J −18.0
1/3× gamma_edge-100-110_03w Al96 O147 H6 B −71.2

GEH −1/2× gamma_edge-100-110_01w Al96 O145 H2 R −56.1
−1× water O H2 J 23.8
1/2× gamma_edge-100-110_03w Al96 O147 H6 B −55.3

GEH −1× gamma_edge-100-110_02w Al96 O146 H4 R −53.9
−1× water O H2 J 119.1
1× gamma_edge-100-110_03w Al96 O147 H6 B −53.0

GEH −1/4× gamma_edge-100-110_00w Al96 O144 R −67.5
−1× water O H2 J −71.0
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1/4× gamma_edge-100-110_04w Al96 O148 H8 B −67.0
GEH −1/3× gamma_edge-100-110_01w Al96 O145 H2 R −55.3

−1× water O H2 J −60.8
1/3× gamma_edge-100-110_04w Al96 O148 H8 B −55.0

GEH −1/2× gamma_edge-100-110_02w Al96 O146 H4 R −53.9
−1× water O H2 J −55.4
1/2× gamma_edge-100-110_04w Al96 O148 H8 B −53.7

GEH −1× gamma_edge-100-110_03w Al96 O147 H6 R −53.8
−1× water O H2 J −230.0
1× gamma_edge-100-110_04w Al96 O148 H8 B −54.5

GEH −1/5× gamma_edge-100-110_00w Al96 O144 R −63.3
−1× water O H2 J −22.9
1/5× gamma_edge-100-110_05w Al96 O149 H10 B −63.8

GEH −1/4× gamma_edge-100-110_01w Al96 O145 H2 R −53.1
−1× water O H2 J −3.2
1/4× gamma_edge-100-110_05w Al96 O149 H10 B −54.0

GEH −1/3× gamma_edge-100-110_02w Al96 O146 H4 R −51.4
−1× water O H2 J 19.5
1/3× gamma_edge-100-110_05w Al96 O149 H10 B −52.8

GEH −1/2× gamma_edge-100-110_03w Al96 O147 H6 R −50.2
−1× water O H2 J −30.3
1/2× gamma_edge-100-110_05w Al96 O149 H10 B −52.7

GEH −1× gamma_edge-100-110_04w Al96 O148 H8 R −46.6
−1× water O H2 J 169.4
1× gamma_edge-100-110_05w Al96 O149 H10 B −51.0

GEH −1/7× gamma_edge-100-110_00w Al96 O144 R −55.8
−1× water O H2 J −12.6
1/7× gamma_edge-100-110_07w Al96 O151 H14 B −57.1

GEH −1/6× gamma_edge-100-110_01w Al96 O145 H2 R −47.8
−1× water O H2 J 2.2
1/6× gamma_edge-100-110_07w Al96 O151 H14 B −49.5

GEH −1/5× gamma_edge-100-110_02w Al96 O146 H4 R −45.7
−1× water O H2 J 16.9
1/5× gamma_edge-100-110_07w Al96 O151 H14 B −47.9

GEH −1/4× gamma_edge-100-110_03w Al96 O147 H6 R −43.6
−1× water O H2 J −8.6
1/4× gamma_edge-100-110_07w Al96 O151 H14 B −46.6

GEH −1/3× gamma_edge-100-110_04w Al96 O148 H8 R −40.2
−1× water O H2 J 65.1
1/3× gamma_edge-100-110_07w Al96 O151 H14 B −43.9

GEH −1/2× gamma_edge-100-110_05w Al96 O149 H10 R −37.0
−1× water O H2 J 13.0
1/2× gamma_edge-100-110_07w Al96 O151 H14 B −40.4

GSH −1/4× gamma_surf-100_00w Al64 O96 R −24.0
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−1× water O H2 J −2.0
1/4× gamma_surf-100_01w Al64 O100 H8 B −23.8

GSH −1/8× gamma_surf-100_00w Al64 O96 R −25.0
−1× water O H2 J −10.7
1/8× gamma_surf-100_02w Al64 O104 H16 B −26.0

GSH −1/4× gamma_surf-100_01w Al64 O100 H8 R −26.0
−1× water O H2 J −19.5
1/4× gamma_surf-100_02w Al64 O104 H16 B −28.2

GSH −1/12× gamma_surf-100_00w Al64 O96 R −24.3
−1× water O H2 J −6.8

1/12× gamma_surf-100_03w Al64 O108 H24 B −26.8
GSH −1/8× gamma_surf-100_01w Al64 O100 H8 R −24.4

−1× water O H2 J −9.2
1/8× gamma_surf-100_03w Al64 O108 H24 B −28.3

GSH −1/4× gamma_surf-100_02w Al64 O104 H16 R −22.8
−1× water O H2 J 1.1
1/4× gamma_surf-100_03w Al64 O108 H24 B −28.3

GSH −1/16× gamma_surf-100_00w Al64 O96 R −21.7
−1× water O H2 J −3.6

1/16× gamma_surf-100_04w Al64 O112 H32 B −22.4
GSH −1/12× gamma_surf-100_01w Al64 O100 H8 R −21.0

−1× water O H2 J −4.1
1/12× gamma_surf-100_04w Al64 O112 H32 B −22.0

GSH −1/8× gamma_surf-100_02w Al64 O104 H16 R −18.5
−1× water O H2 J 3.5
1/8× gamma_surf-100_04w Al64 O112 H32 B −18.8

GSH −1/4× gamma_surf-100_03w Al64 O108 H24 R −14.1
−1× water O H2 J 6.0
1/4× gamma_surf-100_04w Al64 O112 H32 B −9.3

GSH −1/4× gamma_surf-110_00w Al64 O96 R −92.4
−1× water O H2 J 50.4
1/4× gamma_surf-110_01w Al64 O100 H8 B −108.6

GSH −1/8× gamma_surf-110_00w Al64 O96 R −50.2
−1× water O H2 J 7.3
1/8× gamma_surf-110_02w Al64 O104 H16 B −61.8

GSH −1/4× gamma_surf-110_01w Al64 O100 H8 R −8.0
−1× water O H2 J −35.8
1/4× gamma_surf-110_02w Al64 O104 H16 B −15.0

GSH −1/12× gamma_surf-110_00w Al64 O96 R −42.5
−1× water O H2 J 42.3

1/12× gamma_surf-110_03w Al64 O108 H24 B −50.1
GSH −1/8× gamma_surf-110_01w Al64 O100 H8 R −17.6

