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4 A lower bound on the number of colours needed

to nicely colour a sphere
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Abstract

The Hadwiger–Nelson problem is about determining the chromatic
number of the plane (CNP), defined as the minimum number of colours
needed to colour the plane so that no two points of distance 1 have the
same colour. In this paper we investigate a related problem for spheres and
we use a few natural restrictions on the colouring. Thomassen showed that
with these restrictions, the chromatic number of all manifolds satisfying
certain properties (including the plane and all spheres with a large enough
radius) is at least 7. We prove that with these restrictions, the chromatic
number of any sphere with a large enough radius is at least 8. This also
gives a new lower bound for the minimum colours needed for colouring
the 3-dimensional space with the same restrictions.

1 Introduction

1.1 Colourings of the plane

Figure 1

Figure 2

The Hadwiger–Nelson problem is a well-known problem in combinatorial
geometry. It asks to determine the chromatic number of the plane (CNP), i.e.,
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the minimum number of colours needed to colour the plane so that no two points
of distance 1 have the same colour. Alternatively, it is the chromatic number
of the graph of unit distances on the plane. Since 1950 it has been known that
4 ≤ CNP ≤ 7. The lower bound was obtained by Nelson (1950), but it can be
most easily proven by using a graph called the Moser spindle (Figure 1) (Moser,
Moser (1961) [M]), while the upper bound was given by Isbell (1950), using the
colouring in Figure 2. Since 2018, it is also known that CNP ≥ 5 (de Grey
[dG], Exoo, Ismailescu [EI]).

1.2 Tilings

The problem has some variations, in which we require some additional conditions
from the colour classes:

A natural restriction is if we require from the colour classes to be measurable,
the best known lower bound for the number of colours needed is also 5 (Falconer
(1981) [F]) and the best known upper bound is also 7 (also from 2).

A stronger condition is if we require the colouring to be generated in the
following way:

Divide the plane into regions using Jordan curves and let the colour classes
be the unions of such regions. We call the regions in such a partition of the
plane be called tiles and call such a colouring a tiling. This definition itself
has many variants and ambigousities:

1) Can we use infinitely many Jordan curves inside a bounded region?
2) Can we use infinitely many regions inside a bounded region?
3) Can regions be not simply connected? If so, do we allow the complement

of a region to have infinitely many connected components?
4) What about the borders? It is natural to require all of their points to

have the same colour as one of the bordering tiles, but it still can be a question
whether there should be at least some regularity of their colourings or not.

The best known lower bound for the number of colours needed in a tiling of
the plane is 6 (Townsend (2005) [T]) and the best known upper bound is also
7. Note that the definition of tiling used in Townsend’s proof uses the most
generous answer for all of the above questions.

We now define the notion we will mean by tiling.

Definition 1. Take a family T of sets Ti (i ∈ I for some index set I), with the
following properties:

1) Every Ti has the union of finitely many disjoint simple closed Jordan
curves as its boundary.

2) ˙⋃

i∈I
Ti = R

2.

Also take a function f : I → {1, 2, ..., n} for some n ∈ N satisfying the
property that for any pair (Ti, Tj) of tiles with points p ∈ Ti, p

′ ∈ Tj, |pp
′| = 1,

f(i) 6= f(j).
Then the pair (T , f) is called an n-tiling, the Ti are called the tiles in this

tiling and f is called the colouring.



Thomassen also defined a type of tiling:
A colouring of a surface with a metric is nice, if it is a tiling, all tiles have

diameter less than 1, all pairs of tiles with the same colour have distance more
than 1 and all tiles are simply connected.

He also proved the following theorem:

Theorem 2. [T] Suppose a surface S satisfies the following three conditions
for some natural number k:

1. Every noncontractible simple closed curve has diameter at least 2.
2. If C is a simple closed curve of diameter less than 2, then the area of

int(C) is at most k.
3. The diameter of S is at least 12k + 30.
Then every nice tiling contains at least 7 colours.

Since the plane satisfies the conditions, the theorem proves that every nice
tiling of the plane contains at least 7 colours.

