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Abstract. There have been several combinatorial constructions of universally positive
bases in cluster algebras, and these same combinatorial objects play a crucial role in
the known proofs of the famous positivity conjecture for cluster algebras. The greedy
basis was constructed in rank 2 by Lee–Li–Zelevinsky using compatible pairs on Dyck
paths. The theta basis, introduced by Gross–Hacking–Keel–Kontsevich, has elements
expressed as a sum over broken lines on scattering diagrams. It was shown by Cheung–
Gross–Muller–Musiker–Rupel–Stella–Williams that these bases coincide in rank 2 via
algebraic methods, and they posed the open problem of giving a combinatorial proof by
constructing a (weighted) bijection between compatible pairs and broken lines.

We construct a quantum-weighted bijection between compatible pairs and broken
lines for the quantum type A2 and the quantum Kronecker cluster algebras. By spe-
cializing the quantum parameter, this handles the problem of Cheung et al. for skew-
symmetric cluster algebras of finite and affine type. For cluster monomials in skew-
symmetric rank-2 cluster algebras, we construct a quantum-weighted bijection between
positive compatible pairs (which comprise almost all compatible pairs) and broken lines
of negative angular momentum.
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1. Introduction

Cluster algebras, initially introduced by Fomin and Zelevinsky [13] as an algebraic
framework for investigating dual canonical bases in semisimple groups, have evolved into
a rich field with applications spanning combinatorics, algebraic geometry, and represen-
tation theory. A cluster algebra of rank n is constructed combinatorially from certain
elements called cluster variables, each of which can be expressed as a Laurent polyno-
mial in n initial cluster variables. One amazing property of these Laurent polynomials
is that they have positive integer coefficients. This positivity property was conjectured
by Fomin and Zelevinsky in 2002, and this conjecture remained open for over 10 years
before being resolved by Lee–Schiffler [22] (for cluster algebras from quivers) and Gross–
Hacking–Keel–Kontsevich [14] (for cluster algebras of geometric type), as well as Davison
[8] and Davison–Mandel [9] (for quantum cluster algebras from quivers). The first two
proofs rely upon expressing rank two cluster variables as a sum over combinatorial ob-
jects. Our work focuses on establishing combinatorial connections between the two classes
of objects that appear in these proofs of positivity: compatible pairs corresponding to
greedy basis elements and broken lines corresponding to theta basis elements. Though we
work in the more general setting of quantum cluster algebras, our results are new even in
the classical setting.

Lee, Li, and Zelevinsky [19] defined the greedy basis for rank-2 cluster algebras, a basis
consisting of indecomposable positive elements including the cluster monomials. They
provided a combinatorial formula [19, Theorem 11] for the Laurent expansion of each
greedy basis element as a sum over compatible pairs (see, for example, Figure 1), which
are pairs (S1, S2) of edge sets in a maximal Dyck path where the set S1 of horizontal edges
and the set S2 of vertical edges satisfy a compatibility condition. This expansion formula
was later used in Lee and Schiffler’s proof of positivity for cluster algebras from quivers
[21, 22]. In the case of cluster variables, compatible pairs are in correspondence with
certain colored subpaths of Dyck paths [20, 24, 5]. Rupel subsequently provided a non-
commutative analogue of this expansion formula specifically for the cluster variable case,
and this formula specializes to the quantum rank-2 cluster algebra setting [29, Corollary
5.4].

Gross, Hacking, Keel, and Kontsevich [14] proved the positivity property for cluster
algebras of geometric type by establishing a novel connection between cluster algebras and
scattering diagrams, which arose earlier in the study of mirror symmetry [15, 17]. They
gave another expansion formula for cluster variables (in cluster algebras of arbitrary rank)
as a sum over weights of piecewise linear curves called broken lines on cluster scattering
diagrams (see, for example, Figure 4). This approach allowed them to construct the theta
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bases for cluster algebras∗. Though the constructions appear rather different, for rank-2
cluster algebras the theta basis is the same as the greedy basis.

Theorem 1.1 (Cheung, Gross, Muller, Musiker, Rupel, Stella, and Williams [7, Theorem
1.1]). The rank-2 greedy basis and theta basis coincide.

The proof of Theorem 1.1 given in [7] is algebraic rather than combinatorial. In
particular, the authors show that any pointed element of a rank-2 cluster algebra with
the same support as a greedy basis element must be a scalar multiple of it. Since the
theta basis elements are pointed, the authors proved restrictions on the broken line
behavior that implied their support must match that of a greedy element. This approach
only handles the support of the theta basis elements rather than treating broken lines
individually, and hence does not yield a combinatorial approach for understanding the
connection between broken lines and compatible pairs. Cheung, Gross, Muller, Musiker,
Rupel, Stella, and Williams thus posed the open problem of finding a combinatorial
explanation for this phenomenon.

Problem 1.2 ([7, Remark 5.6]). Find a combinatorial proof of Theorem 1.1 by construct-
ing an explicit (weighted) bijection between broken lines and compatible pairs.

Quantum cluster algebras were introduced by Berenstein and Zelevinsky [2] as non-
commutative deformations of cluster algebras and are related to canonical bases in quan-
tum groups. We work inside the quantum torus T := Z[q±1]⟨X±1

1 , X±1
2 : X1X2 = q2X2X1⟩.

The quantum rank-2 r-Kronecker cluster algebra Aq(r, r) is the Z[q±1]-subalgebra of the
skew field of fractions of T generated by the quantum cluster variables {Xn}n∈Z, which
follow the recursion Xn+1Xn−1 = qrXr

n + 1. The (classical) r-Kronecker cluster algebra
A(r, r) is obtained from Aq(r, r) by specializing the parameter q to 1, and the r-Kronecker
cluster algebras comprise all skew-symmetric rank-2 cluster algebras. For more back-
ground on cluster algebras, see [12].

The greedy basis for rank-2 cluster algebras was extended to the quantum rank-2
setting by Lee, Li, Rupel, and Zelevinsky [18], though a quantum weighting on compatible
pairs has only been constructed in the cluster variable case [29]. The quantum theta
basis was recently constructed by Davison and Mandel [9], and they show that this basis
satisfies the strong positivity property. Both the quantum greedy and quantum theta
bases contain the quantum cluster monomials, i.e., elements of the form qαβXα

nX
β
n+1 in

Aq(r, r) for nonnegative integers α, β. It is suggested by Davison and Mandel, though
not yet proved, that the quantum rank-2 greedy and theta bases coincide.

∗More precisely, the theta basis is a basis for an algebra between the ordinary and upper cluster
algebra. In the case of rank 2, the ordinary and upper cluster algebra coincide, so the theta basis is
actually a basis for the cluster algebra.
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Our main results connect almost all objects involved in the Lee–Li–Zelevinsky and
Gross–Hacking–Keel–Kontsevich formulas for the cluster monomials in the quantum r-
Kronecker cluster algebra. We say that a map from compatible pairs to broken lines is
a q-weighted bijection if the sum of quantum weights of compatible pairs in the inverse
image of each broken line equals the quantum weight of the broken line.

In the case of the quantum type A2 cluster algebra Aq(1, 1) and the quantum Kronecker
cluster algebra Aq(2, 2), we can construct a q-weighted bijection between all compatible
pairs corresponding to greedy basis elements and all broken lines corresponding to theta
basis elements. The greedy and theta bases forAq(1, 1) consist entirely of quantum cluster
monomials, so the two bases coincide. However, there are elements of the quantum greedy
and theta bases of Aq(2, 2) that are not quantum cluster monomials. Building off prior
work of [25] and [10], we show that the quantum greedy basis and quantum theta basis
coincide for Aq(2, 2) (see Subsection 7.3).

We additionally describe a quantum weighting on the compatible pairs corresponding
to greedy basis elements of Aq(2, 2) that are not cluster monomials. Along with Rupel’s
quantum weighting for compatible pairs, this gives a quantum weighting on all compatible
pairs corresponding to greedy basis elements of Aq(2, 2). We then introduce the cascade
of a compatible pair and use this to construct a map to the broken lines for Aq(2, 2) that
respects the quantum weights.

Theorem 1.3 (see Theorem 6.18, Theorem 7.6, and Theorem 7.9). For Aq(r, r) where
r = 1 or 2, there is an explicit q-weighted bijection between compatible pairs corresponding
to quantum greedy basis elements and broken lines corresponding to quantum theta basis
elements.

By specializing the parameter q to 1, this yields a solution to Problem 1.2 for the type
A2 cluster algebra and the Kronecker cluster algebra.

Corollary 1.4. For the type A2 cluster algebra A(1, 1) and the Kronecker cluster algebra
A(2, 2), there is an explicit (weighted) bijection between compatible pairs and broken lines
corresponding to theta basis elements.

While Problem 1.2 seems quite difficult for A(r, r) where r > 2, we can construct such
a q-weighted bijection for a subclass of compatible pairs that arose in Lee and Schiffler’s
proof of the positivity property [22, Theorem 3.22]. The positive compatible pairs are the
compatible pairs (S1, S2) where r|S2| does not exceed the horizontal length of the Dyck
path.† Asymptotically, almost all compatible pairs corresponding to (quantum) cluster
monomials are positive (see Lemma 2.7). The positive compatible pairs correspond to
broken lines with negative angular momentum (see Subsection 4.4 for details). For the

†Without loss of generality, we assume that the horizontal length of the Dyck path is no less than
the vertical length.
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(quantum) cluster monomials, these are precisely the broken lines that do not cross over
the “Badlands” region of the scattering diagram.

Theorem 1.5 (see Theorem 6.18). For quantum cluster monomials in Aq(r, r) where
r > 2, there is an explicit q-weighted bijection between positive compatible pairs (which
comprise almost all compatible pairs) and broken lines of negative angular momentum.

By specializing q to 1, this yields a partial answer to Problem 1.2 for skew-symmetric
rank-2 cluster algebras.

Corollary 1.6. For cluster monomials in A(r, r) where r > 2, there is an explicit
(weighted) bijection between positive compatible pairs (which comprise almost all com-
patible pairs) and broken lines of negative angular momentum.

A major obstruction in extending this bijection to the entire theta basis for r > 2 is
that the corresponding scattering diagram is not well-understood. In particular, there
are infinitely many non-cluster walls that are dense in the full-dimensional “Badlands”
region of the scattering diagram (see, for example, [26, Figure 2]) that have not been
explicitly described. As a consequence, there is no known combinatorial description of
the broken lines on these scattering diagrams, though some progress has been made
[1, 11, 26]. Conversely, the compatible pairs have a simple combinatorial description, so
constructing an explicit bijection would yield the same for the broken lines.

The structure of the paper is as follows. In Section 2, we provide preliminaries con-
cerning compatible pairs on maximal Dyck paths and Rupel’s quantum grading. We
introduce the cascade of a compatible pair in Section 3 and relate the cascade to the
previously-studied shadow of a compatible pair. Section 4 contains preliminaries on
quantum scattering diagrams and broken lines. In Section 5, we calculate the quantum
weights of certain broken lines appearing in the theta basis of the quantum r-Kronecker
cluster algebra. We then construct a q-weighted bijection between positive compatible
pairs and broken lines of negative angular momentum corresponding to (quantum) clus-
ter monomials in Section 6. We extend this bijection to all broken lines appearing in the
theta basis of the quantum Kronecker cluster algebra in Section 7, where we also discuss
the relation between several bases of this cluster algebra.