−1× water O H2 J 38.2
1/8× gamma_surf-110_03w Al64 O108 H24 B −20.8

9



GSH −1/4× gamma_surf-110_02w Al64 O104 H16 R −27.2
−1× water O H2 J 112.3
1/4× gamma_surf-110_03w Al64 O108 H24 B −26.7

GSH −1/16× gamma_surf-110_00w Al64 O96 R −39.6
−1× water O H2 J 28.9

1/16× gamma_surf-110_04w Al64 O112 H32 B −44.9
GSH −1/12× gamma_surf-110_01w Al64 O100 H8 R −22.1

−1× water O H2 J 21.7
1/12× gamma_surf-110_04w Al64 O112 H32 B −23.7

GSH −1/8× gamma_surf-110_02w Al64 O104 H16 R −29.1
−1× water O H2 J 50.5
1/8× gamma_surf-110_04w Al64 O112 H32 B −28.1

GSH −1/4× gamma_surf-110_03w Al64 O108 H24 R −31.0
−1× water O H2 J −11.3
1/4× gamma_surf-110_04w Al64 O112 H32 B −29.5

GSH −1/20× gamma_surf-110_00w Al64 O96 R −35.2
−1× water O H2 J 16.0

1/20× gamma_surf-110_05w Al64 O116 H40 B −39.4
GSH −1/16× gamma_surf-110_01w Al64 O100 H8 R −20.9

−1× water O H2 J 7.4
1/16× gamma_surf-110_05w Al64 O116 H40 B −22.1

GSH −1/12× gamma_surf-110_02w Al64 O104 H16 R −25.1
−1× water O H2 J 21.9

1/12× gamma_surf-110_05w Al64 O116 H40 B −24.5
GSH −1/8× gamma_surf-110_03w Al64 O108 H24 R −24.1

−1× water O H2 J −23.4
1/8× gamma_surf-110_05w Al64 O116 H40 B −23.4

GSH −1/4× gamma_surf-110_04w Al64 O112 H32 R −17.3
−1× water O H2 J −35.4
1/4× gamma_surf-110_05w Al64 O116 H40 B −17.2

GSH −1/24× gamma_surf-110_00w Al64 O96 R −33.5
−1× water O H2 J 21.5

1/24× gamma_surf-110_06w Al64 O120 H48 B −37.5
GSH −1/20× gamma_surf-110_01w Al64 O100 H8 R −21.7

−1× water O H2 J 15.8
1/20× gamma_surf-110_06w Al64 O120 H48 B −23.3

GSH −1/16× gamma_surf-110_02w Al64 O104 H16 R −25.1
−1× water O H2 J 28.7

1/16× gamma_surf-110_06w Al64 O120 H48 B −25.3
GSH −1/12× gamma_surf-110_03w Al64 O108 H24 R −24.4

−1× water O H2 J 0.8
1/12× gamma_surf-110_06w Al64 O120 H48 B −24.9

GSH −1/8× gamma_surf-110_04w Al64 O112 H32 R −21.1
−1× water O H2 J 6.8
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1/8× gamma_surf-110_06w Al64 O120 H48 B −22.6
GSH −1/4× gamma_surf-110_05w Al64 O116 H40 R −24.9

−1× water O H2 J 49.1
1/4× gamma_surf-110_06w Al64 O120 H48 B −27.9

GSH −1/10× gamma_surf-111_00w Al40 O60 R −42.1
−1× water O H2 J 7.2
1/8× gamma_surf-111_04w Al32 O56 H16 B −31.1

GSH −2/25× gamma_surf-111_00w Al40 O60 R −45.8
−1× water O H2 J 5.6

1/10× gamma_surf-111_05w Al32 O58 H20 B −32.8
GSH −1/2× gamma_surf-111_04w Al32 O56 H16 R −60.5

−1× water O H2 J −0.7
1/2× gamma_surf-111_05w Al32 O58 H20 B −39.8

GSH −1/15× gamma_surf-111_00w Al40 O60 R −43.1
−1× water O H2 J 13.5

1/12× gamma_surf-111_06w Al32 O60 H24 B −32.5
GSH −1/4× gamma_surf-111_04w Al32 O56 H16 R −45.0

−1× water O H2 J 26.2
1/4× gamma_surf-111_06w Al32 O60 H24 B −35.3

GSH −1/2× gamma_surf-111_05w Al32 O58 H20 R −29.4
−1× water O H2 J 53.2
1/2× gamma_surf-111_06w Al32 O60 H24 B −30.9

SUR −1/32× boehm_bulk Al32 O64 H32 R 11.2
1/48× boehm_surf-001_00w Al48 O96 H48 J 5.5

B 9.0
SUR −1/32× boehm_bulk Al32 O64 H32 R 2.9

1/72× boehm_surf-010_00w Al72 O144 H72 J 2.1
B 3.1

SUR −1/32× boehm_bulk Al32 O64 H32 R 23.0
1/48× boehm_surf-100_00w Al48 O96 H48 J −0.4

B 19.1
SUR −1/32× boehm_bulk Al32 O64 H32 R 18.6

1/48× boehm_surf-101_00w Al48 O96 H48 J 7.5
B 16.4

SUR −1/16× gamma_bulk Al16 O24 R 13.5
1/96× gamma_edge-100-110_00w Al96 O144 J 7.0

B 14.0
SUR −1/16× gamma_bulk Al16 O24 R 10.4

1/64× gamma_surf-100_00w Al64 O96 J 6.6
B 13.0

SUR −1/16× gamma_bulk Al16 O24 R 21.2
1/64× gamma_surf-110_00w Al64 O96 J 7.4

B 26.6
SUR −1/16× gamma_bulk Al16 O24 R 13.5
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1/40× gamma_surf-111_00w Al40 O60 J 5.6
B 11.1

FOR −1× monomer Al O4 H5 R −27.8
1/12× alpha_bulk Al12 O18 J −44.9
5/2× water O H2 B −31.9

FOR −1× monomer Al O4 H5 R −38.8
1/32× boehm_bulk Al32 O64 H32 J −38.6

2× water O H2 B −36.5
FOR −1× monomer Al O4 H5 R −27.6

1/48× boehm_surf-001_00w Al48 O96 H48 J −33.1
2× water O H2 B −27.4

FOR −1× monomer Al O4 H5 R −35.9
1/72× boehm_surf-010_00w Al72 O144 H72 J −36.5

2× water O H2 B −33.4
FOR −1× monomer Al O4 H5 R −15.8

1/48× boehm_surf-100_00w Al48 O96 H48 J −39.0
2× water O H2 B −17.4

FOR −1× monomer Al O4 H5 R −20.2
1/48× boehm_surf-101_00w Al48 O96 H48 J −31.1

2× water O H2 B −20.1
FOR −1× monomer Al O4 H5 R −25.3

1/16× gamma_bulk Al16 O24 J −48.6
5/2× water O H2 B −26.4

FOR −1× monomer Al O4 H5 R −11.7
1/96× gamma_edge-100-110_00w Al96 O144 J −41.6
5/2× water O H2 B −12.4