In this paper, we will use a weaker condition for a nice colouring (or by an
alternative name, a nice tiling):

A colouring of a surface with a metric is nice, if it is a tiling, all tiles have
diameter less than 1 and all pairs of tiles with the same colour have distance
more than 1.

Note that this definition contains two restrictions compared to a general
tiling:

1

Figure 3: Tiles with distance 1

≤ 1

Figure 4: Siamese tiles

1) A tiling can contain two tiles with distance 1, if the borders are coloured
appropriately. (See Figure 3.) A nice tiling cannot.

2) A tiling can contain two tiles with distance less than 1 if all pairs of points
of the two have distance less than 1. We call such a pair a pair of Siamese tiles.
(See Figure 4.) 1 A nice tiling cannot.

On the other hand, one restriction of Thomassen’s is not required in this
definition: we do not require tiles to be simply connected, as we will deal with
not simply connected tiles in the beginning (Section 2.1).

Note that the statement for the plane also follows from a relatively easy
proof using Lemma 7 and the fact that a triangulated planar graph has 3n− 6
edges.

1For the origin of the name, see for example https://dustingmixon.wordpress.com/2018/06/24/polymath16-eighth-thread-more-upp

https://dustingmixon.wordpress.com/2018/06/24/polymath16-eighth-thread-more-upper-bounds/# comment-5064


1.3 Colouring of spheres

We can define the chromatic number of a sphere of radius r similarly to the
planar case: it is the minimum number of colours needed to colour the points
of a sphere of radius r such that no two points with Euclidean distance 1 have
the same colour.

Much less is known of the value of this number compared to the planar case.
It is known that the chromatic number of a sphere of radius r is at least 4 if

r ≥ 1√
3
. For r >

√
3
2 Moser’s spindle gives the lower bound, for smaller values,

a generalized version of Moser’s spindle is used. (Simmons (1976) [S])
It is also known that the chromatic number of any sphere is at most 15,

even with all of the above defined restrictions, as the 3-dimensional space has
a 15-tiling (Radoičić, Tóth (2003)[RT]), which can be used to generate such a
colouring.

Recently, a 7-colouring of large enough spheres have also been found by Tom
Sirgedas, as part of the Polymath 16 project.2

Also, the minimal number of colours needed for a nice tiling of a large enough
sphere is at least 7, which follows from Theorem 2.

The main result of this paper is improving this number to 8.
Note that some sources mentioned earlier that the chromatic number of all

spheres is at most 7 [BMP] [HDCG]. It seems (from personal communication
through Dömötör Pálvölgyi) that the authors expected that a colouring similar
to that of Isbell in Figure 2 also works for spheres. The present paper disproves
this assumption, though it does not contradict to the chromatic number of
spheres being at most 7.

This result also improves the lower bound for the minimal number of colours
needed for a nice tiling of the 3-dimensional space, for which problem the best
known bound was 6 for the general colouring case (Nechushtan (2002) [N]).

2 The new result

Theorem 3. There is no nice tiling with at most 7 colours of a large enough
(radius r ≥ 46.5

π
= 14.801...) sphere S, even if we generalize the definition and

allow tiles not to be simply connected.

In order to make the proof more legible, we give an outline of the main steps.
Suppose that there exists such a tiling (T , f) of S. Now get rid of all the

tiles that are in regions ”completely surrounded” by one or two tiles. Then we
define an adjacency graph G on the remaining tiles such that G is a triangulated
planar graph.

It can be easily seen from the tiling being nice that all degrees of G are
at most 6, so it has at most 12 vertices with degree less than 6 (exactly 12 if
counted with multiplicity given by the differences of 6 and the degrees of these
vertices). These vertices are called irregular vertices.

2https://groups.google.com/forum/#!topic/hadwiger-nelson-problem/tSOs7MypGxE



Also, for some subsets of G that only have vertices with degree 6, there
exists a function to an infinite triangular grid such that the mapping is a local
isomorphism in all vertices.