2. Preliminaries: Compatible Pairs

2.1. Maximal Dyck Paths

Fix ℓ, h ∈ Z≥0. Consider a rectangle with vertices (0, 0), (0, h), (ℓ, 0), and (ℓ, h) with
a main diagonal from (0, 0) to (ℓ, h).

Definition 2.1. A Dyck path is a lattice path in Z2 starting at (0, 0) and ending at a
lattice point (ℓ, h) where ℓ, h ≥ 0, proceeding by only unit north and east steps and never
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passing strictly above the main diagonal. Given a collection C of disjoint subpaths of a
Dyck path, we denote the set of east steps by C1, the set of north steps by C2, and the
total number of edges by |C|. The length of the Dyck path P is the quantity |P|. We
denote the set of lattice points contained in the Dyck path P , ordered from left to right
and including both endpoints, by V (P) = {w0, w1, . . . , w|P|}.

The Dyck paths from (0, 0) to (ℓ, h) form a partially ordered set by comparing the
heights at all vertices. The maximal Dyck path P(ℓ, h) is the maximal element under this
partial order.

Definition 2.2. For nonnegative integers ℓ and h, the maximal Dyck path P(ℓ, h) is the
path proceeding by unit north and east steps from (0, 0) to (ℓ, h) that is closest to the
main diagonal without crossing strictly above it.

In the setting of combinatorics on words, maximal Dyck paths are also known as
Christoffel words. The maximal Dyck path P(ℓ, h) corresponds to the lower Christoffel
word of slope h/ℓ; see [4] for further details on Christoffel words.

Let the horizontal (resp. vertical) edges of P = P(ℓ, h) be labeled by ηi for 1 ≤ i ≤ ℓ
(resp. νj for 1 ≤ j ≤ h), with the indices increasing to the east (resp. north). Given an
edge e in P , let pe denote the left endpoint of e if e is horizontal or the top endpoint of

e if e is vertical. For distinct edges e, f in P(ℓ, h), let
−→
ef denote the subpath proceeding

east from pe to pf , continuing cyclically around P(ℓ, h) if e is to the east of f . Similarly,
for distinct vertices wi, wj ∈ V (P), let −−→wiwj denote the subpath proceeding east from wi

to wj, continuing cyclically if needed.

In the framework of Lee–Li–Zelevinsky [19], the cluster variables correspond to a family
of maximal Dyck paths with a similar recursive structure.

Definition 2.3. Let {cn}∞n=0 be the sequence of integers defined recursively by:

c0 = −1, c1 = 0, and cn = rcn−1 − cn−2 for n > 1 .

For n ≥ 3, the maximal Dyck path associated to the cluster variable Xn is Cn :=
P(cn−1, cn−2). The Dyck paths corresponding to cluster monomials are those of the form
P(αcn+1 + βcn, αcn + βcn−1) for integers n ≥ 1 and α, β ≥ 0.

2.2. Compatible Pairs

We now define compatible pairs, certain collections of edges on a Dyck path P , origi-
nally introduced in [19].

Definition 2.4. For any pair of vertices u,w ∈ P(ℓ, h), let |uw|1 (resp. |uw|2) denote
the number of horizontal (resp. vertical) edges of −→uw. Given a set of horizontal edges S1

and a set of vertical edges S2 in P(ℓ, h), the pair (S1, S2) is compatible if, for every edge
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e in S1 and every edge f in S2, there exists a lattice point t ̸= pe, pf in the subpath
−→
ef

such that

|tpf |1 = r|−→tpf ∩ S2| or |pet|2 = r|−→pet ∩ S1| .

The expansion formula for cluster variables given by Lee, Li, and Zelevinsky has mono-
mials corresponding to compatible pairs on Cn. Their expansion formula works in the
more general setting of elements of the greedy basis, which contains the cluster variables.
For further details on the greedy basis, see [19]. We present their formula in the special
case of classical cluster variables xn, which are a specialization of the quantum cluster
variables Xn obtained by setting q = 1.

Theorem 2.5. [19, Theorem 1.11] For each n ≥ 3, the (classical) cluster variable xn in
A(r, r) is given by

xn = x
−cn−1

1 x
−cn−2

2

∑
(S1,S2)

x
r|S2|
1 x

r|S1|
2 ,

where the sum is over all compatible pairs (S1, S2) in Cn.

Let CP(P) denote the set of all compatible pairs on P . Let CP(ℓ, h, a, b) be the set
of pairs (S1, S2) ∈ CP(P(ℓ, h)) such that |S1| = a and |S2| = b. In the cluster variable
case, CP(cn−1, cn−2, a, b) is the set of compatible pairs corresponding to the monomial

x
rb−cn−1

1 x
ra−cn−2

2 in the Laurent polynomial expansion of Xn.

Definition 2.6. We say that a compatible pair in CP(ℓ, h, a, b) is positive if rb ≤ ℓ.

The class of positive compatible pairs arose naturally in Lee and Schiffler’s proof of the
positivity conjecture for cluster algebras from quivers (see, for example, the first term in
[22, Theorem 3.22]). In this paper, we will primarily be focused on positive compatible
pairs on maximal Dyck paths corresponding to cluster monomials. We now show that on
these Dyck paths, the positive compatible pairs comprise almost all compatible pairs.

Lemma 2.7. Fix α, β ∈ Z≥0. Let Pn be the maximal Dyck path corresponding to the

cluster monomial Xα
nX

β
n+1 in A(r, r) for r ≥ 3 and let CP+(Pn) be the set of compatible

pairs on Pn that are positive. Then

lim
n→∞

|CP+(Pn)|
|CP(Pn)|

= 1 .

Proof. We will only explicitly handle the cluster variable case, but the cluster monomial
case follows from an analogous argument. Let P = P(cn+1, cn), and let CPbad(P) =
CP(P) \CP+(P). By considering, for each integer j ∈ {0, 1, . . . , cn−2}, the compatible
pairs with |S2| = b ≤ cn−2 ≤ 1

r
cn+1 and S1 disjoint from sh(S2) (see Section 3 for this
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construction), we obtain that

|CP(P)| ≥
cn−2∑
b=0

(
cn
b

)
2cn+1−rb ≥ 2cn+1−rcn−2

cn−2∑
k=0

(
cn
k

)
.

If rb > cn+1, then b ≥ cn − cn−2. Each vertical edge in S2 has at least (r − 1) horizontal
edges immediately preceding it that cannot be in S1. Thus, we have

|CPbad(P)| ≤
cn∑

b=cn−cn−2

(
cn
b

)
2cn+1−(r−1)b ≤ 2cn+1−(r−1)(cn−cn−2)

cn−2∑
k=0

(
cn
k

)
.

Since ck ≥ (r − 1)ck−1 for each k, we have

(r − 1)(cn − cn−2)− rcn−2 ≥ ((r − 1)3 − 2r + 1)cn−2 ≥ cn−2 .

We can therefore see that

1− |CP+(P)|
|CP(P)|

=
|CPbad(P)|
|CP(P)|

≤ 2−cn−2 ,

which goes to 0 as n approaches infinity. □

2.3. Quantum Weighting on Compatible Pairs

In [29, Corollary 5.7], Rupel gives a quantum weighting to compatible gradings [29,
Definition 1.2] corresponding to a generalization of quantum cluster variables. In the
case of quantum cluster variables, the corresponding compatible gradings can be viewed
as compatible pairs.

The quantum cluster algebra we work with is the principal quantization of the rank-2
cluster algebra associated to the r-Kronecker quiver, which consists of two vertices with r
arrows between them. While there are several choices for quantizing cluster algebras, we
focus on the unique choice that is bar-invariant, i.e., invariant under the bar-involution
f̄(q) := f(q−1) for f ∈ Z[q±1] and fXa1

1 Xa2
2 := fXa2

2 Xa1
1 for a1, a2 ∈ Z. The sequence

of quantum cluster variables is periodic when r = 1, and otherwise all Xn are distinct.
Whenever it is clear from context, we shorten “quantum cluster variable” to “cluster
variable” and “quantum cluster monomial” to “cluster monomial”.

For ease of computation later, we translate each compatible pair into a finite word,
following [5], so that we can utilize the language of combinatorics on words. We work
over the alphabet A = {h, v,H, V } and let A∗ denote the set of finite words on A. Each
compatible pair corresponds to a word in A∗ by reading the edges from bottom left to top
right. The letters h and H (resp. v and V ) represent horizontal (resp. vertical) edges,
with the capital letter denoting those edges in S1 (resp. S2).

We now describe Rupel’s construction of a quantum weighting for compatible gradings,
though only in the specialization to quantum cluster monomials. Viewing compatible



BROKEN LINES AND COMPATIBLE PAIRS FOR RANK 2 QUANTUM CLUSTER ALGEBRAS 9

pairs as words, this weighting takes the form of a morphism wq : ZA∗ → Z, where ZA∗

is the group of formal Z-sums of words in A∗.

The function wq is defined on words of length 2 in A∗ by:

wq(hv) = wq(Hv) = wq(hV ) = 1 , wq(Hh) = wq(vV ) = r , wq(V H) = r2 − 1 ,

and for x, y ∈ A, we set wq(xy) = −wq(yx). This last conditions implies that we have
wq(hh) = wq(HH) = wq(vv) = wq(V V ) = 0. For a word σ = σ1σ2 · · ·σℓ ∈ A∗, where
each σi is a letter in A, we set

wq(σ) :=
∑

1≤i<j≤ℓ

wq(σiσj) .

We then extend wq additively to formal Z-sums of any words on A. By considering
the word in A∗ corresponding to a compatible pair, we also allow wq to be applied to
compatible pairs.

Remark 2.8. Note that the quantity wq(S1, S2) corresponds to the quantity βω + γω in
Rupel’s work [29, Corollary 5.7].

This quantity wq(S1, S2) is the quantum weight of the compatible pair (S1, S2), as
constructed by Rupel [29]. This allows us to calculate the Laurent expansion of quantum
cluster variables as follows.

Theorem 2.9 ([29, Corollary 5.7]). Consider the quantum cluster algebra Aq(r, r) with
quantum cluster variables Xi for i ∈ Z. For n ≥ 4, we have

Xn =
∑

(S1,S2)

q1−cn−1−cn−2+wq(S1,S2)X
−cn−1+r|S2|
1 X

−cn−2+r|S1|
2

and

X3−n =
∑

(S1,S2)

q1−cn−1−cn−2+wq(S1,S2)X
−cn−1+r|S2|
2 X

−cn−2+r|S1|
1 ,

where both sums range over all compatible pairs on Cn.

Note that the shift factor of q1−cn−1−cn−2 must be included to have the resulting ex-
pression be bar-invariant.

3. Shadows and Cascades in Compatible Pairs

We begin by recalling some results about shadows of edges in compatible pairs, as
defined by Lee–Li–Zelevinsky. We then introduce a new notion called the cascade of a
compatible pair and establish connections between the two notions.
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3.1. Shadows

In their study of compatible pairs, Li, Lee, and Zelevinsky [19] introduced the notion
of the “shadow” of a set of vertical edges.