FOR −1× monomer Al O4 H5 R −14.8
1/64× gamma_surf-100_00w Al64 O96 J −42.0
5/2× water O H2 B −13.4

FOR −1× monomer Al O4 H5 R −4.1
1/64× gamma_surf-110_00w Al64 O96 J −41.2
5/2× water O H2 B 0.2

FOR −1× monomer Al O4 H5 R −11.7
1/40× gamma_surf-111_00w Al40 O60 J −43.0
5/2× water O H2 B −15.3
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Figure S4: Histograms of reaction energies in the training set.
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Table S3: List of activated parameters and their corresponding block, initial
values from 1 and bounds.

Name Unit Atoms Block Joshi 2014 Lower bound Upper bound This work
p_val3 1 Al ATM 1.5000 1.2000 3.0000 2.9993
p_val5 1 Al ATM 2.5791 2.0633 3.0949 2.4980
D_eˆsigma kcalmol−1 Al-H BND 92.8579 0.8579 122.7844 77.1779
p_be1 1 Al-H BND −0.6528 −0.7834 1.0000 −0.7823
p_ovun1 1 Al-H BND 0.1551 0.0100 0.5000 0.3089
p_be2 1 Al-H BND 10.0663 0.2281 13.0000 2.0985
p_bo1 1 Al-H BND −0.0842 −0.3320 −0.0674 −0.1398
p_bo2 1 Al-H BND 7.1758 5.0015 15.0000 11.7930
D_eˆsigma kcalmol−1 Al-O BND 182.0654 118.9203 232.7313 166.4329
p_be1 1 Al-O BND −0.0920 −1.0000 −0.0736 −0.0963
p_ovun1 1 Al-O BND 0.1688 0.0100 0.4562 0.1457
p_be2 1 Al-O BND 0.0010 0.0008 1.5477 0.7025
p_bo1 1 Al-O BND −0.1959 −0.2351 −0.0740 −0.2053
p_bo2 1 Al-O BND 6.0894 4.6533 7.3073 7.1635
D_eˆsigma kcalmol−1 Al-Al BND 34.0777 27.2622 65.7742 31.9434
r_0ˆsigma Å Al-H OFD 1.7276 1.3821 2.0731 1.4893
r_0ˆsigma Å Al-O OFD 1.5646 1.2517 1.8775 1.6172
p_val1 1 Al-H-O ANG 4.2750 3.4200 20.0000 19.7283
p_val2 1 Al-H-O ANG 1.0250 0.8200 4.8339 3.9208
p_val4 1 Al-H-O ANG 1.4750 1.0100 1.7700 1.0931
Theta_0,0 deg Al-O-H ANG 88.6163 64.6197 106.3396 66.0975
p_val1 1 Al-O-H ANG 10.1310 4.2037 19.7491 16.7556
p_val2 1 Al-O-H ANG 1.6896 1.3517 10.0000 2.4332
p_val4 1 Al-O-H ANG 1.0000 0.8000 3.0000 1.4778
Theta_0,0 deg Al-O-Al ANG 13.8580 5.2474 64.5513 64.5486
p_val1 1 Al-O-Al ANG 12.3669 9.8935 40.0000 12.8201
p_val2 1 Al-O-Al ANG 4.4355 0.5527 9.9945 7.0734
p_val4 1 Al-O-Al ANG 1.1908 0.9526 3.0000 2.9786
Theta_0,0 deg H-Al-O ANG 41.8108 0.0000 64.8437 9.7233
p_val1 1 H-Al-O ANG 17.3800 5.4547 30.9495 23.4162
p_val2 1 H-Al-O ANG 2.6618 0.9702 3.1942 3.0390
p_val4 1 H-Al-O ANG 1.0100 0.8080 3.0000 1.0218
Theta_0,0 deg O-Al-O ANG 55.4358 43.7395 84.7469 61.5592
p_val1 1 O-Al-O ANG 22.1089 7.3926 40.0000 24.2337
p_val2 1 O-Al-O ANG 3.7402 1.2450 4.4882 1.2622
p_val4 1 O-Al-O ANG 2.2064 1.0123 3.0000 2.9975
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Table S4: Structures in the validation set and contributions to each category of data. Bonds are represented by
pairs of chemical elements, angles by triplets. The symbol · · · denotes a hydrogen bond. Internal coordinates
with oxygen not bound to aluminum are discarded. For hydrated alumina surfaces, the internal coordinates
without hydrogen are not considered.

Structure Chem. Form. O–H O· · ·H Al–O Al–Al O–Al–O Al–O–Al Al–O–H Al–O· · ·H H–O· · ·H H· · ·O· · ·H
gamma_bulk Al32 O48 176 176 408 240

gamma_surf-001_00w Al64 O96 336 316 736 432
gamma_surf-001_01w Al64 O98 H4 4 2 316 8 2 2
gamma_surf-001_02w Al64 O100 H8 8 4 318 12 4 4 2
gamma_surf-001_03w Al64 O102 H12 12 8 316 20 8 8 4
gamma_surf-001_04w Al64 O104 H16 16 10 316 26 14 10 4

gamma_surf-110b_from_boehm_00w Al80 O120 414 416 902 532
gamma_surf-110b_from_boehm_02w Al80 O124 H8 8 436 16
gamma_surf-110b_from_boehm_03w Al80 O126 H12 12 436 22
gamma_surf-110b_from_boehm_04w Al80 O128 H16 16 8 436 24 8 8
gamma_surf-110b_from_bulk_00w Al64 O96 336 324 744 440
gamma_surf-110b_from_bulk_02w Al64 O98 H4 4 2 324 6 4
gamma_surf-110b_from_bulk_04w Al64 O100 H8 8 4 324 12 4 4
gamma_surf-110b_from_bulk_06w Al64 O102 H12 12 6 324 16 10 4
gamma_surf-110b_from_bulk_08w Al64 O104 H16 16 10 324 20 18 6 2

