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Abstract

The ability to measure differences in collected data is of fundamental importance for quantitative
science and machine learning, motivating the establishment of metrics grounded in physical principles.
In this study, we focus on the development of such metrics for viscoelastic fluid flows governed
by a large class of linear and nonlinear stress models. To do this, we introduce a kernel function
corresponding to a given viscoelastic stress model that implicitly embeds flowfield snapshots into a
Reproducing Kernel Hilbert Space (RKHS) whose squared norm equals the total mechanical energy.
Working implicitly with lifted representations in the RKHS via the kernel function provides natural and
unambiguous metrics for distances and angles between flowfields without the need for hyperparameter
tuning. Additionally, we present a solution to the preimage problem for our kernels, enabling accurate
reconstruction of flowfields from their RKHS representations. Through numerical experiments on an
unsteady viscoelastic lid-driven cavity flow, we demonstrate the utility of our kernels for extracting
energetically-dominant coherent structures in viscoelastic flows across a range of Reynolds and
Weissenberg numbers. Specifically, the features extracted by Kernel Principal Component Analysis
(KPCA) of flowfield snapshots using our kernel functions yield reconstructions with superior accuracy in
terms of mechanical energy compared to conventional methods such as ordinary Principal Component
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Analysis (PCA) with naïvely-defined state vectors or KPCA with ad-hoc choices of kernel functions.
Our findings underscore the importance of principled choices of metrics in both scientific and machine
learning investigations of complex fluid systems.

Keywords: viscoelastic flow, energy-based inner product, kernel method, machine learning, reproducing
kernel Hilbert space, principal component analysis

1 Introduction
A basic component of quantitative science is the ability to measure differences in collected data. Quantities
such as mass, momentum, and energy provide unified descriptions of physical systems, and are therefore
desirable quantities to measure when investigating the behavior of a system of interest. Likewise, in
machine learning it is often necessary to endow the space in which data lies with geometric notions such as
distance and angle, or otherwise to embed the data in a space with these notions. The assumed geometry,
including for instance, the way measurements are normalized, can drastically affect the outcome of learning,
potentially highlighting spurious features while ignoring important ones that appear insignificant due to a
poor choice of metric. Therefore, in machine learning for physics applications it is important to ground
the ways we compare data in principled physical notions such as energy.

One of the most important tasks in machine learning involves extracting low-dimensional features
(variables) that describe a system or allow one to predict quantities of interest. Since its first applications
to fluid dynamics in [1], the Proper Orthogonal Decomposition (POD), also known as principal component
analysis (PCA) or the Karhunen-Loéve (KL) expansion, has been widely used for encoding high dimensional
data in a low dimensional representation ([2, 3]). Other modal analysis techniques such as those reviewed
in [4] have emerged as powerful tools to reduce the dimension of complex flow by splitting them into
simpler components or “modes”.

Many of these modal analysis techniques, including POD, rely on the choice of an inner product defined
on the flow’s state space. The fact that significantly different results can be obtained using different inner
products motivates the introduction of principled choices based on physics. For incompressible Newtonian
fluid flows the integrated dot product of velocity fields is a natural inner product whose resulting (squared)
norm is the flow’s kinetic energy. Applying PCA with this inner product extracts the orthogonal modes
and mode coefficients that are optimal for reconstructing flowfields in an energetic sense. An inner product
with analogous properties for isothermal compressible flows was introduced by Rowley et al. [5] and
used to construct POD-Galerkin reduced-order models. Moreover, this work showed that compatibility
of the inner product with a conserved or dissipated energy function guarantees that the stability of an
equilibrium is preserved by Galerkin projection. Energy and dimensionally-consistent inner products for
more general classes of compressible flows were later investigated in [6]. Following this same line of work,
energy-consistent inner products have been introduced for magnetohydrodynamics in [7] and for rotating
shallow-water equations in [8].

In the new era of machine learning applications in fluid mechanics [9], there is growing interest in
nonlinear dimensionality reduction techniques rooted in manifold learning and artificial neural networks
[10, 11, 12]. These methodologies allow for greater dimensionality reduction, especially in advection-
dominated flow problems, by capturing curved manifolds in the state space that are poorly approximated
by low-dimensional subspaces, i.e., by superpositions of modes [13]. Complementary to learned manifolds,
dimensionality reduction methods condense states along “fibers” determined by the choice of reduced mod-
eling variables. By allowing these variables to be nonlinear functions of the state, nonlinear dimensionality
reduction methods also allow for nonlinear fibers that appropriately group states with similar dynamical
behaviors [14].

Kernel Principal Component Analysis (KPCA) was introduced by Schölkopf et al. [15] and has become
one of the most widely used methods for nonlinear dimensionality reduction. The key insight is that PCA
— a linear dimensionality reduction method — can be applied through the use of a kernel function in a
high or infinite-dimensional Reproducing Kernel Hilbert Space (RKHS) into which states have been lifted
as illustrated in Fig. 1. Recent works, such as [16, 17, 18], have leveraged the enhanced capabilities of
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kernel-based nonlinear dimensionality reduction for modeling complex fluid flows. However, to the best of
our knowledge, all formulations presented to date have only been used in the context of Newtonian fluid
flows. Moreover, with a wide range of kernel functions to choose from and the ability to combine kernel
functions to produce new ones, it is a matter of great practical importance to narrow this selection based
on principled physical considerations.

Viscoelastic fluids play a pervasive role across various industrial sectors, encompassing consumer goods,
food, healthcare, and more. These applications motivate the use of machine learning models and nonlinear
dimensionality reduction to shed light on the complex interplay of inertial and elastic effects that give rise
to unique unsteady nonlinear dynamics in viscoelastic fluid flows (see [19]). This is especially pertinent in
the context of Elastic Turbulence (ET) ([20, 21]) and Elasto-Inertial Turbulence (EIT) ([22, 23]), two
phenomena posing distinctive challenges in the realm of viscoelastic fluid dynamics. Roughly speaking,
defining the elasticity parameter as E = Wi

Re , where Re represents the Reynolds number and Wi is the
Weissenberg number, ET manifests itself in the turbulent flow of viscoelastic fluids when E is large, i.e.,
for inertialess or creeping flows. On the other hand, EIT characterizes the turbulent behavior of highly
viscoelastic fluids influenced by inertial forces, particularly in inertia-dominated flows at moderate or high
Reynolds numbers. Both ET and EIT, along with the identification of regime transitions ([24, 25, 26, 27]),
present challenges and opportunities to enhance our understanding of these phenomena through machine
learning models based on data gathered from computational fluid dynamics simulations. More broadly,
machine learning models have the potential to enhance our ability to optimize and control non-Newtonian
fluid systems arising in a wide range of engineering applications.

Following the line of work initiated by Rowley et al. [5] and Schölkopf et al. [15], in this paper we show
that the mechanical energy of viscoelastic fluid flows can be used to formulate kernel functions giving
rise to natural metrics for distances and angles between states that are well-suited for physics-informed
machine learning applications. Specifically, the kernel function associated with a given viscoelastic stress
model implicitly embeds the flow’s state in a Reproducing Kernel Hilbert Space (RKHS) with squared
norm equal to the mechanical energy. The induced distance function turns the set of states with finite
energy into a complete, separable metric space. Kernel-based machine learning algorithms (see [28]) rely
on the induced geometric relations between data points lifted into an RKHS for classification, regression,
and dimensionality reduction. As we mentioned above, it is often difficult to make a principled choice
for the kernel function from among a plethora of commonly used kernels with various hyperparameters
and with different ways of combining kernels to produce new ones. The kernels we introduce have no
hyperparameters, partially resolving this ambiguity for problems involving viscoelastic fluid flows. We note
that the resolution is only partial because there could still be other kernel functions that are compatible
with the energy and turn the space of states with finite energy into a complete, separable metric space.

Beyond providing principled choices of kernel functions for viscoelastic flows, we also provide a solution
of the preimage problem (see [29, 30]) for our kernels. That is, the problem of reconstructing the flowfield
from its lifted representation in the RKHS, or its truncated representation in terms of kernel principal
components. We prove that the velocity and matrix square root of the conformation tensor field can
always be reconstructed from the RKHS representation of a state via a bounded linear operator. As a
consequence, we show that these fields can be linearly reconstructed from truncated kernel principal
components with guaranteed accuracy depending on the truncated singular values. Other fields can also
be linearly reconstructed depending on the viscoelastic stress model, but the velocity and square root of
the conformation tensor are sufficient to explicitly reconstruct the entire flowfield.