Definition 3.1. For a vertical edge ν ∈ S2 with upper endpoint w, we define its local
shadow, denoted sh(ν;S2), to be the set of horizontal edges in the shortest subpath −→ην of
P such that |ην|1 = r|−→ην ∩ S2|. In this case, we say that the edges η and ν are shadow-
paired with each other. If there is no such subpath −→ην, then we define the local shadow
to be P1.

For V ⊆ S2, let sh(V ;S2) =
⋃
ν∈V

sh(ν;S2), and write sh(S2) := sh(S2;S2). An edge

η ∈ P1 is called shadowed if it is in sh(S2), and we say that the edge ν ∈ S2 shadows
each edge in sh(ν;S2).

Definition 3.2. We say that an edge η ∈ P1 is right-shadowed if it is in the local shadow
sh(ν;S2) of some ν ∈ S2 where ν is to the right of η. An edge that is shadowed but not
right-shadowed is called left-shadowed.

3.2. Cascades

In this section, we construct the cascade of the vertical edges in a compatible pair.
This construction is crucial to the definition of the bijection between broken lines and
compatible pairs given in Section 6 and Section 7. We then draw connections between
shadows in compatible pairs arising in the study of Aq(r, r) and cascades.

For each positive integer m, we associate m horizontal edges to each vertical edge νj,

where the ith horizontal edge associated to νj is assigned the label ν
(i)
j . We then consider

the set of labels

P(m)
2 = {ν(i)

j : j ∈ [1, h] and i ∈ [1,m]} .

Definition 3.3. Given S2 ⊂ P2 such that r|S2| ≤ |P1|, we construct the cascade of S2,
denoted by cas(S2), as follows. Let V be the list of edges in S2 ordered from bottom to

top. We will modify a list L of elements from P(r)
2 , with L initially being empty.

(1) Remove the first element, νj, from V . Add r labels ν
(1)
j , ν

(2)
j , . . . , ν

(r)
j ∈ P(r)

2 to the
front of the list L.

The name cascade comes from the following visualization: View the path P along with the vertical
ray emanating from its leftmost vertex as the walls of a 2-dimensional fountain. Each edge in S2 has a

stream of water emanating from its left side that flows into a horizontal edge in P2 \
(⋃r−1

m=1 casm(S2)
)
.

Naturally, streams flow downward when possible. Those streams which cannot flow downward instead
“increase the water level” of the “pool” at the bottom of the cascade by 1.



BROKEN LINES AND COMPATIBLE PAIRS FOR RANK 2 QUANTUM CLUSTER ALGEBRAS 11

Figure 1. In the left image, we let S2 be the set of red verti-
cal edges on P(16, 6), i.e., {νi : 2 ≤ i ≤ 6}. In the right im-
age, we let S2 be the set of red vertical edges on P(24, 23), i.e.,
{ν1, ν2, ν4, ν5, ν7, ν8, ν16, ν18, ν19, ν21, ν22, ν23}. In each image, every edge νi
in S2 is connected by a blue arc to the horizontal edge that is cascade-
paired with νi (where r = 3 in the left image and r = 2 in the right image).
Note that any horizontal edge that lies below an arc but is not connected
to any arc belongs to casm(S2) for some 1 ≤ m < r.

(2) If there are any unlabeled horizontal edges to the left of νj, label the rightmost such
edge with the first label in L and remove this element from L. Repeat until there
are no such unlabeled horizontal edges or L is empty. Go back to Step 1 unless V is
empty.

(3) If all horizontal edges to the left of νj are labeled and L is nonempty, label the
leftmost unlabeled horizontal edge by the first element of L, removing this label from
L. Repeat until L is empty or there are no unlabeled horizontal edges.

We then set the cascade cas(S2) to be the set of edges in H that are paired with some
edge in S2 via the above process. For m ≤ r, we say that the horizontal edge labeled by

ν
(m)
j via the above process is m-cascade-paired with νj ∈ S2, and we let casm(S2) denote
the set of horizontal edges that are m-cascade-paired with some edge of S2. When m = r,

we omit the prefix m− and simply say that the edge labeled by ν
(r)
j is cascade-paired with

νj ∈ S2.

Any horizontal edge m-cascade-paired, for some choice of m, with νj is to its left (resp.
right) in cas(S2) is called left-filled (resp. right-filled). Any horizontal edge that is not
paired in cas(S2) is called unfilled. For any edge ν ∈ S2, the local cascade of ν, denoted
by cas(ν;S2), is the set of horizontal edges between the leftmost and rightmost horizontal
edges paired with νj (including these edges).
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Remark 3.4. As one may note in Figure 1, arcs can be drawn between each νi ∈ S2

and the horizontal edge cascade-paired to it such that all arcs lie above the path P and
are non-crossing. This is in fact true for any set S2 ⊂ P2 where r|S2| ≤ |P1|. It is
straightforward to show this by induction on the size of S2.

Proposition 3.5. Suppose (r − 1)h ≤ ℓ ≤ rh. Then for any (S1, S2) ∈ CPcas(ℓ, h) such
that r|S2| ≤ ℓ, we have S1 ⊆ casr(S2).

Proof. Each vertical edge in P(ℓ, h) is immediately preceded by at least r− 1 horizontal
edges. Thus,

⋃r−1
i=1 casi(S2) consists of the r − 1 horizontal edges preceding each edge in

S2. The (at most r) horizontal edges immediately preceding an edge in S2 cannot be in
S1 by the compatibility restrictions. Therefore, we have S1 ⊆ cas(S2) \

(⋃r−1
i=1 casi(S2)

)
=

casr(S2). □

3.3. Relationship between Cascades and Shadows

The cascade of a set of vertical edges is equal to the size of its shadow. In this section,
we construct a bijection between these two sets of edges that respects compatibility. This
allows us to later adapt some results of Lee–Li–Zelevinsky on shadows to the setting of
cascades, which is necessary for the resulting quantum weights to agree with Rupel’s
quantum weighting.

Let CPsh(ℓ, h, a, b) be the set of pairs (S1, S2) in CP(ℓ, h, a, b) such that S1 ⊆ sh(S2).
Similarly, let CPcas(ℓ, h, a, b) be the set of pairs (S1, S2) in CP(ℓ, h, a, b) such that S1 ⊆
cas(S2).

Definition 3.6. Let k = max{m ∈ [ℓ+ h] : |w0wm|1 = r|−−−→w0wm ∩S2|}. Let ηi1 , . . . , ηiℓ be
the list of left-filled edges and ηj1 , . . . , ηjℓ be the list of left-shadowed edges in P1, where
both lists are ordered from left to right.

We define an involution ι : P1 → P1 that swaps each ηis with ηjs and leaves all
remaining edges unchanged.

We then define the map λ : CP(ℓ, h, a, b) → CP(ℓ, h, a, b) taking a compatible pair
(S1, S2) to

λ(S1, S2) := (ι(S1), S2), where ι(S1) = {ι(η) ∈ P1 : η ∈ S1} .

Lemma 3.7. Suppose (S1, S2) is a compatible pair. Let ηi /∈ S1 and ηj ∈ S1 be such
that any edge in S2 that shadows ηi also shadows ηj, i < j, and ηi and ηj are either both
left-shadowed or both right-shadowed. Then ((S1 ∪ {ηi}) \{ηj}, S2) is also a compatible
pair.

Proof. It is enough to show that the compatibility condition holds for any vertical edge
ν ∈ S2 such that ηj is in sh(ν;S2) (and hence so is ηi). Then we have −→ηjν ⊆ −→ηiν.
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λ

Figure 2. An illustration of the map λ applied to the compatible pair
(S1, S2) in P(21, 8), where r = 3, S1 = {η18, η20, η21}, and S2 =
{ν1, ν2, ν3, ν4, ν5, ν6}. Following Definition 3.6, we have (i1, i2) = (17, 18)
and (j1, j2) = (20, 21). We thus have λ(S1) = {η17, η18, η21}. The compati-
ble pair λ(S1, S2) = (λ(S1), S2) is depicted on the right.

Since ν shadows ηj, then |eν|1 < r|−→eν ∩ S2| for all e ∈ −→ηjν. By the definition of
compatibility, there must be some e ∈ −→ηjν such that |ηje|2 = r|−→ηje ∩ S1|.

Let ηk be the leftmost horizontal edge −−→ηiηj ∩ S1. We then have that |ηiν|2 = |ηiηk|2 +
|ηkν|2. We already have that r|−→ηkν ∩ S1| ≤ |ηkν|2. We therefore have

r|−→ηiν ∩ (S1 \ ηj)| = r|−→ηkν ∩ S1| ≤ |ηkν|2 ≤ |ηiν|2 ,

as desired. □

Lemma 3.8. The map λ preserves compatibility on any compatible pair.

Proof. The map λ can be obtained by successive iterations of the operation in Lemma 3.7,
which preserves compatibility. In particular, we replace each edge e′ in sh(S2) ∩ S1 with
its corresponding edge e in cas(S2). Either the edges e and e′ coincide, e is not shadowed,
or they satisfy the conditions of Lemma 3.7. □

Lemma 3.9. For compatible pairs on Dyck paths corresponding to cluster monomials,
λ−1 preserves compatibility.

Proof. For cluster monomial Dyck paths, compatibility only needs to be considered on a
single path (without wrapping around cyclically) according to [28, Remark 2.21]. Since
λ only involves edges that are not right-shadowed, any subset of these can be included
while preserving compatibility. □

Corollary 3.10. Let P(ℓ, h) correspond to a cluster monomial. Then for any a, b ∈ Z≥0

such that rb ≤ ℓ, we have

|CPsh(ℓ, h, a, b)| = |CPcas(ℓ, h, a, b)| .

Lemma 3.11. Let (λ(S1), S2) = λ(S1, S2). Then a vertical edge ν ∈ S2 is shadowing an
edge in S1 if and only ν is filling an edge in λ(S1).
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Remark 3.12. The definition of shadow and remote shadow in [19] does not seem to be
compatible with Rupel’s quantum grading. Thus, we introduce the cascade framework
in order for the resulting partition of S2 to yield the correct set of quantum weights
via Rupel’s assignment. However, we could alternatively have used the original shadow
definitions from [19] and instead introduced a new quantum grading.

4. Preliminaries: Scattering Diagrams and Broken Lines

While we provide the necessary details to construct rank-2 cluster scattering diagrams,
we refer to [9, Section 2] for full details on quantum scattering diagrams. We then define
broken lines on these scattering diagrams, including how to assign quantum weights to
broken lines crossing over cluster walls.

4.1. Scattering Diagrams

Fix a rank-2 lattice M ∼= Z2. Let MR = M ⊗R, and for a strictly convex rational cone

σ ⊊ MR, let P = Pσ = σ ∩ M . We set Ẑ[P ] to be the completion of the monoid ring
Z[P ] at the maximal monomial ideal m generated by {xm : m ∈ P \{0}}.

Definition 4.1. A wall is a pair (d, fd) consisting of a support d ⊆ MR and an associated

wall-crossing function fd ∈ Ẑ[Pd], where

• the support d is either a ray R≤0w or a line Rw for some w ∈ σ ∩ (M \{0});
• we have fd = fd(x

w) = 1 +
∑
k≥1

ckx
kw for some ck ∈ Z.

