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We study temporal entanglement in dual-unitary Clifford circuits with probabilistic measurements preserving
spatial unitarity. We exactly characterize the temporal entanglement barrier in the measurement-free regime,
exhibiting ballistic growth and decay and a volume-law peak. In the presence of measurements, we show that the
initial ballistic growth of temporal entanglement with bath size is modified to diffusive, which can be understood
through a mapping to a persistent random walk model. The peak value of the temporal entanglement barrier
exhibits volume-law scaling for all measurement rates. Additionally, measurements modify the ballistic decay to
the “perfect dephaser limit” with vanishing temporal entanglement to an exponential decay, which we describe
through a spatial transfer matrix method. The spatial dynamics is shown to be described by a non-Hermitian
hopping model, exhibiting a PT-breaking transition at a critical measurement rate 𝑝 = 1/2.

I. INTRODUCTION

Quantum circuit models recently emerged as a field of
rapidly growing interest due to both experimental progress on
noisy intermediate-scale quantum (NISQ) devices and newly-
developed theoretical treatments. Experimentally, immense
progress was made on realizing novel many-body quantum
phases on quantum processors, such as topologically ordered
states and time-crystalline eigenstate order [1–3]. Numerically,
tensor-network based methods find natural applications in rep-
resenting and simulating quantum circuits with built-in local
structures, such as the brickwork or the staircase circuit ge-
ometries [4–7]. Restricted classes of quantum circuits were
additionally found to admit exact solvability, which allows
for benchmarking of numerical and experimental results. One
such example is the class of dual-unitary circuits, possessing
unitarity along both the temporal and the spatial directions.
Such circuits can act as minimal models for capturing a wide
range of phenomena in many-body quantum dynamics [8–14].
On the one hand, unitarity in both space and time yields ana-
lytical solvability of such models; on the other, the constraint
is loose enough to allow for generic behaviors ranging from
integrable to chaotic dynamics [9, 12, 15, 16]. Besides these
advances in methodology, quantum circuits present a natural
setup for studying and observing new intriguing physical phe-
nomena, with measurement-induced phase transitions as one of
the paradigmatic examples [17–27]. These are new classes of
nonequilibrium quantum phase transitions that manifest them-
selves in the entanglement scaling of the quantum systems
of interest. Except for certain limiting cases, the universality
classes of such transitions do not match any known classes,
and immense effort is devoted to analytically characterizing
the nature of such transitions.

For circuits with generic choice of gates, either originating
from Trotterized Hamiltonian dynamics or directly represent-
ing Floquet unitary dynamics, exact results are generally out
of reach, and matrix product state (MPS) evolution presents
a natural choice of numerical method. In conventional ap-
proaches, one starts with the wave function represented as
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an MPS and updates it along the temporal direction by suc-
cessively applying the appropriate unitary evolution operators
[28–33]. The numerical simulability of the system dynamics is
determined by the scaling of the required bond dimension for
storing the MPS wave function, which is physically governed
by the growth of spatial entanglement [34–36].

An alternative approach dubbed the “folding algorithm” was
proposed in Ref. [37], where one updates the time-evolved
density matrix as a so-called “folded” MPS. In the folded
representation, the density matrix 𝜌 is expressed as a wave
function using the operator-state mapping: 𝜌 = |Ψ⟩⟨Ψ| →
|𝜌⟩ = |Ψ⟩ ⊗ |Ψ⟩∗. The dynamics of this state follows as
|𝜌(𝑡)⟩ = (𝑈 ⊗𝑈∗) |Ψ0⟩ ⊗ |Ψ0⟩∗. The trace operation, naturally
appearing when calculating expectation values of observables,
can be written as an inner product

tr(𝜌(𝑡)) ≡ ⟨tr |𝜌(𝑡)⟩ = ⟨tr| (𝑈 ⊗ 𝑈∗) |Ψ⟩ ⊗ |Ψ⟩∗, (1)

where the first equation defines the inner product between a
state vector and the “trace vector” ⟨tr|.

The expectation value of a local observable 𝑂 can be ex-
pressed in the folded representation as

⟨𝑂 (𝑡)⟩ = ⟨tr |𝑂 |𝜌(𝑡)⟩ = ⟨tr |𝑂 (𝑈 ⊗ 𝑈∗) |Ψ⟩ ⊗ |Ψ⟩∗

=
(2)

In the final equality we graphically represent the equation in the
tensor network language (see e.g. Ref. [38]), making explicit
the folding.

For a local observable 𝑂 supported on e.g. a single site, one
could treat the spatial slice where 𝑂 acts nontrivially separately
from the regions to its left and right, where it acts trivially. To
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do so, ⟨𝑂 (𝑡)⟩ can be re-expressed as

⟨𝑂 (𝑡)⟩ = ⟨𝐼left |T𝑂 |𝐼right⟩

=
(3)

For a spatially homogeneous evolution it is possible to iden-
tify a spatial transfer matrix such that the regions to the right
and to the left can be written as powers of this matrix. Using
⟨𝐼left | as an example, in the folding algorithm, one starts with
an arbitrary temporal MPS, ⟨Φ| ⊗ ⟨Φ|∗, fixing the left boundary
and successively applies to it the spatial transfer matrix T . The
thermodynamic limit of infinite system size can be taken by
projecting ⟨Φ| ⊗ ⟨Φ|∗ onto ⟨𝐿 |, the dominant left eigenvector
of T :

⟨𝐼left |𝐿→∞ = lim
𝐿→∞

(
(⟨Φ| ⊗ ⟨Φ|∗) T 𝐿

)

= lim
𝐿→∞

©«

ª®®®®®®®®®®®®¬
=

𝐿

= ⟨𝐿 |

(4)

Analogously, |𝐼right⟩𝐿→∞ = lim𝐿→∞
(
T 𝐿 ( |Φ⟩ ⊗ |Φ⟩∗)

)
=

|𝑅⟩ is the dominant right eigenvector of T .
Once these dominant eigenvectors are obtained, the value of

⟨𝑂 (𝑡)⟩ in the thermodynamic limit can be computed as:

lim
𝐿→∞

⟨𝑂 (𝑡)⟩ =
𝐿

𝑂

𝒯𝑂 |𝑅⟩

(5)

In the context of quenched dynamics, the folding algorithm
typically allows for dynamical studies that can reach longer

times than conventional methods. The numerical complex-
ity is determined by the scaling of maximal entanglement of
the temporal MPS’s ⟨𝐼left | and |𝐼right⟩, dubbed the “temporal
entanglement” [39, 40].

Using ⟨𝐼left | as example, the temporal entanglement 𝑆𝑇 is
defined as

𝑆𝑇 = max
𝑡𝑖=𝑡1...𝑡𝑇−1

𝑆
(𝑡𝑖 )
𝑇

≡ max
𝑡𝑖=𝑡1...𝑡𝑇−1

𝑆vN (𝜌⟨𝐼left |
𝑡𝑖

) (6)

where 𝑆vN denotes the von Neumann entanglement entropy
and 𝜌

⟨𝐼left |
𝑡𝑖

is the reduced density matrix of ⟨𝐼left | with respect
to the temporal bipartition at time 𝑡𝑖:

𝜌
⟨𝐼left |
𝑡𝑖

= (7)

Analogous to the Feynman-Vernon influence functional [41],
the vectorized tensors ⟨𝐼left | and |𝐼right⟩ are dubbed “influence
matrices” and interpreted as effective baths for the “impurity”
T𝑂 in Ref. [42]. Temporal entanglement therefore character-
izes the memory effects, or non-Markovianity, of the effective
bath.

Within the context of open quantum systems coupled to non-
Markovian environments, an object analogous to the influence
matrix was proposed and dubbed the “process tensor” [43–45].
The process tensor captures the effects of a non-Markovian
environment and proves useful for studying the dynamics of
open quantum system. In the context of the present work, how-
ever, the division between the subsystem and the environment
is arbitrary due to the translational invariance of the system.
The focus is therefore on the influence matrix, which encodes
the dynamics of the closed quantum system, possibly subjected
to measurements.

Various works were recently conducted on different aspects
of the influence matrix and temporal entanglement. Areas
of interest include the behavior of temporal entanglement for
exactly solvable dynamics and dynamics close to integrabil-
ity [46–48], using the influence matrix for treating quantum
impurity problems [49–51], as well as using temporal entangle-
ment as a way of characterizing generic quantum many-body
dynamics [52].

Due to the action of tracing out these bath degrees of free-
dom at the end of the time evolution, or the “temporal bound-
ary”, temporal entanglement generally displays behaviors dif-
ferent from its spatial counterpart. For instance, a system with
spatial entanglement scaling as volume-law with system size
might have temporal entanglement that scales as area-law with
the total evolution time, and vice versa. A system which can-
not be efficiently simulated along the temporal direction could
admit a chance of being efficiently simulated along the spatial
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FIG. 1. Schematic illustration of the temporal entanglement 𝑆𝑇 at
different bath sizes 𝐿. 𝑆𝑇 does not increase monotonously with 𝐿 but
rather assumes a barrier-like shape. The bath size corresponding to
the peak of the barrier is dubbed the critical bath size, 𝐿𝑐 .

direction [40, 53, 54]. Observations as such motivate, from a
numerical methodology point of view, study on the temporal
entanglement scaling of (1+1) D quantum systems.

From a phenomenology perspective, temporal entanglement
attracts interest in its own right, since it serves as a potential
diagnostic for the nature of the quantum many-body dynamics.
Depending on whether the system is free, interacting integrable,
or chaotic, its temporal entanglement has been shown to display
different scaling behaviors. With certain free systems admitting
area-law temporal entanglement (TE) [55], certain interacting
integrable systems admitting log-law TE [48], and generic
chaotic systems admitting volume-law TE [52].

Despite growing interest in TE and its implication on the
dynamics, analytical treatments of the TE at finite bath size –
particularly its scaling with bath size – remains lacking. Such
properties are relevant since 1) TE is known to not increase
monotonously with bath size, but rather assumes a “barrier-
like” shape [56]; it is the peak of the barrier, rather than the
infinite-bath limit value of TE, that ultimately determines the
numerical simulability of the dynamics; 2) without proper
knowledge of the scaling of TE with bath size, or shape of
the temporal entanglement barrier (TEB), convergence of the
influence matrix (IM) to its thermodynamic-limit value may
be difficult to determine; 3) the shape of the TEB carries ad-
ditional information about the many-body dynamics that is
not accessible from just the thermodynamic-limit value. The
typical behavior of temporal entanglement with bath size is
illustrated in Fig. 1, peaking at a critical bath size 𝐿𝑐. Further-
more, only systems with unitary dynamics have been studied
so far, and TE in non-unitary systems, particularly monitored
quantum circuits, have not yet been treated. Given the rapidly
growing relevance of non-unitary quantum dynamics, it is nat-
ural to aim at developing a treatment for TE in non-unitary
systems.

The present work fills the aforementioned two gaps: numeri-
cal and analytical characterizations are provided on the scaling
of temporal entanglement with both total evolution time and
bath size in quantum circuits with and without probabilistic

𝑆𝑇 growth 𝑆𝑇 decay lim𝐿→∞ 𝑆𝑇 𝑆𝑇,peak 𝐿𝑐
Unitary 2𝐿 𝑇 − 𝐿 0 2𝑇/3 𝑇/3

Monitored ∝
√
𝐿 ∝ exp (−𝐿/𝜉) 0 𝑇/3 ∝ 𝑇2

TABLE I. Summary of Key Results. The variables in the entries
are as follows: 𝑆𝑇 denotes temporal entanglement, 𝐿 denotes the
bath size, and 𝑇 denotes the total evolution time. 𝜉 denotes some
characteristic decay scale for 𝑆𝑇 . 𝑆𝑇, peak denotes the peak 𝑆𝑇 value,
and 𝐿𝑐 denotes the critical bath size at which 𝑆𝑇, peak is reached.

measurements. The study is restricted to the class of dual-
unitary Clifford circuits, with only measurements that preserve
the spatial unitarity, in order to admit analytic results and allow
for numerical simulations for large system sizes. Most results
on the dynamics without measurements directly extends to
generic dual-unitary circuits.

A. Outline of the Paper

This paper is structured as follows. Sec. II introduces the
structure of the quantum circuits under study. Sec. III presents
numerical and analytical results on temporal entanglement (TE)
in circuits without measurements. Sec. IV presents numerical
and analytical results on circuits with measurements, where the
shape of the temporal entanglement barrier (TEB) is explained.
Sec. V presents numerical and analytical results on a non-
Hermitian phase transition with respective to the measurement
rate. Sec. VI discusses the generality of the results beyond the
simplest choice of SWAP gates, for which all derivations are
particularly transparent. Conclusions are presented in Sec. VII.