To illustrate the utility of our kernel functions and the importance of making principled choices for
measuring distances between states, we perform KPCA-based dimensionality reduction and reconstruction
of an unsteady viscoelastic lid-driven cavity flow. The flow is simulated at both low and moderate Reynolds
numbers and at both low and high Weissenberg numbers using different viscoelastic stress models. The
selection of the specific pairs of Reynolds and Weissenberg numbers is grounded in a careful consideration
of previous works that have investigated the complexities of viscoelastic flows under inertial effects
([31, 32, 33]) as well as investigations specifically focused on problems related to creeping flows ([34, 35])
While ordinary PCA is optimal for reconstructing the flowfields with respect to the Frobenius norm, we
show that this can lead to poor reconstruction of the flow’s mechanical energy. In contrast, by matching
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F

Φ(F) RKHS, H

E(q) = E2

∥ϕ∥2H = E2

E(q) = E1

∥ϕ∥2H = E1

Figure 1: Lifting states into a Reproducing Kernel Hilbert Space (RKHS) with squared norm equal to
total mechanical energy. We illustrate how constant-energy surfaces in the state space with energies E1

and E2 are lifted onto spheres centered about the origin in the RKHS with squared radii E1 and E2.
Improperly chosen metrics in the state space can cause states with different mechanical energies to appear
similar. This problem is rectified by measuring distances between lifted states in the RKHS.

the kernel function to the viscoelastic stress model, Reynolds number, and Weissenberg number of the
simulation, kernel PCA is able to extract low-dimensional coordinates that faithfully reconstruct the
flowfield with superior accuracy in an energetic sense.

2 Viscoelastic flow models and energy functions
We consider nondimensional equations for viscoelastic flow [19] on a set Ω ⊂ Rd whose state q = (u, c)
consists of the velocity field u : Ω → Rd and the conformation tensor field c : Ω → Sd+ ⊂ Rd×d. The
conformation tensor field takes values in the space Sd+ of positive semidefinite real symmetric matrices.
We use Sd to denote the real symmetric matrices and we use Sd++ to denote the real symmetric positive
definite matrices. The time evolution of the state q(t) is governed by the momentum equation

d

d t
u+ u · ∇u+∇ p =

β

Re
∆u+

1

Re
∇·τττ + f , (2.1)

subject to the incompressibility constraint
∇·u = 0, (2.2)
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Model h0(c) h1(c) h2(c) κ constraints on D(s) c
Oldroyd-B 1 1 1 0 None d
Giesekus 1 1 1 α None d

FENE-CR 1 L2

L2−tr(c)
L2

L2−tr(c) 0 tr(c) < L2 d

FENE-P 1 L2

L2−tr(c) 1 0 tr(c) < L2 d

Linear PTT 1 + ε tr(c− I) 1 1 0 None d
Nonlinear PTT exp [ε tr(c− I)] 1 1 0 None d

Table 1: Some common stress models for viscoelastic flow (see [19]) in the general form of Eq. (2.6). With
the exception of the linear Oldroyd-B model, the nonlinear models introduce an additional nondimensional
parameter, each defined accordingly: α represents the mobility factor for the Giesekus model, whereas L2

and ε correspond to the extensibility parameters for the finitely extensible nonlinear elastic with Peterlin
closure (FENE) and the Phan-Thien–Tanner(PTT) models, respectively.

and the conformation tensor transport equation

▽
c = s(c), (2.3)

where β is the viscosity ratio satisfying 0 < β < 1. The upper convected derivative [36], adopted in
Eq. (2.3) is defined as

▽
c =

d

d t
c+ u · ∇ c− c∇u− (∇u)T c (2.4)

These equations are coupled through a stress model

τττ = −(1− β)s(c), (2.5)

determined by a function s : D(s) ⊂ Sd+ → Sd. There are a wide variety of available stress models taking
the general form

s(c) = −h0(c)
Wi

[
h1(c)c− h2(c)I + κ(c− I)2

]
, (2.6)

where κ is a constant and h0, h1, and h2 are scalar-valued functions of the conformation tensor. Some
examples are given in table 1. Using the stress model, the total mechanical energy of the system is given
by

E(q) = 1

2

∫
Ω

[∣∣u(x)∣∣2 + 1

Re
tr(τττ) +

(1− β)c

ReWi

]
dx. (2.7)

Here, we are adopting the energy defined in [37] with the addition of a model-dependent constant c ≥ 0
selected to ensure that the energy is always non-negative. More details about the energy estimation for
viscoelastic fluids can be found in [38]. For the models in table 1, this constant may be taken to be equal
to the dimension d of the flow domain. To simplify the notation, we define

θ :=
1− β

ReWi
.

We denote the space of states with finite total mechanical energies by

F = {q : E(q) <∞} .

We declare two elements in F to be equal when they agree almost everywhere on Ω. In this paper we
introduce energy-based distance functions that allow states in F to be compared. The next section explains
how this can be accomplished for a large class of stress models including those listed in table 1 by embedding
F in a Reproducing Kernel Hilbert Space (RKHS) whose squared norm equals the total mechanical energy,
as illustrated in Fig. 1. This enables a variety of kernel-based machine learning algorithms (see [28]) to be
applied in viscoelastic flow problems with principled choices for the kernel functions based on flow physics.

5



3 Energy-based reproducing kernels
First we review the concept of a Reproducing Kernel Hilbert Space (RKHS). An RKHS H over F consists
of functions ϕ : F → R where pointwise evaluation ϕ 7→ ϕ(q) is a bounded linear map for every q ∈ F . By
the Riesz lemma [39], there is a unique element Kq ∈ H so that the value of every ϕ ∈ H at q ∈ F is
given by the inner product

ϕ(q) = ⟨Kq, ϕ⟩H . (3.8)

The function k : F × F → R defined by

k(q1, q2) = Kq2
(q1) =

〈
Kq1

, Kq2

〉
H (3.9)

is called the “reproducing kernel” of H and the map Φ : q 7→ Kq is called the “feature map”. It is easy to
verify that for every finite collection of states q1, . . . , qm ∈ F and coefficients a1, . . . , am ∈ R the kernel
satisfies the positive-definiteness condition

m∑
i=1

m∑
i=1

aiajk(qi, qj) ≥ 0. (3.10)

Conversely, any function k : F × F → R satisfying the above positive-definiteness condition is the
reproducing kernel of a unique RKHS thanks to the Moore-Aronszajn theorem (see [40, 41]).

For a large class of stress models, including those in table 1, we show that there is an RKHS H whose
feature map Φ : F → H is injective and respects the total energy in the sense that

E(q) = ∥Φ(q)∥2H = k(q, q). (3.11)

This notion of compatibility with the total mechanical energy is illustrated in Fig. 1. Using the distance
between lifted states in the RKHS, the state space F becomes a metric space with

dE(q1, q2) := ∥Φ(q1)− Φ(q2)∥H =
√
k(q1, q1)− 2k(q1, q2) + k(q2, q2). (3.12)

The injective property of the feature map is required to ensure that dE(q1, q2) = 0 if and only if q1 = q2

in F , i.e, almost everywhere in Ω. We say that an RKHS is an “injective RKHS” with an “injective kernel
function” when the associated feature map is injective. Most importantly, the metric in Eq. (3.12) can
be computed using the kernel function without doing explicit computations in the abstract, possibly
infinite-dimensional space H.

Our main result, stated in the following theorem, provides general conditions on the stress model
ensuring there is an RKHS with injective feature map compatible with the total energy. Moreover, the
theorem provides an explicit formula for the corresponding reproducing kernel. Before stating the result, we
need some preliminary definitions. Let σ(c) ⊂ R denote the set of eigenvalues (spectrum) of a symmetric
matrix c ∈ Sd and let P c(λ) denote the orthogonal projection onto the eigenspace of c corresponding to
an eigenvalue λ ∈ σ(c). Then the action of a function f : σ(c) → R on the matrix c is defined by

f(c) :=
∑

λ∈σ(c)

f(λ)P c(λ). (3.13)

It is easy to see that 1(c) = I, IdR(c) = c, (f + g)(c) = f(c) + g(c), and (fg)(c) = f(c)g(c), making
f 7→ f(c) a commutative algebra homomorphism commonly referred to as the “functional calculus” of c.
This extends the usual notions of matrix polynomials, matrix square roots, and matrix exponentials.

Theorem 1. Suppose that there are (measurable) functions {fi}∞i=0 on σ(D(s)) =
⋃

c∈D(s) σ(c) and
nonnegative constants {ci,p}∞i,p=0 so that

h(c) := −Wi · tr[s(c)] + c =

∞∑
i=0

∞∑
p=0

ci,p
[
tr
(
fi(c)

2
)]p (3.14)
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for every c ∈ D(s). Then the series

k̃(c1, c2) :=

∞∑
i=0

∞∑
p=0

ci,p
[
tr
(
fi(c1)fi(c2)

)]p (3.15)

converges absolutely for every c1, c2 ∈ D(s) and the function k : F × F → R defined by

k(q1, q2) :=
1

2

∫
Ω

[
u1(x) · u2(x) + θk̃

(
c1(x), c2(x)

)]
dx (3.16)

is a positive-definite kernel satisfying E(q) = k(q, q). Moreover, if there is a coefficient ci,p > 0 with p ≥ 1,
fi injective on σ(D(s)), and p odd or fi nonnegative, then the feature map of the corresponding RKHS is
injective. We provide a proof in A.

Furthermore, F is a complete metric space, as we state in the next theorem. Intuitively, this means
that F has no missing points that can be approached, but never reached. Completeness is important for
understanding limits that appear, for example, when studying the long-time behavior of the system. The
fact that F is complete provides additional evidence that our kernel-based metric is a natural one for the
states of viscoelastic flows.