Definition 4.2. A scattering diagram D is a collection of walls such that

{(d, fd) ∈ D : fd ̸≡ 1 mod mk}
is finite for each k ≥ 0. The union of the supports of the walls is the support Supp(D)
of the scattering diagram D.

We associate a scattering diagram Dr to the cluster algebra A(r, r). Let the “initial”
scattering diagram for A(r, r) be

Dr,in = ((R(1, 0), 1 + xr
1), (R(0, 1), 1 + xr

2)) .

The scattering diagram Dr is then the consistent scattering diagram formed by adding
rays to Dr,in (see, for example, [7, Section 3] for details on consistency). It is shown in
[14, Theorem 1.7] that such a scattering diagram exists and is unique up to equivalence.
The scattering diagram Dr contains cluster walls of the form

(R≤0(cm, cm−1), 1 + xrcm
1 x

rcm−1

2 ) and (R≤0(cm−1, cm), 1 + x
rcm−1

1 xrcm
2 )

for all m ≥ 2, and these walls are distinct for r ≥ 2.
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For r ≥ 2, there are walls in addition to the cluster walls that lie in the closed cone
spanned by (2r,−r2 ± r

√
r2 − 4). This cone is known as the “Badlands” and contains

infinitely many rays for r ≥ 3. It was recently shown by Davison and Mandel [9] that Dr

has a wall at every rational slope within the Badlands. However, the functions associated
to these walls are generally not understood, though some partial progress has been made
[1, 11, 26].

Remark 4.3. While scattering diagrams are usually parameterized in terms of g-vectors,
the setting of d-vectors is better suited for drawing connections to compatible pairs.
Thus, our definition of the scattering diagram Dr is equivalent to the d-vector scattering
diagram Dd

(r,r) in [7], and our theta functions are parameterized by d-vectors as well. The

two settings differ by a piece-wise linear bijection on the scattering diagram [7, Theorem
4.3].

4.2. The Kronecker Scattering Diagram

We now describe a more explicit construction of the scattering diagram for the Kro-
necker cluster algebra.

In this case, we have

D2,in =
{(

R(−1, 0), 1 + x2
1

)
,
(
R(0, 1), 1 + x2

2

)}
.

The remaining walls of slope ̸= 1 can be obtained via an iterative process, described in
[7, Section 3]. This process yields the walls

D′
2 =

⋃
ℓ≥1

{(
R≤0(ℓ+ 1, ℓ), 1 + x

2(ℓ+1)
1 x2ℓ

2

)
,
(
R≤0(ℓ, ℓ+ 1), 1 + x2ℓ

1 x
2(ℓ+1)
2

)}
.

Lastly, there is one additional wall that is not described by this process, given by

d1 =

(
R≤0(1, 1),

∞∑
j=0

(j + 1)x2j
1 x2j

2

)
.

Its support is a ray of slope 1 eminating from the origin, and its wall-crossing function was
originally computed in the classical case by Reineke [27, Section 6] using representation
theory.

The scattering diagram associated to the cluster algebra A(2, 2) is then given by

D2 = D2,in ∪D′
2 ∪ {d1} .



BROKEN LINES AND COMPATIBLE PAIRS FOR RANK 2 QUANTUM CLUSTER ALGEBRAS 16

Figure 3. The walls of the scattering diagram D2 are depicted above.
The only non-cluster wall is d1, the wall of slope 1, shown in red.

We refer to the walls in A(2, 2) by their slope, i.e.,

dℓ/(ℓ+1) =
(
R≤0(ℓ+ 1, ℓ), 1 + x

2(ℓ+1)
1 x2ℓ

2

)
,

d(ℓ+1)/ℓ =
(
R≤0(ℓ, ℓ+ 1), 1 + x2ℓ

1 x
2(ℓ+1)
2

)
,

d0 =
(
R(1, 0), 1 + x2

1

)
, and

d∞ =
(
R(0, 1), 1 + x2

2

)
.

4.3. Broken Lines and the Theta Basis

We begin by introducing broken lines for classical scattering diagrams. Then, focusing
specifically on broken lines that only cross over cluster walls, we see how to assign a
quantum weight to each wall crossing in a quantum cluster scattering diagram. We
additionally describe the quantum weighting associated with crossing the unique non-
cluster wall in the quantum Kronecker scattering diagram.

Definition 4.4. Let D be a consistent scattering diagram in MR. Fix an initial exponent
v0 ∈ M and terminal point Q ∈ MR \ Supp(D). A broken line γ on D with ends (Q,m) is
the data of a continuous map γ : (−∞, 0] → MR \{0}, values −∞ = τ0 < τ1 · · · < τℓ = 0,
and for each i = 1, . . . , ℓ, and associated monomial ciz

vi ∈ Z[M ] such that
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(i) γ(0) = Q and c0 = 1;
(ii) γ′(τ) = −v0 for all τ < τ0, and for each i = 1, . . . , ℓ, we have γ′(τ) = −vi for all

τ ∈ (τi−1, τi);
(iii) for each i = 1, . . . , ℓ− 1, the point γ(τi) is where γ transversally crosses a wall d(i)

of D;
(iv) ci+1z

vi+1 is a monomial term of

ciz
vif vi·n

d(i)

where n is a primitive normal vector of d(i) such that vi · n > 0.

The element vi ∈ Z2 is called the exponent of the domain of linearity γ(τi, τi+1). We
refer to each γ(τi) for i = 1, . . . , ℓ−1 as a bending of multiplicity mi of γ at the wall d(i),
where vi+1 is the (mi + 1)-th term of ciz

vif vi·n
d(i) (ordered increasingly by exponent).

The combinatorics of Gaussian binomial coefficients is necessary for discussing the
quantum weight of broken lines. For k ∈ Z≥0, we define

[k]q :=
qk − q−k

q − q−1
= q−(k−1) + q−(k−3) + · · ·+ qk−3 + qk−1 ∈ Z[q±1] .

This can be viewed as a quantum deformation of the integer k, since limq→1[k]q = k.
We then define [k]q! := [k]q[k − 1]q · · · [2]q[1]q for k ≥ 1 and set [0]q! := 1. For integers
ℓ ≥ k ≥ 0, the bar-invariant quantum binomial coefficient is the quantity(

ℓ

k

)
q

:=
[ℓ]q!

[k]q![ℓ− k]q!
∈ Z≥0[q

±1] .

Definition 4.5. Let γ be a broken line on the quantum cluster scattering diagram Dr

that bends only over cluster walls. To each domain of linearity γ(τi, τi+1), we associate a
quantum weight ci,q determined by

c0,q = 1 and ci+1,q = ci,q

(
vi · n
mi

)
q2r

,

where mi is the multiplicity of the bending at γ(τi+1). The quantum weight of γ is the
quantum weight of the last domain of linearity.

If γ is on the scattering diagram D2, we additionally allow bending on the non-cluster
wall. The quantum weight after this bending is given by ci+1,q = ci,qf [mi], where f [mi]
is the coefficient of xmi in

f(x) =

(
∞∑
k=0

[i+ 1]q4x
k

)vi·n

.

For such broken lines, we associate a quantum monomial Monoq(γ) = cℓ,qz
vℓ to the

last domain of linearity.
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(−12,−11)

(−6,−7)

(−2,−5)

(−2,−1)

Figure 4. A broken line γ with terminal point (0.25, 0.375) is depicted
on the scattering diagram D2 (shown in Figure 3). The exponent of each
domain of linearity of γ is shown as an element of Z2. The quantum weight
of γ is computed in Example 4.6.

Example 4.6. The broken line γ in Figure 4 has quantum weight

wq(γ) =

(
(−12,−11) · (2,−3)

1

)
q4

(
(−6,−7) · (1,−2)

1

)
q4

(
(−2,−5) · (−1, 0)

1

)
q4

=

(
9

1

)
q4

(
8

1

)
q4

(
2

2

)
q4

= q−60 + 2q−52 + 3q−44 + 4q−36 + 5q−28 + 6q−20 + 7q−12 + 8q−4 + 8q4 + 7q12

+ 6q20 + 5q28 + 4q36 + 3q44 + 2q52 + q60

Remark 4.7. We must renormalize the setup in [9] in order to have the quantum cluster
variables coincide with those in the setting of [29]. This renormalization is achieved by
replacing the quantum coefficient by its 2r-th power, i.e., applying the map q 7→ q2r.

Remark 4.8. While we have not explicitly defined the quantum cluster scattering dia-
grams, the quantum weight of a broken line in our setting matches the weight of the same
broken line on the associated quantum cluster scattering diagram. To handle bending at
the non-cluster wall in D2, one can adapt the methods used by Reading [26, Theorem
3.4] to the quantum case.
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When all walls of D have apex at the origin, as is the case for scattering diagrams
associated to cluster algebras, then we say Q ∈ MR is generic if Q is not in

⋃
v∈M∗ v⊥.

Definition 4.9. Fix a scattering diagram D, m ∈ M \{0}, and Q ∈ MR \ Supp(D). The
theta function ϑQ,m is defined by

ϑQ,m =
∑
γ

Mono(γ)

where the sum is taken over all broken lines that have endpoint Q and initial exponent
m.

Fixing a generic Q ∈ R2
≥0, the theta basis is the set of all theta functions ϑQ,m for any

m ∈ Z2.

Additionally, on the scattering diagram D2, we can define the quantum theta functions
and quantum theta basis by replacing Mono(γ) with Monoq(γ) in the above definition.
Quantum theta bases were defined for arbitrary cluster algebras in recent work of Davison
and Mandel [9] in order to prove the strong positivity conjecture for quantum cluster
algebras.

4.4. Angular Momentum

We now discuss an invariant of broken lines in rank 2 scattering diagrams that will help
us distinguish which broken lines cross the Badlands. Suppose that we are considering
the set of compatible pairs corresponding to a monomial Xp1

1 Xp2
2 in the cluster variable

Xn.

Definition 4.10. Fix a point (q1, q2) on the linear portion with slope (m1,m2) of a
broken line terminating in the first quadrant. The angular momentum of the broken line
at that point is the quantity q2m1 − q1m2.

Lemma 4.11 ([7, Lemma 5.3]). The angular momentum is constant on a broken line.

We will be primarily interested in whether the angular momentum is positive or neg-
ative. The terminal exponent of a broken line can sometimes determine the sign of its
angular momentum, and otherwise its sign also depends on the choice of terminal point.

Lemma 4.12. Let γ be a broken line in Dr terminating at (q1, q2) in the first quadrant

that contributes to the monomial X
−cn−1+rb
1 X

−cn−2+ra
2 in the quantum cluster variable Xn.

Then

(1) if rb ≥ cn−1, the angular momentum of γ is positive,
(2) if ra ≥ cn−2, the angular momentum of γ is negative,
(3) otherwise, the angular momentum of γ can be either positive, zero, or negative

depending on the choice of (q1, q2).
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(−12,−11)

(−6,−7)

(−2,−5)

(−2,−1)

(−12,−11)

(−10,−9)

(−8,−5)

(−2,−5)

Figure 5. Two broken lines onD2 with initial slope (−12,−11) are shown
above. Though there are infinitely many walls inD2, we do not depict those
with slope in the range (2/3, 1) ∪ (1, 2). The red line has positive angular
momentum, while the blue broken line has negative angular momentum
and is the same as in Figure 4. The terminal point (q1, q2) = (0.25, 0.375)
is shown in black in the first quadrant. The points at which the broken
lines bend are shown as nodes of the corresponding color, and the exponent
for each domain of linearity is shown nearby in the corresponding color.