B. Summary of Key Results

Table I summarizes key findings of this paper. Shapes of
the temporal entanglement barrier (TEB) are characterized in
dual-unitary Clifford circuits with and without measurements,
dubbed “monitored” and “unitary” respectively. Upon intro-
ducing measurements, the initial growth of 𝑆𝑇 with 𝐿 changes
from linear to diffusive, while the later decay of 𝑆𝑇 with 𝐿

changes from linear to exponential. The “steady-state” value
of 𝑆𝑇 in the thermodynamic limit remains zero in both cases,
and the peak 𝑆𝑇 value in the monitored setup is half of that in
the unitary setup. The critical bath size 𝐿𝑐 at which 𝑆𝑇, peak is
reached scales quadratically with 𝑇 in the monitored case, to
be contrasted with the linear scaling with 𝑇 in the unitary case.

II. QUANTUM CIRCUIT SETUP

A. Brickwork Circuit Geometry

The quantum circuit of interest has the so-called “brickwork”
geometry. The unitary evolution operators consists of alternat-
ing odd and even layers, with each layer consisting of tensor
products of two-site unitary gates acting on odd and even bonds
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respectively:

𝑈 (𝑇) =
(∏
𝑖 odd

𝑈𝑖, 𝑖+1
∏
𝑖 even

𝑈𝑖, 𝑖+1

)𝑇

= . . .

(8)

where 𝑇 is the total number of update steps for the Floquet
evolution, which is henceforth referred to as the total evolution
time. The building blocks of the full evolution operator are
given by unitary matrices (gates) graphically represented as

𝑈𝑖, 𝑖+1 = . (9)

The brickwork geometry originates naturally from Trotterized
Hamiltonian dynamics, where one alternates between switch-
ing on local interactions on all even bonds and all odd bonds,
as is done in the Time-Evolving Block Decimation (TEBD)
algorithm [32, 57].

For simplicity and analytic tractability, the initial state is
chosen to be short-range entangled and takes the form:

|Ψ0⟩ = |𝜓⟩ ⊗ |𝜓⟩ ⊗ . . . ⊗ |𝜓⟩
=

(10)

where each two-site pair is denoted |𝜓⟩:

|𝜓⟩ =
∑︁
𝑎, 𝑏

𝜓𝑎𝑏 |𝑎⟩ ⊗ |𝑏⟩, 𝜓𝑎𝑏 =
a b

. (11)

Taken together, the time-evolved state in the folded picture
under the brickwork circuit can be graphically denoted as:

(𝑈 ⊗ 𝑈∗) |Ψ0⟩ ⊗ |Ψ0⟩∗

=

(12)

For convenience, we use the same graphical notation for 𝑈
and 𝑈∗, with the implicit convention that all circuits in the top
(bottom) layer correspond to 𝑈 (𝑈∗). The trace operation is
then applied at the end of the time evolution:

⟨𝐼left | =⟨tr | (𝑈 ⊗ 𝑈∗) |Ψ0⟩ ⊗ |Ψ0⟩∗

=

(13)

Following Ref. [42], the layer containing 𝑈 is dubbed the
“forward time contour”, and the layer containing 𝑈∗ is dubbed
the “backward time contour”.

We can identify a spatial transfer matrix T as:

T =
(14)

B. Dual-Unitary and Clifford Gates

In this work we will restrict ourselves to dual-unitary Clif-
ford gates. The two-site unitary gates appearing in the brick-
work circuit can generally be any element of 𝑈 (4). Any choice
of local unitary gates leads to global unitary time evolution, and
we will refer to the unitarity as temporal unitarity. Graphically,
this property reads:

Temporal Unitarity ⇔ = (15)

Spatial unitarity can be analogously defined as:

Spatial Unitarity ⇔ = (16)

Generally, a gate with temporal unitarity does not necessarily
possess spatial unitarity. In the case where the gate possesses
both, it is referred to as being “dual-unitary” [8, 10].

A general parametrization for two-site dual-unitary gates on
qubits is given by [8]:

𝑈 = 𝑒𝑖𝜙 (𝑢+ ⊗ 𝑢−)𝑉 [𝐽] (𝑣− ⊗ 𝑣+) , (17)

where 𝜙, 𝐽 ∈ R, 𝑢±, 𝑣± ∈ 𝑆𝑈 (2), and the entangling gate
defined as

𝑉 [𝐽] = exp
[
−𝑖

( 𝜋
4
𝜎𝑥 ⊗ 𝜎𝑥 +

𝜋

4
𝜎𝑦 ⊗ 𝜎𝑦 + 𝐽𝜎𝑧 ⊗ 𝜎𝑧

)]
,

(18)
which is also known as the Trotterized XXZ gate. A brickwork
circuit consisting of dual-unitary gates is itself dual-unitary.

The Clifford property refers to the fact that the gate can be
generated from a specific set of gates, namely:

𝑈Clifford ∈ ⟨{𝐻, 𝑆,CNOT}⟩ (19)

where, in the standard computational basis:

𝐻 =
1
√

2

[
1 1
1 −1

]
, 𝑆 =

[
1 0
0 𝑖

]
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
(20)
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Up to single-site Clifford gates, there are two classes of two-site
gates that are both dual-unitary and Clifford: the SWAP class
and the iSWAP class. Brickwork circuits consisting of dual-
unitary Clifford gates were previously studied in Ref. [58],
where such nonrandom quantum circuits are dubbed “crys-
talline quantum circuits”.

The SWAP and the iSWAP gates corresponds to the Heisen-
berg and the XX points in the dual-unitary parameterization,
respectively:

𝑈SWAP = 𝑉 [𝐽 =
𝜋

4
], 𝑈iSWAP = 𝑉 [𝐽 = 0], (21)

where 𝑉 [𝐽] is defined in Eq. (18). In the present work,
the SWAP gate and a variant in the iSWAP class are stud-
ied, namely the Clifford SDKI gate, or simply SDKI gate for
brevity:

𝑈SDKI = (𝐻 ⊗ 𝐻) (𝑆† ⊗ 𝑆†)𝑈iSWAP (𝐻 ⊗ 𝐻)
= 𝐶𝑍 (𝐻 ⊗ 𝐻)𝐶𝑍

=

(22)

The denomination of SDKIM originates from the use of this
gate in the self-dual kicked Ising model. The generic kicked
Ising model (KIM) is extensively studied in early works on
dual-unitarity [59, 60], temporal entanglement [42, 48, 56]
and emergent quantum state designs [61, 62]. The Clifford
points, albeit being singular points in the continuous param-
eter space, admit efficient numerical simulability [63]. This
motivates using the Clifford SDKI circuit alongside the SWAP
circuit as toy models for investigating behavior of the temporal
entanglement profile.

As pointed out in Ref. [64], the set of two-site dual-unitary
Clifford gates makes up 50% of total two-site Clifford gates.
The other two classes are the CNOT class and the identity
class [65]. As such, the gate choice of being dual-unitary and
Clifford is arguably not overly-constrained. While circuits
consisting of CNOT gates are not dual-unitary, they are ex-
tensively studied in the contexts of the Floquet quantum East
model [66, 67] as well as realizing generalized dual-unitary
circuits [68]. Various recent works studied the entanglement
membrane of such circuits [69, 70], with Ref. [71] focusing on
generalized dual-unitary Clifford circuits.

C. Space-time Rotation, Significance of the Trace Operation
and the Perfect-Dephaser Limit

The move from spatial entanglement to temporal entangle-
ment fits within the larger frame of space-time rotation, ex-
changing the role of discrete time and discrete space in lattice
circuit models [64, 72–75]. After space-time rotation, a two-
site unitary gate 𝑈 with matrix elements 𝑈𝑎𝑏,𝑐𝑑 becomes a

gate �̃� with matrix elements �̃�𝑏𝑑,𝑎𝑐 = 𝑈𝑎𝑏,𝑐𝑑:

𝑈𝑎𝑏,𝑐𝑑 =
space-time rotation
−−−−−−−−−−−−−→ �̃�𝑏𝑑,𝑎𝑐 =

(23)

Dual-unitary gates and dual-unitary circuits remain unitary
after space-time rotation by construction.

The choice of initial state can possibly undermine the dual-
unitarity of the circuit. For short-range entangled states as
introduced in Eq. (10) and (11), unitarity along the spatial
direction results in the condition

∑
𝑗 𝜓𝑖, 𝑗𝜓

∗
𝑘, 𝑗

= 𝛿𝑖𝑘 , leading to
so-called “solvable” initial states [14, 52], satisfying:

= (24)

By construction, such states possesses spatial unitarity. When
contracted to a dual-unitary circuit, the contracted circuit re-
mains unitary after space-time rotation.

Beyond short-range entangled states, solvability for gen-
eralized MPS initial states is discussed in Ref. [14]. For
simplicity and in order to preserve the Clifford property, we
choose |𝜓⟩ = ( |00⟩ + |11⟩)/

√
2 ≡ |𝐵𝐼⟩, such that:

= (25)

Given the open boundary condition defined by the brickwork
circuit structure in Eq. (8), the temporal MPS ⟨Φ| at the spatial
boundary consists of Bell-pair states connecting the site at time
𝑡𝑖 to the site at time 𝑡𝑖+1:

⟨𝜙| ≡ , ⟨Φ| = ⟨𝜙| ⊗ ⟨𝜙| ⊗ . . . ⊗ ⟨𝜙| =

(26)

It will prove to be convenient to additionally define ⟨𝜃 | as a
Bell pair connecting two equal-time sites at 𝑡𝑖 on the forward
and backward time contours:

⟨𝜃 | ≡ (27)

After space-time rotation, each pair of trace operations be-
comes a projector |𝜃⟩⟨𝜃 |:

t

x

space-time rotation
−−−−−−−−−−−−−−−−−→
trace becomes projector

t

x (28)

Such projector is henceforth dubbed the “trace projector”.
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FIG. 2. Temporal entanglement 𝑆𝑇 plotted against bath size 𝐿, with
total evolution times 𝑇 = 24, 48, 72, 96. Results are identical for
either all-SWAP or all-SDKI circuits.

Although dual-unitary gates and solvable initial conditions
preserve spatial unitarity, the trace projector does not, ren-
dering T non-unitary. Therefore, the behavior of temporal
entanglement under update by T is generally different from
the behavior of spatial entanglement under update by 𝑈 ⊗ 𝑈∗.

Ref. [42] pointed out that for dual-unitary circuits with
solvable initial states the influence matrix ⟨𝐼left | always reduces
to the so-called “perfect-dephaser” form for 𝐿 ≥ 𝑇 , where 𝑇 is
the total number of time steps of the Floquet evolution:

⟨𝐼PD | ≡ ⟨𝜃 | ⊗ ⟨𝜃 | ⊗ . . . ⊗ ⟨𝜃 | = (29)

⟨𝐼PD |T = ⟨𝐼PD | (30)

The perfect-dephaser influence matrix ⟨𝐼PD | has zero tem-
poral entanglement, since temporal bipartitions would not cut
across any Bell pairs. Therefore, dual-unitary circuit with solv-
able initial states always reaches zero temporal entanglement
at system sizes 𝐿 ≥ 𝑇 .

III. DUAL-UNITARY CLIFFORD CIRCUITS WITHOUT
MEASUREMENT

This Section presents numerical and analytical results on
temporal entanglement in dual-unitary Clifford circuits. The
numerical results are obtained using the stabilizer formalism
for simulating Clifford circuits [17, 63].

A. Numerical Results

Fig. 2 shows the temporal entanglement as a function of the
bath size 𝐿 at various total evolution times 𝑇 . The gates are

chosen to be SDKI, with the results for circuits with SWAP
gates being identical. We can clearly identify three distinct
regimes: an initial linear growth of temporal entanglement is
followed by a linear decay, before saturating at a zero value.
The overall function is piecewise linear and given by:

𝑆𝑇 (𝐿) =


2𝐿 for 𝐿 < 𝑇

3
𝑇 − 𝐿 for 𝑇

3 ≤ 𝐿 < 𝑇

0 for 𝐿 ≥ 𝑇

(31)

Let us comment on some qualitative features. First, at 𝐿 =

𝑇/3 and 𝐿 = 𝑇 , the TE changes non-analytically. This is
because entanglement in Clifford circuits comes in the form
of Bell pairs, and the number of Bell pairs across a given
bipartition can only increase or decrease as integers. Second,
temporal entanglement always decays to exactly zero for finite
𝐿 ≥ 𝑇 . In this regime we recover the perfect dephaser limit
[Eq. (29)], with ⟨𝐼left | = ⟨𝐼PD | for 𝐿 ≥ 𝑇 . Third, the peak TE
scales linearly with the total evolution time 𝑇 . Therefore, in
the alternative order of limits where first 𝑇 → ∞ then 𝐿 → ∞
is taken, the TE would exhibit volume-law growth with 𝑇 .