Theorem 2. With the same assumptions as Theorem 1, suppose that there is a coefficient ci,p > 0 with
p ≥ 1, fi injective on σ(D(s)), and p odd or fi nonnegative. Then F is a complete metric space with
metric given by Eq. (3.12) and Φ(F) is a closed subset of H. A proof is provided in B.

To see how these theorems work, we use them to show that the stress models in table 1 admit injective
positive-definite kernel functions turning F into a complete metric space. However, we note that in certain
cases the parameters in the stress models must be constrained. Interestingly, for the Oldroyd-B, Giesekus,
and linear PTT stress models it is also possible to explicitly construct feature maps Ψ : F → L2(Ω) acting
point-wise so that

k(q1, q2) = ⟨Ψ(q1), Ψ(q2)⟩L2(Ω) :=

∫
Ω

Ψ(q1)(x)
TΨ(q2)(x) dx. (3.17)

As a result of the Moore-Aronszajn theorem (see Theorem 4 in A), for these cases the RKHS H is
identified isometrically with the closed subspace of L2(Ω) spanned by {Ψ(q)}q∈F . We let vec(A) denote
any vectorization of a matrix A and we recall that vec(A1)

T vec(A2) = tr(AT
1 A2).

Example 1. For the Oldroyd-B model, we have

h(c) = tr(c− I) + d = tr(c), (3.18)

which can be written in the form of Eq. (3.14) with f0 : x 7→ √
x and coefficient c0,1 = 1. Thus, Eq. (3.16)

with
k̃(c1, c2) := tr

(√
c1
√
c2
)
, (3.19)

is an injective positive semi-definite kernel function satisfying Eq. (3.11) for the Oldroyd-B. Moreover, it
is easy to see that

Ψ(q)(x) =
1√
2

[
u(x)√

θ vec
(√

c(x)
)] ∈ Rd+d

2

. (3.20)

provides an explicit feature map satisfying Eq. (3.17).

Example 2. For the Giesekus model, we have

h(c) = tr(c− I) + α tr
[
(c− I)2

]
+ d = tr(c) + α tr

[
(c− I)2

]
, (3.21)
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which can be written in the form of Eq. (3.14) with f0 : x 7→ √
x and f1 : x 7→ (x − 1) with coefficients

c0,1 = 1 and c1,1 = α. Thus, Eq. (3.16) with

k̃(c1, c2) := tr
(√

c1
√
c2
)
+ α tr

[
(c1 − I)(c2 − I)

]
, (3.22)

is an injective positive semi-definite kernel function satisfying Eq. (3.11) for the Giesekus model with
parameter ε ≥ 0. Moreover,

Ψ(q)(x) =
1√
2

 u(x)√
θ vec

(√
c(x)

)
√
θα vec

(
c(x)− I

)
 ∈ Rd+2d2 , (3.23)

defines an explicit feature map satisfying Eq. (3.17).

Example 3. For the FENE-CR model, we have

h(c) =
L2 tr(c− I)

L2 − tr(c)
+ d =

(L2 − d) tr(c)

L2 − tr(c)
= (L2 − d)

∞∑
p=1

1

L2p
tr(c)p, (3.24)

where the geometric series converges when | tr(c)| < L2, hence on D(s) for this model. This expression
takes the form of Eq. (3.14) with f0 : x 7→ √

x and c0,p = (L2 − d)L−2p for every p ≥ 1. Therefore, if the
parameter L of the FENE-CR model is chosen so that L2 > d, then Eq. (3.16) with

k̃(c1, c2) =
(L2 − d) tr

(√
c1
√
c2
)

L2 − tr
(√

c1
√
c2
) , (3.25)

defines an injective positive semi-definite kernel function satisfying Eq. (3.11).

Example 4. For the FENE-P model, we have

h(c) =
L2 tr(c)

L2 − tr(c)
= L2

∞∑
p=1

1

L2p
tr(c)p, (3.26)

where the geometric series converges when | tr(c)| < L2, hence on D(s) for this model. This expression
takes the form of Eq. (3.14) with f0 : x 7→ √

x and c0,p = L−2(p−1) for every p ≥ 1. Therefore, Eq. (3.16)
with

k̃(c1, c2) =
L2 tr

(√
c1
√
c2
)

L2 − tr
(√

c1
√
c2
) , (3.27)

defines an injective positive semi-definite kernel function satisfying Eq. (3.11) for the FENE-P model. We
note that unlike the FENE-CR model, there are no constraints on the model parameter L.

Example 5. For the linear PTT model, we have

h(c) = [1 + ε tr(c− I)] tr(c− I) + d = εd2 + (1− 2εd) tr(c) + ε tr(c)2, (3.28)

which takes the form of Eq. (3.14) with f0 : x 7→ √
x and coefficients c0,0 = εd2, c0,1 = 1 − 2εd, and

c0,2 = ε. Therefore, if the parameter ε of the linear PTT model satisfies 0 ≤ ε ≤ (2d)−1, then Eq. (3.16)
with

k̃(c1, c2) =
[
1 + ε tr

(√
c1
√
c2 − I

)]
tr
(√

c1
√
c2 − I

)
+ d, (3.29)

defines an injective positive semi-definite kernel function satisfying Eq. (3.11). To provide an explicit
feature map for this model, we first observe that

k̃(c1, c2) = d2 + (1− 2εd) tr
(√

c1
√
c2
)
+ ε tr

(√
c1
√
c2
)2

= d2 + (1− 2εd) tr
(√

c1
√
c2
)
+ ε tr

[(√
c1
√
c2
)
⊗
(√

c1
√
c2
)]

= d2 + (1− 2εd) tr
(√

c1
√
c2
)
+ ε tr

[(√
c1 ⊗

√
c1
)(√

c2 ⊗
√
c2
)]
,

(3.30)
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3.1 Comparing states with different parameter values

where ⊗ denotes the Kronecker product of matrices. Here, we have used the trace and mixed product
properties of the Kronecker product. Thanks to the above expression,

Ψ(q)(x) =
1√
2


d
√
θ

u(x)√
θ(1− 2εd) vec

(√
c(x)

)
√
θε vec

(√
c(x)⊗

√
c(x)

)
 ∈ R1+d+d2+d4 , (3.31)

defines an explicit feature map satisfying Eq. (3.17) for the linear PTT model.

Example 6. For the nonlinear PTT model, we have

h(c) = exp [ε tr(c− I)] tr(c− I) + d

= d+ e−εd
[
tr(c)eε tr(c) − deε tr(c)

]
= d+ e−εd

[ ∞∑
p=1

1

(p− 1)!
εp−1 tr(c)p − d− d

∞∑
p=1

1

p!
εp tr(c)p

]

= d
(
1− e−εd

)︸ ︷︷ ︸
c0,0

+

∞∑
p=1

εp−1e−εd

(p− 1)!

(
1− εd

p

)
︸ ︷︷ ︸

c0,p

tr(c)p,

(3.32)

which takes the form of Eq. (3.14) with f0 : x 7→ √
x. We observe that if 0 ≤ ε ≤ d−1 then all of the

coefficients c0,p are non-negative and c0,p is strictly positive for every p ≥ 2. Therefore, if the parameter ε
of the nonlinear PTT model satisfies 0 ≤ ε ≤ d−1, then Eq. (3.16) with

k̃(c1, c2) = exp
[
ε tr
(√

c1
√
c2 − I

)]
tr
(√

c1
√
c2 − I

)
+ d, (3.33)

defines an injective positive semi-definite kernel function satisfying Eq. (3.11).

3.1 Comparing states with different parameter values
So far, our kernel functions and the associated distance function on F only allows us to compare states at
the same values of the parameters β, Re, and Wi . However, this situation is easily rectified by defining a
new kernel function

ǩ ((q1, θ1), (q2, θ2)) :=
1

2

∫
Ω

[
u1(x) · u2(x) +

√
θ1θ2k̃

(
c1(x), c2(x)

)]
dx, (3.34)

which depends on the values of the parameter θ = (1 − β)/(ReWi). This is a positive-definite kernel
function of a unique RKHS Ȟ over F × (0,∞) thanks to the kernel product rule stated in Lemma 1 in
A. Under the same conditions stated in Theorem 1, the associated feature map Φ̌ : F × (0,∞) → Ȟ is
“conditionally injective”, meaning that

Φθ : q 7→ Φ̌(q, θ) (3.35)

is injective for every θ > 0. To see this, we observe that k(q1, q2) = ǩ ((q1, θ), (q2, θ)). Since k is an
injective kernel function, it follows that

∥Φθ(q1)− Φθ(q2)∥Ȟ = dE(q1, q2) > 0

when q1 ̸= q2 in F .
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4 Reconstructing fields and preimages for kernel functions
Once states are lifted into the RKHS, it is often of practical importance to be able to reconstruct them.
This is referred to as the preimage problem in kernel-based machine learning [29, 30]. The following
theorem provides a partial solution for the class of viscoelastic kernels presented above. It describes
spatial fields that can be linearly reconstructed from the lifted representations of states in the RKHS. In
particular, Corollary 1 means that for each of the stress models listed in Table 1, the field y = (u,

√
c)

lies in L2(Ω; Rd ×Rd×d) and can be reconstructed via a bounded linear operator acting on Φ(q) for every
q ∈ F . For the Oldroyd-B, Giesekus, and linear PTT models, this property is evident from their explicit
feature maps given above in Eqs. (3.20), (3.23), and (3.31).