Proof. Since q1, q2 > 0, this implies that in cases (1) and (2), the angular momentum is
never 0. The claims about the corresponding signs in cases (1) and (2) follow from the
signs of the terms in the formula for angular momentum. Since there are no walls in the
interior of the first quadrant, it follows that m1 = −cn−1+rb and m2 = −cn−2+ra cannot
both be positive. Thus, case 3 handles when both m1 and m2 are negative, in which case
choosing q1 ≫ q2 or q2 ≫ q1 will change the sign of the angular momentum. □
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Lemma 4.13 ([7, Lemma 5.4]). Let γ be a broken line in Dr terminating in the first
quadrant. If γ has positive (resp. negative) angular momentum, then the slope of the lin-
ear portions of γ decreases (resp. increases) at each bend, except possibly at the boundary
of the first quadrant.

Remark 4.14. It follows that a broken line with initial exponent (m1,m2) will only bend
at walls of slope less than (resp. greater than) m2

m1
if the broken line has negative (resp.

positive) angular momentum. Thus, γ is a broken line with negative angular momentum
associated to a cluster monomial in Dr, then γ only bends at walls above the Badlands.

Definition 4.15. Suppose we have integers ℓi ≥ 0 and mi ≥ 1 for each i ∈ {1, . . . , k},
where the ℓi are decreasing. Let ℓ be the sequence [(ℓ1,m1), (ℓ2,m2), . . . , (ℓk,mk)]. Let
L−

r,n[ℓ] = L−
r,n[(ℓ1,m1), (ℓ2,m2), . . . , (ℓk,mk)] be the broken line in Dr with initial slope

(−cn−1,−cn−2) that bends at the wall of slope
cℓi

cℓi+1
with multiplicity mi and terminates

at (q1, q2). By convention, the wall of slope −1
0

or 1
0
is the y-axis.

Similarly, let L+
r,n[ℓ] = L+

r,n[(ℓ1,m1), (ℓ2,m2), . . . , (ℓk,mk)] be the broken line inDr with

initial slope (−cn−1,−cn−2) that bends at the wall of slope
cℓi+1

cℓi
with multiplicity mi and

terminates at (q1, q2). Note that L−
r,n[ℓ] has negative angular momentum while L+

r,n[ℓ] has
positive angular momentum. When r = 2, we additionally consider broken lines of the
form L+

r,n[(∞,m∞), (ℓ1,m1), (ℓ2,m2), . . . , (ℓk,mk)], where the broken line bends over the
wall of slope 1 = limℓ→∞

cℓ+1

cℓ
with multiplicity m∞.

Example 4.16. The blue broken line in Figure 5 is L−
2,14[(3, 1), (2, 1), (0, 2)], and the red

broken line is L+
2,14[(∞, 1), (2, 1), (0, 3)].

5. Weights of Broken Lines

5.1. The Cluster Variable Case

For any integer r, and for any real numbers α, β, let f r
α,β denote the sequence where

f r
α,β(0) = α, f r

α,β(1) = β, and f r
α,β(k + 1) = rf r

α,β(k)− f r
α,β(k − 1) for k ≥ 1.

Lemma 5.1. For any k ∈ Z≥0 and real numbers α, β, we have

ck+1β − ckα = f r
α,β(k)

Proof. Let g(k) = ck+1β − ckα. We first see that

g(k) = (rck − ck−1)β − (rck−1 − ck−2)α

= r(ckβ − ck−1α)− (ck−1β − ck−2α)

= rg(k − 1)− g(k − 2) .

Moreover, we have g(0) = α and g(1) = β, so we can conclude g(k) = f r
α,β(k). □
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Corollary 5.2. For any n ≥ ℓ ∈ Z>0, we have

cncℓ+1 − cn+1cℓ = cn−ℓ+1

and

cn+1cℓ+1 − cncℓ = cn+ℓ .

Proof. For the first statement, apply Lemma 5.1 with α = ch+1 and β = ch. It is then
straightforward to check that f r

ch+1,ch
(ℓ) = ch−ℓ+1.

For the second statement, apply Lemma 5.1 with α = ch and β = ch+1. It is then
straightforward to check that f r

ch,ch+1
(ℓ) = ch+ℓ. □

Proposition 5.3. The quantum weight of the broken line L−
r,n+2[(ℓ1,m1), . . . , (ℓk,mk)] is

k∏
i=1

(
cn−ℓi+1 − r

∑
j<imℓjcℓj−ℓi+1

mi

)
q2r

.

Proof. We prove this by induction on the number of crossings. Note that the broken line
L−

r,n[(ℓ1,m1), . . . , (ℓk−1,mk−1)] has terminal exponent(
−cn+1 +

k−1∑
j=1

mjcℓj+1,−cn +
k−1∑
j=1

mjcℓj

)
.

Using Corollary 5.2, we can calculate that the dot product of this terminal exponent and
the primitive normal vector to the wall of slope

cℓk
cℓk+1

is d := cn−ℓk+1−r
∑

j<k mℓjcℓj−ℓk+1.

The desired formula is then readily calculated by multiplying the quantum weight of
L−

r,n+2[(ℓ1,m1), . . . , (ℓk−1,mk−1)] by the binomial coefficient
(

d
mk

)
q2r

. □

Remark 5.4. In the above statement, m1 is the multiplicity of the bending of γ at the
y-axis.

Proposition 5.5. The quantum weight of the broken line L+
r,n+2[(ℓ1,m1), . . . , (ℓk,mk)] is

k∏
i=1

(
cn+ℓi − r

∑
j<imℓjcℓj−ℓi

mi

)
q2r

.

Proof. This follows from a similar argument to that for Proposition 5.3, except using the
second equality in Corollary 5.2 rather than the first. □

Definition 5.6. Let BL(ℓ, h, a, b) be the collection of broken lines with initial expo-
nent (−ℓ,−h) and terminal exponent (−ℓ + rb,−h + ra). Let BL−(ℓ, h, a, b) (resp.
BL+(ℓ, h, a, b)) be the set of broken lines in BL(ℓ, h, a, b) with negative (resp. positive)
angular momentum.
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Given a set of broken lines B, let |B|q denote the sum of the weights of the broken
lines in B. We define |B| ∈ Z to be the value of |B|q under the substitution q = 1.

Lemma 5.7. If rb ≤ cn, we have that

|BL−(cn+1, cn, a, b)|q =
a∑

t=0

(
cn+1 − rb

t

)
q2r

|BL−(cn, cn−1, r(a− t)− b, a− t)|q

Proof. Fix a broken line γ = L−
r,n+2[(ℓ1,m1), . . . , (ℓk,mk)] in BL−(cn+1, cn, a, b). Let t

denote the multiplicity of the crossing over the y-axis, i.e., t = mk if ℓk = 0 and t = 0
otherwise. If t = 0, let γ′ = L−

r,n+1[(ℓ1−1,m1), . . . , (ℓk−1−1,mk−1)], and otherwise let γ′ =

L−
r,n+1[(ℓ1−1,m1), . . . , (ℓk−1,mk)]. Note that we have γ

′ ∈ BL−(cn, cn−1, r(a−t)−b, a−t).

By Proposition 5.3, we have |γ|q =
(
cn+1−rb

t

)
q
|γ′|q. Note that the map from γ to γ′ is

bijective (considered as a map on unweighted broken lines). Therefore, summing over all
choices of γ in BL−(cn+1, cn, a, b) yields the desired equality. □

5.2. The Kronecker Case

We first handle broken lines of positive angular momentum and then broken lines of
initial exponent (−h,−h). The latter are the broken lines corresponding to the theta
basis elements of Aq(2, 2) that are not cluster monomials.

Proposition 5.8. In the Kronecker scattering diagram D2, the quantum weight of the
broken line L+

r,n+2[(∞,m∞), (ℓ1,m1), . . . , (ℓk,mk)] is

[m∞ + 1]q4
k∏

i=1

(
(n+ ℓi − 2m∞)− 2

∑
j<imℓj(ℓj − ℓi)

mi

)
q4
.

Lemma 5.9. In the Kronecker scattering diagram D2, we have that

|BL+(h+ 1, h, a, b)|q =
b∑

t=0

(
h− 2a

t

)
q4
|BL+(h, h− 1, b− t, 2(b− t)− a)|q

whenever 2a ≤ h+ 1.

Proof. Fix a broken line γ = L+
r,h+3[(∞,m∞), (ℓ1,m1), . . . , (ℓk,mk)] in BL−(h+1, h, a, b).

Let t denote the multiplicity of the crossing over the x-axis, i.e., t = mk if ℓk = 0 and
t = 0 otherwise. If t = 0, let γ′ = L+

r,h+2[(∞,m∞), (ℓ1 − 1,m1), . . . , (ℓk−1 − 1,mk−1)],

and otherwise let γ′ = L+
r,h+2[(∞,m∞), (ℓ1 − 1,m1), . . . , (ℓk − 1,mk)]. Note that we have

γ′ ∈ BL−(h, h − 1, b − t, 2(b − t) − a). By Proposition 5.8, we have |γ|q =
(
ch−2b

t

)
q
|γ′|q.

Note that the map from γ to γ′ is bijective (considered as a map on unweighted broken
lines). Therefore, summing over all choices of γ in BL−(h + 1, h, a, b) yields the desired
equality. □
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Proposition 5.10. Suppose r = 2 and 2b ≤ h. The quantum weight of the broken line in
BL−(h, h, a, b) crossing at the wall dℓi/(ℓi+1) with multiplicity mi for ℓ1 > · · · > ℓk ≥ −1
is

k∏
i=1

(
h−

∑i−1
j=1 2mj(ℓi − ℓj)

mi

)
q4
.

Proof. Denote this broken line by γ. Let pi be the exponent of γ after bending at the
wall dℓi/(ℓi+1), and let p0 = (−h,−h). It is straightforward to prove by induction that we
have

pi =

(
−h+ 2

i∑
j=−1

mjℓj,−h+ 2
i∑

j=−1

mj(ℓj + 1)

)
Thus, the dot product of pi−1 with the primitive normal vector to the wall dℓi/(ℓi+1) is

pi−1 · (−ℓi, ℓi + 1) = h−
i−1∑
j=1

2mj(ℓj − ℓi) .

The weight of the broken line is then the product of quantum binomial coefficients(
pi−1·(−ℓi,ℓi+1)

mi

)
q4
. □

Lemma 5.11. If r = 2 and 2b ≤ h, we have that

|BL−(h, h, a, b)|q =
a∑

t=0

(
h− 2b

t

)
q4
|BL−(h, h, 2(a− t)− b, a− t)|q .

Proof. The proof is essentially the same as that of Lemma 5.9, but adapted for the
initial exponent (−h,−h). Consider the broken line γ ∈ BL−(h, h, a, b) that bends over
the wall ℓ−1

ℓ
with multiplicity mℓ for ℓ ≥ 0. Let m0 = t. We then map γ to γ′ ∈

|BL−(h, h, 2(a− t)− b, a− t)| that bends over the wall ℓ−2
ℓ−1

with multiplicity mℓ for ℓ ≥ 0.

