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Abstract. This paper explores the problem of determining which classes
of Petri nets can be encoded into behaviourally-equivalent CCS pro-
cesses. Most of the existing related literature focuses on the inverse prob-
lem (i.e., encoding process calculi belonging to the CCS family into Petri
nets), or extends CCS with Petri net-like multi-synchronisation (Multi-
CCS). In this work, our main focus are free-choice and workflow nets
(which are widely used in process mining to describe system interac-
tions) and our target is plain CCS. We present several novel encodings,
including one from free-choice workflow nets (produced by process min-
ing algorithms like the α-miner) into CCS processes, and we prove that
our encodings produce CCS processes that are weakly bisimilar to the
original net. Besides contributing new expressiveness results, our encod-
ings open a door towards bringing analysis and verification techniques
from the realm of process calculi into the realm of process mining.

Keywords: Petri nets · CCS · Encoding · Bisimulation · Free-choice
workflow nets.

1 Introduction

Process calculi and Petri nets are among the most successful tools for the mod-
elling and verification of concurrent systems. The two models have significantly
different designs: Petri nets have a more semantic flavour, whereas process cal-
culi have a more syntactic flavour. This has resulted in significantly different ap-
proaches and application fields. In particular, Petri nets have found considerable
success in the area of Workflow Management, as the theoretical foundation for
several Business Process Management languages, and in process mining, whereas
the syntactic nature of process calculi has fostered a rich literature on the static
verification of behavioural properties (e.g. via type checking or the axiomatisa-
tion of bisimulation relations), often connected to programming languages.

This different focus on semantics-vs.-syntax has naturally encouraged the
study of Petri nets as a possible semantic model for process calculi, through
⋆ This is an extended version of the paper with the same title published at COORDI-
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Group-choice nets
Definition 15

Petri nets
Definition 6

CCS
Definition 4

Free-choice nets
Definition 10

Free-choice workflow nets
Definition 11

Workflow nets
Definition 9

CCS nets
Definition 12

2-τ -synchronisation nets
Definition 13

Finite-Net
CCS [13]

Algorithm 3
Algorithm 3

Algorithm 6

Algorithm 1

Algorithm 4

Fig. 1. Overview of the relation between Petri net classes and CCS considered in this
paper. The arrows show algorithms for converting one class into another class.

the development of various encodings and results of the form: Petri nets (of the
class X) are at least as expressive as the encoded calculus Y . (For more details,
see Section 2.) In this paper we investigate the opposite problem: Which flavour
of Petri nets can be encoded in Milner’s Calculus of Communicating Systems
(CCS)? A reason for this investigation is the observation that applications of
Petri nets in process mining (e.g. via the α-miner algorithm [3]) often result in
rather structured nets (in particular, free-choice workflow nets [9,3]) which are
reminiscent of what is expressible in CCS. Therefore, we aim at proving whether
this intuition is correct. Moreover, besides producing novel expressiveness results,
developing an encoding from (selected classes of) Petri nets into CCS could also
open new doors towards directly using process calculi in process mining, or
applying analysis and verification techniques and tools originally developed for
process calculi (e.g. model checkers) to the realm of process mining.

Contributions and structure. Fig. 1 gives an overview of the relation and con-
version between Petri nets classes and CCS considered in this paper. We start
by presenting related work in Section 2 and preliminaries in Section 3. Then,
we present an encoding of free-choice workflow nets into weakly bismilar CCS
processes (Theorem 4) in Section 4. Here, we also introduce a new class of Petri
nets called group-choice nets (which include free-choice nets) and show how to
encode them into weakly bisimilar CCS processes (Theorem 7). We conclude and
outline future work in Section 5. A software tool [7] has been created based on
the results of this paper: a web application to import/draw Petri nets, classify
them (according to Fig. 1) and encode them into CCS. Proofs for lemmas and
theorems are available in the appendices.

2 Related Work

Many process mining algorithms (like the α-miner [3]) take a log of traces of vis-
ible actions and turn it into a workflow net [2]. Workflow nets are Petri nets used
to describe how systems interact during a process. These kinds of interactions
can also be described by process calculi like CCS with labeled semantics to cap-
ture the visible actions. There has been some debate about whether graphs like
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Petri nets or process calculi like the π-calculus are best for process mining [1].
Most of the existing work builds on Petri nets [10], but there is also work on
how to represent patterns in process calculi [15].

Most existing work about encodings between process calculi and Petri nets
focus on encoding the former into the latter: e.g., there are encodings from
variants of CCS [11,5,4], CSP [6], and finite-control π-calculus [14] to various
classes of Petri nets. [14] also briefly describes an encoding from unlabeled safe
(1-bounded) Petri nets into CCS with reduction semantics; the result of the
encoding is claimed weakly bisimilar to the original net. However, applications
in process mining require labelled semantics.

To our knowledge, encodings of Petri nets into process calculi are less ex-
plored. Gorrieri and Versari [12] present an extension of CCS called Multi-CCS,
with the purpose of having a one-to-one correspondence between unsafe P/T
Petri nets and Multi-CCS; crucially, Multi-CCS can synchronize multiple pro-
cesses at a time (like Petri nets) whereas CCS is limited to two synchronizing
processes at a time. [12] also presents an encoding from Petri nets into strongly
bisimilar Multi-CCS processes; they also show that encoding a restricted class of
Petri nets (called CCS nets) yields strongly bisimilar plain CCS process. In this
paper we start from this last result, and explore encodability beyond CCS nets
— targeting plain CCS only (to enable reusing its well-established techniques
e.g. for model checking and axiomatic reasoning), and with an eye torward classes
of Petri nets relevant for process mining.

3 Preliminaries: LTSs, Bisimulations, CCS, Petri Nets

This section contains the basic standard definitions used in the rest of the paper.

LTSs and bisimulations. We adopt standard definitions of strong and weak
bisimulation between LTS states (Definition 1, 2, and 3, based on [13]).

Definition 1 (Labeled transition system). A labeled transition system (LTS)
is a triple (Q,A,

·−→) where Q is a set of states, A is a set of actions, and
·−→ ⊆ Q× A×Q is a labelled transition relation. The set A may contain a dis-
tinguished internal action τ , and we dub any other action as visible. We write:
– q

µ−→ q′ iff (q, µ, q′) ∈ ·−→
– q

a−→ q′ iff a ̸= τ and (q, a, q′) ∈ ·−→ (note that the action a is not silent)
– q

ϵ
=⇒ q′ iff q = q′ or q

τ−→ · · · τ−→ q′ (i.e., q can reach q′ in 0 or more τ -steps)
– q

a
=⇒ q′ iff q

ϵ
=⇒ a−→ ϵ

=⇒ q′ (q can reach q′ via one a-step + 0 or more τ -steps)
We say that q is a deadlock if there are no transitions from q. A divergent path
is an infinite sequence of LTS states q1, q2, . . . such that qi

τ−→ qi+1.

Definition 2 (Strong bisimulation). A strong bisimulation between two LTSs
(Q1, A1,

·−→1) and (Q2, A2,
·−→2) is a relation R ⊆ Q1×Q2 where, if (q1, q2) ∈ R:

∀q′1 : q1
µ−→1 q′1 implies ∃q′2 : q2

µ−→2 q′2 and (q′1, q
′
2) ∈ R

∀q′2 : q2
µ−→2 q′2 implies ∃q′1 : q1

µ−→1 q′1 and (q′1, q
′
2) ∈ R
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We say that q and q′ are strongly bisimilar or simply bisimilar (written q ∼ q′)
if there exists a bisimulation R with (q, q′) ∈ R.

Definition 3 (Weak bisimulation). A weak bisimulation between two LTSs
(Q1, A1,

·−→1) and (Q2, A2,
·−→2) is a relation R ⊆ Q1×Q2 where, if (q1, q2) ∈ R:

∀q′1 : q1
a−→1 q′1 implies ∃q′2 : q2

a
=⇒2 q′2 and (q′1, q

′
2) ∈ R

∀q′1 : q1
τ−→1 q′1 implies ∃q′2 : q2

ϵ
=⇒2 q′2 and (q′1, q

′
2) ∈ R

∀q′2 : q2
a−→2 q′2 implies ∃q′1 : q1

a
=⇒1 q′1 and (q′1, q

′
2) ∈ R

∀q′2 : q2
τ−→2 q′2 implies ∃q′1 : q1

ϵ
=⇒1 q′1 and (q′1, q

′
2) ∈ R

We say that q and q′ are weakly bisimilar (written q ≈ q′) if there is a weak
bisimulation R with (q, q′) ∈ R.

CCS. We adopt a standard version of CCS with LTS semantics, including re-
strictions and defining equations (Definition 4 and 5, based on [13]).

Definition 4 (CCS syntax). The syntax of CCS is:
µ ::= τ | a | a P ::= 0 | µ.Q | P + P ′ Q ::= P | Q |Q′ | (νa)Q | X

By Definition 4, an action µ can be the silent action τ , a visible action a,
or its co-action a. A sequential CCS process P can do nothing (0), perform an
action prefix µ followed by Q (µ.Q), or perform a choice (P + P ′). A process Q
can be a sequential process P , a parallel composition of two processes (Q |Q′),
a restriction of action a to scope Q ((νa)Q), or a process name X.

The LTS semantics of CCS is formalised in Definition 5 below, where it is
assumed that there is a partial map of defining equations D from process names
to processes, i.e., D(X) = Q means that D defines the name X as process Q.

Definition 5 (LTS semantics of CCS). The LTS of a CCS process Q with
defining equations D, written LTS(Q,D), has the least transition relation ·−→
induced by the rules below:

Pref
µ.Q

µ−→ Q

Cons
Q

µ−→ Q′

X
µ−→ Q′

D(X) = Q

Sum1
Q1

µ−→ Q′
1

Q1 +Q2
µ−→ Q′

1

Sum2
Q2

µ−→ Q′
2

Q1 +Q2
µ−→ Q′

2

Par1
Q1

µ−→ Q′
1

Q1 |Q2
µ−→ Q′

1 |Q2

Par2
Q2

µ−→ Q′
2

Q1 |Q2
µ−→ Q1 |Q′

2

Com
Q1

a−→ Q′
1 Q2

a−→ Q′
2

Q1 |Q2
τ−→ Q′

1 |Q′
2

Res
Q

µ−→ Q′

(νa)Q
µ−→ (νa)Q′

µ ̸= a, a

By rule Pref in Definition 5, actions (a), co-actions (a), and internal actions
(τ) can be executed by consuming the prefix of a sequential process: for example,
we have a.0

a−→ 0. The rules Sum1 and Sum2 allow for executing either the left
or right branch of a choice: for example, we have Q

a←− a.Q+ b.Q′ b−→ Q′. By rule
Res, actions and co-actions cannot be executed when restricted; for example, we
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have (νb)(a.0) a−→ (νb)0, whereas b cannot be executed in (νb)(b.0). By rule Com,
an action can synchronize with its co-action, producing an internal τ -action; for
example, b can synchronize with b, so we have b.0 | b.0 τ−→ 0 | 0; this also works
under restriction (by rule Res), so we have (νb)(b.0 | b.0) τ−→ (νb)(0 | 0).

Petri nets. We adopt standard definitions of labelled Petri nets (that we simply
call Petri nets), marking, and firing rules (Definition 6, 7, and 8, based on [3]).
We also highlight two classes of Petri nets commonly used in process mining
literature: workflow nets (Definition 9) and free-choice nets (Definition 10).

Definition 6 (Labelled Petri net). A labelled Petri net is a tuple (P, T, F,A, σ)
where P is a finite set of places, T is a finite set of transitions such that
P ∩ T = ∅, and F ⊆ (P × T ) ∪ (T × P ) is a set of directed edges from places to
transitions or vice versa; moreover, A is a set of actions and σ : T → A assigns
an action to each transition.

Notably, Definition 6 only allows for at most one (unweighted) edge between
each pair of places and transitions, and does not allow co-actions in A: we keep
co-actions exclusive to CCS (Definition 4) to avoid renaming in our encodings.

Definition 7 (Marking). A marking of a Petri net (P, T, F,A, σ) is a mapping
M : P → N from each place p ∈ P to the number of tokens in p (may be 0).

Definition 8 (Firing rule). Given a Petri net (P, T, F,A, σ) and a marking
M : P → N, a transition t ∈ T is enabled if all places with an edge to t have
tokens in M . Transition t can fire if enabled, and this firing consumes one token
from all places with an edge to t, emits a label σ(t), and produces one token for
all places with an edge from t. This results in an updated marking M ′.

A Petri net N = (P, T, F,A, σ) and an initial marking M0 yields LTS(N,M0) =

(Q,A,
·−→) where the states (Q) and the transition relation ( ·−→) are derived us-

ing the firing rule (Definition 8) until all enabled transitions t in all reachable
markings are added to ·−→, with σ(t) as transition label.

Process mining algorithms like the α-miner typically produce workflow nets
(Definition 9) that are used to describe end-to-end processes with a clear start
and completion. In practical applications, such workflow nets are often free-
choice1 (Definition 10 and 11) where all choices are made by a single place —
meaning that transitions can at most fight for one token in order to fire. Fig. 2–5
show examples of Petri nets with small differences resulting in different classes.

Definition 9 (Workflow net [3, Definition 2.8]). A Petri net (P, T, F,A, σ)
is a workflow net iff it satisfies the following three properties:
– Object creation: P has an input place i with no ingoing edges.
– Object completion: P has an output place o with no outgoing edges.