Now we have two cases.
The first case is actually made up of two subcases: either all irregular vertices

are ‘close˙ to each other, or they can be separated into two groups of cardinality
6 (counted with multiplicity), where the elements of the two groups have a
large enough distance from each other, while inside one group, the distances are
bounded. In this case, we can construct two cycles c2 and c3 of bounded length
separating these two groups (or in case there is only one group, we divide them
into two groups beforehand), which are close enough to the first and the second
group, respectively. Then again we get a contradiction from the mapping of the
part between the two cycles to the triangular grid: we find a cycle in this part
that goes through two nearly antipodal points, but its graph length is not larger
than max(l(c2), l(c3)).

The second case is when there is at least one way to divide the irregular
vertices into two groups such that no two points from different groups are close
to each other and the cardinality of the two groups (counted with multiplicity)
is not divisible by 6. In this case, we get a contradiction by examining the exact
way to colour parts of the infinite triangular grid.

Figure 5: Case 1a, Case 1b and Case 2

Now we continue with a detailed proof.
First, note that although we use Euclidean distances in Theorem 3, in the

following we will use spherical distances. It only affects Theorem 3 in a way
that we have to prove the statement from a smaller minimum radius (r ≥ 17.9)
and by a conversion in the end, we get the original Theorem.

2.1 Converting the problem to a graph problem

In this section, we convert Theorem 3 into a theorem about fully triangulated
graphs drawn on a sphere, which we will prove in the next section.

In the following, for any graph X , we denote the set of its vertices by V (X)
and the set of its edges by E(X) and we denote the vertices of any graph X by
v1(X), v2(X), ..., v|V (X)|(X).

Also, from now on, let cycles always mean directed cycles, and if X is a cycle,
enumerate its vertices in the order they appear on X (starting at an arbitrary



vertex of X) with regard to the direction of X . In this case, use the indices
mod|V (X)|.

Suppose that we have a 7-tiling (T , f) of S. Note that since all disks of
diameter 1 on S can contain points of at most one tile per colour and S can
be covered with finitely many such disks, the family of tiles is finite, so we can
write T = {T1, ..., Tn}.

Call two tiles Ti and Tj adjacent if (cl (Ti) ∩ Tj) ∪ (Ti ∩ cl (Tj)) 6= ∅.

Lemma 4. If r ≥ 2
π
and i ∈ {1, ..., n}, then there is a unique connected com-

ponent of S \Ti, which contains all points of S with the exception of at most an
open disk of radius 1.

Proof. If we take an open disk D of radius 1 around any point of Ti, it covers
Ti, so S \D ⊆ S \ Ti and since S \D is connected, all of its points are in the
same connected component of S \ Ti. And this component is unique as S \D
is a closed disk of radius rπ − 1, so none of the other components satisfy the
property described in the statement of the lemma.

Lemma 5. If r ≥ 2
π

and the adjacent tiles Ti, Tj ∈ T both have spherical
diameter less than 1, then there is a unique connected component of S\(Ti ∪ Tj),
which contains all points of S with the exception of at most an open disk of radius
1.

Proof. If we take an open disk D of radius 1 around a common border point of
Ti and Tj , it covers both Ti and Tj, so S \D ⊆ S \ (Ti ∪ Tj) and since S \D is
connected, all of its points are in the same connected component of S\(Ti ∪ Tj).
And this component is unique as S \D is a closed disk of radius rπ − 1 > 1, so
none of the other components satisfy the property described in the statement
of the lemma.

For any Ti ∈ T or Ti, Tj ∈ T (where Ti and Tj are adjacent), call the unique
component described above the large component of S \ Ti or S \ (Ti ∪ Tj),
respectively, and all the other components the small components.

Now we will define a graph G and simultaneously draw it on the surface of
S.

First, define a subfamily T ′ of T that consists only of the tiles that are not
included in any small component of S \Ti for some i = 1, ..., n, neither are they
included in any small component of S \ (Ti ∪ Tj) for some i, j = 1, ..., n, i 6= j.

Now take an arbitrary point vi(G) from each tile Ti ∈ T ′ and also, take a
point πi,j = πj,i on the common border of all adjacent tiles Ti and Tj .