B. Analytical Derivation Through Diagrammatic Contractions

These different regimes and the corresponding TE can be
analytically obtained using standard graphical manipulations.
For stabilizer states, all orders of Rényi entropies are identical
and equal the von Neumann entropy. We can hence focus on
the second Rényi entropy, since it requires the smallest tensor
power of ⟨𝐼left |:

𝑆
(𝑡𝑖 )
𝑇

= 𝑆vN

(
𝜌
⟨𝐼left |
𝑡𝑖

)
= − log2

tr
((
𝜌
⟨𝐼left |
𝑡𝑖

)2
)

tr
( (
𝜌⟨𝐼left |

)2
)

≡ − log2 𝐷
⟨𝐼left |
𝑡𝑖

, (32)

where 𝐷
⟨𝐼left |
𝑡𝑖

is the purity with respect to bipartition at 𝑡𝑖 .
Using the operator-state mapping, one may write 𝜌⟨𝐼left | as:

𝜌⟨𝐼left | = |𝐼left⟩⟨𝐼left | → |𝜌⟨𝐼left |⟩ ≡ |𝐼left⟩ ⊗ |𝐼left⟩∗ . (33)

Since each |𝐼left⟩ contains a layer of 𝑈 and 𝑈∗ each,(
𝜌⟨𝐼left |

)⊗2 contains 4 layers of 𝑈 and 𝑈∗ each, and we can
write:

(
𝜌⟨𝐼left |

)⊗2
=

t

x

(34)

Note that the graphical representation circuit is rotated w.r.t.
its original representation [Eq. (13)], corresponding to a space-
time rotation.
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It is convenient to define a new merged representation,
where:

≡ (35)

These gates are operators acting on pairs of 8 copies of the
local Hilbert space. The contraction order associated with the
trace projector is denoted by a triangle:

≡ , ≡ (36)

corresponding to a state in 8 copies of the local Hilbert space.
All necessary contractions for our calculation can be similarly
represented, where two additional contraction orders appear
on the two sides of the bipartition:

≡ , ≡

≡ , ≡

(37)

Temporal and spatial unitarity lead to a set of graphical identi-
ties allowing specific boundary vectors to propagate through
the system:

= , = (38)

and similarly for the circles and the squares in Eq. (37).
Let us illustrate how these contractions appear in a simple

example. We consider a circuit with 𝐿 = 4, 𝑇 = 8 and calculate
the TE for a bipartition across 𝑡𝑖 = 𝑡1. The Rényi entropy (32)
requires evaluating the following two diagrams:

tr
((
𝜌
⟨𝐼left |
𝑡𝑖

)2
)
=

t

x

tr
((
𝜌⟨𝐼left |

)2
)
=

t

x

(39)

Using the graphical identities (38), contracting the diagram
requires evaluating the overlap between the different bound-
ary vectors representing different contraction orders. These
overlaps correspond to counting the number of loops, with
each contracted loop contributing a factor of 𝑞 = 2 to the
overall purity calculation, where 𝑞 is the local Hilbert space
dimension:

= 2, (40)

leading to, e.g.,

= = 22 = 4. (41)

The required overlaps follow as

= = 22,

= = = 24.
(42)

Using spatial unitarity to contract vertically yields:

tr
((
𝜌
⟨𝐼left |
𝑡𝑖

)2
)
=

t

x

(43)

This diagram can now be further simplified using temporal
unitarity to contract horizontally, resulting in:

tr
((
𝜌
⟨𝐼left |
𝑡𝑖

)2
)
=

t

x

=

( )3 ( )1 ( )2
= 214

(44)

An analogous calculation holds for tr
( (
𝜌⟨𝐼left |

)2
)
:

tr
((
𝜌⟨𝐼left |

)2
)
=

( )3 ( )3
= 218, (45)

resulting in 𝐷
⟨𝐼left |
𝑡𝑖

= 2−4 and 𝑆2

(
𝜌
⟨𝐼left |
𝑡𝑖

)
= 2.

Upon normalization, only connections between a circle and
a square contributes to the purity, and each such connection
contributes a factor of 2−2. Therefore,

𝑆
(𝑡𝑖 )
𝑇

= 2 × Number of
( )

≡ 2 · 𝑛cs, (46)
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III II I

FIG. 3. Temporal entanglement plotted against temporal bipartition
point 𝑡𝑖 , with total evolution time 𝑇 = 72 and bath size 𝐿 = 16. There
are 3 bipartition intervals, each showing different phenomenologies.
Interval I is 0 < 𝑡𝑖 < 𝐿, Interval II is 𝐿 ≤ 𝑡𝑖 < 𝑇 − 2𝐿, and Interval
III is 𝑇 − 2𝐿 ≤ 𝑡𝑖 < 𝑇 .

where 𝑛cs is the number of circle-square pairs. This result ad-
mits a direct interpretation: physically, each Bell pair crossing
the boundary of the bipartition contributes one unit of 𝑆 (𝑡𝑖 )

𝑇
.

Since each ⟨𝐼left | contains both the forward and the backward
time contours, each connection between a circle and a square
represents two Bell pairs crossing the boundary and contributes
two units of 𝑆 (𝑡𝑖 )

𝑇
.

After dropping trivial pairings, different classes of diagrams
can occur depending on the values of 𝐿, 𝑇 , and 𝑡𝑖 . Each
parameter regime is now discussed separately.

1. Regime 1: 0 < 𝐿 < 𝑇/3

We will first consider the regime where the bath size 𝐿 is
small compared to the total time evolution 𝑇 , more specifically
with 0 < 𝐿 < 𝑇/3. The temporal entanglement profile for this
regime is shown in Fig. 3. The three intervals of bipartition
location 𝑡𝑖 are now analyzed separately. To avoid even-odd
parity effects, 𝑡𝑖 is chosen to be always odd.

The first bipartition interval is 0 < 𝑡𝑖 < 𝐿. There, the
contracted diagram is of the shape:

= (47)

All circle contractions can be propagated from the left, lead-
ing to a number of circle-square pair 𝑛cs = 𝑡𝑖 . In this interval,
all legs between 𝑡 = 0 and 𝑡 = 𝑡𝑖 are paired up with legs from
the other bipartition. Therefore, the number of Bell pairs cross-
ing the bipartition increases linearly with 𝑡𝑖 , with slope 1 per

time contour. This result indicates a maximal TE bounded only
by the size of the bipartition: due to the small bath size in this
regime all information that initially “leaks” into the bath will
strongly influence future dynamics.

The second bipartition interval is 𝐿 ≤ 𝑡𝑖 < 𝑇 − 2𝐿. There,
the contracted diagram is of the shape:

=

(48)

Here the contractions can be propagated either from the left or
to the right. In this interval, 𝑛cs = 𝐿 independent of 𝑡𝑖 , and the
number of contributing Bell pairs is limited by 𝐿 and therefore
insensitive to the precise location of the bipartition. The TE
has effectively saturated at a maximal value bounded by the
bath size, behaving strongly non-Markovian.

The last bipartition interval is 𝑇 − 2𝐿 < 𝑡𝑖 < 𝑇 . Here, the
contracted diagram is of the shape:

=

(49)

In this interval 𝑛cs = (𝑇 − 𝑡𝑖)/2, the number of Bell pairs
annihilated by the trace projectors increases linearly with 𝑡𝑖 ,
with slope 1/2. The slope accounts for the fact that for every
increment of 𝑡𝑖 by 2, two additional Bell pairs per time contour
cross the bipartition, similar to the diagrams of Eq. (47). How-
ever, due to the trace operator, one contributing Bell pair from
each time contour is annihilated, and some information that
enters the bath is no longer accessible. The different bound-
aries in time (initial state vs. trace operator) hence introduce an
asymmetry between the short-time and late-time bipartitions.

The analysis for the three intervals of this regime matches
the profile shown in Fig. 3. The choice of bipartition 𝑡𝑖 that
maximizes the entanglement entropy is then anywhere within
the interval 𝐿 ≤ 𝑡𝑖 ≤ 𝑇 − 2𝐿. The corresponding temporal
entanglement follows as 𝑆𝑇 = 2 · max𝑡𝑖 (𝑛cs) = 2𝐿.

2. Regime 2: 𝑇/3 ≤ 𝐿 < 𝑇/2

Next, we consider the regime where the size of the bath is
larger than 𝑇/3 but smaller than half the total time evolution
𝑇/2, such that Bell pairs propagating ballistically through the
bath can hit the boundary and return, and memory effects are
hence expected to play a role here. The temporal entanglement
profile for this regime is shown in Fig. 4. The three intervals
of the bipartition location 𝑡𝑖 are again analyzed separately. To
avoid even-odd site effects, 𝑡𝑖 is again chosen to be always odd.

The first bipartition interval is 0 < 𝑡𝑖 < 𝑇 − 2𝐿. There, the
contracted diagram have the shape of Eq. (47), and 𝑛cs = 𝑡𝑖 .
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III II I

FIG. 4. Temporal entanglement plotted against temporal bipartition
point 𝑡𝑖 , with total evolution time 𝑇 = 72 and bath size 𝐿 = 28. There
are 3 bipartition intervals, each showing different phenomenologies.
Interval I is 0 < 𝑡𝑖 < 𝑇 − 2𝐿, Interval II is 𝑇 − 2𝐿 ≤ 𝑡𝑖 < 𝐿, and
Interval III is 𝐿 ≤ 𝑡𝑖 < 𝑇 .

The phenomenology is the same as the one for the first interval
in Regime 1.

The second bipartition interval is 𝑇 − 2𝐿 ≤ 𝑡𝑖 < 𝐿. There,
the contracted diagram is of the shape:

(50)

where

𝐿 <
𝑇

2
⇒ # ( ) − #

( )
= 𝐿 − 𝑇 − 𝑡𝑖

2
− 𝑡𝑖 < 0. (51)

While all results so far held for general dual-unitary cir-
cuits, the diagram (50) cannot be further simplified using dual-
unitarity alone. However, the SWAP gate and the SDKI gate
both possess the additional symmetries of being self-dual and
real:

= , =

( )∗
. (52)

Therefore, if the circuit consists solely of SWAP or solely of
SDKI gates, exactly the Clifford gates under consideration, the
following identity holds:

= (53)

III II I

FIG. 5. Temporal entanglement plotted against temporal bipartition
point 𝑡𝑖 , with total evolution time 𝑇 = 72 and bath size 𝐿 = 48. There
are 3 bipartition intervals, each showing different phenomenologies.
Interval I is 0 < 𝑡𝑖 < 2𝐿 − 𝑇 , Interval II is 2𝐿 − 𝑇 ≤ 𝑡𝑖 < 𝐿, and
Interval III is 𝐿 ≤ 𝑡𝑖 < 𝑇 .

Using Eq. (53) the diagram (50) can be further simplified, and
𝑛cs = 𝑡𝑖/2 − 𝐿 + 𝑇/2:

=

(54)

In this interval, effects from both temporal boundaries need to
be taken into account: the number of contributing Bell pairs
increases linearly with 𝑡𝑖 with slope 1 per time contour, while
the number of Bell pairs annihilated by the trace projectors
also increases linearly with 𝑡𝑖 with slope 1/2 per time contour.
Therefore, the net increase in number of contributing Bell pairs
is linear in 𝑡𝑖 with slope 1/2. In the generic case where Eq.
(53) does not hold, the temporal entanglement profiles of these
diagrams are different, as is discussed in Appendix A.

The third bipartition interval is 𝐿 ≤ 𝑡𝑖 < 𝑇 . There, the
contracted diagram has the shape of Eq. (49), and 𝑛cs = (𝑇 −
𝑡𝑖)/2. The phenomenology is the same as the one for the third
interval in Regime 1.

The analysis for the three intervals of Regime 2 matches
the profile shown in Fig. 4. The 𝑡𝑖 for maximal entanglement
entropy is at 𝑡𝑖 = 𝐿. The corresponding temporal entanglement
is 𝑆𝑇 = 2 · max𝑡𝑖 (𝑛cs) = 𝑇 − 𝐿.

3. Regime 3: 𝑇/2 ≤ 𝐿 < 𝑇

Let us now consider the limit where the bath size is on
the same order as the total evolution time, but constrained to
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𝐿 ≥ 𝑇/2 such that ballistically propagating Bell pairs can not
traverse the length of the bath twice and the right boundary is
hence expected to not play a role. The temporal entanglement
profile for Regime 3 is shown in Fig. 5. There are again three
intervals of bipartition location 𝑡𝑖 , with 𝑡𝑖 again chosen to be
always odd.

The first bipartition interval is 0 < 𝑡𝑖 < 2𝐿 − 𝑇 . There, the
contracted diagram is of the shape:

(55)

where

𝐿 >
𝑇

2
, 𝑡𝑖 < 2𝐿 − 𝑇

⇒ # ( ) − #
( )

= 𝐿 − 𝑇 − 𝑡𝑖

2
− 𝑡𝑖 > 0.

(56)

Similar to the diagrams of Eq. (50), these cannot be further
simplified using dual-unitarity alone. For all-SWAP or all-
SDKI circuits, Eq. (53) again holds, and 𝑛cs = 0 independent
of 𝑡𝑖:

=

(57)

In this interval, all Bell pairs available for cross-bipartition
pairing are connected to trace projectors, and no contributing
Bell pairs remain. For these bipartitions the TE vanishes and
the bath can be treated as a purely Markovian perfect dephaser.
Numerical results on these diagrams for generic dual-unitary
Clifford circuits are presented in Appendix A.