gamma_surf-110l_A1_00w Al48 O72 250 238 552 324
gamma_surf-110l_A1_01w Al48 O74 H4 4 2 234 8 4
gamma_surf-110l_A1_02w Al48 O76 H8 8 4 240 14 6 2
gamma_surf-110l_A1_03w Al48 O78 H12 12 4 240 22 6 4
gamma_surf-110l_A1_04w Al48 O80 H16 16 12 236 26 22 6 4
gamma_surf-110l_A1_05w Al48 O82 H20 20 14 236 30 26 8 4
gamma_surf-110l_A1_06w Al48 O84 H24 24 17 236 30 37 4 9
gamma_surf-110l_A2_00w Al56 O84 296 276 660 392
gamma_surf-110l_A2_01w Al56 O86 H4 4 2 274 8 4
gamma_surf-110l_A2_02w Al56 O88 H8 8 4 282 14 8 2
gamma_surf-110l_A2_03w Al56 O90 H12 12 7 284 20 11 5 1
gamma_surf-110l_A2_04w Al56 O92 H16 16 10 284 24 18 8
gamma_surf-110l_A2_05w Al56 O94 H20 20 14 282 26 30 4 6
gamma_surf-110l_A2_06w Al56 O96 H24 24 18 282 30 38 6 8
gamma_surf-110l_L1_04w Al48 O80 H16 16 6 240 32 12 4
gamma_surf-110l_L2_00w Al56 O84 294 286 654 384
gamma_surf-110l_L2_01w Al56 O86 H4 4 2 276 8 4
gamma_surf-110l_L2_02w Al56 O88 H8 8 4 282 14 8 2
gamma_surf-110l_L2_03w Al56 O90 H12 12 4 282 22 10 2
gamma_surf-110l_L2_04w Al56 O92 H16 16 6 282 32 16 2
gamma_surf-111_D1_03w Al32 O54 H12 12 5 144 22 6 4 2
gamma_surf-111_D1_04w Al32 O56 H16 16 5 146 30 6 5 2
gamma_surf-111_D1_05w Al32 O58 H20 20 10 146 36 14 10 2
gamma_surf-111_D1_06w Al32 O60 H24 24 14 146 44 17 14 5
gamma_surf-111_D2_03w Al32 O54 H12 12 8 144 22 12 4 2
gamma_surf-111_D2_04w Al32 O56 H16 16 9 146 30 14 7 2
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gamma_surf-111_D2_05w Al32 O58 H20 20 12 146 36 15 12 6
gamma_surf-111_D2_06w Al32 O60 H24 24 15 146 44 18 15 6

gamma_surf-111_P1_1_05w Al40 O70 H20 20 3 184 43 6 3
gamma_surf-111_P1_1_06w Al40 O72 H24 24 4 178 54 8 4
gamma_surf-111_P1_2_03w Al40 O66 H12 12 2 178 24 4 2
gamma_surf-111_P1_2_04w Al40 O68 H16 16 4 178 34 8 4
gamma_surf-111_P1_2_05w Al40 O70 H20 20 5 178 44 10 5
gamma_surf-111_P1_2_06w Al40 O72 H24 24 2 182 54 4 2
gamma_surf-111_P2_1_05w Al40 O70 H20 20 14 196 27 15 13 4
gamma_surf-111_P2_1_06w Al40 O72 H24 24 16 200 38 16 16 4
gamma_surf-111_P2_2_04w Al40 O68 H16 16 10 194 26 16 6
gamma_surf-111_P2_2_05w Al40 O70 H20 20 14 190 32 18 12 3
gamma_surf-111_P2_2_06w Al40 O72 H24 24 15 192 35 15 15 2

water O H2
total 704 351 2102 13 588 4656 2744 1217 554 254 88
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Figure S5: Histograms of all interatomic distances in the validation set up to 5Å, grouped
per pair of chemical elements. Cutoffs for OH and AlO pairs depicted as vertical red lines:
1.2Å for O–H bonds, 2.1Å for hydrogen bonds and 2.8Å for Al–O bonds. See main text
for a more detailed description.
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Figure S6: Histograms of internal coordinates in the validation set. In the labels on the
horizontal axis, a dash represents a regular bond and a tilde represents a hydrogen bond.
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Table S5: Overview of all chemical equations in the validation set. Reactants
are given negative coefficients. For each reaction, three reaction energies are
in kcalmol−1: the reference DFT result (R), the prediction with the Joshi force
field (J) and the prediction with the new force field in this work (B). Water
adsorption energies are normalized to the number of water molecules. All other
reaction energies are normalized on the number of Al atoms. The categories are
defined in the main text.

Category Coeff. Structure Chem. Form. Reaction energy
GSH −1/2× gamma_surf-001_00w Al64 O96 R −22.5

−1× water O H2 J −14.3
1/2× gamma_surf-001_01w Al64 O98 H4 B −31.6

GSH −1/4× gamma_surf-001_00w Al64 O96 R −24.4
−1× water O H2 J −5.0
1/4× gamma_surf-001_02w Al64 O100 H8 B −27.5

GSH −1/2× gamma_surf-001_01w Al64 O98 H4 R −26.3
−1× water O H2 J 4.2
1/2× gamma_surf-001_02w Al64 O100 H8 B −23.4

GSH −1/6× gamma_surf-001_00w Al64 O96 R −23.5
−1× water O H2 J 0.2
1/6× gamma_surf-001_03w Al64 O102 H12 B −28.4

GSH −1/4× gamma_surf-001_01w Al64 O98 H4 R −24.0
−1× water O H2 J 7.4
1/4× gamma_surf-001_03w Al64 O102 H12 B −26.8

GSH −1/2× gamma_surf-001_02w Al64 O100 H8 R −21.6
−1× water O H2 J 10.6
1/2× gamma_surf-001_03w Al64 O102 H12 B −30.1

GSH −1/8× gamma_surf-001_00w Al64 O96 R −20.8
−1× water O H2 J −12.3
1/8× gamma_surf-001_04w Al64 O104 H16 B −24.1

GSH −1/6× gamma_surf-001_01w Al64 O98 H4 R −20.2
−1× water O H2 J −11.6
1/6× gamma_surf-001_04w Al64 O104 H16 B −21.6

GSH −1/4× gamma_surf-001_02w Al64 O100 H8 R −17.1
−1× water O H2 J −19.5
1/4× gamma_surf-001_04w Al64 O104 H16 B −20.7

GSH −1/2× gamma_surf-001_03w Al64 O102 H12 R −12.6
−1× water O H2 J −49.7
1/2× gamma_surf-001_04w Al64 O104 H16 B −11.3

GSH −1/4× gamma_surf-110b_from_boehm_00w Al80 O120 R −60.7
−1× water O H2 J 5.5
1/4× gamma_surf-110b_from_boehm_02w Al80 O124 H8 B −50.1