By Proposition 5.10, we can see that wq(γ) =
(
h−2b

t

)
q4
wq(γ

′). The desired equality follows

from summing over all possible values of m0 = t. □

6. A Bijection for r-Kronecker Cluster Monomials

6.1. Construction of the Bijection

We now construct a q-weighted bijection between positive compatible pairs and broken
lines of negative angular momentum associated to quantum cluster monomials in the r-
Kronecker cluster algebra. That is, for ℓ ≥ rb, we construct a map φ : CP(ℓ, h, a, b) →
BL−(ℓ, h, a, b) such that, for a broken line γ ∈ BL−(ℓ, h, a, b), we have∑

(S1,S2)∈φ−1(γ)

wq(S1, S2) = |γ|q .
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Definition 6.1. A vertical edge ν is overshadowing if the horizontal edge shadow-paired
with ν is in S1. A vertical edge ν is overflowing if the horizontal edge cascade-paired
with ν is in S1.

We say that a vertical edge of P is protruding if it has fewer than r horizontal edges
to its immediate left. Note that, by the compatibility condition, if a vertical edge is
overshadowing or overflowing, then it is protruding. We denote the protruding edges of
P by νpro,1, . . . , νpro,rh−ℓ, ordered from bottom to top.

Suppose (r − 1)h ≤ ℓ ≤ rh. Let ℓ′ = h and h′ = rh − ℓ, and consider the paths
P = P(ℓ, h) and P ′ = P(ℓ′, h′). Note that the path P ′ is obtained from P by replacing
the sequence of steps Er−1N with EN and ErN with E.

Definition 6.2. We define a map θ̃ : CP(P) → CP(P) taking (S1, S2) to (S̃1, S̃2), where

• S̃1 = {ηi ∈ P ′ : νi ∈ P \S2}, and
• S̃2 = {νj ∈ P ′ : νpro,j is overflowing}

Remark 6.3. It is not clear from the definition that the resulting set of edges in the image

of θ̃ is a compatible pair. This fact is proven in Corollary 6.8. Moreover, when restricted

to the set CPcas(ℓ, h, a, b), the map θ̃ yields a compatible pair in CP(ℓ′, h′, h− b, a).

Let (S
(i)
1 , S

(i)
2 ) = θ̃ ◦ θ̃ ◦ · · · ◦ θ̃︸ ︷︷ ︸

i

(S1, S2) for i ≥ 0. Let bi = |S(i)
2 |. Note that the sequence

bi is weakly decreasing, and we have bi = 0 for sufficiently large i.

Definition 6.4. Let P(ℓ, h) be a Dyck path corresponding to a cluster monomial. We
define φ : CP(ℓ, h, a, b) → BL−(ℓ, h, a, b) to be the map taking a compatible pair (S1, S2)
to the broken line that crosses the wall of slope ci

ci−1
with multiplicity bi−1 − (rbi − bi+1).

A potential direction for further work would be extending this bijection to all broken
lines that arise in the theta bases of rank-2 (quantum) cluster algebras. This problem
was posed in the classical case in [7, Remark 3.6], as this would give a combinatorial
proof that the greedy and theta bases coincide. In the quantum setting, it is not yet
known if these bases coincide, though this was suggested to be true in [9, Section 1.4].
For the quantum Kronecker cluster algebra, we show at the end of Section 7 that the
quantum greedy and theta bases indeed coincide.

6.2. Proof of Compatibility

We begin by recalling a map θ that takes a compatible pair to another compatible pair
on a different Dyck path. This map originally appeared in the work of Lee–Li–Zelevinsky
and was used in their proof of Theorem 2.5.
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Definition 6.5 ([19, Lemma 3.5]). If (r−1)h ≤ ℓ ≤ rh, then the map θ : CPcas(ℓ, h, a, b) →
CP(ℓ′, h′, h− b, a) taking (S1, S2) to (S ′

1, S
′
2) is defined as follows:

• S ′
1 = {ηi ∈ P ′ : νh+1−i is overshadowing}, and

• S ′
2 = {νj ∈ P ′ : νj ∈ P \S2}.

Remark 6.6. Our definition of the Lee-Li-Zelevinsky map θ differs from their original
formulation. Moreover, we apply θ to compatible pairs (rather than sets of horizontal
edges). It is straightforward to show that the two definitions are equivalent (up to
conjugating the underlying Dyck path and including the vertical edges).

We now prove that any set of edges (S1, S2) in the image of θ̃ is indeed a compatible
pair. To do this, we utilize that the map θ has this property.

Theorem 6.7. We have θ(S1, S2) = (θ̃ ◦λ)(S1, S2) for any (S1, S2) ∈ CPsh(ℓ, h, a, b).

Proof. Note that λ does not affect S2 and both θ and θ̃ replace S2 with its complement.

The map θ depends on which edges of S2 are overshadowing in (S1, S2), while the map θ̃
depends analogously on which edges of S2 are overflowing in λ(S1, S2). By Lemma 3.11,
the overshadowing edges of (S1, S2) coincide with the overflowing edges of λ(S1, S2).
Therefore, we can conclude that the maps are the same. □

Corollary 6.8. For compatible pairs on Dyck paths corresponding to cluster monomials,

the map θ̃ preserves compatibility.

Proof. By Lemma 3.9, the map λ−1 preserves compatibility for the cluster monomials

(which includes the setting in which θ̃ is defined). By Theorem 6.7, we have θ̃ = θ ◦ λ−1.

Since the map θ preserves compatibility (see [19, Lemma 3.5]), we can conclude that θ̃
does as well. □

6.3. Preservation of Quantum Weight

We now show that, on a path P(ℓ, h) corresponding to a cluster monomial, the map θ̃
preserves the quantum weights of compatible pairs. Thus, the map φ : CP(ℓ, h, a, b) →
BL−(ℓ, h, a, b) is a q-weighted bijection (see Theorem 6.18). Throughout this section, let

(S̃1, S̃2) = θ̃(S1, S2).

Proposition 6.9. Let ω ∈ {h, v,H, V }∗ be the word associated to a compatible pair in
CP(ℓ, h, a, b) where P(ℓ, h) corresponds to a cluster monomial. If we swap an instance h
with an H to its right such that the segment σ between them satisfies |σh|+ |σH | = r|σV |,
then the quantum weight increases by 2r.
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p1 p2 p3

p4

η8

Cn

Cn−1 ν2

Figure 6. An illustration of the construction in Lemma 6.10.

Proof. Note that the above expression does not take into account |σv|. Moreover, the
quantum weight contributed from portions of ω outside the segment hσH (or Hσh) are
unaffected. We can then calculate that

wq(Hσh) = wq(Hh) + wq(|σH |HH + |σV |HV + |σh|Hh+ |σv|Hv)

+ wq(|σH |Hh+ |σV |V h+ |σh|hh+ |σv|vh)
= r + |σV |(1− r2) + |σh|r + |σv|+ |σH |r − |σV | − |σv|
= r + |σV |(1− r2) + (r|σV | − |σH |)r + |σH |r − |σV |
= r

and

wq(hσH) = wq(hH) + wq(|σH |hH + |σV |hV + |σh|hh+ |σv|hv)
+ wq(|σH |HH + |σV |V H + |σh|hH + |σv|vH)

= −r − |σH |r + |σV |+ |σv|+ |σV |(r2 − 1)− |σh|r − |σv|
= −r − (r|σV | − |σh|)r + |σV |+ |σV |(r2 − 1)− |σh|r
= −r .

The resulting change in the quantum weight is then wq(Hσh−hσH) = 2r, as desired. □
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Let L be a set of letters. Let |W |L denote the number of entries of W that are in L
(with multiplicity). For integers si and words Wi, let

∣∣∑
1≤i≤k siWi

∣∣
L
=
∑

1≤i≤k si|Wi|L.

Lemma 6.10. Fix a positive compatible pair (S1, S2) on Cn. Suppose that the horizontal
edge ηi /∈ S1 is cascade-paired with νj ∈ S2 and that ηi is to the left of νj. Then

wq(S1 ∪ {ηi}, S2)− wq(S1, S2) = wq(S̃1, S̃2 ∪ {νj′})− wq(S̃1, S̃2) .

Proof. We begin by decomposing Cn into several paths. Let p1 be the leftmost point
along Cn at the same height at ηi. Let p2 be the left endpoint of ηi and let p3 be the top
endpoint of νj. Let X be subpath of Cn consisting of all edges below p1, and let Y be
the path from p1 to p2. Let S be the path from p2 to p3, and let Z be the subpath of Cn
consisting of all edges to the right of p3.

We similarly decompose Cn−1 into several paths. Let X̃ be the image of X, S̃ be the

image of Y ∪ {ηi} ∪ S with νj′ removed, and Z̃ be the image of Z.

Expanding out the pairs of edges that involve ηi in Cn, we have

wq(S1 ∪ {ηi}, S2)− wq(S1, S2) = wq(XYHSZ −XY hSZ)

= r|S + Z −X − Y |h,H + r2|X + Y − S − Z|V
and

wq(S̃1, S̃2 ∪ {ηj})− wq(S̃1, S̃2) = r|X̃ + S̃ − Z̃|v,V + r2|Z̃ − X̃ − S̃|H .

Thus, we want to show that the quantity

α := r
(
|S + Z −X − Y |h,H + |Z̃ − X̃ − S̃|v,V

)
+ r2

(
|X + Y − S − Z|V + |X̃ + S̃ − Z̃|H

)
vanishes. By the definition of the map ρ, we have

r|X|v,V − |X|h,H = |X̃|v,V and r|Z|v,V − |Z|h,H = |Z̃|v,V .

Hence

r2|X − Z|V + r|Z −X|h,H + r|Z̃ − X̃|v,V = r2|Z −X|v .
Plugging this into our expression for α, we find

α = r
(
|S − Y |h,H − |S̃|v,V

)
+ r2

(
|Y − S|V + |X̃ + S̃ − Z̃|H + |Z −X|v

)
.

By the definition of the map ρ, we have |W |V = |W̃ |h and |W |v = |W̃ |H for W =
X,S, Z. We also must have |Y |v,V = 0. Thus, we can further simplify α to

α = r
(
|S − Y |h,H − |S̃|v,V

)
+ r2 (|S|v − |S|V ) .
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p1 p2 p3
η18

Cn

Cn−1 ν2

Figure 7. An illustration of the construction in Lemma 6.11.

We furthermore have

r|S|v,V − |Y + S|h,H − 1 = |S̃|v,V + 1 ,

hence we have

α = 2r|S|h,H − 2r2|S|V + 2r = −2r(r|S|V − |S|h,H − 1) .