The second bipartition interval is 2𝐿 − 𝑇 ≤ 𝑡𝑖 < 𝐿. There,
the contracted diagram has the shape of Eq. (50), and 𝑛cs =

𝑡𝑖/2 − 𝐿 + 𝑇/2. The phenomenology is the same as the one for
the second interval of Regime 2. The third bipartition interval
is 𝐿 ≤ 𝑡𝑖 < 𝑇 . There, the contracted diagram has the shape
of Eq. (49), and 𝑛cs = (𝑇 − 𝑡𝑖)/2. The phenomenology is the
same as the one for the third interval of Regime 1 and 2.

The analysis for the three intervals of Regime 3 matches
the profile shown in Fig. 5. The 𝑡𝑖 for maximal entanglement
entropy is at 𝑡𝑖 = 𝐿. The corresponding temporal entanglement
follows as 𝑆𝑇 = 2 · max𝑡𝑖 (𝑛cs) = 𝑇 − 𝐿.

4. Regime 4: 𝐿 ≥ 𝑇

We now consider the final limit where the bath size is larger
than the number of discrete time steps. In Regime 4, the
contracted diagram always takes on the following shape:

= (58)

In these diagrams 𝑛cs = 0 independent of 𝑡𝑖 . All Bell pairs
available for cross-bipartition pairing are connected to trace
projectors. Therefore in this regime 𝑆𝑇 = 0 always, and the
bath reduces to the expected perfect dephaser limit.

These results exhaust the possible temporal entanglement
profiles, and match with the piecewise linear form presented
in Eq. (31). The linear profile can be intuitively understood
through the ballistic dynamics of the (ends of the) Bell pairs.
E.g., the initial growth of temporal entanglement with each
update step can be understood by noting that the boundary Bell
pairs spread ballistically under the action of the dual-unitary
circuit, and the radius of each Bell pair grows linearly with
each spatial update step. Since the update preserves the center
of mass of each Bell pair, the number of Bell pairs crossing
the optimal temporal bipartition site also grows linearly with
each update step. In other regimes the obtained linear profile
follows by additionally taking into account reflection at the
spatial boundary and absorption due to the trace at the temporal
boundary.

IV. CIRCUITS WITH PROBABILISTIC MEASUREMENTS

Let us now consider the effect of projective measurements on
the dynamics of the TE. In order to preserve the spatial unitarity
and the Clifford nature of the dynamics, we restrict ourselves to
measurements in the Bell-pair basis. The resulting TE profile
is derived and we provide a mapping to a persistent random
walk model for the resulting diffusive growth dynamics.

A. Measurements Preserving Spatial Unitarity

We focus on two-site measurements in the Bell-pair basis,
also known as unitary-error-basis (UEB) measurements [76].
There are four basis states for two qubits, denoted by:

|𝐵𝐼⟩ = ( |00⟩ + |11⟩)/
√

2, |𝐵𝑋⟩ = ( |01⟩ + |10⟩)/
√

2, (59)

|𝐵𝑌 ⟩ = ( |01⟩ − |10⟩)/
√

2, |𝐵𝑍 ⟩ = ( |00⟩ − |11⟩)/
√

2. (60)

The Bell-pair measurements break temporal unitarity while pre-
serving spatial unitarity for any measurement outcome [14, 77–
80]. Therefore, the spatial transfer matrix remains unitary
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upon adding measurements. Upon space-time rotation, pro-
jectors onto the four basis states map to (unitary) products of
single-site Pauli operators:

|𝐵𝐼⟩⟨𝐵𝐼 | → 1 ⊗ 1, |𝐵𝑋⟩⟨𝐵𝑋 | → 𝜎𝑥 ⊗ 𝜎𝑥 , (61)
|𝐵𝑌 ⟩⟨𝐵𝑌 | → 𝜎𝑦 ⊗ 𝜎𝑦 , |𝐵𝑍 ⟩⟨𝐵𝑍 | → 𝜎𝑧 ⊗ 𝜎𝑧 . (62)

Graphically, for 𝛼 ∈ {𝐼, 𝑋,𝑌 , 𝑍} we can write that:

space-time rotation
−−−−−−−−−−−−−→ (63)

In a true measurement, the outcome of having one of the four
basis states is probabilistic, with the probability given by the
Born rule. Viewed spatially, the different outcomes correspond
to applications of different Pauli operators. Since Pauli op-
erators only incur a potential sign-change on the stabilizers,
they do not change the entanglement structure of the state [63].
Therefore, without loss of generality, the present work replaces
each true measurement by the projector |𝐵𝐼⟩⟨𝐵𝐼 |, such that the
two qubits are forced to be in the |𝐵𝐼⟩ state after the measure-
ment. This protocol is also known as the “forced measurement”
or “post-selected measurement” protocol [64, 73, 81, 82].

Each two-site unitary gate in the circuit has a probability
𝑝 of being replaced by a forced measurement. This random
choice is made independently among all gates. Once the gate
at sites 𝑖, 𝑖 + 1 and times 𝑡𝑖 , 𝑡𝑖+1 along the forward time contour
is chosen to be replaced by a measurement, the same choice
must be made for the gate at the corresponding sites and times
on the backward time contour, since the time evolution opera-
tor is identical between the two time contours for any chosen
stochastic trajectory. In the folded representation, the measure-
ment outcomes are referred to as being “locked” among all
layers.

Graphically,

=


with probability 1 − 𝑝,

with probability 𝑝,

(64)

where the gates are already in the merged representation.

B. Numerical Results with Measurements

Fig. 6 shows the temporal entanglement as a function of the
bath size for a fixed evolution time 𝑇 and varying measurement
rates. Introducing measurements induces a few qualitative
changes as compared to the case of unitary circuits without
measurements. For the growth regime we find that:

𝑆𝑇 ∝ 𝐿, 𝑝 = 0 → 𝑆𝑇 ∝
√
𝐿, 0 < 𝑝 < 1, (65)

whereas for the decay regime:

𝑆𝑇 ∝ Cst. − 𝐿, 𝑝 = 0 → 𝑆𝑇 ∝ exp (−𝐿/𝜉), 0 < 𝑝 < 1,
(66)

FIG. 6. Average temporal entanglement 𝑆𝑇 plotted against bath size
𝐿 for total evolution time 𝑇 = 216 and different measurement rates 𝑝.

FIG. 7. Average temporal entanglement 𝑆𝑇 plotted against bath size
𝐿 for measurement rate 𝑝 = 0.3 and different total evolution times 𝑇 .

where the characteristic scale 𝜉 increases with 𝑝. The linear
growth and decay of TE is replaced by a diffusive growth and
an exponential decay, respectively.

Fig. 7 shows 𝑆𝑇 as a function of 𝐿 at 𝑝 = 0.3 and for various
total evolution times 𝑇 . The peak value of 𝑆𝑇 , 𝑆𝑇, peak, and the
critical bath size at which 𝑆𝑇, peak is reached, 𝐿𝑐, scale as:

𝑆𝑇, peak ∝ 𝑇, 𝐿𝑐 ∝ 𝑇2 . (67)

C. Analytical Understanding of the Initial Growth Regime:
Persistent Random Walk

The diffusive growth of temporal entanglement is qualita-
tively described by a variant of the simple random walk: the
persistent random walk [83]. This is analogous to the run-and-
tumble model in the context of biophysics and active matter



12

[84]. Consider a random walk model in discrete time on a dis-
crete one-dimensional lattice, where the displacement after 𝑛
update steps is given by

∑𝑛
𝑖=1 𝜏𝑖 , where 𝜏𝑖 = ±1 is the displace-

ment at update step 𝑖. A movement to the right corresponds
to 𝜏𝑖 = +1, and a movement to the left corresponds to 𝜏𝑖 = −1.
The normalized correlation coefficient 𝜂 between successive
steps is defined as

𝜂 ≡ ⟨𝜏𝑖𝜏𝑖+1⟩
⟨𝜏2

𝑖
⟩

= ⟨𝜏𝑖𝜏𝑖+1⟩ with − 1 < 𝜂 < 1, (68)

where 𝜂 > 0 (𝜂 < 0) signifies that successive steps are more
likely to be in the same (different) direction, respectively. The
limit 𝜂 = 0 corresponds to the simple random walk, where
successive steps are uncorrelated. Away from this limit this
model is known as a “persistent random walk”.

The correlation function between two steps separated by 𝑚

steps in between decays exponentially as 𝐶 (𝑚) = 𝜂𝑚. The
exponentially decaying correlation function implies diffusive
behavior after enough update steps, with diffusion constant
given by:

𝐷 (𝜂) = 1 + 𝜂

1 − 𝜂
. (69)

If one denotes the probability of switching direction between
step 𝑖 and 𝑖 + 1 by 𝑝, then 𝜂 = (1 − 𝑝) − 𝑝 = 1 − 2𝑝. In terms
of the switching probability, the diffusion constant follows as

𝐷 (𝑝) = 1 − 𝑝

𝑝
. (70)

The discussion thereafter uses the all-SWAP circuit as an
illustrative example. The argument can be directly extended to
explain the same behavior observed in the all-SDKI circuit. In
a circuit consisting of SWAP gates, the discussed measurement
protocol results in a persistent random walk of the two ends
of each Bell pair. The SWAP gates move the Bell-pair ends
along the same direction as in the update step before, whereas
the identity gate reverses the direction of movement. The
measurement rate 𝑝 thus corresponds exactly to the switching
probability 𝑝, and Eq. (70) can be understood as a relation
between the measurement rate and the diffusion constant. Con-
sider, e.g., the following circuit:

(71)

In the first update step no measurement occurs, and both ends
of the middle Bell pair propagate in fixed directions. In the
second update step a measurement occurs at the right edge of
the middle Bell pair, reversing the direction of movement of the
right end. Similarly, in the third update step, a measurement
occurs at the left edge of the middle Bell pair, reversing the
direction of movement of the left end.

The ends of each Bell pair thus undergo a motion of persis-
tent random walk:

⟨Δ𝑡⟩ =
√︁

2𝐷 (𝑝)
√
Δ𝑥, (72)

FIG. 8. Numerically extracted effective diffusion constant, 𝜅𝐷, for
total evolution time 𝑇 = 432. A one-parameter fit using 𝑓 (𝑝) =

𝜅
√︁

1 − 𝑝/√𝑝 yields excellent agreement, with 𝜅 = 0.36 as the fitting
parameter.

where ⟨Δ𝑡⟩ denotes the average temporal displacement of the
ends of Bell pairs, and Δ𝑥 denotes an update step in space.

Analogous to the measurement-free setup, we can denote the
radius of each Bell pair 𝑟 . With measurements added, the center
of mass of each Bell pair is still preserved on average, since
the resulted persistent random walk is unbiased. Therefore, Δ𝑟
equals the temporal displacement of one end of the Bell pair:
Δ𝑟 = 𝑟 ′−𝑟 = Δ𝑡. We identify the number of Bell pairs crossing
the time point 𝑡𝑖 as the “local Bell pair density”, denoted 𝑛𝑡𝑖 .
Since the Bell pairs are initially uniformly placed, and the
update preserves the center of mass on average, the local Bell
pair density remains proportional to the average radius of each
Bell pair, with a proportionality constant 𝜅:

𝑛𝑡𝑖 = 𝜅⟨Δ𝑟⟩ = 𝜅⟨Δ𝑡⟩, (73)

where 𝜅 can be interpreted as an effective packing factor.
Since 𝑆𝑇 = 2 · max𝑡𝑖 (𝑛𝑡𝑖 ), temporal entanglement is hence

expected to grow diffusively with each update step as:

𝑆𝑇 = 2 · max
𝑡𝑖

(𝑛𝑡𝑖 ) = 2𝜅⟨Δ𝑡⟩

= 2𝜅
√︁

2𝐷 (𝑝)Δ𝑥 = 2
√

2𝜅

√︄
1 − 𝑝

𝑝

√
Δ𝑥 .

(74)

A one-parameter fit is performed on the numerical data with
𝜅 as the fitting parameter, and the results are shown in Fig. 8.
The fitting curve agrees well with numerical data, confirming
the proposed functional dependence on 𝑝, and the optimal
fitting value is found as 𝜅 ≈ 0.36.

This result shows that the persistent random walk serves well
as an effective model describing the growth regime of temporal
entanglement with bath size in the presence of measurements.
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D. Analytical Understanding of the Decay Regime: Mixed
Spatial Transfer Matrix

Next to the linear growth changing to diffusive growth, the
linear decay of the TE with bath size also changes to an ex-
ponential decay in the presence of measurements. In order to
understand the exponential decay of 𝑆𝑇 with 𝐿 and extract the
decay scale, we identify a “mixed” spatial transfer matrix, T𝑝 ,
where the averaged TE can be directly calculated by absorbing
the measurements into T . This transfer matrix is given by:

T𝑝 =

t

x

p

p

p

(75)

where

p ≡ (1 − 𝑝) · + 𝑝 · (76)

In order to calculate the averaged TE, numerical tensor con-
traction is performed to construct T𝑝 with SWAP gates and
measurements. Since the spectrum of T𝑝 will determine the
exponential decay, the tensor contractions are done without
bond-dimension truncation.