GSH −1/6× gamma_surf-110b_from_boehm_00w Al80 O120 R −58.9
−1× water O H2 J 10.3
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1/6× gamma_surf-110b_from_boehm_03w Al80 O126 H12 B −56.7
GSH −1/2× gamma_surf-110b_from_boehm_02w Al80 O124 H8 R −55.1

−1× water O H2 J 19.7
1/2× gamma_surf-110b_from_boehm_03w Al80 O126 H12 B −70.0

GSH −1/8× gamma_surf-110b_from_boehm_00w Al80 O120 R −58.2
−1× water O H2 J −7.7
1/8× gamma_surf-110b_from_boehm_04w Al80 O128 H16 B −53.6

GSH −1/4× gamma_surf-110b_from_boehm_02w Al80 O124 H8 R −55.7
−1× water O H2 J −21.0
1/4× gamma_surf-110b_from_boehm_04w Al80 O128 H16 B −57.2

GSH −1/2× gamma_surf-110b_from_boehm_03w Al80 O126 H12 R −56.3
−1× water O H2 J −61.7
1/2× gamma_surf-110b_from_boehm_04w Al80 O128 H16 B −44.4

GSH −1/2× gamma_surf-110b_from_bulk_00w Al64 O96 R −43.6
−1× water O H2 J −26.1
1/2× gamma_surf-110b_from_bulk_02w Al64 O98 H4 B −49.6

GSH −1/4× gamma_surf-110b_from_bulk_00w Al64 O96 R −45.8
−1× water O H2 J −43.6
1/4× gamma_surf-110b_from_bulk_04w Al64 O100 H8 B −50.9

GSH −1/2× gamma_surf-110b_from_bulk_02w Al64 O98 H4 R −48.0
−1× water O H2 J −61.0
1/2× gamma_surf-110b_from_bulk_04w Al64 O100 H8 B −52.1

GSH −1/6× gamma_surf-110b_from_bulk_00w Al64 O96 R −39.1
−1× water O H2 J −32.6
1/6× gamma_surf-110b_from_bulk_06w Al64 O102 H12 B −41.3

GSH −1/4× gamma_surf-110b_from_bulk_02w Al64 O98 H4 R −36.8
−1× water O H2 J −35.9
1/4× gamma_surf-110b_from_bulk_06w Al64 O102 H12 B −37.2

GSH −1/2× gamma_surf-110b_from_bulk_04w Al64 O100 H8 R −25.6
−1× water O H2 J −10.7
1/2× gamma_surf-110b_from_bulk_06w Al64 O102 H12 B −22.2

GSH −1/8× gamma_surf-110b_from_bulk_00w Al64 O96 R −36.4
−1× water O H2 J −26.9
1/8× gamma_surf-110b_from_bulk_08w Al64 O104 H16 B −38.1

GSH −1/6× gamma_surf-110b_from_bulk_02w Al64 O98 H4 R −34.0
−1× water O H2 J −27.1
1/6× gamma_surf-110b_from_bulk_08w Al64 O104 H16 B −34.3

GSH −1/4× gamma_surf-110b_from_bulk_04w Al64 O100 H8 R −26.9
−1× water O H2 J −10.2
1/4× gamma_surf-110b_from_bulk_08w Al64 O104 H16 B −25.4

GSH −1/2× gamma_surf-110b_from_bulk_06w Al64 O102 H12 R −28.2
−1× water O H2 J −9.7
1/2× gamma_surf-110b_from_bulk_08w Al64 O104 H16 B −28.6

GSH −1/2× gamma_surf-110l_A1_00w Al48 O72 R −86.5

20



−1× water O H2 J 61.0
1/2× gamma_surf-110l_A1_01w Al48 O74 H4 B −83.3

GSH −1/4× gamma_surf-110l_A1_00w Al48 O72 R −58.5
−1× water O H2 J 4.1
1/4× gamma_surf-110l_A1_02w Al48 O76 H8 B −65.9

GSH −1/2× gamma_surf-110l_A1_01w Al48 O74 H4 R −30.5
−1× water O H2 J −52.8
1/2× gamma_surf-110l_A1_02w Al48 O76 H8 B −48.5

GSH −1/6× gamma_surf-110l_A1_00w Al48 O72 R −65.3
−1× water O H2 J 21.2
1/6× gamma_surf-110l_A1_03w Al48 O78 H12 B −67.2

GSH −1/4× gamma_surf-110l_A1_01w Al48 O74 H4 R −54.6
−1× water O H2 J 1.4
1/4× gamma_surf-110l_A1_03w Al48 O78 H12 B −59.2

GSH −1/2× gamma_surf-110l_A1_02w Al48 O76 H8 R −78.8
−1× water O H2 J 55.5
1/2× gamma_surf-110l_A1_03w Al48 O78 H12 B −69.8

GSH −1/8× gamma_surf-110l_A1_00w Al48 O72 R −57.0
−1× water O H2 J 15.1
1/8× gamma_surf-110l_A1_04w Al48 O80 H16 B −55.8

GSH −1/6× gamma_surf-110l_A1_01w Al48 O74 H4 R −47.1
−1× water O H2 J −0.2
1/6× gamma_surf-110l_A1_04w Al48 O80 H16 B −46.6

GSH −1/4× gamma_surf-110l_A1_02w Al48 O76 H8 R −55.4
−1× water O H2 J 26.1
1/4× gamma_surf-110l_A1_04w Al48 O80 H16 B −45.6

GSH −1/2× gamma_surf-110l_A1_03w Al48 O78 H12 R −32.0
−1× water O H2 J −3.4
1/2× gamma_surf-110l_A1_04w Al48 O80 H16 B −21.4

GSH −1/10× gamma_surf-110l_A1_00w Al48 O72 R −49.8
−1× water O H2 J 5.5

1/10× gamma_surf-110l_A1_05w Al48 O82 H20 B −48.5
GSH −1/8× gamma_surf-110l_A1_01w Al48 O74 H4 R −40.7

−1× water O H2 J −8.4
1/8× gamma_surf-110l_A1_05w Al48 O82 H20 B −39.8

GSH −1/6× gamma_surf-110l_A1_02w Al48 O76 H8 R −44.1
−1× water O H2 J 6.4
1/6× gamma_surf-110l_A1_05w Al48 O82 H20 B −36.9

GSH −1/4× gamma_surf-110l_A1_03w Al48 O78 H12 R −26.7
−1× water O H2 J −18.1
1/4× gamma_surf-110l_A1_05w Al48 O82 H20 B −20.4