1 The α-miner actually returns a further subclass of free-choice workflow nets called
structured workflow nets [3].
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p0
t2

t3
p1 t1

p2

p3 t4

p4

t5
p5

Fig. 2. Neither free-choice or workflow net.

p0
t2

t3
p1 t1

p2

p3 t4

p4

t5
p5

p6

Fig. 3. Workflow but not free-choice net.

p1 t1

p2

t2

t3

p3 t4

p4

t5
p5

Fig. 4. Free-choice but not workflow net.

p1 t1

p2

t2

t3

p3 t4

p4

t5
p5

p6

Fig. 5. Free-choice net and workflow net.

– Connectedness: For every v ∈ P ∪ T , there exists a directed path of edges
from i to o that goes through v.

Definition 10 (Free-choice net [9]). A Petri net (P, T, F,A, σ) is a free-
choice net iff it satisfies the following two properties:
– Unique choice: All places p ∈ P with more than one outgoing edge only

have edges to transitions with exactly one ingoing edge (edge from p).
– Unique synchronisation: All transitions t ∈ T with more than one ingoing

edge only have edges from places with exactly one outgoing edge (edge to t).
Definition 11 (Free-choice workflow net). If a Petri net is both a workflow
net and free-choice, we call it a free-choice workflow net.

The connectedness property in Definition 9 implies that all transitions in
free-choice workflow nets have at least one ingoing edge and at least one outgo-
ing edge. The same applies to all places except the special places i and o that
respectively has no ingoing edges (i) and no outgoing edges (o). The unique
choice and synchronisation properties in Definition 10 ensure that every choice
is separated from all synchronisations and vice versa. This does not rule out
cycles but unique choice restricts all outgoing edges leaving a cycle to lead to
transitions with exactly one ingoing edge (because there is always one edge con-
tinuing the cycle). For instance, adding a new transition t7 in Fig. 5 to form the
cycle (p3, t4, p5, t7, p3) would violate unique choice (and unique synchronisation)
because the edge (p5, t5) leaves the cycle but t5 has two ingoing edges. Adding
the cycle (p3, t7, p3) is allowed because t4 only has one ingoing edge.

4 Encoding Petri Nets into CCS, Step-by-Step

This section introduces our main contribution: an encoding into CCS of a super-
class of free-choice nets, that we call group-choice nets (Definition 15); we prove



Encoding Petri Nets into CCS (Technical Report) 7

that our encoding is correct, i.e., a Petri net and its encoding are weakly bisimi-
lar and without added divergent states (Theorem 7). To illustrate the encodings
and result, we proceed through a series of steps: a series of encoding algorithms
into CCS for progressively larger classes of Petri nets. (See Fig. 1 for an outline.)

We begin (in Section 4.1) with the class of CCS nets (Definition 12), and
Algorithm 1 that encodes such nets into strongly bisimilar CCS processes (Theo-
rem 1).2Then (in Section 4.2) we develop a novel transformation from free-choice
workflow nets (Definition 11) to weakly bismilar CCS nets using Algorithm 3
(Theorem 3). The composition of Algorithm 3 and Algorithm 1 then encodes
free-choice workflow nets into weakly bismilar CCS processes (Theorem 4). In
Section 4.3, we generalise CCS nets into 2-τ -synchronisation nets (Definition 13,
allowing for transitions with no ingoing edges) and we present Algorithm 4 to
encode such nets into strongly bisimilar CCS processes (Theorem 6). Finally
(cf. Section 4.4), we generalize free-choice nets to a new class called group-choice
nets (Definition 15) and present Algorithm 6 that, composed with Algorithm 4,
encodes group-choice nets into weakly bisimilar CCS processes (Theorem 7).

4.1 Encoding CCS Nets into CCS Processes

A challenge in encoding Petri nets into CCS processes is that a transition in
a Petri net can consume tokens from any number of places in a single step —
whereas the semantics of CCS (Definition 5) only allow for executing a single
action or a synchronisation between two processes in each step. In other words,
Petri nets are able to perform n-ary synchronisation, while CCS can only perform
2-ary synchronisation. Therefore, as a stepping stone towards our main result,
we adopt CCS nets from [12], whose synchronisation capabilities match CCS.

Definition 12 (CCS net [12]). A Petri net (P, T, F,A, σ) is a CCS net iff
each transition t ∈ T has one or two ingoing edges — and in the latter case,
σ(t) = τ .

The key insight behind Definition 12 is that transitions with two ingoing
edges must be labeled with τ to have a 1-to-1 correspondence to synchronisation
in CCS (that also emits a τ). Fig. 12 shows a CCS net that later will be encoded.
2 The results in Section 4.1 can be also derived from [12], but here we provide a direct

encoding algorithm, statements, and proofs for plain CCS, without using Multi-CCS.

p1

Xp1 := 0

Fig. 6. Place with 0 outgo-
ing edges and its encoding.

t2:τp2

Xp2 := Yt2

Fig. 7. Place with 1 outgo-
ing edge and its encoding.

t1:a

t2:τ

t3:b

p3

Xp3 := Yt1 + Yt2 + Yt3

Fig. 8. Place with 3 outgo-
ing edges and its encoding.
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t1:a

Yt1 := a.0

Fig. 9. Encoding of transi-
tion with 0 outgoing edges.

t2:τ p1

Yt2 := τ.Xp1

Fig. 10. Encoding of tran-
sition with 1 outgoing edge.

t3:b

p1

p2

Yt3 := b.(Xp1 |Xp2)

Fig. 11.Encoding of transi-
tion with 2 outgoing edges.

Algorithm 1 encodes a CCS net (P, T, F,A, σ) and marking M0 into a CCS
process Q and its defining equations D, where D defines a process named Xp for
each place p ∈ P . The idea is that each token at place p is encoded as a parallel
replica of the process Xp. We illustrate the algorithm in the next paragraphs.

On line 2–4, each place p ∈ P is encoded as a choice process named Xp in
D: The choice is among placeholder processes named Yt, for each transition t
with an edge from p. (Notice that the placeholders Yt are not in the domain
of D, but are substituted with sequential CCS processes in the next steps of
the algorithm.) The choice process Xp models a token at p that chooses which
transition it is used for. Fig. 6–8 show examples.

On line 5–7, each transition t ∈ T with one ingoing edge from a place p∗ is
encoded as a process with an action prefix (obtained via the labelling function
σ(t)) followed by the parallel composition of all processes named Xpi

, where

Algorithm 1: Encoding from CCS net to CCS process
Input : CCS net (P, T, F,A, σ) and marking M0 : P → N
Output: CCS process Q and partial mapping of defining equations D

1 D ← Empty mapping of defining equations
2 for p ∈ P do
3 D(Xp)← (Yt1 + Yt2 + · · ·+ Ytk ) where {t1, t2, . . . , tk} = {t | (p, t) ∈ F}
4 end
5 for t ∈ {t | t ∈ T and t has 1 ingoing edge} do
6 substitute Yt in D(Xp∗) with σ(t).(Xp1 |Xp2 | . . . |Xpk ) where

(p∗, t) ∈ F and {p1, p2, . . . , pk} = {p | (t, p) ∈ F}
7 end
8 A′ ← ∅
9 for t ∈ {t | t ∈ T and t has 2 ingoing edges} do

10 A′ ← A′ ∪ {st} where st is a fresh action
11 substitute Yt in D(Xp∗) with st.(Xp1 |Xp2 | . . . |Xpk )
12 substitute Yt in D(Xp∗∗) with st.0 where

(p∗, t), (p∗∗, t) ∈ F and p∗ ̸= p∗∗ and {p1, p2, . . . , pk} = {p | (t, p) ∈ F}
13 end
14 {s1, s2, . . . , sn} ← A′

15 Q← (νs1)(νs2) . . . (νsn)
(
X

M0(p1)
p1 |XM0(p2)

p2 | . . . |XM0(p|P |)
p|P |

)
16 return (Q, D)
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p1

p2 t2:τ

p3

t1:a

t3:b

M0(p1) = 1, M0(p2) = 0, M0(p3) = 2

Fig. 12. CCS net N and initial marking
M0 with three tokens.

Q := (νst2)(Xp1 |Xp3 |Xp3)
D(Xp1) = 0
D(Xp2) = st2 .0
D(Xp3) = st2 .Xp1 + a.0+ b.(Xp1 |Xp2)

Fig. 13. Encoding of N and M0 in Fig. 12
into Q and D produced by Algorithm 1.

place pi has an ingoing edge from t. Fig. 9–11 show examples. The resulting
process σ(t).(Xp1

| . . . | Xpk
) (line 6) models the execution of the action σ(t)

followed by the production of tokens for places p1, . . . , pk, and such a process is
used to substitute the placeholder Yt in D(Xp∗).

On line 8–13, each transition t ∈ T with two ingoing edges from p∗ and p∗∗

(where t has label σ(t) = τ , by Definition 12) is encoded as a synchronisation
between a fresh action st (which prefixes (Xp1 | . . . | Xpk

) on line 11 to model
production of tokens), and its co-action st (line 12). The two resulting processes
are respectively used to substitute the placeholder Yt in D(Xp∗) and D(Xp∗∗).

Finally, on line 15, the initial marking M0 is encoded into the result CCS
process Q, which is the parallel composition of one place process Xpi per token
at place pi, under a restriction of each fresh action si produced on line 10. Note
that we write Qn for the parallel composition of n replicas of Q, so Q3 = Q|Q|Q,
and Q1 = Q, and Q0 = 0. The algorithm also returns the partial mapping D
with the definition of each process name Xp (for each p ∈ P ) occurring in Q.

Fig. 13 shows the encoding of the CCS net in Fig. 12. Observe that in Xp3
,

the transitions t1 and t3 (which have one ingoing edge) yield respectively the sub-
processes a.0 and b.(Xp1

|Xp2
) (produced by line 5–7 in Algorithm 1); instead,

t2 (which has two ingoing edges and label τ) yields both sub-processes st2 .Xp1

in Xp3 and st2 .0 in Xp2
(produced by line 9–13 in Algorithm 1).

Theorem 1 (Correctness of Algorithm 1). Given a CCS net N = (P, T, F,A, σ)
and an initial marking M0, let the result of applying Algorithm 1 to N and M0 be
the CCS process Q and defining equations D. Then, LTS(N,M0) ∼ LTS(Q,D).
The translation time and the size of (Q,D) are bound by O(|N |+

∑
p∈P M0(p)).

Proof. (Sketch, detailed proof in Appendix B.) We define the following relation
between markings and processes, and we prove it is a bisimulation:

R :=
{(

M, (νs1) . . . (νsn)
(
XM(p1)

p1
| . . . |XM(p|P |)

p|P |

)) ∣∣∣ M ∈ LTS(N,M0)
}

where M is a reachable marking from the initial marking M0 in N (i.e. M is a
state in LTS(N,M0)), and s1, . . . , sn are the restricted names in Q. The intuition
is as that for every place p containing M(p) tokens, the CCS process contains
M(p) replicas of the process named Xp (written X

M(p)
p ). ⊓⊔
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The strong bisimulation result in Theorem 1 ensures that there are no observ-
able differences between the original Petri net and its encoding, so Algorithm 1
does not introduce new deadlocks nor divergent paths. The encoding is also
linear in the size of the CCS net N and the size of the initial marking M0.

4.2 Encoding Free-Choice Workflow Nets into CCS Processes

We now build upon the result in Section 4.1 to prove that free-choice workflow
nets (Definition 11) are encodable into weakly bisimilar CCS processes. Specifi-
cally, we present a stepwise transformation procedure (Algorithm 2 and 3) from
a free-choice workflow net into weakly bisimilar CCS net (Theorem 3), and then
apply Algorithm 1 to get a weakly bisimilar CCS process (Theorem 4).

It should be noted (as illustrated in Fig. 1) that free-choice (workflow) nets
does not contain the class of CCS nets: Fig. 12 is not a free-choice net since
p3 has multiple outgoing edges of which one leads to a transition with multiple
ingoing edges. However, as will be shown in this section, a free-choice workflow
net can be transformed into a CCS net by (non-deterministically) making a
binary synchronisation order for each n-ary synchronisation.

An application of Algorithm 2 transforms an input Petri net by reducing the
number of ingoing edges of the selected transition t∗ (which must have two or
more ingoing edges): it selects two distinct ingoing edges (line 1), creates a new
τ -transition t+ with an edge to a new place p+, and connects the new place p+

to the selected transition t∗ (line 2–5). The cost of the transformation is that a
new τ -transition t+ with two ingoing edges is created. Fig. 14 and 15 show an

Algorithm 2: Petri net transition preset reduction
Input : Petri net (P, T, F,A, σ), marking M0 : P → N and chosen transition

t∗ ∈ T with at least two ingoing edges
Output: Petri net (P ′, T ′, F ′, A′, σ′) and marking M ′

0 : P ′ → N
1 select (p∗, t∗), (p∗∗, t∗) ∈ F where p∗ ̸= p∗∗

2 P ′ ← P ∪ {p+} where p+ /∈ P ∪ T
3 T ′ ← T ∪ {t+} where t+ /∈ P ′ ∪ T
4 F ′ ← (F \ {(p∗, t∗), (p∗∗, t∗)}) ∪ {(p∗, t+), (p∗∗, t+), (t+, p+), (p+, t∗)}
5 N ′ ← (P ′, T ′, F ′, A ∪ {τ}, σ[t+ 7→ τ ])
6 return (N ′,M0[p

+ 7→ 0])

p1

t1:ap2

p3

p4 t2:b

Fig. 14. Free-choice net where t1 and
the dotted edges (p2, t1) and (p3, t1)
are chosen for transformation.

p1

t1:ap2

t3:τ
p3

p4 t2:b
p5

Fig. 15. Free-choice net obtained from Fig. 14
where the dotted edges have been moved and
the dashed elements t3 and p5 have been added.
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example application on a free-choice net, where t1 is selected for transformation
with the edges (p2, t1) and (p3, t1). Algorithm 2 can be iterated until all the
original transitions only have one ingoing edge left; transitions with no ingoing
edges are left untouched. Hence, transformed free-choice workflow nets will have
no transitions with zero ingoing edges, hence Algorithm 1 could be applied.