That this averaged transfer matrix exactly determines the
dynamics of the TE is specific to our setup, and depends on the
specific choice of gates and measurements. For extracting the
decay scale for purity, one should generally consider construct-
ing the 4-replica T𝑝 rather than the 1-replica T𝑝. However,
this is unnecessary for analyzing the SWAP circuit with mea-
surements. Any specific circuit realization will consist out of
SWAP gates and identity matrices along the spatial direction,
and the action on any initial product state will lead to a “reshuf-
fling” of the initial state, and this reshuffling is independent of
the choice of local basis. Furthermore, since the gate choices
are locked among replicas, the 4-replica T𝑝 has the same set
of eigenvalues as the 1-replica T𝑝 , albeit with different degen-
eracies. This argument directly extends to any calculation of
the purity and Rényi entropies (see also Ref. [77]). Within the
1-replica T𝑝, one may further reduce the local Hilbert space
dimension from 𝑞 = 4 to 𝑞 = 3, since the gate choices are also
locked between the forward and backward time contours. The
detailed construction is presented in Appendix B, and signifi-
cantly reduces the computational complexity of constructing
the transfer matrix, allowing for numerical simulations for
longer evolution times.

The leading eigenvalue of T𝑝 satisfy 𝜆0 = 1 and corresponds
to the perfect-dephaser steady state in the 𝐿 → ∞ limit, as can
be directly checked. Furthermore, |𝜆𝑖 | < 1 for 𝑖 > 0 such that
all sub-leading eigenmodes decay exponentially, qualitatively
explaining the observed exponential decay of the TE with

FIG. 9. First four leading eigenvalues of the mixed transfer matrix
T𝑝 plotted against the measurement rate, 𝑝, for total evolution time
𝑇 = 6.

FIG. 10. Decay scales for 𝑆𝑇 as extracted from numerical data and as
predicted from 𝜆1 and 𝜆2.

bath size 𝐿. These leading eigenvalues of T𝑝 with 𝑇 = 6 are
plotted against 𝑝 in Fig. 9. The leading eigenvalues 𝜆𝑖 with
𝑖 = 0, 1, 2, 3 are real and change smoothly with 𝑝.

Fig. 10 compares the decay scale 𝜉 for 𝑆𝑇 ∝ exp (−𝐿/𝜉)
as extracted from numerical data to the decay scales predicted
from 𝜆1 and 𝜆2. In generic cases, one expects the decay scale to
be set by the leading nontrivial eigenvalue 𝜆1, 𝜉 = −(log𝜆1)−1.
Nevertheless, numerical results indicate that 𝜉 = −(log𝜆2)−1.
This difference is indicative of a symmetry present in T𝑝 .

In order to highlight this symmetry it is convenient to define
a local basis for two qubits at the same time point 𝑡𝑖 on the
forward and backward time contours as:

|𝐵𝛼⟩𝑖 ≡ , (77)

where 𝛼 ∈ {𝐼, 𝑋, 𝑌 , 𝑍} again label the four Bell-pair states.
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Graphically,

|𝐵𝐼⟩ ≡ , |𝐵𝑋⟩ ≡ X , |𝐵𝑌 ⟩ ≡ Y , |𝐵𝑍 ⟩ ≡ Z .

(78)

The trace projector at the temporal boundary 𝑡 = 𝑇 projects
onto the |𝐵𝐼⟩ mode and annihilates the X, Y, and Z states. The
product state of |𝐵𝐼⟩ modes | ◦ ◦ · · · ◦ ◦⟩ corresponds to the
perfect dephaser state and is an eigenstate of T𝑝 . We can denote
the |𝐵𝐼⟩ mode as a reference state and the |𝐵𝑋⟩, |𝐵𝑌 ⟩, |𝐵𝑍 ⟩
modes as X-, Y- and Z-particles.

Consider the SWAP circuit with measurements. One trajec-
tory realization may then, for example, look like the following:

X Z Z

(79)

The actions of the SWAP and the identity gates both preserve
the number and flavors of the particles (i.e. whether these are
X, Y or Z Bell pairs), and the particles merely get shuffled
around. The only operator that does not conserve the particle
number is the projector, which however annihilates the state
if it acts on a particle, such that T𝑝 does not couple sectors
with different number and flavors of particles. Consequently,
T𝑝 decomposes into symmetry sectors corresponding to fixed
numbers of particles:

T𝑝 = T (0)
𝑝 ⊗ T (1)

𝑝 ⊗ . . . ⊗ T (𝑇−1)
𝑝 , (80)

where the superscript denotes the number of particles in the
sector.

For simplicity, we assume that all particles are of the same
flavor; predictions obtained under such simplification already
match the numerical results. The first few leading eigenvalues,
which are all real, correspond to the leading eigenvalues of the
lowest particle-number sectors, i.e. 𝜆0 ↔ T (0)

𝑝 , 𝜆1 ↔ T (1)
𝑝 ,

𝜆2 ↔ T (2)
𝑝 , etc. In order to have a finite entanglement in the

system, one needs at least one Bell pair connecting some 𝑡𝑖 to
some 𝑡 𝑗 on the same time contour. Such a Bell pair however
requires at least two particles in the system. E.g., two replicas
of a Bell pair connecting different times in two time contours
can be expressed as a linear combination of four Bell pairs
connecting the same times between different time contours:

=
1
2
( |𝐵𝐼⟩𝑖 |𝐵𝐼⟩𝑖+1 + |𝐵𝑋⟩𝑖 |𝐵𝑋⟩𝑖+1

+ |𝐵𝑌 ⟩𝑖 |𝐵𝑌 ⟩𝑖+1 + |𝐵𝑍 ⟩𝑖 |𝐵𝑍 ⟩𝑖+1).
(81)

Therefore, neither the zero-particle perfect dephaser sector
nor the one-particle sector contribute to the overall temporal
entanglement of the system. The two-particle sector, T2, is
the leading sector that contributes to the total temporal entan-
glement. Moreover, T2 can contribute an extensive amount of
entanglement in the form of superposition of states. The eigen-
value that sets the decay scale for 𝑆𝑇 is therefore 𝜆2. Since 𝜆2
changes smoothly with 𝑝, the decaying part of 𝑆𝑇 also changes
smoothly with 𝑝.

It is now worth comparing the structure of T𝑝 with measure-
ments to the structure of T in the measurement-free case. T
for the purely unitary circuit consists of a 1 × 1 block T (0)

corresponding to the steady state with eigenvalue 𝜆0 = 1 and
Jordan blocks of various sizes,

T = T (0) ⊗ 𝑄2 ⊗ 𝑄3 ⊗ . . . ⊗ 𝑄𝑇−1 . (82)

Each Jordan block 𝑄𝑖 has its corresponding eigenvalue zero
since these are necessarily nilpotent. This is necessary to
exactly reach the perfect dephaser limit after a finite number
of update steps. The largest Jordan block 𝑄𝑇−1 is of size
(𝑇 − 1) × (𝑇 − 1), which vanishes after being raised to the 𝑇-th
power, (𝑄𝑇−1)𝑇 = 0, such that temporal entanglement decays
linearly with bath size rather than exponentially and an exact
steady state is reached at bath size 𝐿 = 𝑇 .

This structure is in stark contrast to the structure of T𝑝 for
circuits with measurements. In T𝑝, the Jordan blocks are no
longer nilpotent. Instead of having all eigenvalues being zero,
the Jordan blocks now have nontrivial diagonal elements. As
such, the decay of temporal entanglement is again exponential
in bath size. Any infinitesimal measurement rate immediately
induces this structural change in the transfer matrix, since
the appearance of nilpotent Jordan blocks generally requires
fine-tuning.

E. Peak Value of Temporal Entanglement and the Critical Bath
Size

In between the growth and decay regimes, the TE reaches a
peak value that will set the temporal entanglement barrier. The
critical bath size 𝐿𝑐 is the bath size at which the peak value of
𝑆𝑇 is attained, and we observe numerically that

𝐿𝑐 (𝑇, 𝑝) ∝
𝑇2

𝐷 (𝑝) , (83)

as shown in Figs. 11 and 12.
In both circuits with and without measurements, 𝐿𝑐 is

reached when all the temporal Bell pairs initially in the interval
2𝑇/3 ≤ 𝑡 < 𝑇 have their left ends hitting the temporal bound-
ary. This condition can be understood in the measurement-free
setup as follows: for 𝐿 < 𝐿𝑐, entanglement builds up in the
interval 0 < 𝑡 < 2𝑇/3 and decays in the interval 2𝑇/3 < 𝑡 < 𝑇 .
At 𝐿 = 𝐿𝑐, entanglement in the interval 0 < 𝑡 < 2𝑇/3 is
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FIG. 11. Scaling of 𝐿𝑐 with 𝑇 . The data is fitted with a one-parameter
function of the form 𝑓 (𝑇) ∝ 𝑇2.

FIG. 12. Scaling of 𝐿𝑐 with 𝑝. The data is fitted with a one-parameter
function of the form 𝑓 (𝑝) ∝ 𝑝/(1 − 𝑝).

“saturated”, with all 𝑇/3 Bell pairs forming a rainbow state:

|ΨRB⟩ = (84)

The optimal bipartition is at 𝑡𝑖 = 𝑇/3, and the peak entan-
glement is given by the number of Bell pairs crossing the
bipartition on both the forward and backward time contours:
𝑆𝑇, peak = 2 · 𝑇/3 = 2𝑇/3. For 𝐿 > 𝐿𝑐, ends of Bell pairs start
reflecting at 𝑡 = 0, and the rainbow state is destroyed. The
maximal entanglement thus starts decreasing.

With measurements, the ends of Bell pairs spread diffu-
sively: √︁

2𝐷𝐿𝑐 = Δ𝑡 =
𝑇

3
⇒ 𝐿𝑐 =

(Δ𝑡)2

2𝐷
=

𝑇2

18𝐷
, (85)

which matches the numerically observed scaling of Eq. (83).
At 𝐿 = 𝐿𝑐, entanglement in the interval 0 < 𝑡 < 2𝑇/3 is
saturated on average, with the only difference with the case
without measurements being that the Bell pairs in this interval
no longer form a rainbow state. Upon adding random mea-
surements and resulting random distributions of Bell pairs, for
different distribution the TE ranges from a minimal value of
zero to a maximal value given by that of the rainbow state. The
averaged value the reaches a steady state of exactly half the
maximum value, independent of 𝑝, resulting in a peak value
𝑆𝑇, peak with measurements that is half that without measure-
ments.

V. NON-HERMITIAN PHASE TRANSITION IN THE
MIXED TRANSFER MATRIX SPECTRUM

While the exponential decay of the TE for large bath sizes
is fully set by the leading eigenvalue of the transfer matrix,
the intermediate dynamics generally requires knowledge of
the full eigenspectrum. The leading eigenvalue was already
observed to be real, resulting in purely exponential decay,
but in general it is not guaranteed that the eigenvalues of the
transfer matrix are real. In this Section we will show that both
the eigenspectrum and the eigenstates of the transfer matrix –
except for the leading eigenvalue – change qualitatively as the
measurement rate is varied, indicating nonanalytic transitions
in the “dynamics” of the averaged TE as the measurement rate
is varied.

The spatial transfer matrix is non-Hermitian and hence not
guaranteed to be diagonalizable or have real eigenvalues. The
eigenspectrum is however constrained because the transfer
matrix generally possesses PT (parity-time) symmetry: it is
invariant under the combined action of a unitary parity op-
erator, here the exchange of the forward and backward time
contour, and an anti-unitary time reversal operator, here com-
plex conjugation. While this symmetry is readily apparent for
our choice of gates, resulting in purely real transfer matrices
that are invariant under complex conjugation, this symmetry
holds more generally.

Eigenvalues of PT-symmetric matrices are constrained to
be either real of part of a complex conjugate pair. As pointed
out in Refs. [85, 86], certain non-Hermitian matrices with PT
symmetry possess spectra that are entirely real, in which case
the system is said to be in a PT-symmetric phase. The spectrum
of PT-symmetric Hamiltonian can change nonanalytically as
some underlying parameter is tuned, and the PT-symmetry can
be spontaneously broken when the spectrum changes from
purely real to being a combination of complex-conjugate pairs
of eigenvalues and real eigenvalues [85]. The PT-broken phase
is known to host a proliferation of exceptional points (EPs)
at which the model is not diagonalizable but rather exhibits
Jordan blocks [87–89].

For the spatial transfer matrix (14) such a transition is
observed at a critical measurement rate 𝑝𝑐 = 1/2. For
1/2 < 𝑝 < 1 all eigenvalues are purely real, whereas for
0 < 𝑝 < 1/2 the PT symmetry is spontaneously broken in
all sectors T (𝑖)

𝑝 with 𝑖 > 1 and the spectrum contains pairs of
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FIG. 13. Real and imaginary parts of the spectra of T (2)
𝑝 for total

evolution time 𝑇 = 6 and varying measurement rates 𝑝.

complex conjugate eigenvalues. This is illustrated in Fig. 13,
showing the spectra of the two-particle sector, T (2)

𝑝 , for total
evolution time 𝑇 = 6.