Theorem 3. With the same assumptions as Theorem 1, let a0 ∈ Rd and Ai,p ∈ Rdp×dp satisfy

A :=

√√√√2∥a0∥22 +
2

θ

∞∑
i=0

∞∑
p=0

∥Ai,p∥2F <∞ (4.36)

and consider the function ψ : Rd ×D(s) → R defined by

ψ(u, c) = aT0 u+

∞∑
i=0

∞∑
p=0

√
ci,p tr

[
AT
i,pfi(c)

⊗p
]
. (4.37)

Then there is a unique bounded linear operator Rψ : H → L2(Ω) satisfying

RψΦ(q) = ψ ◦ q (4.38)

for every q = (u, c) ∈ F and ∥Rψ∥ ≤ A. We provide a proof in C.

Corollary 1. With the same assumptions as Theorem 1, suppose that there is a nonzero coefficient
ci,p > 0. Then there is a unique bounded linear operator Ri,p : H → L2(Ω; Rd × Rdp×dp) satisfying

Ri,pΦ(q) =
(
u, fi(c)

⊗p) (4.39)

for every q = (u, c) ∈ F . It’s norm is bounded by ∥Ri,p∥ ≤
√
2d+ 2d2p

θci,p
.

Remark 1. Incidentally, the proof of Theorem 3 shows that the metric space (F , dE) and the RKHS H
are separable. This is a useful property for studying operators on H, such as the covariance operator in
kernel principal component analysis described below.

These results justify linear reconstruction of the field y = (u,
√
c) using low-dimensional coordinates

obtained via kernel Principal Component Analysis (KPCA) [15]. Here, there is a probability measure µ over
states in F , and we seek a collection of low-dimensional features describing states from this distribution.
For the sake of simplicity, we consider the uncentered version of KPCA where the covariance operator
Cµ : H → H is defined by

Cµf =

∫
F
Φ(q)⟨Φ(q), f⟩H dµ(q). (4.40)

If the probability measure has finite average energy, i.e.,
∫
F E(q) dµ(q) <∞, then the covariance operator

is self-adjoint, positive semidefinite, and trace-class by Theorem 4.1 in [42]. Therefore, H admits an
orthonormal basis of eigenvectors {uj}∞j=1 of Cµ with eigenvalues λj = σ2

j , σj ≥ 0, arranged in descending
order and satisfying∑∞

j=1 σ
2
j <∞.

Using KPCA, the principal components

zj(q) := ⟨uj , Φ(q)⟩H (4.41)
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can be computed without performing explicit operations in the RKHS. To do this, KPCA uses a kernel
integral operator Kµ : L2(F , µ) → L2(F , µ) defined by

(Kµf)(q) =

∫
F
k(q, q′)f(q′) dµ(q). (4.42)

This operator is self-adjoint and has the same eigenvalues λj as Cµ, with eigenfunctions {vj}∞j=1 forming
an orthonormal basis for L2(F , µ). Crucially, these eigenfunctions can be computed using the kernel
function, enabling one to compute the KPCA coordinates

zj(q) = σ−1
j

∫
F
vj(q

′)k(q′, q) dµ(q′). (4.43)

Since Cµ is a compact operator on a Hilbert space, it can be approximated in norm by finite-rank
operators. One often uses empirical covariance operators obtained by drawing finitely many independent
samples {qi}mi=1 from µ and forming the covariance Cµm

for the empirical measure µm = m−1
∑m
i=1 δqi

with δqi
denoting the Dirac measure centered at qi. With the identification L2(F , µm) ∼= Rm, which is

valid when the sampled states are distinct, the corresponding kernel integral operator Kµm becomes the
kernel matrix K ∈ Rm×m with entries [K]i,j = m−1k(qi, qj) and eigenvectors vj ∈ Rm. The KPCA
features for the empirical distribution are then given by

zj(q) = m−1/2σ−1
j

[
k(q1, q) · · · k(qm, q)

]
vj . (4.44)

The following result says that certain spatial fields such as (u,
√
c) can be linearly reconstructed with

guaranteed accuracy using the leading KPCA features. Here, we arrange the first r eigenvectors into an
operator Ur : Rr → H defined by (w1, . . . , wr) 7→ w1u1 + · · ·wrur and we denote the vector of leading
principal components zr(q) = (z1(q), . . . , zr(q)) = U∗

rΦ(q).

Proposition 1. With the same assumptions as Theorem 1, suppose that there is a nonzero coefficient
ci,p > 0 and the average energy

∫
F E(q) dµ(q) < ∞ is finite. For a state vector q = (u, c) ∈ F , the

reconstruction error is bounded by

∥∥(u, fi(c)⊗p)−Ri,pUrzr(q)
∥∥2
L2(Ω)

≤ 2

(
d+

d2p

θci,p

)(
E(q)− ∥zr(q)∥22

)
. (4.45)

The average reconstruction error for states drawn according to µ is bounded by∫
F

∥∥(u, fi(c)⊗p)−Ri,pUrzr(q)
∥∥2
L2(Ω)

dµ(q) ≤ 2

(
d+

d2p

θci,p

) ∞∑
j=r+1

σ2
j . (4.46)

We provide a proof in C.

We note that when the centered version of KPCA is used, the reconstruction will involve an affine,
rather than a purely linear map of the leading principal components.

5 A case study: transient lid-driven cavity flow
Let us consider the lid-driven cavity problem defined over a square spatial domain [0, 1]× [0, 1], and driven
by the top lid moving to the right. While the cavity flow problem may not have immediate practical
applications, it holds significant importance as a viscoelastic benchmark (see [43, 44, 45]). This simple
geometry can be employed to address challenges associated with the singularity of the stress field on the
corner of the cavity as well as to study the emergence of elastic turbulence for high Weissenberg number
([46]). In particular, we have illustrated the streamlines for two situations in Fig. 2 for the lid-driven cavity
flow considering the Oldroyd-B model.
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5.1 Dataset, algorithm and measurement of errors

To generate the numerical data for our investigation, we employed the same code designed for solving
viscoelastic fluid flows as in [47, 48, 49, 50]. In this methodology, we employ finite-difference approximations
for the discretization of the momentum and mass equations (2.1) and (2.2), as well as the constitutive
equation (2.3). Managing the interdependence between the velocity and pressure fields, a key challenge
in solving the governing equations (2.1) and (2.2), is addressed through the application of a projection
scheme. Widely recognized in computational fluid dynamics, this scheme effectively decouples the velocity
and pressure fields, simplifying the computational process and enhancing the stability and accuracy of our
numerical simulations. Specifically, the momentum equation (2.1) is time-discretized using a semi-implicit
strategy, while an explicit time discretization is employed for solving the constitutive equation (2.3).
Additionally, for the discretization of the convective terms presented in equations (2.1) and (2.3), we apply
a high-order upwind methodology. In order to obtain efficient solutions for high Weissenberg number
simulations, we incorporate a stabilization scheme known as log-conformation ([19]). The log-conformation
method proves particularly effective in handling flows with high Weissenberg numbers, ensuring stability
and accuracy in capturing the intricate rheological behavior of viscoelastic fluids.

In our numerical tests, we use a uniform mesh with a spatial discretization of ∆x = 1/80 = 0.0125
within the square domain. Time integration was performed with a fixed time-step of ∆t = 10−5, ensuring
temporal stability and capturing the transient dynamics of the viscoelastic fluid flow. The fixed mesh
size and time-step, were selected based on a careful balance between computational efficiency and the
accuracy required for our investigation.

Since we aim to analyze the dynamical behavior of the flow, we adopt the same smooth, transient
velocity profile for the top lid used in [44]:

u(x, 1, t) = 16x2(1− x)2 sin(πt). (5.47)

The remaining cavity walls are stationary and we impose no-slip boundary conditions.

5.1 Dataset, algorithm and measurement of errors
The data from simulations are organized into a matrix Y ∈ RD×m, where D represents the product of the
number of mesh points and the number of variables in each spatial location. Each column is a modified
state vector

y =


u
v
bxx
bxy
byy

 where b =
√
c (5.48)

corresponding to one of the m snapshots collected from a simulation. This definition of a modified state
vector is due the fact it can be linearly reconstructed from the lifted states, as discussed in section 4.
We also drop the byx entry of the square root conformation tensor since it is equal to bxy by symmetry.
The original state vector q can be obtained from y by the relation c = b2 [37]. Hence, the matrix Y is
structured as

Y =

 y1 y2 . . . ym

 , (5.49)

where yi is the modified state vector defined by Eq. 5.48 for the ith state vector snapshot qi gathered
from a simulation.