Fig. 14 and 15 show that Algorithm 2 does not produce a Petri net that
is strongly bisimilar to its input: if we only have one token in both p2 and p3,
then Fig. 15 can fire the τ -transition while Fig. 14 is in a deadlock. However,
Theorem 2 below proves that, when applied to free-choice nets (and thereby also
free-choice workflow nets), Algorithm 2 produces a weakly bisimilar Petri net.
Moreover, by Lemma 1, the returned net remains a free-choice net.

Theorem 2 (Correctness of Algorithm 2). Given a free-choice net N =
(P, T, F,A, σ), a marking M0 : P → N, and a transition t∗ ∈ T (with at least
two ingoing edges), the result of applying Algorithm 2 on N , M0, and t∗ is
a Petri net N ′ and marking M ′

0 such that LTS(N,M0) ≈ LTS(N ′,M ′
0) and

LTS(N ′,M ′
0) contains a divergent path iff LTS(N,M0) contains a divergent

path. The transformation time and the increase in size are amortized O(1).

Proof. (Sketch, detailed proof in Appendix C.) We define the following relation
between pair of markings, and we prove it is a bisimulation:

R :=

{(
M, M [p∗ 7→M(p∗)− i][p∗∗ 7→M(p∗∗)− i][p+ 7→ i]

)∣∣∣∣ M∈LTS(N,M0)
k=min(M(p∗),M(p∗∗))

0≤i≤k

}
where M is a reachable marking from the initial marking M0 in the free-choice
net N (M is a state in LTS(N,M0)). The intuition behind the relation is: when
i = 0, it covers the direct extension of a marking in N to one in N ′ where the
new place p+ has no tokens; when i > 0, it covers the cases where the new
transition t+ has been fired i times without firing t∗ afterwards.

For instance, consider Fig. 14 and 15 where t∗ = t1, p∗ = p2, p∗∗ = p3,
t+ = t3 and p+ = p5. Clearly, the initial markings (M0,M

′
0) are in R since

Algorithm 2 just extends M0 to M ′
0 where p+ has zero tokens. Now consider any

pair (M,M ′) ∈ R. The transition t2 is not part of the transformed part, so t2
can be fired in N iff it can be fired in N ′. Firing t1 in N can be replied in N ′ by
firing t1 when there is a token in p5 (i > 0) and otherwise by firing t3 followed
by t1 (i = 0). Firing t1 in N ′ can be replied in N by also firing t1. If t3 is fired
in N ′ then N should do nothing as this simply merges the tokens from p2 and
p3 into one token in p5 by a τ -action (increases i by one). All these cases result
in a new pair in R which completes the proof of LTS(N,M0) ≈ LTS(N ′,M ′

0).
In general, weak bisimulation alone does not ensure the absence of new diver-

gent paths [13]. However, Algorithm 2 only extends existing paths to t∗ by one
τ -transition such that no divergent paths are changed, so LTS(N ′,M ′

0) contains
a divergent path iff LTS(N,M0) contains a divergent path. ⊓⊔

Lemma 1 (Invariant of Algorithm 2). If Algorithm 2 is given a free-choice
net N , it returns a free-choice net N ′ that has no additional or changed transi-
tions with no ingoing edges compared to N . (Proof available in Appendix C.)
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Algorithm 3: Iterative Petri net transition preset reduction
Input : Free-choice net N = (P, T, F,A, σ) and marking M0 : P → N
Output: Petri net (P ′, T ′, F ′, A′, σ′) and marking M ′

0 : P ′ → N
1 (N ′,M ′

0)← (N,M0)
2 while ∃t∗ ∈ T ′ where |{p | (p, t∗) ∈ F}| > (if σ(t∗) = τ then 2 else 1) do
3 (N ′,M ′

0)← Algorithm 2(N ′,M ′
0, t

∗)
4 end
5 return (N ′,M ′

0)

To achieve our encoding of free-choice workflow into CCS nets we use Algo-
rithm 3, which applies Algorithm 2 (by non-deterministically picking a transition
t∗) until all transitions have at most one ingoing edge (or two for τ -transitions).
If Algorithm 3 is applied to a free-choice workflow net, it returns a CCS net
(Lemma 2) that is weakly bisimilar and has no new divergent paths (Theorem 3).

Lemma 2 (Algorithm 3 output). If applied to a free-choice workflow net
(P, T, F,A, σ), Algorithm 3 returns a CCS net. (Proof: Appendix C.)

Theorem 3 (Correctness of Algorithm 3). Given a free-choice net N =
(P, T, F,A, σ) and a marking M0 : P → N, the result of applying Algorithm 3
on N and M0 is a Petri net N ′ and marking M ′

0 such that LTS(N,M0) ≈
LTS(N ′,M ′

0) and LTS(N,M0) has a divergent path iff LTS(N ′,M ′
0) has. Both

the transformation time and the size of (N ′,M ′) are O(|N |).

Proof. (Sketch, detailed proof in Appendix C.) Follows from induction on the
number of applications of Algorithm 2 and transitivity of bisimulation [13]. ⊓⊔

The full encoding from a free-choice workflow net into a weakly bisimilar
CCS process is obtained by composing Algorithm 3 and Algorithm 1, leading to
Theorem 4. Algorithm 2 can at most be applied |F | times. It runs in constant
time and increases the size by a constant amount such that Algorithm 3 produces
a linear-sized CCS net. Hence, the resulting CCS process is also linear in size of
the original Petri net and marking.

Theorem 4 (Correctness of encoding from free-choice workflow net to
CCS). Let N = (P, T, F,A, σ) be a free-choice workflow net and M0 : P → N be
a marking. N and M0 can be encoded into a weakly bisimilar CCS process Q with
defining equations D such that LTS(N,M0) has a divergent path iff LTS(Q,D)
has. The encoding time and the size of (Q,D) are O(|N |+

∑
p∈P M0(p)).

Proof. By Lemma 1+2, Theorem 3+1 and transitivity of bisimulation [13]. ⊓⊔

4.3 Encoding Any Free-Choice Net into CCS

Although the focus of Section 4.2 is encoding free-choice workflow nets into
CCS, many definitions and results therein can be applied to any free-choice net
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Algorithm 4: Encoding from 2-τ -synchronisation net to CCS process
Input : 2-τ -synchronisation net N = (P, T, F,A, σ) and marking M0 : P → N
Output: CCS process Q and partial mapping of defining equations D

1 (_,D)← Algorithm 1(N,M0)
2 T0 ← t ∈ {t | t ∈ T and t has 0 ingoing edges}
3 for t ∈ T0 do
4 D(Xt)← σ(t).(Xt |Xp1 | . . . |Xpk ) where {p1, . . . , pk} = {p | (t, p) ∈ F}
5 end

6 Q← (νs1) . . . (νsn)
(
X

M0(p1)
p1 | . . . |XM0(p|P |)

p|P | | Xt1 | . . . |Xtk︸ ︷︷ ︸
ti∈{t1,...,tk}=T0

)
7 return (Q, D)

(Algorithm 2, Theorem 2, Lemma 1, Algorithm 3, Theorem 3). In this section
we build upon them to develop an encoding from any free-choice net into CCS.

To achieve this result, we define a superclass of CCS nets (Definition 12)
called 2-τ -synchronisation nets (Definition 13, below), which may have transi-
tions with no ingoing edges. Such transitions can be seen as token generators:
they can always fire and produce tokens; they do not occur in workflow nets,
and they would be dropped if given to Algorithm 1 because they do not orig-
inate from any place. For this reason, token generator transitions are handled
separately in Algorithm 4 (which extends Algorithm 1).

Definition 13 (2-τ-synchronisation net). A Petri net (P, T, F,A, σ) is a 2-
τ -synchronisation net iff each transition t ∈ T has at most two ingoing edges —
and in the latter case, σ(t) = τ .

Line 1 of Algorithm 4 retrieves the defining equations D returned by Algo-
rithm 1 (the returned CCS process is not used). Line 2 defines T0 as all transitions
t ∈ T with no ingoing edges. Each transition t ∈ T0 is encoded as a sequential
process named Xt in D (line 3–5). Xt is defined as σ(t) followed by the parallel
composition of Xt (itself) and all processes named Xpi

, where pi has an ingoing
edge from t. This ensures that whenever Xt is used, then it spawns a new copy of
itself that can be used again. Finally on line 6, all Xti , where ti ∈ T0, are included
once in the process Q to be available from the start. For instance, the simple 2-τ -
synchronisation net N = ({p1}, {t1}, {(t1, p1)}, {b}, [t1 7→ b]}) and marking M0

with M0(p1) = 0 are encoded into (Xt1 ,D) where D(Xt1) = b.(Xt1 |Xp1) which
gives a process where Xt1 is always present: Xt1

b−→(Xp1
|Xt1)

b−→(X2
p1
|Xt1)

b−→ . . .
Algorithm 4 also produces strongly bisimilar CCS processes like Algorithm 1.

Theorem 5 (Correctness of Algorithm 4). Given a 2-τ -synchronisation net
N = (P, T, F,A, σ) and an initial marking M0 : P → N, the result of applying
Algorithm 4 on N and M0 is (Q,D) such that LTS(N,M0) ∼ LTS(Q,D). The
translation time and the size of (Q,D) are bound by O(|N |+

∑
p∈P M0(p)).

Proof. (Sketch, detailed proof in Appendix D.) Extend the proof of Theorem 1
by extending the parallel composition in all CCS processes in the relation R
with the parallel composition of all Xti , where ti ∈ T0. ⊓⊔
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The CCS process obtained from Algorithm 4 is linear in size of the encoded 2-
τ -synchronisation net and marking. Theorem 5 allows us to extend the encoding
of free-choice workflow nets to free-choice nets.

Lemma 3 (Algorithm 3 output). If applied to a free-choice net (P, T, F,A, σ),
Algorithm 3 returns a 2-τ -synchronisation net. (Proof: Appendix D.)

Theorem 6 (Correctness of free-choice net to CCS encoding). Let N =
(P, T, F,A, σ) be a free-choice net and M0 : P → N be an initial marking. N and
M0 can be encoded into a weakly bisimilar CCS process Q with defining equations
D such that LTS(N,M0) has a divergent path iff LTS(Q,D) has. The encoding
time and the size of (Q,D) are O(|N |+

∑
p∈P M0(p)).

Proof. By Lemma 1+3, Theorem 3+5 and transitivity of bisimulation [13]. ⊓⊔

4.4 Group-Choice Nets

We now further extend our CCS encodability results. Free-choice nets (Defini-
tion 10) only allow for choices taken by a single place; we relax this requirement
by defining a larger class of nets called group-choice nets (Definition 15, below),
where choices can be taken by a group of places which synchronise before making
the choice. This requires that all places in the group agree on their options —
which corresponds to all places in the group having the same postset (i.e., edges
to the same transitions). No other places outside the group may have edges to
those transitions (as that would affect the choice).

Definition 14 (Postset of a place). Let (P, T, F,A, σ) be a Petri net. The
postset of a place p ∈ P (written p•) is the set of all transitions with an ingoing
edge from p, i.e.: p• := {t | p ∈ P, (p, t) ∈ F}.

Definition 15 (Group-choice net). A Petri net N is a group-choice net iff
all pairs of places either have a same postset, or disjoint postsets.

A group-choice net does not have partially overlapping place postsets. There-
fore, its places can be split into disjoint groups where all places in a group have
the same postset. Fig. 16–18 show examples of Petri nets and postsets for each

p1 t1:a

p2 t2:b

p3 t3:c

Fig. 16. Petri net with
p1• = {t1}, p2• =
{t1, t2} and p3• = {t3}.

p1 t1:a

t2:bp2

p3 t3:c

Fig. 17. Group-choice
net with p1• = p2• =
{t1, t2} and p3• = {t3}.

p1

t4:τ
p2

p3 t3:c

p4

t1:a

t2:b

Fig. 18. Result of Algorithm 5
on Fig. 17. p1• = p2• = {t4},
p3 •={t3} and p4 •={t1, t2}.
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Algorithm 5: Group-choice net transition preset reduction
Input : Petri net N = (P, T, F,A, σ), marking M0 : P → N and two selected

places p∗, p∗∗ ∈ P where p∗• = p∗∗• ̸= ∅
Output: Petri net (P ′, T ′, F ′, A′, σ′) and marking M ′

0 : P ′ → N
1 P ′ ← P ∪ {p+} where p+ /∈ P ∪ T
2 T ′ ← T ∪ {t+} where t+ /∈ P ′ ∪ T

3 F ′ ←

((
F \

(
{(p∗, t) | t ∈ p∗•} ∪ {(p∗∗, t) | t ∈ p∗∗•}

))
∪ {(p∗, t+), (p∗∗, t+), (t+, p+)} ∪ {(p+, t) | t ∈ p∗•}

)
4 N ′ ← (P ′, T ′, F ′, A ∪ {τ}, σ[t+ 7→ τ ])
5 return (N ′,M0[p

+ 7→ 0])

place. Fig. 16 is not a group-choice net because p1• and p2• are only partially
overlapping (since p2 has an edge to t2 while p1 does not). Fig. 17 is a group-
choice net, hence its places can be split into two disjoint groups {p1, p2} and
{p3}. Fig. 18 is a group-choice net with three groups of places.