In order to understand the critical measurement rate 𝑝𝑐 =

1/2, it is instructive to rewrite the transfer matrix as a non-
Hermitian Hamiltonian. We consider the simplest example of
the one-particle sector, which has a natural choice of basis, e.g.
for 𝑇 = 6:

|1⟩ ≡ | • ◦ ◦ ◦ ◦ ◦⟩
|2⟩ ≡ | ◦ • ◦ ◦ ◦ ◦⟩
|3⟩ ≡ | ◦ ◦ • ◦ ◦ ◦⟩
|4⟩ ≡ | ◦ ◦ ◦ • ◦ ◦⟩
|5⟩ ≡ | ◦ ◦ ◦ ◦ • ◦⟩
|6⟩ ≡ | ◦ ◦ ◦ ◦ ◦ •⟩

(86)

Here |◦⟩ and |•⟩ correspond to the particle notation of Eq. (78).
The matrix elements of the spatial transfer matrix can be an-
alytically obtained in closed form, resulting in a hopping
Hamiltonian with symmetric nearest-neighbor hopping and
uni-directional next-nearest neighbor hopping, with the hop-
ping direction being different depending on whether the lattice
site is odd or even. For a single particle the transfer matrix
T (1)
𝑝 can be written as a non-Hermitian Hamiltonian:

𝐻 = 𝑝2
𝑇−1∑︁
𝑗=2

| 𝑗⟩⟨ 𝑗 | + 𝐽1

𝑇−2∑︁
𝑗=2

( | 𝑗⟩⟨ 𝑗 − 1| + | 𝑗⟩⟨ 𝑗 + 1|)

+ 𝐽2

𝑇−2∑︁
𝑗=2
𝑗 even

| 𝑗⟩⟨ 𝑗 + 2| + 𝐽2

𝑇−3∑︁
𝑗=3
𝑗 odd

| 𝑗⟩⟨ 𝑗 − 2|

+ 𝑝 |1⟩⟨1| + (1 − 𝑝) |1⟩⟨2| , (87)

with nearest-neighbor hopping amplitude 𝐽1 = 𝑝(1 − 𝑝) and
next-nearest-neighbor hopping amplitude 𝐽2 = (1 − 𝑝)2. This
model is illustrated in Fig. 14, where the lattice is divided
into odd and even sub-lattices. Both the boundary terms
and the next-to-nearest-neighbor interaction are explicitly non-
Hermitian. In higher-particle sectors the corresponding Hamil-
tonian has the same hopping amplitudes, as well as an addi-
tional hard-core constraint on the particles.

FIG. 14. Hopping model for the spatial transfer matrix restricted to a
single particle. The lattice is divided into odd and even sub-lattices
to account for the even-odd dependence in hopping amplitudes. 𝐽1
is the symmetric nearest-neighbor hopping amplitude; 𝐽2 is the uni-
directional next-nearest-neighbor hopping amplitude.

This model can be explicitly solved in the one-particle sector,
with the solution being representative of the physics in the
higher-particle sector. It is instructive to first consider the
model with periodic boundary conditions, i.e.

𝐻PBC = 𝑝2
𝑇∑︁
𝑗=1

| 𝑗⟩⟨ 𝑗 | + 𝐽1

𝑇∑︁
𝑗=1

( | 𝑗⟩⟨ 𝑗 − 1| + | 𝑗⟩⟨ 𝑗 + 1|)

+ 𝐽2
∑︁
𝑗 even

| 𝑗⟩⟨ 𝑗 + 2| + 𝐽2
∑︁
𝑗 odd

| 𝑗⟩⟨ 𝑗 − 2|, (88)

where we identify 𝑗 +𝑇 = 𝑗 . The periodic boundary conditions
allow this model to be solved by going to Fourier space, writing
an eigenstate |𝜓⟩ with components

𝜓 𝑗 =

{
𝛼+𝑒𝑖𝑘 𝑗 + 𝛼−𝑒−𝑖𝑘 𝑗 , for 𝑗 even,
𝛽+𝑒𝑖𝑘 𝑗 + 𝛽−𝑒−𝑖𝑘 𝑗 , for 𝑗 odd.

(89)

The coefficients 𝛼± and 𝛽± can be obtained by solving the
eigenvalue equation in Fourier space:[

𝑝2 + 𝐽2𝑒
−2𝑖𝑘 2𝐽1 cos 𝑘

2𝐽1 cos 𝑘 𝑝2 + 𝐽2𝑒
2𝑖𝑘

] [
𝛼±
𝛽±

]
= 𝜆

[
𝛼±
𝛽±

]
, (90)

which additionally returns the dispersion relation, giving a pair
of eigenvalues 𝜆± as a function of the momentum 𝑘:

𝜆± (𝑘) = 1 − 2𝐽1 − 2𝐽2 sin2 𝑘 ± 2 cos 𝑘
√︃
𝐽2

1 − 𝐽2
2 sin2 𝑘 . (91)

The periodic boundary conditions quantize 𝑘 = 2𝜋𝑛/𝑇, 𝑛 =

0, 1 . . . 𝑇 − 1.
The non-Hermitian Hamiltonian with periodic boundary con-

ditions already highlights how the structure of the eigenspec-
trum is determined by the relative magnitudes of the (positive)
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hopping amplitudes 𝐽1 and 𝐽2. In the regime 𝐽1 > 𝐽2 and hence
𝑝 > 1/2, all eigenvalues (91) are purely real for all 𝑘-modes.
For 𝐽1 < 𝐽2, a transition from complex to real eigenvalues
occurs for the 𝑘-mode satisfying sin 𝑘 = 𝐽1/𝐽2 = 𝑝/(1 − 𝑝).
The first complex eigenvalues are possible at 𝐽1 = 𝐽2 and hence
𝑝 = 1/2, with a proliferation of exceptional points occurring
in the 𝐽1 < 𝐽2 regime corresponding to 0 < 𝑝 < 1/2. In the
former regime the Hermitian nearest-neighbor hopping is the
dominant contribution in the Hamiltonian and the eigenvalues
are purely real, whereas in the latter regime the unidirectional
hopping dominates the dynamics and results in strongly non-
Hermitian dynamics. However, while the eigenvalues exhibit a
qualitative change as 𝑝 is varied, the eigenstates remain plane
waves at any measurement rate.

0 π/4 π/2 3π/4 π

k

0.0

0.5

1.0

1.5

FIG. 15. Graphical illustration of both sides of the quantization
condition [Eq. (92)] for the momentum with 𝜆(𝑘) = 𝜆+ (𝑘) for total
evolution time 𝑇 = 10 and measurement rate 𝑝 = 0.8. Vertical dotted
lines indicate the approximate poles 𝑘 = 𝑛𝜋/(𝑇 − 1), 𝑛 = 1 . . . 𝑇 − 2,
and crosses indicate the solutions for the quantized momentum 𝑘 at
the intersections between the left-hand side (red) and right-hand side
(blue line).

Taking into account the exact boundary conditions from
Eq. (87), the ansatz (89) still returns the exact eigenstates,
but the momentum 𝑘 now needs to be determined in a self-
consistent way. As shown in Appendix E, for the boundary
conditions in the spatial transfer matrix the eigenvalue 𝜆(𝑘)
needs to satisfy

𝜆(𝑘) = 𝑝
𝜆(𝑘) − 𝑝2 + 𝐽2

𝜆(𝑘) − 𝑝2 − 𝐽2 sin(𝑘 (𝑇 − 3))/sin(𝑘 (𝑇 − 1))
, (92)

where 𝜆(𝑘) = 𝜆± (𝑘) [both choices of the sign lead to the
same solutions since 𝜆+ (𝑘) = 𝜆− (𝜋 − 𝑘)]. This equation is
graphically illustrated in Fig. 15 in the regime where 𝑝 > 1/2
and all eigenvalues are real.

The left-hand side is a smooth function of 𝑘 , whereas the
right-hand side exhibits a series of vertical asymptotes in be-
tween which this function is monotonically increasing for
0 < 𝑘 < 𝜋. The corresponding poles are located at the values
of 𝑘 for which

𝜆(𝑘) − 𝑝2

𝐽2
=

sin(𝑘 (𝑇 − 3))
sin(𝑘 (𝑇 − 1)) . (93)

The locations of these poles can be approximately determined
when 𝑝 ≈ 1. In this limit we have that (𝜆(𝑘)−𝑝2)/𝐽2 ≫ 1,∀𝑘,
such that the poles need to satisfy sin(𝑘 (𝑇 −1)) ≈ 0, leading to
poles at the quantized momentum values 𝑘 = 𝑛𝜋/(𝑇 − 1), 𝑛 =

1 . . . 𝑇 −2. In between any pair of neighboring poles a solution
to the self-consistent equation can be found, returning the
expected 𝑇−1 nontrivial eigenvalues, with 𝜆 = 0 the remaining
trivial eigenvalue. The number of poles remains fixed for
𝑝 > 1/2 and in this way all eigenstates in the regime 𝑝 > 1/2
can be obtained. We find that in this regime all eigenvalues are
real and the eigenstates resemble the plane waves also observed
for periodic boundary conditions.

FIG. 16. Quantized values of the momentum 𝑘 solving the quantiza-
tion condition [Eq. (92)] for total evolution time 𝑇 = 10 as function
of the measurement rate 𝑝. For 𝑝 > 1/2 all momenta and the cor-
responding eigenvalues are real, whereas for 𝑝 < 1/2 a series of
exceptional points occur at which two real momenta and correspond-
ing eigenvalues coalesce and continue as a pair of complex conjugate
eigenvalues. At 𝑝 = 1/(2𝑇) the value of 𝑘 associated with the leading
eigenvalue changes from purely real to purely imaginary.

For 𝑝 < 1/2 all eigenvalues can still be found as solutions
to the self-consistent equation (92), but now both the eigen-
value and the corresponding momentum can be complex. The
poles move into the complex plane as 𝑝 is decreased, requiring
complex values of 𝑘 in order to satisfy Eq. (92). In Fig. 16
we show the resulting values of the momentum as function of
𝑝 for a small system size of 𝑇 = 10. As opposed to the case
with periodic boundary conditions, the corresponding eigen-
states are no longer given by plane waves but rather by states
localized at the (temporal) boundaries. Any nonzero imaginary
part in 𝑘 results in an exponential decay in the eigenstates
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away from the boundaries 𝑡 = 0 and 𝑡 = 𝑇 , inducing localiza-
tion at the boundaries reminiscent of the non-Hermitian skin
effect [73, 90, 91].

However, as can also be observed in Fig. 9, the leading
eigenvalue is always real. The corresponding momentum 𝑘

changes from purely real to purely imaginary at 𝑝 = 1/(2𝑇),
at which point the eigenstates again decay exponentially away
from the temporal boundaries – with a localization length that
is however on the order of 𝑇 , such that the wave function is still
supported on the full system of 𝑇 sites. Exactly at 𝑝 = 1/(2𝑇)
the eigenstates have a linear profile (see Appendix E). That
the leading eigenvalue is real can be understood from the PT-
symmetry: for an even number of eigenvalues it is not possible
for all eigenvalues to be part of a complex conjugate pair since
𝜆 = 0 is always a real eigenvalue, requiring an additional real
eigenvalue in the spectrum.

This argument directly extends to the 2-particle sector gov-
erning the decay of temporal entanglement. While the above
derivation focused on the single-particle sector, results in the
two-particle sector are qualitatively similar, indicating that for
large 𝑇 the interaction between the two particles can be treated
perturbatively. The non-Hermitian transition is observed in
the spectra of T𝑝 , but the decay behavior of temporal entangle-
ment with bath size does not show any non-analyticity with 𝑝.
The leading eigenvalue in the 2-particle sector is both real and
smooth for all values of 𝑝. As such, the transition in the eigen-
spectrum at 𝑝 = 1/2 will only be observable in any transient
behavior.

VI. GENERALITY OF THE RESULTS: SDKI CIRCUITS
AND THE DUAL-UNITARY CLIFFORD CLASS

All presented results with and without measurements can
be numerically checked to agree exactly for both the SWAP
and SDKI circuits. This section explains why the simple dif-
fusion picture based on SWAP circuits with measurements
holds also for SDKI circuits using insights from the stabilizer
formalism [63]. In the stabilizer formalism, a quantum state
is represented by the set of operators that stabilize it. Given a
state |𝜓⟩, the stabilizer set is defined as

S = {𝑆 | 𝑆 |𝜓⟩ = |𝜓⟩}, (94)

and instead of evolving the state, one evolves the stabilizer set
as

S → 𝑈S𝑈†, (95)

where for each 𝑆𝑖 ∈ S, 𝑆𝑖 → 𝑈𝑆𝑖𝑈
†. The action of an operator

𝑈 on a stabilizer string 𝑆𝑖 is denoted as 𝑈 (𝑆𝑖) = 𝑈𝑆𝑖𝑈
†.