Since the shadow of νj extends to ηi, we have r|S|V − |S|h,H − 1 = 0. We can therefore
conclude that α = 0, as desired. □

Lemma 6.11. Fix a positive compatible pair (S1, S2) on Cn. Suppose that the horizontal
edge ηi /∈ S1 is cascade-paired with νj ∈ S2 and that ηi is to the right of νj. Then

wq(S1 ∪ {ηi}, S2)− wq(S1, S2) = wq(S̃1, S̃2 ∪ {νj′})− wq(S̃1, S̃2)

Proof. We proceed via analogous methods to the proof of Lemma 6.10. We start by
decomposing Cn into several paths. Let p1 be the left endpoint of ηi and let p2 be the
right endpoint of ηi. Let p3 be the rightmost point along Cn at the same height as ηi.
Let S be subpath of Cn consisting of all edges below p1, and let Y be the path from p1
to p2. Let S be the path from p2 to p3, and let Z be the subpath of Cn consisting of all
edges to the right of or above p3. Note that sh(νj;S2) = S ∪ Y ∪ {ηi}.



BROKEN LINES AND COMPATIBLE PAIRS FOR RANK 2 QUANTUM CLUSTER ALGEBRAS 30

We similarly decompose Cn−1 into several paths. Let S̃ be the image of S with νj′

removed, and let Z̃ be the image of {ηi} ∪ Y ∪ Z.

Expanding out the pairs of edges that involve ηi in Cn, we have

wq(S1 ∪ {ηi}, S2)− wq(S1, S2) = wq(SY HZ − SY hZ)

= r|Y + Z − S|h,H + r2|S − Y − Z|V
= r|Y + Z − S|h,H + r2|S − Z|V

and

wq(S̃1, S̃2 ∪ {ηj})− wq(S̃1, S̃2) = r|S̃ − Z̃|v,V + r2|Z̃ − S̃|H .

Thus, we want to show that the quantity

α := r
(
|Y + Z − S|h,H + |Z̃ − S̃|v,V

)
+ r2

(
|S − Z|V + |S̃ − Z̃|H

)
vanishes.

By the definition of the map ρ, we have

r|S|v,V − |S|h,H = |S̃|v,V + 1

and

r|Z|v,V − |Y + Z|h,H − 1 = |Z̃|v,V .

Substituting these into our expression for α, we have

α = r
(
|Y + Z|h,H + |Z̃|v,V

)
+ r2

(
−|Z|V + |S̃ − Z̃|H − |S|v

)
+ r

= r2
(
|Z − S|v + |S̃ − Z̃|H

)
.

We furthermore have that |S|v = |S̃|H and |Z|v = |Z̃|H . We can thus conclude that
α = 0, as desired. □

Lemma 6.12. For any compatible pair (S1, S2) with S1 ⊆ cas(S2), we have

wq(S1 ∪ (P1 \ sh(S2)), S2) = wq(S1, S2) .

Proof. This follows because, for any m ∈ Z≥0, we have

wq(V h+mhh+ (r −m)Hh) = wq(V H +mhH + (r −m)HH)

and wq(hv) = wq(Hv). □

Lemma 6.13. If rb ≤ ℓ and the path P(ℓ, h) corresponds to a cluster monomial, then the

restriction of the θ̃ to the set CPcas(ℓ, h, a, b) preserves the quantum weight of compatible
pairs.
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Proof. We first see that θ̃ preserves quantum weights when S1 is empty, since the quantum
weight of (∅, S2) only depends on the number of i, j ∈ [h] such that νi ∈ S2 and νj /∈ S1.

An analogous statement holds for θ̃(∅, S2) = (∅, ∅).
One can then add on horizontal edges to the compatible pair one-by-one. The fact

that the quantum weight is preserved under this operation follows from Lemma 6.10 and
Lemma 6.11. □

We lastly show that the compatible pairs satisfy an analogous recursion to that for the
broken lines Lemma 5.7.

Lemma 6.14. If rb ≤ cn+1, We have that

|CP(cn+1, cn, a, b)|q =
a∑

t=0

(
cn+1 − rb

t

)
q2r

|CP(cn, cn−1, r(a− t)− b, a− t)|q .

Proof. We first note that

|CP(cn+1, cn, , a, b)|q =
a⋃

t=0

|{(S1, S2) ∈ CP(cn+1, cn, a, b) : | cas(S2) ∩ S1| = t}| .

Hence, by Proposition 6.9 and Lemma 6.13, we have

|CP(cn+1, cn, , a, b)|q =
a∑

t=0

(
cn+1 − rb

t

)
q2r

|CPcas(cn+1, cn, a− t, b)|q .

Then, applying θ to CPcas(cn+1, cn, a− t, b) and using Lemma 6.12, we have

|CPcas(cn+1, cn, a− t, b)|q = |{(S1, S2) ∈ CP(cn, cn−1, cn − b, a− t) : P1 \ cas(S2) ⊆ S1}|q
= |CPcas(cn, cn−1, r(a− t)− b, a− t)|q .

The desired equality follows from substituting the above expression in the summation. □

6.4. From Cluster Variables to Cluster Monomials

The quantum analogs of cluster monomials for Aq(r, r) the bar-invariant quantum

cluster monomials, which are elements in T of the form qαβXα
nX

β
n+1.

While we have restricted the proofs in this section to the cluster variable case for
simplicity, the same methods can be readily adapted to the case of cluster monomials.
In this subsection, we outline the main steps of this adaptation to the cluster monomial
case.

Let cn[α, β] = αcn + βcn−1. Note that the sequence cn[α, β] still satisfies the recursion
cn+1[α, β] = rcn[α, β]− cn−1[α, β], and that cn = cn[1, 0].
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Remark 6.15. The statement and proofs of Corollary 5.2, Proposition 5.3, and Lemma 5.7
hold true if cn is replaced with cn[α, β] whenever n ∈ {h − ℓ + 1, h − 1, h, h + 1, h + ℓ}.
Thus, we have

|BL−(cn+1[α, β], cn[α, β], a, b)|q =
a∑

t=0

(
cn[α, β]− b

a− t

)
q2r

|BL−(cn[α, β], cn−1[α, β], rt−b, t)|q .

In order to study the compatible pairs associated to cluster monomials, we first address
how to construct cascades.

Remark 6.16. The path P(αcn + βcn+1, αcn−1 + βcn) can be constructed by appending
copies of the paths P(cn, cn−1) or P(cn+1, cn). Proceeding from left to right, the ith

subpath appended is P(cn+1, cn) whenever the ith edge of P(α, β) is horizontal and is
P(cn, cn−1) otherwise.

Definition 6.17. Let P = P(αcn + βcn+1, αcn−1 + βcn) be a maximal Dyck path corre-
sponding to a cluster monomial in A(r, r). Decompose P into α+β subpaths {Pi}1≤i≤α+β

of the form P(cn, cn−1) or P(cn+1, cn). Then, for S2 ⊂ P2, the cascade of S2 is computed
locally on each subpath Pi according to Definition 3.3.

Having constructed cascades, the definition of the map θ̃ can then be extended directly

to the cluster monomial case. The proof that θ̃ preserves quantum weights follows iden-
tically from that in Subsection 6.3 except that now cascades are considered locally on
each subpath Pi. That is, one can readily check that the quantum weight is preserved for
compatible pairs with no horizontal edge, and then one can iteratively add in horizontal
edges using Lemma 6.10 and Lemma 6.11. From this, we can conclude

|CP(cn+1[α, β], cn[α, β], a, b)|q =
a∑

t=0

(
cn[α, β]− a

a− t

)
q2r

|CP(cn[α, β], cn−1[α, β], rt−b, t)|q .

Combining this with Remark 6.15, we can conclude that, in the cluster monomial setting,

θ̃ is a weighted bijection that preserves quantum weights. Thus, we can conclude that φ
is a q-weighted bijection in the cluster monomial case.

Theorem 6.18. If rb ≤ ℓ and the path P(ℓ, h) corresponds to a cluster monomial, then
the map φ : CP(ℓ, h, a, b) → BL−(ℓ, h, a, b) is a q-weighted bijection.

Proof. By the above discussion, it is enough to consider the cluster variable case. The map

φ is defined by taking successive applications of the map θ̃ and extracting the associated
quantum binomial coefficient, which also corresponds to a bending of a broken line at one
wall of the scattering diagram. A recursion for the quantum weights of the compatible

pairs in terms of θ̃ is given in Lemma 6.14 that matches the recursion given for broken
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lines of negative angular momentum Lemma 5.7. Thus, we can conclude that φ is a
bijection that preserves quantum weights. □

By Lemma 2.7, Theorem 6.18 applies to almost all compatible pairs on paths corre-
sponding to cluster monomials.

7. A Bijection for the Kronecker Theta Basis

In this section, we now study a map between all compatible pairs and broken lines
corresponding to theta basis elements of the quantum Kronecker cluster algebra Aq(2, 2).
We then show that the theta basis for the quantum Kronecker cluster algebra coincides
with many other bases, including the quantum triangular, greedy, and bracelets bases.

7.1. Positive angular momentum

In order to handle the positive angular momentum case, we first extend our map θ̃.
The fact that this map indeed preserves compatibility is shown in Proposition 7.3. We
will be primarily interested in the cascade structure of P(n− 3, n− 2), which is obtained
from Cn by a reflection. Since we are working in the reflected Dyck path, we take the
convention that |S1| = b and |S2| = a in this subsection.

Definition 7.1. Suppose 2a ≤ h−1 and r = 2. We define a map θ̃ : CPcas(h−1, h, b, a) →
CP(h, h+1, h−a, b) taking a compatible pair (S1, S2) on P = P(h−1, h) to a compatible

pair (S̃1, S̃2) on P ′ = P(h, h+ 1) by

• S̃1 = {ηi ∈ P ′ : νi ∈ P \S2},
• S̃2 \{νh, νh+1} = {νj ∈ P ′ : νpro,j is overflowing}, and
• νh ∈ P ′ (resp. νh+1 ∈ P ′) is included in S̃2 if the horizontal edge that is 1-cascade-
paired (resp. 2-cascade-paired) with νh ∈ P is in S1.

Remark 7.2. In a sense, Definition 7.1 is a natural extension of Definition 6.2. This is
because, by definition, a vertical edge is overflowing if and only if the horizontal edge
that is r-cascade-paired with it is in S1. The only difference is that in this case, we need
to also consider whether the horizontal edge that is 1-cascade-paired with each vertical
edge is in S1. This is only possible for the vertical edge νh ∈ P , hence why the last
condition is added to handle this case.

Proposition 7.3. If 2a ≤ h−1, then the map θ̃ : CPcas(h−1, h, b, a) → CP(h, h+1, h−
a, b) preserves compatibility.

Proof. It is a straightforward consequence of the definition of compatibility that a pair
(S1, S2) on P(h − 1, h) is compatible if and only if, whenever νj is in S2, there is no
vertical edge at height j − 1 or j − 2 (where the height of η1 is 0).
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θ̃

Figure 8. An illustration of the map θ̃ applied to the compatible pair
(S1, S2) on P(12, 13), where S1 = {η5, η6, η8, η9} and S2 =
{ν1, ν3, ν4, ν11, ν12, ν13}.

Suppose (S1, S2) is a compatible pair on P(h − 1, h), and let θ̃(S1, S2) = (S̃1, S̃2).