A place postset of size at least two (like p4• in Fig. 18) corresponds to a
choice because the place can choose between at least two transitions. When at
least two places have the same postset (like p1• and p2• in Fig. 18), it corre-
sponds to synchronisation because the transitions in the postset have at least two
ingoing edges. The definition of group-choice nets ensures that choice and syn-
chronisation can only happen at the same time if the group of places can safely
synchronise before making a choice together. A free-choice net further require
that every place postset must not correspond to both choice and synchronisation.

The transformation of group-choice nets into 2-τ -synchronisation nets is in-
tuitively similar to the transformation of free-choice nets (in Section 4.2). The
key difference is that, since places in group-choice nets can have more than one
outgoing edge when they synchronise on a transition, we consider whole place
postsets instead of a single transition. Algorithm 5 does this by selecting two
places p∗ and p∗∗ with the same (non-empty) postset: It removes all their outgo-
ing edges (line 3) and connects them to a new τ -transition t+ (defined on line 2)
with an edge to a new place p+ (defined on line 1) that has outgoing edges to the
same postset p∗ and p∗∗ originally had (lines 3–5). This reduces the number of

Algorithm 6: Iterative group-choice net transition preset reduction
Input : Group-choice net N = (P, T, F,A, σ) and marking M0 : P → N
Output: Petri net (P ′, T ′, F ′, A′, σ′) and marking M ′

0 : P ′ → N
1 (N ′,M ′

0)← (N,M0)
2 while ∃t∗ ∈ T ′ where |{p | (p, t∗) ∈ F}| > (if σ(t∗) = τ then 2 else 1) do
3 select (p1, t

∗), (p2, t
∗) ∈ F where p1 ̸= p2

4 (N ′,M ′
0)← Algorithm 5(N ′,M ′

0, p1, p2)

5 end
6 return (N ′,M ′

0)
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ingoing edges (i.e., the preset) of all transitions in p∗• by one. Fig. 18 shows the
result of one application of Algorithm 5 on Fig. 17 with p∗ = p1 and p∗∗ = p2.

Algorithm 6 keeps applying Algorithm 5 on the input group-choice net (in
the same fashion as Algorithm 3) by non-deterministically picking p1 and p2,
until a 2-τ -synchronisation net is obtained. All the proofs for the encoding of
group-choice nets are similar to the ones for free-choice nets: The only difference
is that the proofs for group-choice nets consider sets of impacted transitions
instead of single transitions. Therefore, we only present the main result below.

Theorem 7 (Correctness of group-choice net to CCS encoding). A
group-choice net N = (P, T, F,A, σ) and an initial marking M0 : P → N can
be encoded into a weakly bisimilar CCS process Q with defining equations D s.t.
LTS(N,M0) has a divergent path iff LTS(Q,D) has. The encoding time and the
size of (Q,D) are O(|N |+

∑
p∈P M0(p)). (Proofs in Appendix E.)

5 Conclusion and Future Work

In this paper we have formalised a direct encoding of CCS nets into strongly
bisimilar CCS processes (akin to [12]), and on this foundation we have devel-
oped novel Petri net-to-CCS encodings and results, through a series of generaliza-
tions. We have introduced an encoding of free-choice workflow nets into weakly
bisimilar CCS processes. We have generalized this result as an encoding from
any free-choice net into a weakly bisimilar CCS processes, via a new superclass
of CCS nets called 2-τ -synchronisation nets (which may have token-generating
transitions). Finally, we have presented a superclass of free-choice nets called
group-choice nets, and its encoding into weakly bisimilar CCS processes.

On the practical side, we are now exploring the practical application of these
results — e.g. using model checkers oriented towards process calculi (such as
mCRL2 [8]) to analyse the properties of α-mined Petri nets encoded into CCS.
On the theoretical side, we are studying how to encode even larger classes of Petri
nets into weakly bisimilar CCS processes. One of the problems is how to handle
partially-overlapping place postsets: in this paper, we focused on classes of Petri
nets without such overlaps, and 2-τ synchronisation nets. Another avenue we are
exploring is to develop further encodings after dividing a Petri net into groups
of places/transitions, as we did for group-choice nets.
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comments and suggestions, and Ekkart Kindler for the fruitful discussions.
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A Extended Preliminaries

Definition 16 (Weak closure of → [13, Definition 2.16]). For TS =
(Q,A,→), define the relation =⇒ ⊆ Q × A′∗ × Q as the least closure of →,
where A′∗ is a trace of visible actions from A′ := A \ {τ}, induced by (ϵ is the
empty trace):

q1
a−→ q2

q1
a

=⇒ q2

q1
τ−→ q2

q1
ϵ

=⇒ q2 q
ϵ

=⇒ q

q1
σ1=⇒ q2 q2

σ2=⇒ q3

q1
σ1σ2=⇒ q3

Definition 17 (Finite-net CCS [13, Section 3.4]). A CCS process Q and
its partial mapping of defining equations D is finite-net CCS when no definitions
in D contains restrictions.

↓ Extended version of Definition 10 (page 6).

Definition 10 (Free choice net [9] - extended). A Petri net (P, T, F,A, σ)
is a free-choice net iff it satisfies the following two properties:
– Unique choice: All places p ∈ P with more than one outgoing edge only

have edges to transitions with exactly one ingoing edge (edge from p):

∀p.∀t.p ∈ P∧(p, t) ∈ F∧|{t′|(p, t′) ∈ F}| > 1 =⇒ |{p′|(p′, t) ∈ F}| = 1 (1)

– Unique synchronisation: All transitions t ∈ T with more than one ingoing
edge only have edges from places with exactly one outgoing edge (edge to t):

∀p.∀t.t ∈ T ∧(p, t) ∈ F ∧|{p′|(p′, t) ∈ F}| > 1 =⇒ |{t′|(p, t′) ∈ F}| = 1 (2)

↑ Extended version of Definition 10 (page 6).

Lemma 4. Let N = (P, T, F,A, σ) be a Petri Net. If N satisfies unique choice
in Definition 10 then it also satisfies unique synchronisation in Definition 10.

Proof. Assume that unique choice (1) holds:

∀p.∀t.p ∈ P ∧ (p, t) ∈ F ∧ |{t′|(p, t′) ∈ F}| > 1 =⇒ |{p′|(p′, t) ∈ F}| = 1

Consider an arbitrary transition t with more than one ingoing edge (|{p′|(p′, t) ∈
F}| > 1). Consider an arbitrary place p with an outgoing edge to t i.e. p ∈
{p′|(p′, t) ∈ F}. The place p has at least one outgoing edge namely the one
to t. Assume that p has an edge to another transition t′ (t′ ̸= t). Then p has
two outgoing edges such that |{t′|(p, t′) ∈ F}| > 1 which implies |{p′|(p′, t) ∈
F}| = 1 according to the initial assumption. However, this is a contradiction
since t was assumed to have more than one ingoing edge (|{p′|(p′, t) ∈ F}| > 1).
Hence, every place p with an edge to t must have exactly one outgoing edge
(|{t′|(p, t′) ∈ F}| = 1), namely the one to t. Hence, this shows |{p′|(p′, t) ∈
F}| > 1 =⇒ |{t′|(p, t′) ∈ F}| = 1. Since t and p was chosen arbitrary, this is
true for all (p, t) ∈ F . ⊓⊔
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Lemma 5. Let N = (P, T, F,A, σ) be a Petri Net. If N satisfies unique syn-
chronisation in Definition 10 then it also satisfies unique choice in Definition 10.

Proof. Assume that unique synchronisation (2) holds:

∀p.∀t.p ∈ P ∧ (p, t) ∈ F ∧ |{t′|(p, t′) ∈ F}| > 1 =⇒ |{p′|(p′, t) ∈ F}| = 1

Consider an arbitrary place p with more than one outgoing edge (|{t′|(p, t′) ∈
F}| > 1). Consider an arbitrary transition t with an ingoing edge from t i.e.
t ∈ {t′|(p, t′) ∈ F}. The transition t has at least one ingoing edge namely the one
from p. Assume that t has an edge from another place p′ (p′ ̸= p). Then t has two
ingoing edges such that |{p′|(p′, t) ∈ F}| > 1 which implies |{t′|(p, t′) ∈ F}| = 1
according to the initial assumption. However, this is a contradiction since p
was assumed to have more than one outgoing edge (|{t′|(redp, t′) ∈ F}| > 1).
Hence, every transition t with an edge from p must have exactly one ingoing edge
(|{p′|(p′, t) ∈ F}| = 1), namely the one from p. Hence, this shows |{t′|(p, t′) ∈
F}| > 1 =⇒ |{p′|(p′, t) ∈ F}| = 1. Since p and t was chosen arbitrary, this is
true for all (p, t) ∈ F . ⊓⊔

Theorem 8. Let N = (P, T, F,A, σ) be a Petri Net. N satisfies unique choice
in Definition 10 iff it satisfies unique synchronisation in Definition 10.

Proof. Follows from Lemma 4 and Lemma 5. ⊓⊔

B Proofs for Encoding CCS Nets into CCS Processes

Lemma 6 (Algorithm 1 output). If applied to a CCS net (P, T, F,A, σ),
Algorithm 1 returns valid finite-net CCS.

Proof. The output of Algorithm 1 is a CCS process Q and a partial mapping
of defining equations D. For all p ∈ P , D(Xp) is the choice of substitutions for
Yt. All substitutions are sequential processes. Clearly, Q is a valid process and
thereby Algorithm 1 return valid CCS. There are no restrictions in D(Xp) for
all p ∈ P , so it is also finite-net CCS. ⊓⊔

↓ Extended version of Theorem 1 (page 9).

Theorem 1 (Correctness of Algorithm 1). Given a CCS net N = (P, T, F,A, σ)
and an initial marking M0, let the result of applying Algorithm 1 to N and
M0 be the CCS process Q0 and defining equations D. Then, LTS(N,M0) ∼
LTS(Q0,D). The translation time and the size of (Q0,D) are bound by O(|N |+∑

p∈P M0(p)). (Q0 is used here instead of Q to avoid confusions in the proof.)

Proof. Markings are used as the states in the Petri net while the parallel com-
position of process names is used as the states in the CCS process. Define the
bisimulation relation R as follows:

R :=
{(

M, (νs1) . . . (νsn)
(
XM(p1)

p1
| . . . |XM(p|P |)

p|P |

)) ∣∣∣ M ∈ LTS(N,M0)
}
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where M is a reachable marking from the initial marking M0 in N (i.e. M is a
state in LTS(N,M0)), and s1, . . . , sn are the restricted names in Q. The intuition
is as that for every place p containing M(p) tokens, the CCS process contains
M(p) replicas of the process named Xp (written X

M(p)
p ). The relation can be

seen as an invariant that should hold after each step. The restrictions are left
out in the rest of the proof since they are static.

Case 0 Clearly, the initial marking M0 and the initial process Q0 are in the
relation (M0, Q0) ∈ R because Q0 is defined using M0.

Case 1 Consider any pair (M,Q) ∈ R i.e. a marking M and its related process
Q. Consider an arbitrary enabled transition t ∈ T in N with respect to M . Define
all places with an edge from t in N as Pout := {p | (t, p) ∈ F} and let k := |Pout|.
Without loss of generality, the places in Pout are assumed to be enumerated as
the first k of the |P | places i.e. {p1, p2, . . . , pk} = Pout.

Case 1-1 First, assume that t ∈ T1. Since t is enabled, the edge (p∗, t) ∈ F gives
that there is a token at p∗, formally M(p∗) ≥ 1. This means that there is at least
one active instance of the place process Xp∗ according to the relation. The edge
(p∗, t) ∈ F means that a replacement of Yt is one of the choices in D(Xp∗). The
replacement is σ(t).(Xp1 | . . . |Xpk

) because t ∈ T1. Hence, σ(t) can be executed
in Q.

Firing t in N emits a σ(t), consumes one token from p∗ and produces one
token to each place p ∈ Pout which results in the marking M ′:

M ′(p) :=


M(p)− 1 if p = p∗ ∧ p /∈ Pout

M(p) + 1 if p ̸= p∗ ∧ p ∈ Pout

M(p) otherwise
(3)

Executing σ(t) in Q results in Q′ where one instance of Xp∗ is replaced with
(Xp1

| . . . |Xpk
). This is the same as removing one instance of Xp∗ and adding

one instance of Xp for each p ∈ Pout. There are two cases, either p∗ ∈ Pout or
p∗ /∈ Pout.