For 𝑛 sites, the basis consists of Pauli strings of the form
𝑃 (𝑛) = 𝑃1 ⊗ 𝑃2 ⊗ . . .⊗ 𝑃𝑛, where the single-site Pauli operator
is 𝑃𝑖 ∈ {𝐼, 𝑋,𝑌 , 𝑍}. By construction, stabilizer circuits map
one Pauli string to another Pauli string without generating
superposition of Pauli strings. One may separate a Pauli string
into an X-string and a Z-string and keep track of the stabilizer
action on each string separately. Therefore, for a 2-site gate

𝑈 (2) , its action on {𝐼𝑋, 𝑋𝐼, 𝐼𝑍, 𝑍 𝐼} completely defines its
action on all 𝑃 (2) .

The actions of the SWAP and the SDKI gates are as follows:

SWAP(𝑍𝐼) = 𝐼𝑍, SDKI(𝑍𝐼) = 𝑋𝑍,

SWAP(𝐼𝑍) = 𝑍𝐼, SDKI(𝐼𝑍) = 𝑍𝑋,

SWAP(𝑋𝐼) = 𝐼𝑋, SDKI(𝑋𝐼) = 𝐼𝑋,

SWAP(𝐼𝑋) = 𝑋𝐼, SDKI(𝐼𝑋) = 𝑋𝐼.

(96)

The SWAP gate simply moves the 𝑍 and 𝑋 operators around.
The SDKI acts in the same way on the 𝑋 operators, but has
a more complicated action on the 𝑍 operator: whenever a 𝑍

operators hops away from a lattice site, it “emits” an 𝑋 operator
backward such that there is now an additional 𝑋 operator on
the original site.

The stabilizer set for a Bell pair connecting sites 𝑡𝑖 and 𝑡𝑖+1,

|𝜙⟩𝑖, 𝑖+1 = , (97)

is given by

S (|𝜙⟩) = { 𝐼1𝐼2 . . . 𝐼𝑖−1𝑋𝑖𝑋𝑖+1𝐼𝑖+2 . . . 𝐼𝑇 ,

𝐼1𝐼2 . . . 𝐼𝑖−1𝑍𝑖𝑍𝑖+1𝐼𝑖+2 . . . 𝐼𝑇 } . (98)

Starting from the state |Φ⟩ =
⊗ |𝜙⟩, under the action of the

SWAP gates the 𝐼𝑋𝑋𝐼 and 𝐼𝑍𝑍𝐼 stabilizers spread into 𝑋𝐼𝐼𝑋

and 𝑍𝐼𝐼𝑍 , respectively:

(SWAP ⊗ SWAP) (𝐼𝑋𝑋𝐼) = 𝑋𝐼𝐼𝑋,

(SWAP ⊗ SWAP) (𝐼𝑍𝑍𝐼) = 𝑍𝐼𝐼𝑍.
(99)

For the SDKI circuit the 𝐼𝑋𝑋𝐼 and 𝐼𝑍𝑍𝐼 stabilizers spread as

(SDKI ⊗ SDKI) (𝐼𝑋𝑋𝐼) = 𝑋𝐼𝐼𝑋,

(SDKI ⊗ SDKI) (𝐼𝑍𝑍𝐼) = 𝑍𝑋𝑋𝑍.
(100)

The end points of both operator strings spread in the same
way in both circuits. For the operator strings with 𝑋 opera-
tors as endpoints, the operators in between are given by the
identity, whereas for the operator strings with 𝑍 operators as
endpoints the operators in between are either the identity for
the SWAP circuit or 𝑋 operators for the SDKI circuit. This
result holds more generally: the end points of the stabilizers
in both circuits undergo identical evolution, with and without
measurements, with the only difference being that for operators
whose endpoints are 𝑍 these are either of the form 𝑍𝐼𝐼 . . . 𝐼 𝐼𝑍

for the SWAP circuit or 𝑍𝑋𝑋 . . . 𝑋𝑋𝑍 for the SDKI circuit.
Acting on the bulk of the operator strings, i.e. not the end-
points, leaves the internal structure invariant since both gates
leave 𝐼 𝐼 and 𝑋𝑋 invariant. Acting on the endpoints with the
gates either grows or shrinks the length of the string, but again
leaves the structure in between invariant. Consider e.g. the
right endpoints, for which the relevant actions are

SWAP(𝑍𝐼) = 𝐼𝑍, SWAP(𝐼𝑍) = 𝑍𝐼, (101)
SDKI(𝑍𝐼) = 𝑋𝑍, SDKI(𝑋𝑍) = 𝑍𝐼, (102)

and similar for the left end points

SWAP(𝐼𝑍) = 𝑍𝐼, SWAP(𝑍𝐼) = 𝐼𝑍, (103)
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SDKI(𝐼𝑍) = 𝑍𝑋, SDKI(𝑍𝑋) = 𝐼𝑍. (104)

This argument directly extends to the case with measurements,
since we have already argued that the entanglement structure
can be obtained from the case with forced measurements on
a single Bell state whose space-time dual is the identity, and
acting with the identity again leaves the structure of the op-
erator strings intact. Crucially, the endpoints of the operator
strings completely determine the entanglement structure of the
state [17]. As such, the precise Pauli operators in the bulk of
the string are irrelevant, and both SWAP and SDKI circuits
produce the same entanglement dynamics.

VII. CONCLUSION

In this work, we characterized the shape of the temporal
entanglement barrier in dual-unitary Clifford circuits with and
without measurements. By leveraging the spatial unitarity of
the circuit, we are able to efficiently simulate the evolution of
the influence matrix with bath size and obtain the temporal
entanglement profile in both space and time.

In circuits without measurements, the observed linear growth
and decay of TE are explained through exact tensor network
contractions. In the presence of measurements, the linear
growth underlied by ballistic spreading of temporal Bell pairs
is modified to a diffusive growth. The functional dependence
of the diffusion constant on the measurement rate is explained
by considering the persistent random walk motion of the ends
of the temporal Bell pairs. This diffusion picture for temporal
Bell pairs can also be used to predict the peak value of TE and
the critical bath size at which this peak is reached.

Rather than exactly reaching the perfect dephaser limit with
vanishing TE at a finite bath size, the decay of the TE to this
limit becomes exponential in the presence of measurements.
The corresponding characteristic decay scales are explained
by constructing a mixed spatial transfer matrix, identifying a
symmetry, and examining its eigenspectrum in different sym-
metry sectors. By tuning the measurement rate, the decay rate
can be made arbitrarily slow, vanishing in the limit of purely
measurement dynamics.

The temporal entanglement barrier always scales linearly
with the number of time steps, similar to volume law entan-
glement, such that there is no measurement-induced phase
transition in the current setup. However, although no nonana-
lyticity shows up in the TE as the measurement rate is tuned,
there is a PT phase transition in the eigenspectrum of the mixed
spatial transfer matrix at 𝑝 = 1/2. This transition can be under-
stood in a specific symmetry sector, where we find that both the
eigenvalues and eigenstates exhibit a quantitative change, with
the latter localizing at the temporal boundaries. It would be
interesting to explore conditions for which the PT transitions
manifest itself in the dynamics of TE, for instance by restrict-
ing to particular sets boundary states. Going beyond the current
work, it would be worth investigating the interplay between
measurements and temporal entanglement in more generic se-
tups. The mapping of the spatial dynamics to a non-Hermitian
hopping model furthermore suggests using space-time duality
as a way of realizing non-Hermitian dynamics.
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Appendix A: Temporal Entanglement Profile of Generic
Dual-Unitary Clifford Circuits without Measurements

This section presents numerical results on the temporal en-
tanglement profile for dual-unitary Clifford circuits where
Eq. (53) does not hold. This situation can occur either be-
cause the gates fail to be both self-dual and real or because the
circuit fails to be translationally invariant in space and time, or
a combination of both. In this case the diagrams (50) and (55)
cannot be analytically evaluated. We will first consider circuits
of random dual-unitary Clifford circuits that are inhomoge-
neous in both time and space, before consider homogeneous
circuits that do not satisfy Eq. (53).

III II I

FIG. 17. Temporal entanglement plotted against temporal bipartition
point 𝑡𝑖 , with total evolution time 𝑇 = 72 and bath size 𝐿 = 28.
The circuit consists of random dual-unitary Clifford gates, and the
results are averaged over 𝑁 = 100 realizations. There are 3 bipartition
intervals, each showing different phenomenologies. Interval I is
0 < 𝑡𝑖 < 𝑇 − 2𝐿, Interval II is 𝑇 − 2𝐿 ≤ 𝑡𝑖 < 𝐿, and Interval III is
𝐿 ≤ 𝑡𝑖 < 𝑇 .

Fig. 17 shows 𝑆 (𝑡𝑖 )
𝑇

as function of 𝑡𝑖 for 𝑇 = 72 and 𝐿 = 28
with random dual-unitary Clifford gates. The parameter choice
corresponds to Regime 2.

While qualitatively similar to Fig. 4, there is a quantitative
difference: Instead of nonanalytically changing the slope to
half of that in Interval I, 𝑆 (𝑡𝑖 )

𝑇
maintains the same slope as in

Interval I upon entering Interval II, before flattening out.
Fig. 18 shows 𝑆

(𝑡𝑖 )
𝑇

as function of 𝑡𝑖 for 𝑇 = 72, 𝐿 = 48
with random dual-unitary Clifford gates. The parameter choice
corresponds to Regime 3. The contracted diagram correspond
to Eq. (55) in Interval I and Eq. (50) in Interval II, respectively.
Contrasting with Fig. 5, 𝑆

(𝑡𝑖 )
𝑇

behaves differently in these
intervals: In Interval I, instead of having always 𝑆

(𝑡𝑖 )
𝑇

= 0,
𝑆
(𝑡𝑖 )
𝑇

grows linearly with 𝑡𝑖 and saturates to the peak value
somewhere in the middle of Interval I. In Interval II, 𝑆 (𝑡𝑖 )

𝑇

remains constant at the peak value instead of growing linearly
with 𝑡𝑖 .

We next consider the following gate obtained by applying
Hadamard gates to the left input and out legs of the Clifford

III II I

FIG. 18. Temporal entanglement plotted against temporal bipartition
point 𝑡𝑖 , with total evolution time 𝑇 = 72 and bath size 𝐿 = 48.
The circuit consists of random dual-unitary Clifford gates, and the
results are averaged over 𝑁 = 100 trajectories. There are 3 bipartition
intervals, each showing different phenomenologies. Interval I is
0 < 𝑡𝑖 < 2𝐿 − 𝑇 , Interval II is 2𝐿 − 𝑇 ≤ 𝑡𝑖 < 𝐿, and Interval III is
𝐿 ≤ 𝑡𝑖 < 𝑇 .

SDKI gate:

(𝐻 ⊗ 𝐼) SDKI (𝐻 ⊗ 𝐼) (A1)

This gate does not satisfy the condition given in Eq. (53). Fig.
19 shows the resulting 𝑆

(𝑡𝑖 )
𝑇

as function of 𝑡𝑖 for 𝑇 = 72, 𝐿 = 28.
The parameter choice corresponds to Regime 2. In Interval II,
the contracted diagram is of the form (50). Contrasting with
Fig. 4, the temporal entanglement now behaves similarly as in
the case of inhomogeneous dual-unitary Clifford gates.

III II I

FIG. 19. Temporal entanglement plotted against temporal bipartition
point 𝑡𝑖 , with total evolution time 𝑇 = 72 and bath size 𝐿 = 28. The
circuit consists of only gates of the form (A1). There are 3 bipartition
intervals, each showing different phenomenologies. Interval I is
0 < 𝑡𝑖 < 𝑇 − 2𝐿, Interval II is 𝑇 − 2𝐿 ≤ 𝑡𝑖 < 𝐿, and Interval III is
𝐿 ≤ 𝑡𝑖 < 𝑇 .

Fig. 20 shows 𝑆
(𝑡𝑖 )
𝑇

as function of 𝑡𝑖 for 𝑇 = 72, 𝐿 = 48
with gates of the form (A1) in Regime III. The contracted
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III II I

FIG. 20. Temporal entanglement plotted against temporal bipartition
point 𝑡𝑖 , with total evolution time 𝑇 = 72 and bath size 𝐿 = 48.
The circuit consists of only SDKI(lH) gates. There are 3 bipartition
intervals, each showing different phenomenologies. Interval I is
0 < 𝑡𝑖 < 2𝐿 − 𝑇 , Interval II is 2𝐿 − 𝑇 ≤ 𝑡𝑖 < 𝐿, and Interval III is
𝐿 ≤ 𝑡𝑖 < 𝑇 .

diagram is of the form Eq. (55) and Eq. (50) in Interval I and
II, respectively. We again observe the same behavior as for
inhomogeneous dual-unitary Clifford gates.

Overall, failure to fulfill Eq. (53) leads to a drastic change in
the behavior of 𝑆 (𝑡𝑖 )

𝑇
in intervals where the simplified diagram

is form Eq. (50) or Eq. (55).

Nonetheless, the maximal value and the corresponding TE
remains the same regardless of whether Eq. (53) is fulfilled or
not. Therefore, the temporal entanglement profile given by Eq.
(31) remains valid for all dual-unitary Clifford circuits and is
insensitive to the condition of Eq. (53).