We use the Kernel Principal Component Analysis (KPCA) algorithm developed in [15] to extract
low-dimensional variables describing the simulation data. In summary, the kernel matrix K ∈ Rm×m with
entries [K]i,j = k(qi, qj) is centered to form

Kc =

(
I − 1

m
1m1Tm

)
K

(
I − 1

m
1m1Tm

)
, (5.50)
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5.1 Dataset, algorithm and measurement of errors

a)

b)

Figure 2: Streamlines (left) and tr(c) (right) of the cavity flow using the viscoelastic Oldroyd-B model: a)
Re = 10,Wi = 10, β = 0.9 and b) Re = 0.001,Wi = 5, β = 0.5.

where 1m denotes the vector with unit entries in Rm. Computing the symmetric eigenvalue decomposition
of the centered kernel matrix

Kc = V ΛV T , (5.51)

and forming its rank-r truncation V rΛrV
T
r retaining the largest r eigenvalues yields

Zr =

 zr(q1) zr(q2) . . . zr(qm)

 =
√

ΛrV
T
r . (5.52)

The columns of this matrix are vectors comprising the leading r kernel principal components of each
snapshot. The kernel matrix is constructed using Eq. (3.15) for the selected stress model. For example, if
the Oldroyd-B model is chosen, the kernel function Eq. (3.15) is computed using Eq. (3.19). It is worth
noting that the linear PCA reduction is also obtained as a special case of KPCA using a kernel given by
the classical L2(Ω;Rd × Rd×d) inner product of state vectors.

We reconstruct the modified snapshots via an affine function of the kernel principal components

ŷi = r0 +Rzr(qi), (5.53)

by solving the least-squares problem

argmin
R,r0

∥Y − r01
T
m −RZr∥2F , (5.54)
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5.2 Results using the Oldroyd-B model

where R ∈ RD×r and r0 ∈ RD. Affine reconstruction of modified state vectors is justified per the discussion
in Section 4. Approximations of the original state vectors q̂ are then obtained from ŷ by the relation
ĉ = b̂

2
.

In order to study the effect of the kernel function in dimensionality reduction, we consider several ways
of measuring the reconstruction error. The first way to measure the error is using the ordinary L2 norm of
the reconstructed fields

EF =

∑m
i=1 ∥yi − ŷi∥2L2(Ω)∑m

i=1 ∥yi∥2L2(Ω)

. (5.55)

Note that the numerator and denominator can be computed as Frobenius norms of respective snapshot
matrices. The problem with using this notion of error is that it is not grounded in the mechanical energy
of the system, and could assign improper weight to the kinetic and elastic components of the error. One
approach to rectify this is to measure the error in the total mechanical energy of the reconstruction by

EE =

∑m
i=1 |E(qi)− E(q̂i)|∑m

i=1 E(qi)
. (5.56)

However, this notion of error can be zero even when the reconstructed and ground truth snapshots are
different. Both issues are resolved by measuring the error in the kernel Hilbert space associated with the
ground-truth stress model by

EH =

∑m
i=1 ∥Φ(qi)− Φ(q̂i)∥2H∑m

i=1 ∥Φ(qi)∥2H
=

∑m
i=1 dE(qi, q̂i)

2∑m
i=1 E(qi)

, (5.57)

where quantities in the numerator and denominator are computed using Eq. (3.12), Eq. (3.11), and the
kernel function.

In the following two subsections, we study how the choice of kernel affects the ability of kernel-based
dimensionality reduction and reconstruction methods to capture essential features of the lid-driven cavity
flow. To do this, we simulate the cavity flow using different choices of ground-truth stress model, Reynolds
number, and Weissenberg number. These ground-truth quantities are used to define the error metrics EE
and EH in Eqs. 5.56 and 5.57. Kernel PCA-based dimensionality reduction and reconstruction are then
performed using the ground-truth kernel function and compared to other ad-hoc choices such as ordinary
PCA and kernel functions associated with incorrect stress models.

5.2 Results using the Oldroyd-B model
We begin by studying the case where the linear Oldroyd-B model is used to define the ground-truth,
and we compare against ordinary PCA. This model holds significant popularity in non-Newtonian fluid
mechanics, making it an ideal starting point for making comparisons. We note that KPCA using the
Oldroyd-B stress model is equivalent to performing PCA using properly weighted modified state vectors
ỹ = Ψ(q) defined by the explicit feature map in Eq. (3.20). To compare, we naïvely perform PCA using the
state vectors defined by Eq. 5.48 without adjusting how the kinetic and elastic components are weighted.
These two methods become nearly identical when θ = 1, with the only difference being that bxy and byx
both appear in the properly weighted modified state vector, while only bxy appears in the modified state
vector used to perform PCA. The results discussed below show that using the correct weighting, i.e., the
kernel function associated with the Oldroyd-B model is crucial for PCA to properly capture the most
energetic flow structures.

In Fig. 3, we plot our three error metrics against the number of kernel principal components (modes)
used for reconstruction at different values of θ. These values were calculated using the triples (Re =
10,Wi = 10, β = 0.9), (Re = 1,Wi = 0.5, β = 0.5), and (Re = 0.001,Wi = 0.5, β = 0.5). Ordinary PCA
minimizes the reconstruction error with respect to the Frobenius norm, so it is no surprise that its error
with respect to EF is lower. However, this norm does not reflect the energetic content of the flow. When
θ ̸= 1, reduction and reconstruction based on the correct Oldroyd-B kernel yields smaller errors both in
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5.2 Results using the Oldroyd-B model

the kernel Hilbert space, as measured by EH , and in the mechanical energy of the reconstructed snapshots,
as measured by EE . As expected, the two methods have nearly identical performance in all error metrics
when θ = 1, as discussed above.
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Figure 3: Comparing reconstruction performance using PCA and Kernel PCA (KPCA) with the Oldroyd-B
kernel for simulations performed using the Oldroyd-B stress model for different values of θ in rows (a)
θ = 0.001, (b) θ = 1 and (c) θ = 1000. Error is measured using Eq. 5.55 (left), Eq. 5.57 (center), and
Eq. 5.56 (right).

Now we select the leading r = 2 modes and compare how well the transient dynamics of the flow are
captured using the Oldroyd-B kernel and ordinary PCA-based methods. In Fig. 4 we plot the ground
truth mechanical energy and the mechanical energies of our 2-mode reconstructions across four values of
θ. In each case, the reduction and reconstruction of the flow using the correct Oldroyd-B kernel accurately
captures the total mechanical energy of the flow at all times, whereas the naïve PCA-based method fails to
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5.2 Results using the Oldroyd-B model

captured the total energy. The error using PCA is most profound for the small θ cases shown in Fig. 4(a)
and Fig. 4(b).
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Figure 4: Total mechanical energy ((2.7)) as function of time, reconstructed using r = 2 principal
components (modes): a) θ = 0.001, b) θ = 0.01, c) θ = 100 and d) θ = 1000.

Finally, figure 5 provides a comparison between simulation and 2-mode reconstructions for distribution
of mechanical energy in a fixed snapshot at t = 2.5 for the θ = 0.001 case. Consistent with the previous
discussions concerning the error plots in Fig. 4(a), the reconstructed total mechanical energy obtained using
the Oldroyd-B kernel exhibits an exceptional agreement with the simulation, even when only two modes
are retained. On the other hand, the naïve PCA-based reconstruction fails to capture the distribution of
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5.3 Results using nonlinear stress models

mechanical energy in the snapshot.

Figure 5: Spatial distribution of the total mechanical energy ((2.7)) at time t = 2.5 for θ = 0.001. Results
obtained by the simulation (left), PCA (center) and KPCA (right). The reconstructed values were obtained
using r = 2 modes.

5.3 Results using nonlinear stress models
This section explores the use of nonlinear stress models and their associated kernel functions. We study
whether, and to what extent KPCA-based dimensionality reduction and reconstruction benefits from
choosing the kernel function in accordance with the underlying stress model used to generate the simulation
data. To do this, we fix θ = 1 by setting Re = 1, Wi = 0.5, and β = 0.5, and we simulate the lid-driven
cavity flow using a variety of nonlinear stress models across a range of parameter values modulating the
degree of nonlinearity. As above, we compare the performance of KPCA-based dimensionality reduction
and reconstruction using the kernel function matching the underlying simulation against kernel functions
that do not. In particular, we are interested in when a nonlinear kernel function is necessary, or whether
there are parameter regimes where we can simply use the Oldroyd-B kernel, which has the benefit of an
explicit bijective feature map given by Eq. (3.20). The error EH in Eq. 5.57 is always computed using the
kernel associated with the underlying stress model.

In Fig. 6, the simulation was performed using the FENE-P stress model with parameter L2 = 5,
and we compare the corresponding kernel against Oldroyd-B. While the Oldroyd-B kernel yields better
reconstructions in the L2(Ω) sense measured by EF , the reconstructions using small numbers of kernel
principal components, or “modes”, are worse than those obtained using the FENE-P kernel function in the
energetic sense measured by EH and EE .

We repeat this experiment in Fig. 7 using the nonlinear PTT stress model with parameter ε = 0.5 for
the simulation. A similar trend is observed; matching the kernel function to the stress model is beneficial
for reconstruction using small numbers of modes in the energetic sense measured by EH and EE . This
improvement is dramatic when r = 2 modes are used for reconstruction, as illustrated by the time histories
of total mechanical energy plotted in Fig. 7(b). However, for intermediate numbers of modes, the simple
Oldroyd-B kernel slightly outperforms the nonlinear PTT kernel in all error metrics.