Case 1-1-1 In the first case, assume without loss of generality that p∗ = p1 such
that Q′ is:

XM(p1)−1+1
p1

|XM(p2)+1
p2

| . . . |XM(pk)+1
pk

|XM(pk+1)
pk+1

| . . . |XM(p|P |)
p|P |

In N , p1 hits the third case, p2, . . . , pk hits the second case and pk+1, . . . , p|P |
hits the third case in (3). Hence, Q′ can be rewritten to:

XM ′(p1)
p1

|XM ′(p2)
p2

| . . . |XM ′(pk)
pk

|XM ′(pk+1)
pk+1

| . . . |XM ′(p|P |)
p|P |

This shows that (M ′, Q′) ∈ R holds for this case.



22 B. Bogø, A. Burattin, and A. Scalas

Case 1-1-2 Otherwise, p∗ /∈ Pout and without loss of generality it is assumed
that p∗ = pk+1 such that Q′ is:

XM(p1)+1
p1

| . . . |XM(pk)+1
pk

|XM(pk+1)−1
pk+1

|XM(pk+2)
pk+2

| . . . |XM(p|P |)
p|P |

p1, . . . , pk hits the second case, pk+1 hits the first case and pk+1, . . . , p|P | hits
the third case in (3) such that Q′ becomes:

XM ′(p1)
p1

| . . . |XM ′(pk)
pk

|XM ′(pk+1)
pk+1

|XM ′(pk+2)
pk+2

| . . . |XM ′(p|P |)
p|P |

This shows that (M ′, Q′) ∈ R holds for t ∈ T1.

Case 1-2 Now, assume that t ∈ T2 and thus t is a τ -transition. In this case,
there are two ingoing edges (p∗, t), (p∗∗, t) ∈ F where p∗ ̸= p∗∗ meaning that
M(p∗) ≥ 1 and M(p∗∗) ≥ 1. Hence, there are at least one active instance of
both the place processes Xp∗ and Xp∗∗ . The edges (p∗, t) ∈ F and (p∗∗, t) ∈ F
means that a replacement of Tt is one of the choices in both D(Xp∗) and D(Xp∗∗).
The replacements must be different since the case t ∈ T2 results in two different
replacements, namely st.(Xp1

| . . . |Xpk
) and st.0. Hence, one of the replacements

is a choice in D(Xp∗) while the other replacement is a choice in D(Xp∗∗). This
means that st and st can synchronize which results in a τ -action.

Firing t in N emits a τ and results in the marking M ′:

M ′(p) :=


M(p)− 1 if p ∈ {p∗, p∗∗} ∧ p /∈ Pout

M(p) + 1 if p /∈ {p∗, p∗∗} ∧ p ∈ Pout

M(p) otherwise
(4)

Letting st and st react in Q emits a τ and results in Q′ where (Xp∗ | Xp∗∗)
is replaced with ((Xp1

| . . . | Xpk
) | 0). This is the same as removing one Xp∗ ,

removing one Xp∗∗ and adding one Xp for each p ∈ Pout. There are four cases:

Case 1-2-1 The first case is p∗, p∗∗ ∈ Pout such that it without loss of generality
can be assumed that p∗ = p1 and p∗∗ = p2. Hence, Q′ is:

XM(p1)−1+1
p1

|XM(p2)−1+1
p2

|XM(p3)+1
p3

| . . . |XM(pk)+1
pk

|XM(pk+1)
pk+1

| . . . |XM(p|P |)
p|P |

p1, p2, pk+1, . . . , p|P | hits the third case and p3, . . . , pk hits the second case in (4)
which means that Q′ can be rewritten to:

XM ′(p1)
p1

|XM ′(p2)
p2

|XM ′(p3)
p3

| . . . |XM ′(pk)
pk

|XM ′(pk+1)
pk+1

| . . . |XM ′(p|P |)
p|P |

Hence, (M ′, Q′) ∈ R in this case.

Case 1-2-2 The second case is p∗ ∈ Pout and p∗ /∈ Pout. Without loss of gener-
ality, it is assumed that p∗ = p1 and p∗∗ = pk+1. Hence, Q′ is:

XM(p1)−1+1
p1

|XM(p2)+1
p2

| . . . |XM(pk)+1
pk

|XM(pk+1)−1
pk+1

|XM(pk+2)
pk+2

| . . . |XM(p|P |)
p|P |
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p1, pk+2, . . . , p|P | hits the third case, p2, . . . , pk hits the second case and pk+1

hits the first case in (4) which means that Q′ can be rewritten to:

XM ′(p1)
p1

|XM ′(p2)
p2

| . . . |XM ′(pk)
pk

|XM ′(pk+1)
pk+1

|XM ′(pk+2)
pk+2

| . . . |XM ′(p|P |)
p|P |

Hence, (M ′, Q′) ∈ R in this case.

Case 1-2-3 The third case is p∗ /∈ Pout and p∗ ∈ Pout. Without loss of generality,
it can be assumed that p∗ = pk+1 and p∗∗ = p1. The rest of the proof for this
case is the same as Case 1-2-2.

Case 1-2-4 The last case is p∗, p∗∗ /∈ Pout such that it without loss of generality
can be assumed that p∗ = pk+1 and p∗∗ = pk+2. Hence, Q′ is:

XM(p1)+1
p1

| . . . |XM(pk)+1
pk

|XM(pk+1)−1
pk+1

|XM(pk+2)−1
pk+2

|XM(pk+3)
pk+3

| . . . |XM(p|P |)
p|P |

p1, . . . , pk hits the second case, pk+1 and pk+2 hits the first case while pk+3, . . . , p|P |
hits the third case in (4) which means that Q′ can be rewritten to:

XM ′(p1)
p1

| . . . |XM ′(pk)
pk

|XM ′(pk+1)
pk+1

|XM ′(pk+2)
pk+2

|XM ′(pk+3)
pk+3

| . . . |XM ′(p|P |)
p|P |

This shows that (M ′, Q′) ∈ R holds for t ∈ T2. Hence, the complete proof of
Case 1 shows that LTS(Q0,D) strongly simulates LTS(N,M0) using R.

Case 2 Consider (M,Q) ∈ R i.e. a process Q and its related marking M .

Case 2-1 Consider a non-restricted action a in Q that can be executed. The
only non-restricted actions created by Algorithm 1 are generated for transitions
with one ingoing edge, namely for t ∈ T1. Hence, a = σ(t) must be the case. Q
is the parallel composition of place processes. Each place process Xp represents
a place p ∈ P . D(Xp) is the choice between replacements of transition processes
Yt1 +Yt2 + · · ·+Ytl representing transitions ti ∈ {t1, t2, . . . , tl} = {t | (p, t) ∈ F}
that has an ingoing edge from p. Since t ∈ T1 then there exists exactly one place
p∗ ∈ P such that (p∗, t) ∈ F . This means that one of the choices in D(Xp∗) is
σ(t).(Xp1

| Xp2
| . . . | Xpk

) where pi ∈ {p1, p2, . . . , pk} = {p | (t, p) ∈ F}. Since
σ(t) can be executed in Q then Q must contain at least one instance of Xp∗

which by the bisimulation relation R means that M(p∗) ≥ 1. t ∈ T1 implies that
(p∗, t) ∈ F is the only ingoing edge to t and thus t can be fired in N .

The rest of the proof for this case is the same as Case 1-1.

Case 2-2 Consider a restricted action a in Q that can synchronize with a in order
to execute. The only restricted actions created by Algorithm 1 are generated for
transitions with two ingoing edges, namely for t ∈ T2. Hence, a = st and a = st.
Similar to Case 2-1, it is possible to conclude that there must be two distinct
places p∗, p∗∗ ∈ P that have an edge to t, formally (p∗, t), (p∗∗, t) ∈ F . Therefore,
one of the choices in D(Xp∗) must contain one of the replacements for Tt while
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D(Xp∗∗) contains the replacement that is not a choice in D(Xp∗). st and st are
not present anywhere else and since they can synchronize, then there must be
at least one Xp∗ and at least one Xp∗∗ . Thus, M(p∗) ≥ 1 and M(p∗∗) ≥ 1 such
that t is enabled in N .

The rest of the proof for this case is the same as Case 1-2. Hence, Case
2 shows that LTS(N,M0) strongly simulates LTS(Q0,D) using the relation
R−1 := {(Q,M) | (M,Q) ∈ R}. This concludes the proof of LTS(N,M0) ∼
LTS(Q0,D).

Translation time Create an array R of size |T | where each element R[t] is an
array of size two with references to placeholders (Yt). While iterating over the
places (line 2-4 in Algorithm 1), populate R with references to the placeholders.
When iterating over the transitions (line 5-13 in Algorithm 1), it is possible to
lookup where the replacement should go in constant time.

It takes O(|T |) time to create R. Defining allD(Xp) takes O(|P |+|F |) because
there are |P | definitions with a total of at most |F | placeholders (and it takes
constant time to set a reference in R). Replacing all placeholders for transitions
with one ingoing edge takes O(|T |+ |F |) time since there are at most |T | actions
(σ(t)) and at most |F | process names. Replacing all placeholders for transitions
with two ingoing edge takes O(|T |+|F |) time because at most |T | new actions are
created, at most 2|T | replacements are performed in constant time and it takes at
most |F | time to create the replacements. Defining Q0 takes O(|T |+

∑
p∈P M0(p))

(or O(|N |)) time. In total, the time usage is O(|P |+ |T |+ |F |+
∑

p∈P M0(p)) =
O(|N |+

∑
p∈P M0(p)) (or alternatively O(|N |)).

Size of (Q0,D) The size of Q0 is O(|T | +
∑

p∈P M0(p)) since there are at
most one new action per transition (n < |T |) and there is one process in
parallel composition per token in M0. (Alternatively if process exponentiation
is considered a constant sized term, then the size of Q0 can be written as
O(|T | + |P |).) The size of all place processes is O(|P | + |T | + |F |) since there
are |P | definitions (that all could be 0), each transition action σ(t) appears
at most once, there are at most |T | new (co-)actions that appear once and
there are at most |F | process names in parallel composition. So the total size
is O(|P | + |T | + |F | +

∑
p∈P M0(p)) = O(|N | +

∑
p∈P M0(p)) (or alternatively

O(|N |)). ⊓⊔

↑ Extended version of Theorem 1 (page 9).

C Proofs for Encoding Free-Choice Workflow Nets into
CCS Processes

↓ Extended version of Theorem 2 (page 11).

Theorem 2 (Correctness of Algorithm 2). Given a free-choice net N =
(P, T, F,A, σ), a marking M0 : P → N, and a transition t∗ ∈ T (with at least
two ingoing edges), the result of applying Algorithm 2 on N , M0, and t∗ is



Encoding Petri Nets into CCS (Technical Report) 25

a Petri net N ′ and marking M ′
0 such that LTS(N,M0) ≈ LTS(N ′,M ′

0) and
LTS(N ′,M ′

0) contains a divergent path iff LTS(N,M0) contains a divergent
path. The transformation time and the increase in size are amortized O(1).

Proof. Markings describe states in Petri nets. Define the weak bisimulation re-
lation R as follows:

R :=

{(
M, M [p∗ 7→M(p∗)− i][p∗∗ 7→M(p∗∗)− i][p+ 7→ i]

)∣∣∣∣ M∈LTS(N,M0)
k=min(M(p∗),M(p∗∗))

0≤i≤k

}
where M is a reachable marking from the initial marking M0 in the free-choice
net N (M is a state in LTS(N,M0)). The intuition behind the relation is: When
i = 0, it covers the direct extension of a marking in N to one in N ′ where the
new place p+ has no tokens; when i > 0, it covers the cases where the new
transition t+ has been fired i times without firing t∗ afterwards.

Before proving the weak bisimulation, some properties of the Petri nets and
related markings are considered. In the original Petri net N , t∗ has at least two
ingoing edges, namely the ones from p∗ and p∗∗. Hence, t∗ has more than one
ingoing edge which means that p∗ and p∗∗ cannot have more than one outgo-
ing edge each. The relation can be seen as an invariant between firing transi-
tions: For all (M,M ′) ∈ R then M(p) = M ′(p) for all p ∈ (P ′ \ {p∗, p∗∗, p+}),
M(p∗) = M ′(p∗)+M ′(p+) and M(p∗∗) = M ′(p∗∗)+M ′(p+). To show the weak
bisimulation, it is enough to show that this invariant is preserved after each step.

Case 0 Clearly, the initial marking M0 for N and the initial marking M ′
0 =

M0[p
+ 7→ 0] for N ′ are a pair in the relation (M0,M

′
0) ∈ R with i = 0.

Case 1 Consider two related markings (M,M ′) ∈ R and an arbitrary enabled
transition t ∈ T in N with respect to M . Define all places with an edge to
t in N as Pin := {p | (p, t) ∈ F} and all places with an edge from t in N as
Pout := {p | (t, p) ∈ F}. Similar for t in N ′, define P ′

in := {p | (p, t) ∈ F ′} and
P ′
out := {p | (t, p) ∈ F ′}.