Appendix B: Numerically Exact Results on Temporal
Entanglement with Measurements: Tensor Contraction of the

Mixed Transfer Matrix

This section details the procedure for computing 𝑆𝑇 through
tensor contraction of T𝑝. The procedure does not involve av-
eraging over stochastic trajectories and thus avoids stochastic
noise. It is convenient to temporarily fix the normalization
factor tr

(
(𝜌⟨𝐼left | )2) = 1. Although the purity 𝐷

⟨left |
𝑡𝑖

is nonlin-

ear in
��𝜌⟨left | 〉, it is linear in

��𝜌⟨left | 〉⊗4. Graphically, one may
define:

p ≡ (1 − 𝑝) · + 𝑝 · (B1)

The resulting tensor network is given by, e.g. for 𝑇 = 8, 𝐿 = 4,

���𝜌⟨left |
〉⊗4

=

t

x

p p p p

p p p p

p p p p

(B2)

Consider for example the contraction order with bipartition
at 𝑡𝑖 = 4, in which case the purity follows as the contraction of
the above circuit with

⟨CO4,8 | = (B3)

as

𝐷
⟨left |
𝑡𝑖=4 = ⟨CO4,8 |

(���𝜌⟨left |
〉⊗4

)

=

t

x

p p p p

p p p p

p p p p (B4)

For the all-SWAP circuit with measurements, T𝑝 merely
moves the initial temporal Bell pairs around. Analogous to
the measurement-free case, for each trajectory realization, the
purity is determined by the number of circle-square pairs:(

𝐷
⟨left |
𝑡𝑖

)
𝑗
=

(
1
4

) (𝑛cs ) 𝑗
, (B5)

with (𝑛cs) 𝑗 the number of contractions in trajectory 𝑗 .
One may deduce the inner product values between different
boundary states as follows:

⟨◦| ( |□⟩)∗ = 1
4
, ⟨◦ |△⟩ = ⟨□ |△⟩ = 1,

⟨◦| ( |◦⟩)∗ = ⟨□| ( |□⟩)∗ = ⟨△ |△⟩ = 1
(B6)

With the definition of the inner products in Eq. (B6), one
may construct explicit vector representations for each square,
circle and triangle boundary state in a reduced Hilbert space.
One needs 3-component vectors to satisfy all the numerical
constraints, leading to a minimal local Hilbert space dimension
of 𝑞 = 3. The three basis states are denoted as |↑⟩, |0⟩, and
|↓⟩. One may also construct explicit vector representations for
the Bell-pair state, the SWAP gate and the identity gate. The
chosen vector representations are as follows:

⟨◦| = ⟨↑| −
√︂

3
8
⟨0| + 𝑖

√︂
3
8
⟨↓| ,

⟨□| = ⟨↑| +
√︂

3
8
⟨0| + 𝑖

√︂
3
8
⟨↓| ,

|△⟩ = |↑⟩ , |⊔⟩ = |↑↑⟩ + |00⟩ + |↓↓⟩ .

(B7)
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where |⊔⟩ denotes the Bell-pair state.
As for the gates, the identity gate is trivially defined in the

𝑞 = 3 representation, and the SWAP gate is now defined as a
3 × 3 × 3 × 3 tensor:

i j

k l

= (SWAP)𝑖 𝑗𝑘𝑙 = 𝛿𝑖𝑙𝛿 𝑗𝑘 (B8)

It is worth remarking on several aspects of the choice of the
numerical representation. Firstly, due to the existence of the
projector from spacetime rotation of the trace operation, the
norm of the state can decrease upon successive action by the
projector. Without re-normalizing the state, factors coming
from the norm of the state are multiplied with the purity, and
this can result in erroneous calculation of the purity. In the
stabilizer formalism, the state is always re-normalized after
each measurement, and such problem does not occur.

Therefore, for exact computation using the transfer matrix
approach, the norm of the state is ignored. This is reflected
in two key aspects: 1) the initial state is defined to be product
of Bell pairs, where each Bell pair has norm 3; 2) the only
relevant numerical values are the inner products defined in
Eq. (B6), while the value of a “loop” is not explicitly defined,
since it does not appear in any contraction diagrams. This way,
each trajectory is only weighted by the probability of the gate
configuration and not by the norm of the state.

The second remark is that the components of the circle and
the square covectors are necessarily complex. This can be
intuitively seen as follows: if only real entries are used, the
numerical conditions specified in Eq. (B6) translate to hav-
ing three normalized vectors with circle aligned with triangle,
and square also aligned with triangle, but circle not aligned
with square, which is impossible. Complex entries, on the
other hand, relax the normalization constraint, such that circle
and square are no longer normalized to 1, and the conditions
specified in Eq. (B6) can then be satisfied.

The above prescription yields the average purity, which in
turn yields the “annealed” average entanglement. The annealed
average is defined as first averaging over the purity then taking
the logarithm, whereas the quenched average is defined as
taking the average of the entanglement entropy itself:

𝑆anneal
𝐴 ≡ − log2 tr 𝜌2

𝐴
, 𝑆

quench
𝐴

≡ −log2 tr 𝜌2
𝐴

(B9)

It is possible to compute the quenched average from the
mixed transfer matrix by introducing a perturbative parameter
𝜖 into the vector representation of different boundary states.
Redefining the overlaps such that:

→ 1 − 𝜖 log2 , (B10)

we have that the calculation for the purity results in

𝐷
⟨left |
𝑡𝑖

=

( )𝑛cs
→

(
1 − 𝜖 log2

)𝑛cs

= 1 − 𝜖𝑛cs log2 +𝑂 (𝜖2). (B11)

Crucially, the entanglement entropy for any given trajectory
is proportional to 𝑛cs, which can be directly obtained from the
above overlap.

FIG. 21. Four types of averages from stabilizer simulations for 𝑇 = 8,
𝑝 = 0.8. The first letter being either Q or A indicates whether the
average is quenched or annealed, respectively. The last two letters
being either EF or AF indicates whether the extreme value is computed
first or the average is taken first, respectively.

Calculating the averaged overlap, which can be done by
again absorbing the averaging into the gates, hence returns the
averaged entanglement entropy. The numerical values of the
inner products are:

⟨◦| ( |□⟩)∗ = 1 + 2𝜖 , ⟨◦ |△⟩ = ⟨□ |△⟩ = 1 ,

⟨◦| ( |◦⟩)∗ = ⟨□| ( |□⟩)∗ = ⟨△ |△⟩ = 1 ,
(B12)

with chosen vector representations:

⟨◦| = ⟨↑| + 𝜖 ⟨0| + 𝑖𝜖 ⟨↓| , ⟨□| = ⟨↑| + ⟨0| − 𝑖 ⟨↓| ,
|⊔⟩ = |↑↑⟩ + |00⟩ + |↓↓⟩ , |△⟩ = |↑⟩ . (B13)

Eqs. (B12) and (B13) are the direct counterparts to Eqs. (B6)
and (B7). The representation of the SWAP and identity gates
remain unchanged in the quenched representation. Therefore,
properties of T𝑝 directly affects properties of 𝑆𝑇 . The decay
scales extracted from the spectrum of T𝑝 match the decay
scales of 𝑆𝑇 from stabilizer simulations, as should be the case.

Appendix C: Alternative averaging procedures for computing
decay scale of temporal entanglement from exact tensor

contraction of the mixed transfer matrix

Besides the choice of taking either the annealed or the
quenched average, one may also choose to average either be-
fore or after maximizing 𝑆

(𝑡𝑖 )
𝑇

over different 𝑡𝑖 , henceforth
dubbed “average-first (AF)” and “extreme-value-first (EF)”, re-
spectively. This order is nontrivial because taking the extreme
value is a nonlinear operation and in general does not commute
with trajectory averaging.

Fig. 21 shows the average 𝑆𝑇 obtained from stabilizer simu-
lation at measurement rate 𝑝 = 0.8, with four different ways of
averaging. The labeling convention is detailed in the captions.
By construction, fixing either the annealed (A) or the quenched
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(Q) average, the extreme-value-first (EF) curve always has
higher value than the average-first (AF) curve. The results
from exact T𝑝 evolution yields either the annealed average-first
(A-AF) or the quenched average-first (Q-AF) 𝑆𝑇 . Although
the precise 𝑆𝑇 values are different for the four types of aver-
ages, the resulting decay scale is the same regardless of which
average is taken.

Appendix D: Temporal Entanglement Profile as Bath Size
Increases

Fig. 22 shows the average 𝑆
(𝑡𝑖 )
𝑇

profile as a 2D plot in both
space and time for 𝑇 = 216 and 𝑝 = 0.3. Even in the presence
of measurements, on average, the 𝑡𝑖 that yields maximal 𝑆 (𝑡𝑖 )

𝑇

still occurs at 𝑡𝑖 = 𝑇
3 . This is consistent with the arguments

given in IV E.

FIG. 22. Average temporal entanglement profile in space and time,
for total evolution time 𝑇 = 216 and measurement rate 𝑝 = 0.3.
The numerical label on the color bar indicates value of the averaged
temporal entanglement. The red dashed line marks the temporal cut
that yields maximal average TE, which occurs on average at 𝑡𝑖 = 𝑇/3,
just like in the measurement-free case.

Appendix E: Derivation of the self-consistent equation

In this Appendix we explicitly derive the self-consistent
equation (92) determining the eigenvalues and momenta of
the spatial transfer matrix in the single-particle sector (87).
Consider the parametrization of the eigenstate |𝜓⟩ as

𝜓 𝑗 =

{
𝛼+𝑒𝑖𝑘 𝑗 + 𝛼−𝑒−𝑖𝑘 𝑗 , for 𝑗 even,
𝛽+𝑒𝑖𝑘 𝑗 + 𝛽−𝑒−𝑖𝑘 𝑗 , for 𝑗 odd.

(E1)

where we take 𝑗 = 0, 1 . . . 𝑇 −1. For 𝑗 = 1, . . . , 𝑇 −2 the corre-
sponding components of the eigenvalue equation are satisfied
provided[

𝑝2 + 𝐽2𝑒
−2𝑖𝑘 2𝐽1 cos 𝑘

2𝐽1 cos 𝑘 𝑝2 + 𝐽2𝑒
2𝑖𝑘

] [
𝛼+
𝛽+

]
= 𝜆

[
𝛼+
𝛽+

]
, (E2)

and similarly[
𝑝2 + 𝐽2𝑒

2𝑖𝑘 2𝐽1 cos 𝑘
2𝐽1 cos 𝑘 𝑝2 + 𝐽2𝑒

−2𝑖𝑘

] [
𝛼−
𝛽−

]
= 𝜆

[
𝛼−
𝛽−

]
, (E3)

returning the eigenvalue 𝜆(𝑘) (91). For 𝑗 = 𝑇 − 1, taking 𝑇

even for convience, the boundary condition reads

𝛽+𝑒
𝑖𝑘 (𝑇−1) + 𝛽−𝑒

−𝑖𝑘 (𝑇−1) = 0, (E4)

whereas for 𝑗 = 0 we have that

𝑝(𝛼+ + 𝛼−) + (1 − 𝑝) (𝛽+𝑒𝑖𝑘 + 𝛽−𝑒
−𝑖𝑘) = 𝜆(𝑘) (𝛼+ + 𝛼−).

(E5)

Without loss of generality we can fix 𝛽+ = 𝑒−𝑖𝑘 (𝑇−1) , such that
the boundary condition at 𝑗 = 𝑇 returns 𝛽+ = −𝑒𝑖𝑘 (𝑇−1) . The
bulk eigenvalue equation fixes 𝛼± in terms of 𝛽±, leading to

𝛼+ = −𝑒−𝑖𝑘 (𝑇−1) 𝑝
2 − 𝜆(𝑘) + 𝐽2𝑒

2𝑖𝑘

2𝐽1 cos(𝑘) ,

𝛼− = 𝑒𝑖𝑘 (𝑇−1) 𝑝
2 − 𝜆(𝑘) + 𝐽2𝑒

−2𝑖𝑘

2𝐽1 cos(𝑘) . (E6)

Rewriting the boundary condition (E5) as

𝜆(𝑘) = 𝑝 + (1 − 𝑝) 𝛽+ + 𝛽−
𝛼+ + 𝛼−

, (E7)

and plugging in the above expressions returns the result from
the main text (92) after some straightforward manipulations. If
these equations are satisfied the full state returns an eigenstate
with eigenvalue 𝜆(𝑘).

At 𝑝 = 1/(2𝑇) the value of 𝑘 for the leading eigenvalue
changes from purely imaginary to purely real, with 𝑘 = 0
exactly at 𝑝 = 1/(2𝑇). For 𝑘 = 0 the eigenvalue (91) evaluates
to 𝜆 = (1 − 2𝑝)2, and plugging this expression in the self-
consistent equation (92) fixes 𝑇 = 1/(2𝑝). At this point the
wave function of the leading eigenvalue is exactly linear, which
follows as a linearization of Eq. (E1) in the limit 𝑘 → 0. The
corresponding unnormalized eigenstates are given by

𝜓 𝑗 =

{
𝑇 + 𝑗 , for 𝑗 even,
𝑇 − 𝑗 − 1, for 𝑗 odd.

(E8)

as can be verified by direct calculation.
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