GSH −1/2× gamma_surf-110l_A1_04w Al48 O80 H16 R −21.4
−1× water O H2 J −32.8
1/2× gamma_surf-110l_A1_05w Al48 O82 H20 B −19.4

21



GSH −1/12× gamma_surf-110l_A1_00w Al48 O72 R −43.6
−1× water O H2 J −1.2

1/12× gamma_surf-110l_A1_06w Al48 O84 H24 B −42.5
GSH −1/10× gamma_surf-110l_A1_01w Al48 O74 H4 R −35.0

−1× water O H2 J −13.6
1/10× gamma_surf-110l_A1_06w Al48 O84 H24 B −34.4

GSH −1/8× gamma_surf-110l_A1_02w Al48 O76 H8 R −36.2
−1× water O H2 J −3.8
1/8× gamma_surf-110l_A1_06w Al48 O84 H24 B −30.8

GSH −1/6× gamma_surf-110l_A1_03w Al48 O78 H12 R −22.0
−1× water O H2 J −23.6
1/6× gamma_surf-110l_A1_06w Al48 O84 H24 B −17.8

GSH −1/4× gamma_surf-110l_A1_04w Al48 O80 H16 R −17.0
−1× water O H2 J −33.7
1/4× gamma_surf-110l_A1_06w Al48 O84 H24 B −16.0

GSH −1/2× gamma_surf-110l_A1_05w Al48 O82 H20 R −12.5
−1× water O H2 J −34.6
1/2× gamma_surf-110l_A1_06w Al48 O84 H24 B −12.7

GSH −1/2× gamma_surf-110l_A2_00w Al56 O84 R −82.6
−1× water O H2 J −40.3
1/2× gamma_surf-110l_A2_01w Al56 O86 H4 B −89.7

GSH −1/4× gamma_surf-110l_A2_00w Al56 O84 R −66.4
−1× water O H2 J −41.8
1/4× gamma_surf-110l_A2_02w Al56 O88 H8 B −75.6

GSH −1/2× gamma_surf-110l_A2_01w Al56 O86 H4 R −50.2
−1× water O H2 J −43.2
1/2× gamma_surf-110l_A2_02w Al56 O88 H8 B −61.5

GSH −1/6× gamma_surf-110l_A2_00w Al56 O84 R −60.3
−1× water O H2 J −35.4
1/6× gamma_surf-110l_A2_03w Al56 O90 H12 B −65.2

GSH −1/4× gamma_surf-110l_A2_01w Al56 O86 H4 R −49.1
−1× water O H2 J −32.9
1/4× gamma_surf-110l_A2_03w Al56 O90 H12 B −52.9

GSH −1/2× gamma_surf-110l_A2_02w Al56 O88 H8 R −48.1
−1× water O H2 J −22.5
1/2× gamma_surf-110l_A2_03w Al56 O90 H12 B −44.3

GSH −1/8× gamma_surf-110l_A2_00w Al56 O84 R −52.7
−1× water O H2 J −10.4
1/8× gamma_surf-110l_A2_04w Al56 O92 H16 B −56.2

GSH −1/6× gamma_surf-110l_A2_01w Al56 O86 H4 R −42.7
−1× water O H2 J −0.4
1/6× gamma_surf-110l_A2_04w Al56 O92 H16 B −45.1

GSH −1/4× gamma_surf-110l_A2_02w Al56 O88 H8 R −38.9
−1× water O H2 J 21.0
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1/4× gamma_surf-110l_A2_04w Al56 O92 H16 B −36.8
GSH −1/2× gamma_surf-110l_A2_03w Al56 O90 H12 R −29.8

−1× water O H2 J 64.5
1/2× gamma_surf-110l_A2_04w Al56 O92 H16 B −29.3

GSH −1/10× gamma_surf-110l_A2_00w Al56 O84 R −46.1
−1× water O H2 J −5.3

1/10× gamma_surf-110l_A2_05w Al56 O94 H20 B −50.1
GSH −1/8× gamma_surf-110l_A2_01w Al56 O86 H4 R −37.0

−1× water O H2 J 3.5
1/8× gamma_surf-110l_A2_05w Al56 O94 H20 B −40.2

GSH −1/6× gamma_surf-110l_A2_02w Al56 O88 H8 R −32.6
−1× water O H2 J 19.0
1/6× gamma_surf-110l_A2_05w Al56 O94 H20 B −33.0

GSH −1/4× gamma_surf-110l_A2_03w Al56 O90 H12 R −24.9
−1× water O H2 J 39.8
1/4× gamma_surf-110l_A2_05w Al56 O94 H20 B −27.4

GSH −1/2× gamma_surf-110l_A2_04w Al56 O92 H16 R −20.0
−1× water O H2 J 15.2
1/2× gamma_surf-110l_A2_05w Al56 O94 H20 B −25.5

GSH −1/12× gamma_surf-110l_A2_00w Al56 O84 R −42.0
−1× water O H2 J −17.4

1/12× gamma_surf-110l_A2_06w Al56 O96 H24 B −47.1
GSH −1/10× gamma_surf-110l_A2_01w Al56 O86 H4 R −33.9

−1× water O H2 J −12.8
1/10× gamma_surf-110l_A2_06w Al56 O96 H24 B −38.5

GSH −1/8× gamma_surf-110l_A2_02w Al56 O88 H8 R −29.8
−1× water O H2 J −5.1
1/8× gamma_surf-110l_A2_06w Al56 O96 H24 B −32.8

GSH −1/6× gamma_surf-110l_A2_03w Al56 O90 H12 R −23.7
−1× water O H2 J 0.6
1/6× gamma_surf-110l_A2_06w Al56 O96 H24 B −29.0

GSH −1/4× gamma_surf-110l_A2_04w Al56 O92 H16 R −20.7
−1× water O H2 J −31.3
1/4× gamma_surf-110l_A2_06w Al56 O96 H24 B −28.8

GSH −1/2× gamma_surf-110l_A2_05w Al56 O94 H20 R −21.4
−1× water O H2 J −77.7
1/2× gamma_surf-110l_A2_06w Al56 O96 H24 B −32.1

GSH −1/2× gamma_surf-110l_L2_00w Al56 O84 R −60.8
−1× water O H2 J −15.8
1/2× gamma_surf-110l_L2_01w Al56 O86 H4 B −58.3

GSH −1/4× gamma_surf-110l_L2_00w Al56 O84 R −44.6
−1× water O H2 J 10.5
1/4× gamma_surf-110l_L2_02w Al56 O88 H8 B −51.9

GSH −1/2× gamma_surf-110l_L2_01w Al56 O86 H4 R −28.4
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−1× water O H2 J 36.8
1/2× gamma_surf-110l_L2_02w Al56 O88 H8 B −45.5