Case 1-1 First assume that t ̸= t∗. In this case, t has the same edges in both N
and N ′ which means that Pin = P ′

in and Pout = P ′
out. Furthermore, p∗, p∗∗, p+ /∈

Pin since p∗ and p∗∗ do not have an edge to t while p+ is not a part of N . Hence,
the invariant gives that M(p) = M ′(p) for all p ∈ Pin and thus t must also be
enabled in N ′ with respect to M ′. If t is fired in N then mimic the behavior by
firing t in N ′. Let Mt be the marking resulting from firing t in N and M ′

t be the
marking resulting from firing t in N ′:

Mt(p) :=


M(p)− 1 if p ∈ Pin ∧ p /∈ Pout

M(p) + 1 if p /∈ Pin ∧ p ∈ Pout

M(p) otherwise
(5)

M ′
t(p) :=


M ′(p)− 1 if p ∈ P ′

in ∧ p /∈ P ′
out

M ′(p) + 1 if p /∈ P ′
in ∧ p ∈ P ′

out

M ′(p) otherwise
(6)
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Now, it should be shown that the invariant holds for (Mt,M
′
t) by assuming the

invariant for (M,M ′). Mt(p) = M ′
t(p) holds for all p ∈ (P ′\{p∗, p∗∗, p+}) since all

these places have the same change in tokens because Pin = P ′
in and Pout = P ′

out.
Hence, the definitions give M(p) + j = M ′(p) + j, where j ∈ {−1, 0, 1}, which
holds by the assumption M(p) = M ′(p).

Pin = P ′
in and Pout = P ′

out also implies p+ /∈ P ′
in and p+ /∈ P ′

out such that
M ′

t(p
+) = M ′(p+). Furthermore, p∗, p∗∗ /∈ Pin since they only have an edge

to t∗ in N . This means that p∗ and p∗∗ also have the same change in tokens.
Thus, Mt(p

∗) = M ′
t(p

∗)+M ′
t(p

+) and Mt(p
∗∗) = M ′

t(p
∗∗)+M ′

t(p
+) holds using

similar arguments as before regarding the change in tokens. Hence, the invariant
is preserved which shows that (Mt,M

′
t) ∈ R for this case.

Case 1-2 Now assume that t = t∗ and let the marking resulting from firing t
in N be Mt∗ . Note that P ′

in = (Pin \ {p∗, p∗∗}) ∪ {p+} and P ′
out = Pout by the

definition of the transformation. This means that t∗ is enabled in N with respect
to M and that p∗, p∗∗ ∈ Pin. Since t∗ is enabled then M(p) ≥ 1 for all p ∈ Pin

and by the invariant M(p) = M ′(p) ≥ 1 for all p ∈ (Pin \ {p∗, p∗∗}). For p∗

and p∗∗, the invariant only provides that M(p∗) = M ′(p∗) + M ′(p+) ≥ 1 and
M(p∗∗) = M ′(p∗∗) +M ′(p+) ≥ 1. There are two cases to consider:

Case 1-2-1 First, assume that M ′(p+) = 0 such that M(p∗) = M ′(p∗) ≥ 1 and
M(p∗∗) = M ′(p∗∗) ≥ 1. This means that t∗ is not enabled in N ′ with respect
to M ′. However, it is possible to fire t+ in N ′ with respect to M ′ which results
in the marking M ′′ := M ′[p∗ 7→ M ′(p∗)− 1][p∗∗ 7→ M ′(p∗∗)− 1][p+ 7→ 1]. With
respect to M ′′ it is possible to fire t∗ in N ′ and the resulting marking is M ′

t∗ .
The resulting markings can be described as:

Mt∗(p) :=


M(p)− 1 if p ∈ Pin ∧ p /∈ Pout

M(p) + 1 if p /∈ Pin ∧ p ∈ Pout

M(p) otherwise
(7)

M ′
t∗(p) :=


M ′′(p)− 1 if p ∈ P ′

in ∧ p /∈ P ′
out

M ′′(p) + 1 if p /∈ P ′
in ∧ p ∈ P ′

out

M ′′(p) otherwise
(8)

For all p ∈ (P ′ \ {p∗, p∗∗, p+}), it is the case that M ′(p) = M ′′(p). Furthermore,
all edges for these places are the same in N and N ′ which means that p ∈
Pin ⇐⇒ p ∈ P ′

in and p ∈ Pout ⇐⇒ p ∈ P ′
out. Thus, Mt∗(p) = M ′

t∗(p) holds
for all p ∈ (P ′ \ {p∗, p∗∗, p+}).

Consider p∗ and p+. The transformation gives that p+ ∈ P ′
in, p∗ ∈ Pin and

p∗ /∈ P ′
in while P ′

out = Pout implies p+ /∈ P ′
out. Either p∗ /∈ Pout or p∗ ∈ Pout
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which gives two cases:

p∗ /∈Pout ∧ p∗ /∈ P ′
out

Mt∗(p
∗) = M ′

t∗(p
∗) +M ′

t∗(p
+)

M(p∗)− 1 = M ′′(p∗) + (M ′′(p+)− 1)

M(p∗)− 1 = (M ′(p∗)− 1) + (1− 1)

M(p∗) = M ′(p∗) + 0

M(p∗) = M ′(p∗) +M ′(p+)

p∗ ∈Pout ∧ p∗ ∈ P ′
out

Mt∗(p
∗) = M ′

t∗(p
∗) +M ′

t∗(p
+)

M(p∗) = (M ′′(p∗) + 1) + (M ′′(p+)− 1)

M(p∗) = ((M ′(p∗)− 1) + 1) + (1− 1)

M(p∗) = M ′(p∗) + 0

M(p∗) = M ′(p∗) +M ′(p+)

The first equation is the new invariant we want to show holds. The next two
equations applies the definitions of the markings. The second to last equation
simplifies the expressions while the last equation uses the assumption M ′(p+) =
0 to obtain the old invariant which holds by the relation. This shows that
Mt∗(p

∗) = M ′
t∗(p

∗) +M ′
t∗(p

+) holds. Similar arguments shows that Mt∗(p
∗∗) =

M ′
t∗(p

∗∗) +M ′
t∗(p

+) holds. Hence, the invariant is preserved when M ′(p+) = 0.

Case 1-2-2 Finally, assume that M ′(p+) > 0. In this case t∗ is enabled in N ′ with
respect to M ′ so only t∗ is fired in N ′. Let M ′′ := M ′ such that the markings
Mt∗ and M ′

t∗ can be described like in (7) and (8). The invariant holds for all
p ∈ (P ′ \ {p∗, p∗∗, p+}) using the same arguments as in Case 1-2-1.

Consider p∗ and p+ again with the same properties as in Case 1-2-1 (except
that M ′′ is different). Hence, there is again two cases:

p∗ /∈Pout ∧ p∗ /∈ P ′
out

Mt∗(p
∗) = M ′

t∗(p
∗) +M ′

t∗(p
+)

M(p∗)− 1 = M ′′(p∗) + (M ′′(p+)− 1)

M(p∗)− 1 = M ′(p∗) + (M ′(p+)− 1)

M(p∗) = M ′(p∗) +M ′(p+)

p∗ ∈Pout ∧ p∗ ∈ P ′
out

Mt∗(p
∗) = M ′

t∗(p
∗) +M ′

t∗(p
+)

M(p∗) = (M ′′(p∗) + 1) + (M ′′(p+)− 1)

M(p∗) = (M ′(p∗) + 1) + (M ′(p+)− 1)

M(p∗) = M ′(p∗) +M ′(p+)

This shows that Mt∗(p
∗) = M ′

t∗(p
∗)+M ′

t∗(p
+) holds and using similar arguments

for p∗∗ then also Mt∗(p
∗∗) = M ′

t∗(p
∗∗) +M ′

t∗(p
+) holds. Thus, the invariant is

preserved when M ′(p+) > 0. Hence, the complete proof of Case 1 shows that
LTS(N ′,M ′

0) weakly simulates LTS(N,M0) using R.

Case 2 Consider two related markings (M,M ′) ∈ R and an arbitrary enabled
transition t ∈ T ′ in N ′ with respect to M ′. Define Pin := {p | (p, t) ∈ F}, Pout :=
{p | (t, p) ∈ F}, P ′

in := {p | (p, t) ∈ F ′} and P ′
out := {p | (t, p) ∈ F ′} similar to

Case 1.

Case 2-1 First, assume that t /∈ {t∗, t+}. In this case t has the exact same edges
in both N and N ′. Thus, t is also enabled in N with respect to M . The rest of
the proof for this case is similar to Case 1-1.
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Case 2-2 Secondly, assume that t = t+. Firing t+ in N ′, the resulting marking
is M ′

t+
:= M ′[p∗ 7→M ′(p∗)− 1][p∗∗ 7→M ′(p∗∗)− 1][p+ 7→M ′(p+) + 1]. Since t+

is a τ -transition, it is allowed to fire no transitions in N to mimic this behavior
such that the resulting marking is simply Mt+ := M . Clearly, the invariant is
preserved for all p ∈ (P ′ \ {p∗, p∗∗, p+}).

Now consider the invariant for p∗ and p+:

Mt+(p
∗) = M ′

t+(p
∗) +M ′

t+(p
+)

M(p∗) = (M ′(p∗)− 1) + (M ′(p+) + 1)

M(p∗) = M ′(p∗) +M ′(p+)

(invariant)
(definition)

(simplification)

Thus, the invariant is also preserved for p∗ and similar for p∗∗. This finishes the
proof of (Mt+ ,M

′
t+) ∈ R for this case.

Case 2-3 Finally, assume that t = t∗. Note that P ′
in = (Pin \ {p∗, p∗∗}) ∪ {p+}

and P ′
out = Pout by the definition of the transformation. Since t∗ is enabled

in N ′ with respect to M ′ then M ′(p) ≥ 1 for all p ∈ P ′
in which means that

M(p) ≥ 1 for all p ∈ Pin \ {p∗, p∗∗}. However, it still needs to be shown that
M(p∗) ≥ 1 and M(p∗∗) ≥ 1 for t∗ to be enabled in N . By the invariant, it
holds that M(p∗) = M ′(p∗) +M ′(p+) and M(p∗∗) = M ′(p∗∗) +M ′(p+). Since
p+ ∈ P ′

in and M ′(p+) ≥ 1 then M(p∗) ≥ 1 and M(p∗∗) ≥ 1 must be the case.
Hence, t∗ is also enabled in N .

Let Mt∗ be the resulting marking by firing t∗ in N and M ′
t∗ be the resulting

marking by firing t∗ in N ′. They can be described similar to (5) and (6) (replace
t with t∗). Clearly, the invariant is preserved for all p ∈ (P ′ \{p∗, p∗∗, p+}), since
Pin \ {p∗, p∗∗, p+} = P ′

in \ {p∗, p∗∗, p+} and Pout = P ′
out.

Now consider p∗ and p+. The transformation gives that p+ ∈ P ′
in, p+ /∈ P ′

out,
p∗ ∈ Pin and p∗ /∈ P ′

in. Like in Case 1-2-2, there are two cases:

p∗ /∈Pout ∧ p∗ /∈ P ′
out

Mt∗(p
∗) = M ′

t∗(p
∗) +M ′

t∗(p
+)

M(p∗)− 1 = M ′(p∗) + (M ′(p+)− 1)

M(p∗) = M ′(p∗) +M ′(p+)

p∗ ∈Pout ∧ p∗ ∈ P ′
out

Mt∗(p
∗) = M ′

t∗(p
∗) +M ′

t∗(p
+)

M(p∗) = (M ′(p∗) + 1) + (M ′(p+)− 1)

M(p∗) = M ′(p∗) +M ′(p+)

The first equation is the new invariant we want to show, the second equation
used the definitions in (5) and (6) and the last equation is a simplification of the
second to obtain the old invariant. Doing the same for p∗∗, it has been shown
that M(p∗) = M ′(p∗) + M ′(p+) and M(p∗∗) = M ′(p∗∗) + M ′(p+) holds. This
finishes the proof of (Mt∗ ,M

′
t∗) ∈ R. Case 2 shows that LTS(N,M0) weakly

simulates LTS(N ′,M ′
0) using R−1 := {(M ′,M) | (M,M ′) ∈ R}. This concludes

the proof of showing that LTS(N,M0) ≈ LTS(N ′,M ′
0).

Divergent paths In general, weak bisimulation alone does not ensure the absence
of new divergent paths [13]. However, Algorithm 2 only extends existing paths
to t∗ by one τ -transition without introducing any new loops. If there are no
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divergent paths in LTS(N,M0) then adding one τ -transition to all paths does
not introduce any divergent paths since this requires a loop or adding an infinite
sequence of τ -transitions. Similar arguments applies the other way around (ex-
cept a τ -transition is removed instead of added). Hence, no divergent paths are
changed, so LTS(N ′,M ′

0) contains a divergent path iff LTS(N,M0) contains a
divergent path.

Transformation time It is assumed that P and T are represented by doubling
arrays and F by the adjacency list representation (using doubling arrays under
the hood). Adding a new place and transition takes amortized constant time.
Getting the list of edges for t∗ takes constant time. Removing two edges from a
list can be done in constant time by taking the last two edges. Inserting an edge
also takes amortized constant time. A constant number of edges are removed and
added. Adding a new entry to the marking M0 also takes amortized constant time
assuming it is a doubling array. Hence, there is a constant number of operations
that each takes (amortized) constant time and thus the time usage is amortized
O(1).

Size of (N ′,M ′
0) No extra space is needed unless at least one of the doubling

arrays need to double its size. This is only needed when it is full and thus using
the same arguments for the time usage, the increase in size is constant amortized
space. ⊓⊔

↑ Extended version of Theorem 2 (page 11).
↓ Extended version of Lemma 1 (page 11).