In Fig. 8 we present analogous results for the Giesekus model with α = 1. Again, for small numbers
of modes, using the corresponding Giesekus kernel function tends to yield slight improvements over the
Oldroyd-B kernel in the energetic sense measured by EH and EE . The performance using the two kernel
functions is nearly the same when larger numbers of modes are used to reconstruct.

We study the affect of the parameters in the FENE-P and nonlinear PTT stress models in Fig. 9. The
number of kernel principal components (modes) used for reconstruction is fixed at r = 2. These nonlinear
stress models become equivalent to the Oldroyd-B model in the limits 1/L2 → 0 and ε→ 0. As expected,
the choice of kernel is unimportant at small values of these parameters and becomes more significant
at larger values. In both cases, it becomes important to use the kernel function matching the nonlinear
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Figure 6: Results for the θ = 1 case using the nonlinear FENE-P model with L2 = 5. Row (a) shows
reconstruction errors computed using Eq. 5.55 (left), Eq. 5.57 (center) and Eq. 5.56 (right). Row (b) shows
the total mechanical energy ((2.7)) as function of time for fields reconstructed using r = 2 kernel principal
components (modes).

stress model of the simulation only when the degree of nonlinearity is sufficiently high. We do not present
analogous results using the Giesekus model due to numerical challenges associated with simulating the
flow at larger values of the parameter α.

Finally, two-mode reconstructions of the instantaneous total mechanical energy fields are shown in
Fig. 10 at time t = 0.6 for a simulation performed using the nonlinear PTT model with parameter ε = 0.3.
In this case with θ = 1, the dynamic variation is concentrated close to the lid (top of the spatial domain),
which is in contrast to the global variations observed in Fig.5 at θ = 0.001. Here, we see that using the
matching kernel yields a qualitatively more accurate reconstruction of the energy field than using the
Oldroyd-B kernel. We also plot the energy field along horizontal slices at y = 0.475 and y = 0.975, further
illustrating that the reconstructions using the nonlinear PTT kernel function are in closer agreement with
the ground truth than reconstructions obtained using the Oldroyd-B kernel.

6 Discussion
In summary, our theoretical results provide easily verifiable conditions on a given viscoelastic stress
model ensuring that there is a corresponding positive-definite kernel function compatible with the total
mechanical energy and turning the space of flowfields with finite mechanical energies into a complete,
separable metric space. Moreover, this kernel function is constructed explicitly from a convergent series
representation of the stress model. Remarkably, these conditions hold for many standard viscoelastic stress
models, yielding principled choices for kernel functions which give rise to natural measures for distances
and angles between flowfield snapshots. These geometric notions correspond to implicitly-defined lifted
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Figure 7: Analogue of Fig. 6 using the nonlinear PTT model (denoted nl-PTT) with ε = 0.5.

representations of snapshots in a unique reproducing kernel Hilbert space (RKHS) associated with the
kernel function.

The kernel functions and metrics for viscoelastic flows introduced in this paper enable a variety of
machine learning algorithms to be employed to extract statistical information from flowfield snapshot data.
In this paper we focus primarily on dimensionality reduction using kernel principal component analysis
(KPCA). Here, a major challenge known as the “preimage problem” is to reconstruct flowfields from their
RKHS representations or truncated representations in terms of the leading kernel principal components.
We provide a solution to the preimage problem for our viscoelastic kernel functions by showing that
the velocity field and square root conformation tensor field can be linearly reconstructed from RKHS
representations. We provide bounds on the reconstruction quality using truncated representations given by
the leading kernel principal components. More generally, our results describe which fields can be linearly
reconstructed based on the terms in a series expansion for a given viscoelastic stress model.

We demonstrate the utility of our kernel functions for dimensionality reduction and reconstruction of
snapshots from a lid-driven cavity flow. Here, the flow is simulated with different underlying stress models
and we compare the reconstructions obtained using the leading kernel principal components extracted
with different choices of kernel function. Our results underscore the importance of choosing an appropriate
metric for reconstruction error. Ordinary principal component analysis (PCA), which corresponds to a
kernel function given by the L2 inner product on the spatial domain, leads to low reconstruction error in an
L2 sense, but produces poor reconstructions as measured by the total mechanical energy. For simulations
performed using the (linear) Oldroyd-B stress model, superior reconstructions in an energetic sense were
obtained using the kernel principal components extracted using the Oldroyd-B kernel function. We note
that KPCA using the Oldroyd-B kernel is equivalent to ordinary PCA using properly weighted state
vectors based on the square root conformation tensor field.

For simulations performed using nonlinear stress models such as FENE-P and nonlinear PTT, we
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Figure 8: Analogue of Fig. 6 using the Giesekus model with α = 1.

compare the reduction and reconstruction performance using the corresponding kernel functions to
the Oldroyd-B kernel. In each case, using the appropriate nonlinear kernel function was beneficial for
reconstructing flow features in an energetic sense from a small number of kernel principal components.
The benefit of using a nonlinear kernel function matching the underlying stress model became more
pronounced as the parameters controlling the nonlinearity of the stress model were increased. However,
for our simple lid-driven cavity flow example, this benefit was less significant than the improvements
made by using the Oldroyd-B kernel over naïve PCA. The performance of the nonlinear kernel function
was comparable to using the simple Oldroyd-B kernel in many cases where the nonlinearity of the stress
model was low or moderate and when more principal components were employed for reconstruction. This
suggests that the Oldroyd-B kernel function (or equivalently, appropriately modified state vectors) could
be a useful default choice when processing data from viscoelastic flows with only moderately nonlinear
stress models. However, it is possible that accounting for nonlinearities of the stress model when selecting
the kernel function will be important for capturing the behavior of more complex viscoelastic flows. This
will be a subject for future work.

An exciting avenue for future work involves using our kernel functions to build low-dimensional data-
driven reduced-order models approximating the dynamics of viscoelastic fluid flows. These low-dimensional
dynamical systems can then be used for a variety of key scientific and engineering tasks including qualitative
analysis of the flow’s dynamics and bifurcations, state estimation from limited sensor measurements,
real-time forecasting, and feedback control. Promising approaches could combine the dynamics-informed
features extracted using the kernel covariance balancing reduction using adjoint snapshots (K-CoBRAS)
method [18] with modeling techniques such as Sparse Identification of Nonlinear Dynamics (SINDy)
[51, 52] or variants of Dynamic Mode Decomposition (DMD) [53, 54, 55]. Other approaches could use our
kernel-induced distance metric to formulate loss functions for autoencoder-based reduced-order modeling
methods such as those introduced in [56, 57, 14]. Our kernels may also be of use for classifying flow regimes
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Figure 9: The effect of stress model nonlinearity on reconstruction performance using r = 2 kernel principal
components. Simulations in row (a) use the FENE-P model with different values of 1

L2
and simulations

in row (b) use the nonlinear PTT model with different values of ε. In both cases we have θ = 1 and we
compare to results obtained using the Oldroyd-B kernel.

using support vector machines (see [58, 28]).
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A Proof of Theorem 1
The proof of the theorem relies on several preliminary lemmas. First, the Moore-Aronszajn Theorem
is a classical result, stated below for completeness, allowing us to associate a unique RKHS to any
positive-definite kernel function.

Theorem 4 (Moore-Aronszajn [40]). Let k : F × F → R be a function satisfying the positive-definiteness
condition in Eq. (3.10). Then there is a unique reproducing kernel Hilbert space H of functions on F
whose reproducing kernel is k. In particular, the subspace H0 consisting of finite linear combinations of
elements in {Kq}q∈F is dense in H and H is the set of functions that are pointwise limits of Cauchy
sequences in H0 with the inner product〈

m∑
i=1

aiKqi
,

n∑
j=1

bjKq′
j

〉
H0

=

m∑
i=1

n∑
j=1

aibjk(qi, q
′
j). (A.58)

The following lemma provides several useful rules for combining positive-definite kernels to produce
new positive-definite kernels.

Lemma 1 (Combining kernels [28]). Let k1, k2, . . . be real-valued positive-definite kernel functions on an
arbitrary nonempty set X . Then the set of positive-definite kernels on X is a closed convex cone, that is,

1. if θ1, θ2 ≥ 0, then θ1k1 + θ2k2 is a positive-definite kernel; and

2. if k(x, x′) := limn→∞ kn(x, x
′) exists for all x, x′ ∈ X , then k is a positive-definite kernel.

The point-wise product k1k2 is also a positive-definite kernel. Consequently, if a0, a1, . . . ≥ 0 are non-
negative constants and

ψ(t) =

∞∑
n=0

ant
n, (A.59)

converges for every t ∈ k(X × X ) then ψ ◦ k is a positive-definite kernel.

We also require conditions on the kernel function ensuring that the associated feature map Φ is injective.
That is, for every pair of distinct states q1, q2 ∈ F we have

k(q1, q1)− 2k(q1, q2) + k(q2, q2) = ∥Φ(q1)− Φ(q2)∥2H > 0. (A.60)

We call positive-definite kernel functions with the above property “injective kernels”. In the following
lemma, we provide some useful rules for combining injective kernels.