Next, take a topological tree τi fully inside Ti, whose leaves are the above de-
fined πi,j ’s and which includes vi(G). Such a tree exists, because Ti is connected,
thus, we can add the branches ending in the πi,j ’s one by one. (Note that in
the optimal case, τi would be a topological star centered around vi(G), but this
is not always possible due to our very generous definition of tiles, which allows
cutting points.) Now for all adjacent pairs Ti, Tj ∈ T ′, draw an edge between
vi(G) and vj(G), which follows the path connecting vi(G) and πi,j within τi and
then the path connecting πj,i and vj(G) within τj . Call the resulting graph G



and denote this drawing of G by G0. The interiors of the edges of G0 might
overlap, but they do not cross each other at all, so with a slight movement, we
can make them non-overlapping, thus creating the final drawing of G.3

T1

T1

T1

T2

T4

T5

T7

T1

T6

T8

T9

T10T11

v1

v2

v4

v7

v6

v5

Figure 6: A portion of T (the borders are denoted by the thin lines, and in
case it matters, it is also denoted where the border points belong) and the
corresponding section of G (the edges are denoted by thick lines). The dashed
line represents the edges (v1(G), v5(G)) and (v1(G), v6(G)) of G0. T8, T9, T10
and T11 are in the small components for at least one tile or at least one pair of
tiles, so no vertices belong to them.

Definition 6. We call a colouring of a graph nice, if there are no two different
vertices within graph distance at most 2, which are coloured with the same
colour. Alternatively, a nice colouring of G can be defined as a colouring, which
is also a proper colouring for G2 (the square of G).

Lemma 7. The tiling (T , f) of S being nice means that applying the same
colouring to the corresponding vertices of G is a nice colouring.

Proof. All adjacent tiles in T have a distance of 0 per definition and all tiles in
T that are adjacent to the same tile have a distance less than 1 per definition.
Thus, no tiles with graph distance at most 2 in G can have the same colour in
a nice tiling.

3To make some disclaimer about the term ”slight movement”: apart from making all of the
interiors of the edges of G disjoint, the only requirement is to keep the statement of Theorem 9
true. Technically, even a non-movement that only creates a virtual ordering among the edges
would be satisfactory.



Lemma 8. Any (open or closed) disk D on S with radius at least 1 contains at
least one vertex from G.

Proof. If the center O ofD belongs to a tile from T ′, then the vertex representing
it has distance less than 1 from it, so it is inside D.

If O belongs to a tile Ti from T \T ′, then either it is in the small component
of S\Tj for some Tj ∈ T or it is in the small component of S\(Tj ∪ Tk) for some
Tj, Tk ∈ T (note that Ti is not necessarily bordering any of these tiles). And
there exists a line through O, which contains at least one point from cl (Tj) or
from cl (Tk), we can assume WLOG that they are from cl (Tj). And since these
two points are within an open unit disk around vj(G), all of the shorter line
segment connecting them is also in this unit disk, and thus, O too. So vj(G) is
also within an open unit disk around O.

Lemma 9. If vi(G) and vj(G) are adjacent vertices in G, they have a distance
less than 2 and (in case the drawing of G was appropriately constructed from
G0) all points of the edge (vi(G), vj(G)) have a distance less than 1 from at least
one vi(G) and vj(G).

Proof. For G0, this follows per definition: the first half is true since vi(G) ∈ Ti
and vj(G) ∈ Tj, the diameter of both tiles is less than 1 and they have a common
border point, while the second half follows from the fact that all points of the
edge (vi(G), vj(G)) are either in Ti or in Tj . And if the changes applied when
constructing the final drawing of G were small enough, the second half is also
true, while the first one is true per definition as the placement of vertices did
not change.

Lemma 10. G is a fully triangulated planar graph.

Proof. G is a simple graph as it has finitely many edges, finitely many vertices,
no loops and no parallel edges. It is planar per definition as it has finitely
many vertices and edges, and it is drawn onto S without any crossings, so by
projecting S minus an arbitrary point of S \ G onto the plane, it also can be
drawn onto the plane.