Lemma 1 (Invariant of Algorithm 2). If Algorithm 2 is given a free-choice
net N , it returns a free-choice net N ′ that has no additional or changed transi-
tions with no ingoing edges compared to N .

Proof. p∗, p∗∗ and p+ all have one outgoing edge after the transformation and
thus satisfy unique choice (in Definition 10). t+ has two ingoing edges from the
places p∗ and p∗∗ meaning t+ satisfies unique synchronisation (in Definition 10).
The new edge to t∗ comes from p+ with one outgoing edge meaning t∗ satisfies
unique synchronisation. The rest is unchanged such that it is still a free-choice
net. ⊓⊔

↑ Extended version of Lemma 1 (page 11).
↓ Extended version of Lemma 2 (page 12).

Lemma 2 (Algorithm 3 output). If applied to a free-choice workflow net
(P, T, F,A, σ) with finite F , Algorithm 3 returns a CCS net.

Proof. If Algorithm 3 never enters the loop, it terminates. Otherwise, the Algo-
rithm 2 reduces the number of ingoing edges by one for the chosen transition.
Algorithm 2 introduces a new τ -transition with two ingoing edges that does not
satisfy the loop condition. Hence, the Algorithm 2 is only applied to transitions
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in T that starts with a finite number of edges (F ). Thus, the loop is exited at
some point.

The input is a free-choice net and Lemma 1 ensures that the current Petri
net is always a free-choice net (and further that no transitions are changed to
have zero ingoing edges).

When Algorithm 3 exits the loop, all τ -transitions have at most two ingoing
edges and all other transitions have at most one ingoing edge which is a CCS
net. ⊓⊔

↑ Extended version of Lemma 2 (page 12).
↓ Extended version of Theorem 3 (page 12).

Theorem 3 (Correctness of Algorithm 3). Given a free-choice net N =
(P, T, F,A, σ) and a marking M0 : P → N, the result of applying Algorithm 3
on N and M0 is a Petri net N ′ and marking M ′

0 such that LTS(N,M0) ≈
LTS(N ′,M ′

0) and LTS(N,M0) has a divergent path iff LTS(N ′,M ′
0) has. Both

the transformation time and the size of (N ′,M ′) are O(|N |).

Proof. LTS(N,M0) ≈ LTS(N ′,M ′
0) will be shown by induction on the number

of applications of Algorithm 2.
The base case is that the original free-choice net and marking are returned

by Algorithm 3 since the loop is never entered. Hence, N = N ′ and M0 = M ′
0

such that LTS(N,M0) = LTS(N ′,M ′
0). These are trivially strongly bisimilar

and thus also weakly bisimilar [13, Exercise 2.61].
Assume that Algorithm 2 has been applied n times to obtain N ′ and M ′

0. The
induction hypothesis gives that LTS(N,M0) ≈ LTS(N ′,M ′

0). If Algorithm 2 is
not applied on (N ′,M ′

0), then (N ′,M ′
0) is returned such that LTS(N,M0) ≈

LTS(N ′,M ′
0) as required. Otherwise, Algorithm 2 is applied on (N ′,M ′

0) to
obtain (N ′′,M ′′

0 ). Theorem 2 gives that LTS(N ′,M ′
0) ≈ LTS(N ′′,M ′′

0 ). Transi-
tivity of weak bisimulation [13, Exercise 2.61 & 2.62] shows that LTS(N,M0) ≈
LTS(N ′′,M ′′

0 ) as required.

Divergent paths The fact about divergent paths follows from transitivity of (bi-
)implication in Theorem 2.

Transformation time It is possible to allocate enough space before starting the
transformation: count the total number of ingoing edges to transitions, subtract
two for each tau-transition and one for all other transitions (transitions with no
ingoing edges are ignored in all cases). This number is the amount of new places
and transitions contained in N ′ compared to N . By doing this, the complexities
in Theorem 2 are no longer amortized such that each transformation uses con-
stant time. In the worst case, all places has an edge to a single non-τ -transition
(and no other edges) in which case |F |−1 transformations have to be performed
which takes O(|F |) time. Allocating space enough at the start takes O(|N |) time
which is also the total time usage.
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Size of (N ′,M ′
0) Algorithm 2 adds one place, adds one transition and increases

the number of edges by two. Each of these changes add constant space and thus
adds O(1) space in total. In the worst case, all places has an edge to a single
non-τ -transition (and no other edges) in which case |F |−1 transformations have
to be performed which adds O(|F |) space to N ′. |F | − 1 places are also added,
so M ′

0 also uses O(|F |) more space. Hence, the size of N ′ is O(|N |). ⊓⊔

↑ Extended version of Theorem 3 (page 12).

D Proofs for Encoding any Free-Choice Net into CCS

Lemma 7 (Algorithm 4 output). If applied to a 2-τ -synchronisation net
(P, T, F,A, σ), Algorithm 4 returns valid finite-net CCS.

Proof. Compared to Algorithm 1 (see Lemma 6), Algorithm 4 adds further pro-
cess names to Q and sequential processes to D without restrictions which is
finite-net CCS. ⊓⊔

↓ Extended version of Theorem 5 (page 13).

Theorem 5 (Correctness of Algorithm 4). Given a 2-τ -synchronisation net
N = (P, T, F,A, σ) and an initial marking M0 : P → N, the result of applying
Algorithm 4 on N and M0 is (Q0,D) such that LTS(N,M0) ∼ LTS(Q0,D). The
translation time and the size of (Q0,D) are bound by O(|N |+

∑
p∈P M0(p)). (Q0

is used here instead of Q to avoid confusions in the proof.)

Proof. This proof builds on top of Theorem 1. Define the parallel composition
of the transition generator processes as:

QT0
:= Xt1 | . . . |Xtk︸ ︷︷ ︸

ti∈{t1,...,tk}=T0

Define the (updated) bisimulation relation R as follows:

R :=
{(

M, (νs1) . . . (νsn)
(
XM(p1)

p1
| . . . |XM(p|P |)

p|P | |QT0

)) ∣∣∣ M ∈ LTS(N,M0)
}

where M is a reachable marking from M0 in N (a state in LTS(N,M0)) and
T0 is the set of transitions from T with no ingoing edges. For simplicity, the
restriction of s1, . . . , sn are left out in the rest of the proof.

Case 0 Same as Case 0 in Theorem 1 by adding QT0 to the parallel composition
in Q0.

Case 1 Consider (M,Q) ∈ R i.e. a marking M and its related process Q. Con-
sider an arbitrary enabled transition t ∈ T with respect to M in N . Define all
places with an edge from t in N as Pout := {p | (t, p) ∈ F} and let k := |Pout|.
Without loss of generality, the places in Pout are assumed to be enumerated as
the first k of the |P | places i.e. {p1, p2, . . . , pk} = Pout.
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Case 1-1 Same as Case 1-1 in Theorem 1 by adding QT0
to the parallel compo-

sition in Q and Q′.

Case 1-2 Same as Case 1-2 in Theorem 1 by adding QT0
to the parallel compo-

sition in Q and Q′.

Case 1-3 Assume that t ∈ T0 which implies that Xt is in the parallel composition
of Q. Hence, σ(t) can be executed in Q. Firing t in N emits a σ(t) and results
in M ′:

M ′(p) :=

{
M(p) + 1 if p ∈ Pout

M(p) otherwise
(9)

Executing σ(t) in Q results in Q′ where one instance of Xt is replaced with
(Xt |Xp1

| . . . |Xpk
). This is the same adding one instance of Xp for each p ∈ Pout

meaning that Q′ is:

XM(p1)+1
p1

| . . . |XM(pk)+1
pk

|XM(pk+1)
pk+1

| . . . |XM(p|P |)
p|P | |X1−1+1

t1 |Xt2 | . . . |Xtk′︸ ︷︷ ︸
ti∈{t1,...,tk′}=T0

p1, . . . , pk hits the first case while pk+1, . . . , p|P | hits the second case in (9) such
that Q′ can be rewritten to:

XM ′(p1)
p1

| . . . |XM ′(pk)
pk

|XM ′(pk+1)
pk+1

| . . . |XM ′(p|P |)
p|P | |Xt1 |Xt2 | . . . |Xtk′︸ ︷︷ ︸

ti∈{t1,...,tk′}=T0

This shows that (M ′, Q′) ∈ R holds for t ∈ T0. Hence, the complete proof of
Case 1 shows that LTS(Q0,D) strongly simulates LTS(N,M0) using R.

Case 2 Consider (M,Q) ∈ R i.e. a process Q and its related marking M .

Case 2-1 Consider a non-restricted action a in Q that can be executed. Algo-
rithm 4 generates non-restricted actions for transitions with zero or one ingoing
edge. There are two cases where a = σ(t) in both cases.

Case 2-1-1 If t ∈ T1, then the proof is the same as Case 2-1 in Theorem 1 by
adding QT0 to the parallel composition in Q and Q′.

Case 2-1-2 Otherwise, t ∈ T0 must be the case. Hence, t has no ingoing edges
in N and thus can be fired in N . The rest of the proof for this case is the same
as Case 1-3.

Case 2-2 Same as Case 2-2 in Theorem 1 by adding QT0 to the parallel compo-
sition in Q and Q′. Hence, Case 2 shows that LTS(N,M0) strongly simulates
LTS(Q0,D) using R−1 := {(Q,M) | (M,Q) ∈ R}. This concludes the proof of
showing that LTS(N,M0) ∼ LTS(Q0,D).
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Translation time For all the transitions with no ingoing edges, there are at
most |T | actions, |T | self-referencing process names (Xt) and at most |F | other
process names in parallel compositions. This uses O(|T | + |F |) = O(|N |) time.
In addition, at most |T | process names are added to Q0 which adds O(|T |) time
such that the total time is O(|N |+

∑
p∈P M0(p)) (or alternatively O(|N |)).

Size of (Q0,D) The size of Q0 is increased by O(|T0|) = O(|T |). The size of
the new definitions are similar to the space used by transitions with one ingoing
edge except they have one extra process name, but that is still O(|T | + |F |)
space. Hence, the total size of (Q0,D) is O(|N |+

∑
p∈P M0(p)) (or alternatively

O(|N |)). ⊓⊔

↑ Extended version of Theorem 5 (page 13).
↓ Extended version of Lemma 3 (page 14).

Lemma 3 (Algorithm 3 output). If applied to a free-choice net (P, T, F,A, σ)
with finite F , Algorithm 3 returns a 2-τ -synchronisation net.

Proof. Similar to the proof of Lemma 2 except the input net is a free-choice net
which might have transitions with no ingoing edges which by Lemma 1 means
that the result might have them as well. Therefore, the difference is that a 2-τ -
synchronisation net is returned instead. ⊓⊔

↑ Extended version of Lemma 3 (page 14).

E Proofs for Group-Choice Nets

Lemma 8 (Invariant of Algorithm 5). If Algorithm 5 is given a group-choice
net then it produces a group-choice net.

Proof. The changes by Algorithm 5 are considered in steps. p+ gets the place
postset as p∗ (p+• = p∗•) which satisfies the constraints for group-choice nets
since it is the same as p∗•. The transition t+ and edge (t+, p+) do not affect
any place postsets. The place postset for both p∗ and p∗∗ are changed to {t+}.
Since t+ is new, it is not contained in any place postset and thus the new place
postset for p∗ and p∗∗ are disjointed from any other place postset. Hence, the
constraints for a group-choice net are preserved which concludes the proof. ⊓⊔

Theorem 9 (Correctness of Algorithm 5). Given a group-choice net N =
(P, T, F,A, σ), a marking M0 : P → N, and two places p∗, p∗∗ ∈ P (with
p∗• = p∗∗• ≠ ∅), the result of applying Algorithm 5 on N , M0, p∗ and p∗∗

is a Petri net N ′ and marking M ′
0 such that LTS(N,M0) ≈ LTS(N ′,M ′

0) and
LTS(N ′,M ′

0) contains a divergent path iff LTS(N,M0) contains a divergent
path. The transformation time and the increase in size is amortized O(1).
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Proof. Markings describe states in Petri nets. Define the weak bisimulation re-
lation R as follows:

R :=

{(
M,M [p∗ 7→M(p∗)− i][p∗∗ 7→M(p∗∗)− i][p+ 7→ i]

)∣∣∣∣ M∈LTS(N,M0)
k=min(M(p∗),M(p∗∗))

0≤i≤k

}
where M is a reachable marking from the initial marking M0 in the free-choice
net N (M is a state in LTS(N,M0)). The intuition behind the relation is: When
i = 0, it covers the direct extension of a marking in N to one in N ′ where the new
place p+ has no tokens; when i > 0, it covers the cases where the new transition
t+ has been fired i times without firing t∗ afterwards. R describes an invariant:
For every (M,M ′) ∈ R, M(p) = M ′(p) holds for all p ∈ (P ′ \ {p∗, p∗∗, p+}),
M(p∗) = M ′(p∗) + M ′(p+) and M(p∗∗) = M ′(p∗∗) + M ′(p+). It is enough to
show that the invariant is preserved to show weak bisimulation.

Case 0 Clearly, the initial marking M0 for N and the initial marking M ′
0 =

M0[p
+ 7→ 0] for N ′ are a pair in the relation (M0,M

′
0) ∈ R with i = 0.