Lemma 2 (Combining injective kernels). Let k and k′ be real-valued positive-definite kernel functions on
an arbitrary nonempty set X and suppose that k is injective. Then the following hold:

1. if θ1 > 0 and θ2 ≥ 0 then θ1k + θ2k
′ is injective;

2. if p ≥ 1 is odd then kp is injective; and
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3. if k takes only non-negative values, then kp is injective for every integer p ≥ 1.

Consequently, if k is non-negative-valued and ψ : k(X × X ) → R can be expressed as a convergent power
series

ψ(t) =

∞∑
n=0

ant
n, (A.61)

with every an ≥ 0 and there being some n ≥ 1 with an > 0 then ψ ◦ k is injective.

Proof of Lemma 2. The first statement follows immediately from Eq. (A.60). To prove the second and
third statements, consider an integer p ≥ 1 and choose two distinct points x, y ∈ X . Since t 7→ tp is convex
on [0,∞), Jensen’s inequality (Theorem 3.3 in [59] with µ being a sum of two Dirac measures) yields

1

2
[k(x, x)p − 2k(x, y)p + k(y, y)p] ≥

(
k(x, x) + k(y, y)

2

)p
− k(x, y)p. (A.62)

If k(x, y) ≥ 0 then Eq. (A.60) implies that(
k(x, x) + k(y, y)

2

)p
− k(x, y)p > 0 (A.63)

because t 7→ tp is strictly monotone increasing on [0,∞). This proves the third statement. On the other
hand, if k(x, y) < 0 and p is odd then k(x, y)p < 0, which immediately implies that

k(x, x)p − 2k(x, y)p + k(y, y)p > 0, (A.64)

proving the second statement. To prove the final statement, we observe the sum defining ψ converges
absolutely since all of the terms are nonnegative. Supposing that am > 0 for some m ≥ 1 we have

ψ ◦ k = amk
m +

∑
n ̸=m

ank
n, (A.65)

where the first term is an injective kernel by the argument above. Since the sum in the second term
converges, it defines a positive-definite kernel by Lemma 1. Therefore the sum of the two terms is an
injective kernel. ■

The following lemma allows us to convert terms such as tr(c) and tr
[
(c− I)2

]
appearing in the energy

function into injective kernel functions.

Lemma 3. Let D ⊂ Sd be a set of symmetric matrices and let f be a real-valued function on σ(D) :=⋃
c∈D σ(c). With the action of this function on a matrix c ∈ D defined by Eq. (3.13),

k(c1, c2) = tr [f(c1)f(c2)] (A.66)

is a positive-definite kernel function on D × D. If f is injective on σ(D), then the kernel function is
injective.

Proof of Lemma 3. Positive-definiteness is obvious. If f is injective on σ(D) then its inverse f−1 can be
defined on f(σ(D)). Since σ(f(D)) ⊂ f(σ(D)), we have f−1(f(c)) = c for every c ∈ D, meaning that f is
injective on D. If c1, c2 are distinct elements in D, then f(c1) ̸= f(c2) and we have

k(c1, c1)− 2k(c1, c2) + k(c2, c2) = ∥f(c1)− f(c2)∥2F > 0. (A.67)

This proves that k is an injective kernel function. ■

Finally, we are ready to prove Theorem 1.
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Proof of Theorem 1. The series in Eq. (3.15) converges absolutely because

∞∑
i,p=0

ci,p |tr (fi(c1)fi(c2))|p ≤
∞∑

i,p=0

√
ci,p tr

(
fi(c1)fi(c1)

)p√
ci,p tr

(
fi(c2)fi(c2)

)p
≤

√√√√ ∞∑
i,p=0

ci,p tr
(
fi(c1)fi(c1)

)p√√√√ ∞∑
j,q=0

cj,q tr
(
fj(c2)fj(c2)

)q
,

(A.68)

thanks to two applications of the Cauchy-Schwarz inequality. The two terms in the rightmost product are
finite by assumption. By Lemma 1 and Lemma 3 it follows that k̃ defined by Eq. (3.16) is a positive-definite
kernel function on D(s). It is then easy to see that Eq. (3.16) satisfies the positive-definiteness condition
in Eq. (3.10), and is therefore a positive-definite kernel on F . Since we have

E(q) = 1

2

∫
Ω

[∣∣u(x)∣∣2 + θh(c)
]
dx, (A.69)

where h(c) := −Wi · tr
(
s(c)

)
+ c = k̃(c, c), it follows that E(q) = k(q, q).

Suppose that there is a coefficient ci,p > 0 with p ≥ 1, fi injective, and p odd or fi nonnegative. We
first show that k̃ is an injective kernel function on D(s). The case when p is odd follows immediately from
Lemma 2(i, ii), and Lemma 3. In the case that fi is nonnegative, every fi(c) is a positive semi-definite
matrix and it follows that the kernel function

(c1, c2) 7→ tr
[
fi(c1)fi(c2)

]
= tr

[√
fi(c2)fi(c1)

√
fi(c2)

]
(A.70)

takes only nonnegative values on Sd× Sd. By Lemma 2(i, iii) and Lemma 3 it follows that k̃ is an injective
kernel function.

Using injectivity of k̃, we prove that k is an injective kernel function on F . We observe that

|u1|2 − 2u1 · u2 + |u2|2 ≥ 0 (A.71)

by the Cauchy-Schwarz inequality for the dot product on Rd and

k̃(c1, c1)− 2k̃(c1, c2) + k̃(c2, c2) ≥ 0 (A.72)

by the Cauchy-Schwarz inequality for the positive-definite kernel k̃. Thus, if

k(q1, q1)− 2k(q1, q2) + k(q2, q2) = 0, (A.73)

then for almost every x ∈ Ω we have∣∣u1(x)
∣∣2 − 2u1(x) · u2(x) +

∣∣u2(x)
∣∣2 = 0, (A.74)

which implies that u1(x) = u2(x), and

k̃
(
c1(x), c1(x)

)
− 2k̃

(
c1(x), c2(x)

)
+ k̃
(
c2(x), c2(x)

)
= 0, (A.75)

which implies that c1(x) = c2(x). Therefore, q1 = q2 in F , proving that k is an injective kernel
function. ■

B Proof of Theorem 2
Our proof relies on the following technical lemma.
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Lemma 4. Let x, y be vectors in a Hilbert space. If p ≥ 1 is odd or ⟨x, y⟩ ≥ 0, then

⟨x, x⟩p − 2⟨x, y⟩p + ⟨y, y⟩p ≥ 1

22(p−1)
∥x− y∥2p. (B.76)

Proof of Lemma 4. When x = y, the statement is vacuously true, so we assume that x ̸= y and denote

α =
2⟨x, y⟩
∥x− y∥2 .

By Jensen’s inequality (Theorem 3.3 in [59] with µ being a sum of two Dirac measures) we have

⟨x, x⟩p − 2⟨x, y⟩p + ⟨y, y⟩p ≥ 2

[( ⟨x, x⟩+ ⟨y, y⟩
2

)p
− ⟨x, y⟩p

]
= 2

[(
1

2
∥x− y∥2 + ⟨x, y⟩

)p
− ⟨x, y⟩p

]
.

(B.77)
Dividing through by 2( 12∥x− y∥2)p gives

⟨x, x⟩p − 2⟨x, y⟩p + ⟨y, y⟩p
21−p∥x− y∥2p ≥ (1 + α)p − αp =: f(α), (B.78)

and so it remains to lower bound f(α) by a positive constant, specifically 21−p. When ⟨x, y⟩ ≥ 0, we have
α ≥ 0, and it is easy to see that f(α) ≥ 1 ≥ 21−p.

Now we assume that p ≥ 1 is odd. Differentiating f(α), we find

f ′(α) = p(1 + α)p−1 − pαp−1 = p|1 + α|p−1 − p|α|p−1 (B.79)

since p−1 is even. When α ≥ − 1
2 , we evidently have f ′(α) ≥ 0. Likewise, when α ≤ − 1

2 we have f ′(α) ≤ 0.
Therefore, for every real α we have

f(α) ≥ f
(
− 1

2

)
= 2( 12 )

p = 21−p, (B.80)

which completes the proof of the lemma. ■

With this lemma in hand, we are ready to prove the theorem.