Also, G is connected: we will take some i, j ∈ {1, 2, ..., n} for which Ti, Tj ∈
T ′ and show that they are in the same connected component. First, take an
arbitrary Jordan curve γ connecting a point of Ti and a point of Tj, then we
can make a list of the tiles intersected by γ in order of the first intersection (if
we would list them with multiplicity, then this could be an infinite list). We
will now show that any tile Tk ∈ T ′ on the list is adjacent to at least one tile
from T ′ preceding it,

Let p be the point in which γ enters Tk (the minimum or the infimum of the
first point in Tk ∩ γ, counted along γ) and let Tk′ be the tile (or a tile) from
which γ enters Tk first (to be more precise, in case, p /∈ Tk, define this as the
tile p belongs to, otherwise, calling the section of γ ending at p, let Tk′ be any
tile for which p is a point of convergence within γp). In case Tk′ ∈ T ′, Tk and
Tk′ are adjacent per definition, while if Tk′ ∈ T \ T ′, then Tk′ is either in the
small component of S \Tk or in the small component of S \ (Tk ∪ Tk′′) for some



Tk′′ ∈ T ′. And since Ti ∈ T ′, it is not in the same small component, so the
first case would lead to a contradiction, while the second would mean that γ
intersected Tk′′ before Tk, and since Tk′′ must be adjacent to Tk, this finishing
the statement.

Now suppose that G contains a face G that is bordered by more than 3 edges
and denote the corresponding face of G0 by F0. We may assumeWLOG that the
vertices of F are v1, v2, ... vk in this order and also that the vi(G) (i = 1, 2, ..., k)
are on the border of F0, otherwise we could simply move vi(G) to the last point
in τi in which the edges (vi(G), vi−1(G)) and (vi(G), vi+1(G)) coincide (where
the indices are counted mod k). Now suppose that T1 and T3 are not adjacent.
In this case, F0 \ (T1 ∪ T3) is connected, thus there exists a Jordan curve γ from
v2(G) to v4(G) within F0 \ (T1 ∪ T3). As above, the first tile Tj from T ′ \ {T2}
is adjacent to T2 and a starting segment of γ connects v2(G) and vj(G), whose
interior is fully inside F0. And if the edge (v2(G), vj(G)) would be outside F0,
they would separate T1 from T3 because of Jordan’s theorem and because of
the fact that Tj is not T1, nor T3. And this is a contradiction because both
T1 and T3 are from T ′. So the edge should be at least partly within F0, which
contradicts the assumption that F is a face of G.

Now, combining Lemma Theorem 7, Lemma Theorem 8, Lemma Lemma 9
and Lemma Lemma 10, we get that Theorem 3 is a consequence of Theorem 12
applied for d1 = 2 and d2 = 1.

Remark 11. Note that at this point it is easy to prove the planar case of
Thomassen’s result with our more generous definition of tiling, since we can
construct a similar graph G on the plane, for which the average degree would
tend to 6 due to Lemma 10 by choosing a large enough section of the plane, but
in a colouring with 6 colours, no vertices can have degree larger than 6 due to
Theorem 7, a contradiction.

2.2 The reworded problem

Theorem 12. Suppose we have a sphere S with radius r and a fully triangulated
connected planar graph G drawn on the surface of S without crossings, which
has n vertices, all of its vertices have spherical distance less than d1 on S, all
open unit disks on S contain at least one vertex and all of the points of all of
its edges have distance less than d2 from at least one of its respective endpoints.
Then for r ≥ 23d1+0.5d2

π
, G does not have a nice 7-colouring.

Proof. First, suppose that G does have a nice 7-colouring σ. This obviously
means that all of its degrees are at most 6 as any vertex with degree at least
7 would have at least two neighbours of the same colour by the pigeonhole
principle.

Notations used in this section

We will continue to use the notations V (X), E(X) and vi(X) defined in the
previous section for all graphs X . Also, for any edge (vi(G), vj(G)) of G, call



e \ (vi(G) ∪ vj(G)) an open edge of G, denote the set of open edges of G by
Eo(G).