GSH −1/6× gamma_surf-110l_L2_00w Al56 O84 R −50.5
−1× water O H2 J 25.8
1/6× gamma_surf-110l_L2_03w Al56 O90 H12 B −53.2

GSH −1/4× gamma_surf-110l_L2_01w Al56 O86 H4 R −45.3
−1× water O H2 J 46.6
1/4× gamma_surf-110l_L2_03w Al56 O90 H12 B −50.6

GSH −1/2× gamma_surf-110l_L2_02w Al56 O88 H8 R −62.3
−1× water O H2 J 56.5
1/2× gamma_surf-110l_L2_03w Al56 O90 H12 B −55.7

GSH −1/8× gamma_surf-110l_L2_00w Al56 O84 R −53.0
−1× water O H2 J 24.9
1/8× gamma_surf-110l_L2_04w Al56 O92 H16 B −49.3

GSH −1/6× gamma_surf-110l_L2_01w Al56 O86 H4 R −50.4
−1× water O H2 J 38.5
1/6× gamma_surf-110l_L2_04w Al56 O92 H16 B −46.2

GSH −1/4× gamma_surf-110l_L2_02w Al56 O88 H8 R −61.5
−1× water O H2 J 39.3
1/4× gamma_surf-110l_L2_04w Al56 O92 H16 B −46.6

GSH −1/2× gamma_surf-110l_L2_03w Al56 O90 H12 R −60.7
−1× water O H2 J 22.1
1/2× gamma_surf-110l_L2_04w Al56 O92 H16 B −37.5

GSH −1/2× gamma_surf-111_D1_03w Al32 O54 H12 R −60.7
−1× water O H2 J −5.4
1/2× gamma_surf-111_D1_04w Al32 O56 H16 B −49.0

GSH −1/4× gamma_surf-111_D1_03w Al32 O54 H12 R −49.5
−1× water O H2 J 1.5
1/4× gamma_surf-111_D1_05w Al32 O58 H20 B −38.6

GSH −1/2× gamma_surf-111_D1_04w Al32 O56 H16 R −38.4
−1× water O H2 J 8.5
1/2× gamma_surf-111_D1_05w Al32 O58 H20 B −28.3

GSH −1/6× gamma_surf-111_D1_03w Al32 O54 H12 R −42.9
−1× water O H2 J 15.4
1/6× gamma_surf-111_D1_06w Al32 O60 H24 B −34.8

GSH −1/4× gamma_surf-111_D1_04w Al32 O56 H16 R −34.0
−1× water O H2 J 25.8
1/4× gamma_surf-111_D1_06w Al32 O60 H24 B −27.7

GSH −1/2× gamma_surf-111_D1_05w Al32 O58 H20 R −29.6
−1× water O H2 J 43.2
1/2× gamma_surf-111_D1_06w Al32 O60 H24 B −27.1

GSH −1/2× gamma_surf-111_D2_03w Al32 O54 H12 R −50.3
−1× water O H2 J 46.1
1/2× gamma_surf-111_D2_04w Al32 O56 H16 B −27.4
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GSH −1/4× gamma_surf-111_D2_03w Al32 O54 H12 R −44.4
−1× water O H2 J 39.7
1/4× gamma_surf-111_D2_05w Al32 O58 H20 B −34.8

GSH −1/2× gamma_surf-111_D2_04w Al32 O56 H16 R −38.5
−1× water O H2 J 33.3
1/2× gamma_surf-111_D2_05w Al32 O58 H20 B −42.1

GSH −1/6× gamma_surf-111_D2_03w Al32 O54 H12 R −39.4
−1× water O H2 J 24.6
1/6× gamma_surf-111_D2_06w Al32 O60 H24 B −34.0

GSH −1/4× gamma_surf-111_D2_04w Al32 O56 H16 R −33.9
−1× water O H2 J 13.8
1/4× gamma_surf-111_D2_06w Al32 O60 H24 B −37.3

GSH −1/2× gamma_surf-111_D2_05w Al32 O58 H20 R −29.4
−1× water O H2 J −5.6
1/2× gamma_surf-111_D2_06w Al32 O60 H24 B −32.4

GSH −1/2× gamma_surf-111_P1_1_05w Al40 O70 H20 R −21.2
−1× water O H2 J 1.7
1/2× gamma_surf-111_P1_1_06w Al40 O72 H24 B −22.9

GSH −1/2× gamma_surf-111_P1_2_03w Al40 O66 H12 R −51.2
−1× water O H2 J 47.5
1/2× gamma_surf-111_P1_2_04w Al40 O68 H16 B −36.4

GSH −1/4× gamma_surf-111_P1_2_03w Al40 O66 H12 R −41.3
−1× water O H2 J 34.9
1/4× gamma_surf-111_P1_2_05w Al40 O70 H20 B −35.9

GSH −1/2× gamma_surf-111_P1_2_04w Al40 O68 H16 R −31.4
−1× water O H2 J 22.3
1/2× gamma_surf-111_P1_2_05w Al40 O70 H20 B −35.4

GSH −1/6× gamma_surf-111_P1_2_03w Al40 O66 H12 R −35.0
−1× water O H2 J 24.3
1/6× gamma_surf-111_P1_2_06w Al40 O72 H24 B −33.6

GSH −1/4× gamma_surf-111_P1_2_04w Al40 O68 H16 R −26.9
−1× water O H2 J 12.7
1/4× gamma_surf-111_P1_2_06w Al40 O72 H24 B −32.2

GSH −1/2× gamma_surf-111_P1_2_05w Al40 O70 H20 R −22.3
−1× water O H2 J 3.1
1/2× gamma_surf-111_P1_2_06w Al40 O72 H24 B −29.1

GSH −1/2× gamma_surf-111_P2_1_05w Al40 O70 H20 R −23.0
−1× water O H2 J 60.2
1/2× gamma_surf-111_P2_1_06w Al40 O72 H24 B −15.2

GSH −1/2× gamma_surf-111_P2_2_04w Al40 O68 H16 R −46.0
−1× water O H2 J 29.6
1/2× gamma_surf-111_P2_2_05w Al40 O70 H20 B −20.8

GSH −1/4× gamma_surf-111_P2_2_04w Al40 O68 H16 R −17.4
−1× water O H2 J 3.1
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1/4× gamma_surf-111_P2_2_06w Al40 O72 H24 B −21.7
GSH −1/2× gamma_surf-111_P2_2_05w Al40 O70 H20 R 11.2