Proof of Theorem 2. Thanks to Theorem 1, F is a metric space with metric dE defined by Eq. (3.12). Let
{qn = (un, cn)}∞n=1 ∈ F be a Cauchy sequence. Since L2(Ω) is complete (see Theorem 3.11 in [59]) and

dE(qm, qn) ≥
1√
2
∥um − un∥L2(Ω), (B.81)

it follows that un → u in L2(Ω) for a unique velocity field u.
Considering the term ci,p > 0 and letting θ = (1− β)/(ReWi), we have(

2

ci,pθ

)
dE(qm, qn)

2 ≥
∫
Ω

{[
tr
(
fi(cm)2

)]p − 2 [tr (fi(cm)fi(cn))]
p
+
[
tr
(
fi(cn)

2
)]p}

dx

≥ 1

22(p−1)

∫
Ω

∥fi(cm)− fi(cn)∥2pF dx, (B.82)

thanks to Lemma 4. It follows from the completeness theorem for L2p(Ω), specifically Theorems 3.11 and 3.12
in [59], that fi(cn) converges in L2p(Ω) to a limit f and that there is a subsequence {fi(cnk

)}∞k=1 con-
verging pointwise almost everywhere to f in Ω. Since the function fi is injective, it follows that the
conformation tensor field c = f−1

i (f) : Ω → Sd+ satisfies fi(cn) → fi(c) in L2p(Ω) and cnk
(x) → c(x) for

almost every x ∈ Ω.
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It remains to show that q = (u, c) satisfies E(q) < ∞ and that dE(qn, q) → 0. Both of these are
accomplished by means of Lebesgue’s dominated convergence theorem (Theorem 1.34 in [59]). We pass to
a further subsequence, still denoted with indices nk, such that

dE(qnk
, qnk+1

) < 2−k. (B.83)

We let Φ̃ : D(s) → H̃ denote the feature map associated with the reproducing kernel k̃ : D(s)×D(s) → R.
We define a function G : Ω → R by

G(x) =
∥∥Φ̃(cn1

(x))
∥∥
H̃ +

∞∑
j=2

∥∥Φ̃(cnj
(x))− Φ̃(cnj−1

(x))
∥∥
H̃. (B.84)

We observe that G ∈ L2(Ω) because√
θ

2
∥G∥L2(Ω) ≤

√
E(qn1

) +

∞∑
j=2

dE(qnj
, qnj−1

) <∞. (B.85)

Moreover, by construction we have

k̃
(
cnk

(x), cnk
(x)
)
=
∥∥Φ̃(cnk

(x))
∥∥2
H̃ ≤ G(x)2 (B.86)

for every k ≥ 1. Therefore, the dominated convergence theorem (Theorem 1.34 in [59]) yields

lim
k→∞

∫
Ω

k̃
(
cnk

(x), cnk
(x)
)
dx =

∫
Ω

k̃
(
c(x), c(x)

)
dx ≤ ∥G∥2L2(Ω) <∞. (B.87)

Combined with the L2(Ω) convergence of unk
to u, this gives

lim
k→∞

E(qnk
) = E(q) <∞, (B.88)

meaning that q ∈ F . Next we observe that for almost every x ∈ Ω,∣∣∣k̃(cnk
(x), cnk

(x))− 2k̃(cnk
(x), c(x)) + k̃(c(x), c(x))

∣∣∣ ≤ 4G(x)2 (B.89)

by the Cauchy-Schwarz inequality in H̃. Therefore, by another application of the dominated convergence
theorem we obtain

dE(qnk
, q) → 0. (B.90)

Since qn is Cauchy, we obtain dE(qn, q) → 0, proving that F is a complete metric space.
Finally, if Φ(qn) → ϕ in H then {qn}∞n=1 is a Cauchy sequence in F . Since F is a complete metric

space, there exists q ∈ F satisfying

dE(qn, q) = ∥Φ(qn)− Φ(q)∥H → 0. (B.91)

Since limits in a Hilbert space are unique, we must have ϕ = Φ(q), proving that Φ(F) is closed in H. ■

C Proof of Theorem 3 and Proposition 1
First, we establish a lemma relating powers of the trace to the trace of iterated Kronecker products.

Lemma 5. For every A,B ∈ Rd×d and integer p ≥ 0 we have

[tr(AB)]
p
= tr

[
A⊗pB⊗p] , (C.92)

with the convention that A⊗0 = 1.
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Proof of Lemma 5. The cases p = 0 and p = 1 are trivial. Suppose that the result holds for a given p > 1.
Then we have

[tr(AB)]
p+1

= tr(AB) tr
[
A⊗pB⊗p]

= tr
[
(AB)⊗

(
A⊗pB⊗p)]

= tr
[(
A⊗A⊗p)(B ⊗B⊗p)] = tr

[
A⊗(p+1)B⊗(p+1)

]
.

(C.93)

The first line holds by the induction hypothesis, the second line is due to the trace property of the
Kronecker product, and the third line follows from the mixed product property of the Kronecker product
[60, 61]. Therefore the stated result holds for all integers p ≥ 0 by induction on p. ■

Proof of Theorem 3. With a countable set of indices

I = {(i, p, j, k) ∈ Z4 : i ≥ 0, p ≥ 0, 1 ≤ j, k ≤ dp} (C.94)

we consider the space L2(Ω× I) with inner product

⟨f, g⟩L2(Ω×I) :=
∑

(i,p,j,k)∈I

∫
Ω

f(x, i, p, j, k)g(x, i, p, j, k) dx. (C.95)

Note that the sum and the integral can be exchanged thanks to Fubini’s theorem (Theorem 8.8 in [59]).
Defining Ψ : F → H := L2(Ω; R3)× L2(Ω× I) by

Ψ(q) =
1√
2
(u,

√
θΨ̃(q)), Ψ̃(q)(x, i, p, j, k) =

√
ci,p

[
fi(c(x))

⊗p]
j,k

(C.96)

and applying Lemma 5, we obtain

k(q1, q2) = ⟨Ψ(q1), Ψ(q2)⟩H =
1

2

∫
Ω

{
u1(x)

Tu2(x) + θ

∞∑
i=0

∞∑
p=0

ci,p tr
[
fi(c1(x))

⊗pfi(c2(x))
⊗p]}dx

(C.97)
for every q1, q2 ∈ F . Therefore, by the Moore-Aronszajn theorem (Theorem 4), there is a unique to a
linear isometry U : H → H satisfying UΦ(q) = Ψ(q) for every q ∈ F .

Incidentially, the above shows that the metric space (F , dE) is separable. This is because F is isometric
(via the map UΦ) to a subset of H, which is a separable Hilbert space.

For every f ∈ L2(Ω× I), let f i,p : Ω → Rdp×dp be defined by [f i,p(x)]j,k = f(x, i, p, j, k). The linear
map T : H → L2(Ω) defined by

T (u, f) =
√
2aT0 u+

√
2

θ

∞∑
i=0

∞∑
p=0

tr
(
AT
i,pf i,p

)
(C.98)

clearly satisfies

TUΦ(q) = TΨ(q) = aT0 u+

∞∑
i=0

∞∑
p=0

√
ci,p tr

[
AT
i,pfi(c)

⊗p
]
= ψ ◦ q (C.99)

for every q = (u, c) ∈ F . The operator T is bounded because

∥T (u, f)∥2L2(Ω) =

∫
Ω

∣∣∣∣∣√2aT0 u(x) +

√
2

θ

∞∑
i=0

∞∑
p=0

tr
[
AT
i,pf i,p(x)

]∣∣∣∣∣
2

dx

≤
∫
Ω

∣∣∣∣∣√2∥a0∥2∥u(x)∥2 +
√

2

θ

∞∑
i=0

∞∑
p=0

∥Ai,p∥F ∥f i,p(x)∥F
∣∣∣∣∣
2

dx

≤
(
2∥a0∥22 +

2

θ

∞∑
i=0

∞∑
p=0

∥Ai,p∥2F

)
︸ ︷︷ ︸

A2<∞ by assumption

∫
Ω

(
∥u(x)∥22 +

∞∑
i=0

∞∑
p=0

∥f i,p(x)∥2F

)
dx︸ ︷︷ ︸

∥(u,f)∥2
H

(C.100)
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thanks to two applications of the Cauchy-Schwarz inequality. It follows that the linear operator Rψ := TU
is bounded, with operator norm ∥Rψ∥ ≤ A. Since the span of vectors {Φ(q)}q∈F is dense in H by the by
the Moore-Aronszajn theorem (Theorem 4), the bounded linear operator Rψ is uniquely defined by the
relation RψΦ(q) = ψ ◦ q for all q ∈ F . ■

Proof of Proposition 1. Let Pr = UrU
∗
r denote the orthogonal projection onto the span of u1, . . . , ur in

H. Thanks to Corollary 1, we have∥∥(u, fi(c)⊗p)−Ri,pUrzr(q)
∥∥2
L2(Ω)

= ∥Ri,pΦ(q)−Ri,pPrΦ(q)∥2L2(Ω)

≤ ∥Ri,p∥2∥(I − Pr)Φ(q)∥2H
= ∥Ri,p∥2

(
∥Φ(q)∥2H − ∥PrΦ(q)∥2H

)
.

(C.101)

Since ∥Φ(q)∥2H = E(q) and ∥PrΦ(q)∥2H = ∥U∗
rΦ(q)∥22 = ∥zr(q)∥22, we obtain Eq. (4.45) using the bound

on ∥Ri,p∥ stated in Corollary 1. Integrating, applying Parseval’s theorem (Theorem II.6 in [39]), and using
Fubini’s theorem (Theorem 8.8 in [59]) to exchange summation and integration yields∫

F
∥(I − Pr)Φ(q)∥2H dµ(q) =

∫
F

∞∑
j=r+1

|⟨uj , Φ(q)⟩H|2 dµ(q)

=

∞∑
j=r+1

∫
F
⟨uj , Φ(q)⟩H⟨Φ(q), uj⟩H dµ(q)

=

∞∑
j=r+1

⟨uj , Cµuj⟩H =

∞∑
j=r+1

σ2
j .

(C.102)

Combining this with Eq. (C.101) and the bound on ∥Ri,p∥ in Corollary 1 yeilds Eq. (4.46), completing
the proof. ■
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