Case 1 Consider two related markings (M,M ′) ∈ R and an arbitrary enabled
transition t ∈ T in N according to M . Define all places with an edge to t
in N as Pin := {p | (p, t) ∈ F} and all places with an edge from t in N as
Pout := {p | (t, p) ∈ F}. Similar for t in N ′, define P ′

in := {p | (p, t) ∈ F ′} and
P ′
out := {p | (t, p) ∈ F ′}.

Case 1-1 First assume that t /∈ p∗• according to N . Hence, p∗ and p∗∗ do not
have an edge to t in N . Algorithm 5 only changes edges for transitions with an
edge from p∗ or p∗∗. Therefore, t has the exact same edges in N and N ′ meaning
that Pin = P ′

in and Pout = P ′
out. Thus, t is also enabled in N ′. Firing t in N , the

marking Mt is obtained while firing t in N ′ gives the marking M ′
t :

Mt(p) :=


M(p)− 1 if p ∈ Pin ∧ p /∈ Pout

M(p) + 1 if p /∈ Pin ∧ p ∈ Pout

M(p) otherwise
(10)

M ′
t(p) :=


M ′(p)− 1 if p ∈ P ′

in ∧ p /∈ P ′
out

M ′(p) + 1 if p /∈ P ′
in ∧ p ∈ P ′

out

M ′(p) otherwise
(11)

It is assumed that the invariant holds for (M,M ′). For all places p ∈ (P ′ \
{p∗, p∗∗, p+}), the change in tokens is the same in both M and M ′ because
Pin = P ′

in and Pout = P ′
out. Hence, M(p) + j = M ′(p) + j holds from the

invariant, where j ∈ {−1, 0, 1}, which can be rewritten to Mt(p) = M ′
t(p) by the

definitions.
For p∗, p∗∗ and p+, it holds that p∗, p∗∗, p+ /∈ Pin and p+ /∈ Pout. Hence,

M ′
t(p

+) = M ′(p+) such that similar arguments like above shows Mt(p
∗) =

M ′
t(p

∗) + M ′
t(p

+) and Mt(p
∗∗) = M ′

t(p
∗∗) + M ′

t(p
+). Hence, the invariant is

preserved which shows that (Mt,M
′
t) ∈ R.
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Case 1-2 Now assume that t ∈ p∗• according to N . In this case, p∗, p∗∗ ∈ Pin

while P ′
in = (Pin \ {p∗, p∗∗}) ∪ {p+} and P ′

out = Pout according to Algorithm 5.
Since t is enabled in N then M(p) ≥ 1 for all p ∈ Pin and by the invariant M(p) =
M ′(p) ≥ 1 holds for all p ∈ (Pin \ {p∗, p∗∗}). For p∗ and p∗∗, the invariant only
provides M(p∗) = M ′(p∗) +M ′(p+) ≥ 1 and M(p∗∗) = M ′(p∗∗) +M ′(p+) ≥ 1.
There are two cases:

Case 1-2-1 First, assume that M ′(p+) = 0 such that M(p∗) = M ′(p∗) ≥ 1 and
M(p∗∗) = M ′(p∗∗) ≥ 1. Hence, t is not enabled in N ′ since p+ has no tokens.
However, t+ can be fired in N ′ to obtain M ′′ := M ′[p∗ 7→ M ′(p∗) − 1][p∗∗ 7→
M ′(p∗∗)− 1][p+ 7→ 1] which enables t in N ′. The resulting markings are:

Mt(p) :=


M(p)− 1 if p ∈ Pin ∧ p /∈ Pout

M(p) + 1 if p /∈ Pin ∧ p ∈ Pout

M(p) otherwise
(12)

M ′
t(p) :=


M ′′(p)− 1 if p ∈ P ′

in ∧ p /∈ P ′
out

M ′′(p) + 1 if p /∈ P ′
in ∧ p ∈ P ′

out

M ′′(p) otherwise
(13)

For all p ∈ (P ′ \ {p∗, p∗∗, p+}), M ′(p) = M ′′(p) such that using the same argu-
ments as in Case 1-1 shows that Mt(p) = M ′

t(p).
p+ hits the first case above in N ′ such that M ′

t(p
+) = M ′′(p+)−1 = M ′(p+)+

1 − 1 = M ′(p+) = 0. There are two cases for p∗: If p∗ ∈ Pout then p∗ hits the
third case in N and second case in N ′. Hence, Mt(p

∗) = M ′
t(p

∗) + M ′
t(p

+)
holds since it is by the definitions equal to M(p∗) = M ′′(p∗) + 1 + M ′(p+) =
M ′(p∗) − 1 + 1 + M ′(p+) = M ′(p∗) + M ′(p+) which hold from the invariant.
Otherwise p∗ /∈ Pout such that p∗ hits the first case in N and the third case in
N ′. Thus, Mt(p

∗) = M ′
t(p

∗) +M ′
t(p

+) holds as the definitions give M(p∗)− 1 =
M ′′(p∗) +M ′(p+) = M ′(p∗)− 1+M ′(p+) which holds by the invariant. Similar
arguments holds for p∗∗ which shows the invariant is preserved when M ′(p+) = 0.

Case 1-2-2 Now, assume that M ′(p+) > 0 such that t is enabled in N ′. Hence,
t can be fired in both N and N ′ which results in the markings in (10) and (11).

For all p ∈ (P ′ \ {p∗, p∗∗, p+}), the same arguments as in Case 1-1 shows
that Mt(p) = M ′

t(p).
p+ hits the first case in N ′ such that M ′

t(p
+) = M ′(p+) − 1. There are two

cases for p∗: If p∗ ∈ Pout then p∗ hits the third case in N and the second case
in N ′ meaning that Mt(p

∗) = M ′
t(p

∗) +M ′
t(p

+) holds since it can be rewritten
to M(p∗) = M ′(p) + 1 + M ′(p+) − 1 which hold by the invariant. Otherwise
p∗ /∈ Pout such that p∗ hits the first case in N and the third case in N ′ meaning
Mt(p

∗) = M ′
t(p

∗) + M ′
t(p

+) is equal to M(p∗) − 1 = M ′(p∗) + M ′(p+) − 1
that holds from the invariant. Similar arguments holds for p∗∗ which shows the
invariant is preserved when M ′(p+) > 0.
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Case 2 Consider two related markings (M,M ′) ∈ R and an arbitrary enabled
transition t ∈ T ′ in N ′ according to M ′. Define Pin, Pout, P ′

in and P ′
out like in

Case 1.

Case 2-1 First, assume that t /∈ p+ • ∪{t+} according to N ′. Then t has the
same edges in both N and N ′. The rest of the proof is the same as Case 1-1.

Case 2-2 Next, assume that t = t+. Firing t+ in N ′ results in the marking
M ′

t := M ′[p∗ 7→ M ′(p∗) − 1][p∗∗ 7→ M ′(p∗∗) − 1][p+ 7→ M ′(p+) + 1]. t+ is a
τ -transition and does not exist in N , so no transitions will be fired in N such
that Mt(p) := M(p).

Clearly, the invariant is preserved for all p ∈ (P ′ \ {p∗, p∗∗, p+}). For p∗ and
p+, Mt(p

∗) = M ′
t(p

∗) +M ′
t(p

+) holds since it by the definitions gives M(p∗) =
M ′(p∗)− 1 +M ′(p+) + 1 which holds by the invariant. The same holds for p∗∗

which proves this case.

Case 2-3 Finally, assume that t ∈ p+• according to N ′ (same as t ∈ Tp∗ ac-
cording to N). In this case, P ′

in = (Pin \ {p∗, p∗∗}) ∪ {p+} and P ′
out = Pout. t is

enabled in N ′ which means that M ′(p) ≥ 1 for all p ∈ P ′
in and thus M(p) ≥ 1 for

all p ∈ Pin \{p∗, p∗∗}. It still needs to be shown that M(p∗) ≥ 1 and M(p∗∗) ≥ 1
for t to be enabled in N . The invariant gives that M(p∗) = M ′(p∗)+M ′(p+) and
M(p∗∗) = M ′(p∗∗) +M ′(p+). Since p+ ∈ P ′

in and M ′(p+) ≥ 1 then M(p∗) ≥ 1
and M(p∗∗) ≥ 1 must be the case. Hence, t is also enabled in N .

Let the markings obtained by firing t in both N and N ′ be like in (10) and
(11). The rest of the proof for this case is the same as Case 1-2-2. This concludes
the proof of showing that LTS(N,M0) ≈ LTS(N ′,M ′

0).

Divergent paths In general, weak bisimulation alone does not ensure the absence
of new divergent paths [13]. However, Algorithm 2 only extends existing paths
to t∗ by one τ -transition without introducing any new loops. If there are no
divergent paths in LTS(N,M0) then adding one τ -transition to all paths does
not introduce any divergent paths since this requires a loop or adding an infi-
nite sequence of τ -transitions. Similar arguments applies the other way around
(except a τ -transition is removed instead of added). Hence, no divergent paths
are changed meaning LTS(N ′,M ′

0) contains a divergent path iff LTS(N,M0)
contains a divergent path.

Transformation time It is assumed that F is represented as an adjacency list
and everything uses doubling arrays (under the hood). Creating p+ and t+ and
extending all structures to fit them takes amortized O(1) time. Adding the edges
to p+ can be done in O(1) time by simply moving (the reference to) the list of
edges from p∗ to p+. Hence, replacing all edges from p∗ and p∗∗ can be done
by removing the whole list of edges and add a new one with one element which
takes O(1) time. Adding a new entry to the marking M0 also takes amortized
O(1) time. In total, amortized O(1) time.
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Size of (N ′,M ′
0) The new edges to t+ uses O(1) extra space. Everything else

only increases the size if at least one of the doubling arrays need to double its
size. This is only needed when an array is full. Thus, the size is increased by
amortized O(1) space. ⊓⊔

Lemma 9 (Algorithm 6 output). If applied to a group-choice net (P, T, F,A, σ)
with finite F , Algorithm 6 returns a 2-τ -synchronisation net.

Proof. If Algorithm 6 never enters the loop, it terminates. Otherwise, the Algo-
rithm 5 reduces the number of ingoing edges by one for each transition in p∗•.
Algorithm 5 introduces a new τ -transition with two ingoing edges that does not
satisfy the loop condition. Hence, the Algorithm 5 is only applied to transitions
in T that starts with a finite number of edges (F ). Thus, the loop is exited at
some point.

The input is a group-choice net and Lemma 8 ensures that the current Petri
net is always a group-choice net.

When Algorithm 6 exits the loop, all τ -transitions have at most two ingoing
edges and all other transitions have at most one ingoing edge which is a 2-τ -
synchronisation net. ⊓⊔

Theorem 10 (Correctness of Algorithm 6). Given a group-choice net N =
(P, T, F,A, σ) and a marking M0 : P → N, the result of applying Algorithm 6
on N and M0 is a Petri net N ′ and marking M ′

0 such that LTS(N,M0) ≈
LTS(N ′,M ′

0) and LTS(N,M0) has a divergent path iff LTS(N ′,M ′
0) has. Both

the transformation time and the size of (N ′,M ′) are O(|N |).

Proof. LTS(N,M0) ≈ LTS(N ′,M ′
0) will be shown by induction on the number

of applications of Algorithm 5.
The base case is that the original group-choice net and marking are returned

by Algorithm 6 since the loop is never entered. Hence, N = N ′ and M0 = M ′
0

such that LTS(N,M0) = LTS(N ′,M ′
0). These are trivially strongly bisimilar

and thus also weakly bisimilar [13, Exercise 2.61].
Assume that Algorithm 5 has been applied n times to obtain N ′ and M ′

0. The
induction hypothesis gives that LTS(N,M0) ≈ LTS(N ′,M ′

0). If Algorithm 5 is
not applied on (N ′,M ′

0), then (N ′,M ′
0) is returned such that LTS(N,M0) ≈

LTS(N ′,M ′
0) as required. Otherwise, Algorithm 5 is applied on (N ′,M ′

0) to
obtain (N ′′,M ′′

0 ). Theorem 9 gives that LTS(N ′,M ′
0) ≈ LTS(N ′′,M ′′

0 ). Transi-
tivity of weak bisimulation [13, Exercise 2.61 & 2.62] shows that LTS(N,M0) ≈
LTS(N ′′,M ′′

0 ) as required.

Divergent paths The fact about divergent paths follows from transitivity of (bi-
)implication in Theorem 9.

Transformation time Using the same arguments as in Theorem 3 (free-choice
nets are also group-choice nets), the time usage is O(|N |).
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Size of (N ′,M ′
0) Using the same arguments as in Theorem 3, the size of N ′ is

O(|N |). ⊓⊔

↓ Extended version of Theorem 7 (page 16).

Theorem 7 (Correctness of group-choice net to CCS encoding). A
group-choice net N = (P, T, F,A, σ) and an initial marking M0 : P → N can
be encoded into a weakly bisimilar CCS process Q with defining equations D s.t.
LTS(N,M0) has a divergent path iff LTS(Q,D) has. The encoding time and the
size of (Q,D) are O(|N |+

∑
p∈P M0(p)).

Proof. By Lemma 8+9, Theorem 9+10 and transitivity of bisimulation [13]. ⊓⊔

↑ Extended version of Theorem 7 (page 16).
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