−1× water O H2 J −23.5
1/2× gamma_surf-111_P2_2_06w Al40 O72 H24 B −22.6

SUR −1/32× gamma_bulk Al32 O48 R 5.1
1/64× gamma_surf-001_00w Al64 O96 J 2.5

B 4.9
SUR −1/32× gamma_bulk Al32 O48 R 5.7

1/80× gamma_surf-110b_from_boehm_00w Al80 O120 J 2.0
B 3.6

SUR −1/32× gamma_bulk Al32 O48 R 7.7
1/64× gamma_surf-110b_from_bulk_00w Al64 O96 J 5.7

B 7.3
SUR −1/32× gamma_bulk Al32 O48 R 9.3

1/48× gamma_surf-110l_A1_00w Al48 O72 J 1.4
B 7.9

SUR −1/32× gamma_bulk Al32 O48 R 7.4
1/56× gamma_surf-110l_A2_00w Al56 O84 J 4.3

B 6.6
SUR −1/32× gamma_bulk Al32 O48 R 7.2

1/56× gamma_surf-110l_L2_00w Al56 O84 J 1.1
B 5.2
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Figure S7: Histograms of reaction energies in the validation set.
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Figure S8: Parity plot comparing the value of the Balanced Loss function, for the training
and validation sets, for the best solution from all 40 CMA runs (LSE form, optimization
stage 2, see main text for details). Despite that the 40 optimized parameter vectors different
significantly, their performance for the training and validation sets is similar.

Table S6: Comparison of root-mean-square-errors (RMSEs) of the initial force
field by Joshi et al.1 and the force field optimized in this work (BL). The RMSEs
are computed for categories of training data and structures for which there is
no counterpart in the validation set, i.e. not related to γ-Al2O3 surfaces. For
reference, the standard deviation (SD) on the reference data is included.

Category Unit Ref. Joshi BL
SD RMSE RMSE #

Al–O Å 0.08 0.35 0.07 1482
Al–Al Å 0.37 0.33 0.07 1624
O–H Å 0.03 0.26 0.04 638
O· · ·H Å 0.15 0.42 0.12 468

Al–O–Al deg 22.0 9.3 3.3 1646
Al–O–H deg 7.6 14.2 5.1 1077
O–Al–O deg 32.2 11.0 3.2 3522
Al–O· · ·H deg 8.6 12.8 4.9 803
H–O· · ·H deg 15.8 18.2 8.1 484
H· · ·O· · ·H deg 21.5 15.1 7.1 72

BSH kcalmol−1 11.8 38.1 4.7 5
GEH kcalmol−1 14.6 84.5 1.9 21
FOR kcalmol−1 10.3 22.4 2.4 11
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Figure S9: Adsorption energies, as defined in Eq. (3) in the main text, on boehmite surfaces
as a function of the OH coverage, computed with different models: DFT (gray circle), Joshi
(orange plus), this work (blue cross). All structures are derived from the training set.

S2 Comparison of Non-Equilibrium ReaxFF and DFT

energies

A hydrated alumina slab (structure gamma_surf-110l_A1_06w from the validation set) was

used as a starting point for a constant-temperature molecular dynamics (MD) run with

VASP using the same level of theory as the training set. A Nosé-Hoover thermostat with a

temperature of 1000K and a relaxation time of 40 fs was used to stimulate the desorption of

water from the surface. The simulation ran for 500 steps of 1 fs, and snapshots were taken

every 10 steps for further analysis. Two desorption events occurs during the first 200 fs, after

which no additional water molecules desorb.

The total single-point energies, Etotal, of the selected snapshots are compared in Fig. S10(a).

The DFT energies are shown in black and ReaxFF results with the new parameters in blue.

ReaxFF energies obtained with the parameters of Joshi et al.1 are depicted in red. The

average is subtracted from both time series because these energies are only comparable up

to a constant. While the fluctuations in DFT and ReaxFF energy are correlated, they also

show significant deviations. This is expected, since the majority of the atoms are in the slab,

not the water, and our training set emphasizes hydration reactions, not the vibrations in the

alumina slab.

29



To show that our ReaxFF parameters can reproduce the relevant contribution to the DFT

reference energy, additional single-point energies were calculated on the same snapshots from

which some atoms were removed:

• Eslab is the energy of the slab and the water molecules that remain adsorbed, but

without the atoms of the two water molecules that desorb during the simulation.

• E2H2O is the energy computed for only the atoms of the two desorbing water molecules.

The energies of these two complementary subsystems are shown in Fig. S10(b) and Fig. S10(c),

respectively. (Since these are also absolute energies, the average is again subtracted in both

plots.) Finally, using these data, also the energy difference (Etotal − Eslab − E2H2O)/2 was

computed and is shown in Fig. S10(d). In this case, no average was subtracted because the

difference in energy has a chemically meaningful reference.

Fig. S10(b) shows deviations between ReaxFF and DFT energies that are very similar

to those in Fig. S10(a), confirming that these deviations are due to the internal energy of

the alumina slab. The results in Fig. S10(c) and Fig. S10(d) show a fair agreement between

the DFT and ReaxFF energies obtained with our new parameters. Mainly Fig. S10(d)

is of interest, because it is closely related to the hydration energies in the training set:

This energy difference is calculated similarly to energy training data (Eq. (3) in the main

text) but is now evaluated using non-equilibrium snapshots instead of optimized geometries.

Because of this similarity, it is reasonable to expect a correspondence of the energies in

Fig. S10(d). The average of the relative error over the first 200 fs is 25% for the Balanced Loss

parameters, which is comparable to relative errors on adsorption energies in the training set.

For Fig. S10(a) and Fig. S10(b), however, a similar agreement would have been coincidental,

since no related data were used for training. Also note that the new ReaxFF parameters

show a clear improvement in Fig. S10(d) with respect to the parameters of Joshi et al.,1 for

which the relative error is 79%. In Fig. S10(c) both ReaxFF parameterizations yield the

same results because the parameters for water were not refitted.
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(a) Etotal: Slab with all water molecules
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(b) Eslab: Slab with adsorbed water
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(c) E2H2O: Two desorbing water molecules
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Figure S10: Comparison of DFT and ReaxFF energies for snapshots taken from a 1000K
DFT molecular dynamics simulation. (black: DFT, blue: ReaxFF with Balanced Loss
parameters, red: ReaxFF with Joshi et al. parameters1). Panel (a) contains the total
energy of the system, panel (b) the energy of the slab and the water molecules that remain
adsorbed, and panel (c) the energy of only the desorbing water molecules. Panel (d) depicts
the instantaneous hydration energy as computed with Eq. (3) in the main text.
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