Suppose νj ∈ S̃2 for some j < h. Then νj ∈ S2 is overshadowing, which implies that

j = 1 or νj−1 ∈ S2. Hence, ηj and ηj−1 are not in S̃1. Moreover, if νh ∈ S2, then ηh /∈ S̃1.
Combining this with the characterization of compatible pairs above, we can conclude

that (S̃1, S̃2) is compatible. □

Another distinction of the positive angular momentum case is that the size of S2 is only
non-decreasing, rather than strictly decreasing as in the negative angular momentum

case. Let (S
(i)
1 , S

(i)
2 ) = θ̃ ◦ θ̃ ◦ · · · ◦ θ̃︸ ︷︷ ︸

i

(S1, S2) for i ≥ 0. Let ai = |S(i)
2 |. We then set

a∞ = limi→∞ ai.

θ̃ θ̃

Figure 9. This figure depicts a compatible pair where |S2| = |S(i)
2 | for all

i ≥ 0. In this example, we have a∞ = 3.
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We can characterize the compatible pairs for which applying θ̃ does not decrease |S2|
as follows.

Proposition 7.4. Suppose (S1, S2) is a compatible pair on P(h−1, h), and let θ̃(S1, S2) =

(S̃1, S̃2) If |S2| = |S̃2|, then (S1, S2) is of the form

S2 = {νk ∈ P : k ∈ [1, i] ∪ [h− j + 1, h]} .
S1 ⊃ {ηk : k ∈ [i+ 1, 2i] ∪ [h− 2j + 1, h− j]} .

Moreover, we have that, if θ̃(S̃1, S̃2) = (S ′
1, S

′
2), then |S ′

2| = |S̃2|.

Proof. Consider a collection C of contiguous vertical edges in S2. If the collection does not
contain νh, then cas(C) contains the horizontal edge preceding each edge in C. These
cannot be included S1, so | cas(C) ∩ S1| ≤ |C|. Moreover, if νj is the lowest edge in
C for j ≥ 2, then ηj−1 must not be in S1 in order to maintain compatibility. Hence
|S1 ∩ cas(C)| ≤ |C| − 1.

The only cases that were excluded in the above consideration are when ν1 or νh is
in C. In both cases, the above arguments show that | cas(C) ∩ S1| ≤ |C|. Thus, if
| cas(C) ∩ S1| ≤ |C|, then C must be a contiguous set of vertical edges at the top or
bottom of P , and S1 ∩ cas(C) must be maximal while maintaining the compatibility
condition.

Lastly, note that if we apply θ̃ to a compatible pair of this form, the resulting compat-
ible pair is also of this form. □

Definition 7.5. The map φ takes the compatible pair (S1, S2) ∈ CP(h−1, h, b, a) to the
broken line in BL+(h, h − 1, b, a) that crosses the wall d1 with multiplicity a∞ and the
wall d(i−1)/i with multiplicity ai−1 − (2ai − ai+1).

Theorem 7.6. If 2a ≤ h− 1, the map φ is a q-weighted bijection from CP(h− 1, h, b, a)
to BL+(h, h− 1, b, a).

Proof. The proof follows similarly to that of Theorem 6.18, since the map φ is still defined

by taking successive applications of the map θ̃ and extracting the associated quantum
binomial coefficient. One can obtain a quantum recursion for the compatible pairs using
Proposition 7.3 and Proposition 7.4 that matches the recursion given for broken lines
of positive angular momentum given in Lemma 5.9. Thus, we can conclude that φ is a
bijection that preserves quantum weights. □

7.2. The theta basis element with initial exponent (m,m)

The only elements of the theta basis in Aq(2, 2) that are not cluster monomials are the
theta functions ϑQ,(m,m) (where Q is a generic point in the first quadrant). In contrast to
the cluster monomial case, a quantum weighting for the corresponding compatible pairs
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θ θ

Figure 10. The leftmost diagram represents a compatible pair in
CP−(12, 12, 3, 6). The middle image is its image under θ, which is a com-
patible pair in CP−(12, 12, 7, 3). The rightmost image is the compatible
pair in CP−(12, 12, 9, 1) resulting from another application of θ. Any sub-
sequent applications of θ result in the empty compatible pair.

on P(m,m) has not yet been constructed. We begin by defining such a quantization.
This quantization is defined recursively, rather than as a sum over pairs of edges as in
Rupel’s quantization. This definition is convenient for our recursive approach to the
bijection, though we expect that a more natural generalization of Rupel’s quantization
can be formulated.

The quantum weighting will be defined recursively using the map θ between compatible
pairs constructed by Lee–Li–Zelevinsky (see Definition 6.5 for the definition). Note that

we use the map θ rather than θ̃ because the statement in Lemma 3.9 fails for the Dyck
path P(m,m). This recursion involves choosing a term of a quantum binomial coefficient
according to the image of a compatible pair under θ.

The quantum binomial coefficient
(
h
k

)
q
is naturally viewed as a sum over size-k subsets

of [h] of monomial terms, i.e,
(
h
k

)
q
= qc

∑
J⊆[h]//|J |=k q

2
∑

j∈J j for some constant c =

c(h, k). Given a size-k subset J ⊆ [h], let
(
[h]
J

)
q
denote the exponent of the monomial

corresponding to J in
(
h
k

)
q
.

Definition 7.7. The quantum weight wq(S1, S2) of a compatible pair (S1, S2) on P(m,m)
can be determined recursively as follows:

As a base case, we set wq(P1, ∅) = 0.

Let U = P1 \ sh(S2) = {ηi1 , . . . , ηih} be the set of horizontal edges that are not in the
shadow of S2, where i1 < · · · < ih. Then U \S1 = {ηij : j ∈ J} for some J ⊆ {1, . . . , h}.
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We then set

wq(S1, S2) = wq(S
′
1, S

′
2) +

(
[h]

J

)
q4
,

where (S ′
1, S

′
2) = θ(S1, S2).

Note that, if (S ′
1, S

′
2) = θ(S1, S2), then |S ′

1| ≥ min(m, |S1|+1) and |S ′
2| ≤ max(0, |S2|−

1). Thus, any compatible pair is sent to (P1, ∅) under finitely many applications of θ, so
Definition 7.7 is well-defined.

Using the quantum weighting, we can construct a map from compatible pairs to broken

lines that respects quantum weights. Let (S
(i)
1 , S

(i)
2 ) = θ ◦ · · · ◦ θ︸ ︷︷ ︸

i

(S1, S2).

Definition 7.8. Let φ : CP(m,m, a, b) → BL−(m,m, a, b) be the map taking the com-
patible pair (S1, S2) to the broken line that bending at the wall d(ℓ−1)/ℓ with multiplicity

h+ |S(ℓ+1)
2 | − 2|S(ℓ)

2 | − |S(ℓ)
1 |.

Theorem 7.9. If 2b ≤ m, the map φ : CP(m,m, a, b) → BL−(m,m, a, b) is a q-weighted
bijection.

Proof. The size of the set J in applying Definition 7.7 to the compatible pair (S
(ℓ)
1 , S

(ℓ)
2 )

is precisely h + |S(ℓ+1)
2 | − 2|S(ℓ)

2 | − |S(ℓ)
1 |. Thus, the binomial coefficient factor that a

broken line attains by bending at the wall d(ℓ−1)/ℓ is the same as the binomial coefficient
in Definition 7.7 attained by applying θ to the set of corresponding compatible pairs. □

Note that the positive angular momentum case is symmetric to the negative angular
momentum case by reflecting the scattering diagram along the line y = x. As a result of
the bijectivity of φ, we obtain an expansion formula in terms of compatible pairs for the
quantum theta basis element θ(m,m),q.

Theorem 7.10. The theta basis element ϑQ,(m,m) in Aq(2, 2) is given by

ϑQ,(m,m) =
∑

(S1,S2)

qwq(S1,S2)X
−m+r|S2|
1 X

−m+r|S1|
2 ,

where the sum ranges over all compatible pairs on P(m,m).

Proof. By definition, the theta function ϑQ,(m,m) can be expressed as a sum over broken
lines. Using Theorem 7.9, the expansion formula in terms of compatible pairs follows
directly by applying the bijection φ to the corresponding broken lines. □
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7.3. Equivalence of bases for the quantum Kronecker cluster algebra

Lastly, we show that, for the quantum Kronecker cluster algebra, the quantum theta
basis coincides with a number of other bases. The bases we consider are

(1) the quantum bracelets basis [30, Definition 4.9],
(2) the quantum theta basis [9, Proposition 3.1]*,
(3) the basis B consisting of the quantum cluster monomials and {zn}n≥1 in [10,

Definition 3.4],
(4) the quantum triangular basis [3, Theorem 1.4], and
(5) the quantum greedy basis [18, Theorem 9].

The following discussion concerns only the quantum Kronecker cluster algebra, though
these bases may coincide in a more general setting. All bases mentioned contain the
cluster monomials, so it is enough to show that the remaining elements coincide.

The fact that (1) and (2) coincide is due to the recent work of Mandel and Qin [25,
Theorem 1.4], who showed that the theta and bracelets bases coincide in a much more
general setting.

To show that (2) and (3) coincide, it is enough to check that (the specialization of)
ϑQ,(1,−1,0,0) and z1 are equal. This is because the zn’s satisfy the Chebyshev recursion
of the first kind by definition, while Mandel and Qin [25, Example 5.8] showed that the
same recursion holds for the theta functions ϑQ,(n,−n,0,0). By comparing [6, Lemma 3.3]
and [25, Lemma 8.4], it is readily seen that z1 = ϑQ,(1,−1,0,0)|y1=y2=1.

The bases (3) and (4) can be shown to coincide by recent work of Li [23, Theorem
1.2] which determine the support of triangular basis elements for skew-symmetric rank-
2 quantum cluster algebras. It is then straightforward to check that the supports of
the elements zn are equal to the supports of the non-cluster-monomial elements in the
triangular basis, so the bases coincide.

We can then show that (3) and (5) coincide by directly verifying that the elements zn
satisfy the recursion given in [18, Theorem 7], which characterizes the greedy basis. We
do so using the Laurent expansion of zn given by the work of Ding-Xu. It follows directly
from [10, Proposition 4.4] that zn = sn − sn−2, where sn is the element

(7.11) sn =
∑

p+r≤n

(
n− r

p

)
q

(
n− p

r

)
q

q−(2p−n)(2r−n)X2p−n
1 X2r−n

2 .

*This work uses a quantization of the cluster algebra with principal coefficients. In this case,
the mutable variables commute, while the principal coefficients y1 and y2 quasi-commute. In order to
reconcile this with the coefficient-free case, one can reorder y±1

1 and y±1
2 if necessary and then specialize

the principal coefficients to 1.
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This is a special case of the q-analogue of the following lemma, which can be easily
proved by the standard generating function method.

Lemma 7.12. For any nonnegative integers n, p, r with p ≥ r, we have
p∑

k=0

(−1)k
(
n− 1− r

p− k

)
P (k)

(
n− 2r + k − 1

k

)
= 0,

where P (x) is any polynomial in x of degree ≤ r − 1.

Remark 7.13. We note that the basis consisting of the cluster monomials and {sn}n≥1

that appears in the work of Çanakçı and Lampe [6, Definition 4.15]* is not identical
to these other bases. It instead coincides (after specializing and possibly reordering the
principal coefficients) with the basis S from the work of Ding-Xu [10, Definition 3.4]. The
elements sn are related to the elements zn in the basis B, and their Laurent expansion
is given in Equation 7.11. The work of Çanakçı and Lampe was later generalized to
quantum cluster algebras from unpunctured orbifolds by Min Huang [16].
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