Call the vertices of G with degree 6 regular vertices and the vertices of
G with degree less than 6 irregular vertices and let their multiplicity be the
difference of 6 and their degree. Note that since G is a fully triangulated planar
graph, |E(G)| = 3 · |V (G)| − 6, thus the number of irregular vertices counted
by multiplicity is exactly 12. Also, let the multiset of irregular vertices be
I = {i1, ..., i12}.

For any two subsets a and b of S, let their spherical distance be their spherical
distance on S (denoted by distS(a, b)).

For any two subgraphs Ga and Gb of G, let their graph distance mean
the smallest graph distance in G occuring between their vertices (denoted by
distG(a, b)).

For any S′ ⊆ S, let ant (S′) be the antipode set of S′ within S.
For any cycle c in G, let its sides be the connected components of S \ c. It

is trivial that all cycles have two sides.
For any directed cycle c, define the side to its left as its inside or its interior

(denoted by int(c)) and the side to its right as its outside or its exterior (denoted
by ext(c)). Also, define the closed interior and the closed exterior of c as int(c) =
int(c) ∪ c and ext(c) = ext(c) ∪ c, respectively. Also, denote the subgraphs of
G which only includes the edges with interiors within these regions (along with
their endpoints) by Gint(c), Gext(c), Gint(c) and Gext(c), respectively.

For any 3-cycle c in G for which int(c) does not contain any vertices or open
edges, call int(c) ∪ c a triangle, call the set of triangles of G ∆(G).

For any 3-cycle c in G for which int(c) does not contain any vertices or open
edges, call int(c) an open triangle, call the set of open triangles of G ∆o(G).

Since G is a fully triangulated graph, S is the disjoint union of the elements
of V (G), Eo(G) and ∆o(G).

Let A (∆o(G)) be the adjacency graph of the open triangles of G defined
as the graph which has the elements of ∆o(G) as its vertices and those are
connected with an edge, which have a common bordering edge.

For a directed cycle c in G, let the local curvature of c in vi(c) (denoted by
lc (vi(c), c) be 2− degGint(c)

(vi(c)) and the curvature of c within G (curvG(c))

be
|V (c)|
∑

i=1

lc (vi(c), c).

For a subset S′ ∈ S and a cycle on S, let their signed spherical distance be
dist′S(S

′, c) = distS (S
′, int(c)) − distS (S

′, ext(c)). Obviously at least one of
the two halves of the formula is 0, depending on which side of c is S′ located,
and thus, |dist′S(S

′, c)| = distS(S
′, c).

Lemma 13. For any two points p1, p2 ∈ S and any cycle c ⊂ S,
|dist′S (p1, c)− dist′S (p2, c)| ≤ distS (p1, p2).

Proof. If both dist′S (p1, c) − dist′S (p2, c) are non-negative or both are non-
positive, then the statement is obvious as dist′S (pi, c) = distS (pi, c) for i = 1, 2.



If one is positive, while the other one is negative, then the shortest spherical seg-
ment between p1 and p2 intersects c in at least one point p3, for which the follow-
ing formula is true: |dist′S (p1, c)− dist′S (p2, c)| = distS (p1, c) + distS (p2, c) ≤
(p1, p3) + distS (p2, p3) = distS (p1, p2).

Lemma 14. For any point p0 ∈ S and cycles c1, c2 ⊂ S with int (c1) ⊆ int (c2),
|dist′S (p0, c1)− dist′S (p0, c2)| ≤ max

p1∈c1
min
p2∈c2

distS (p1, p2).

Proof. In case dist′S (p0, c1) and dist
′
S (p0, c2) have the same sign and we assume

WLOG that c1 is closer to p0, then by choosing p1 as the closest point of c1
to p0, the statement follows from the triangle inequality as above. If they have
an opposite sign, then it also follows from the triangle inequality, again from
choosing p1 as the closest point of c1 to p0.

Lemma 15. A (∆o(G)) is connected.

Proof. For any e ∈ Eo(G), the two open triangles bordering e are connected
with an edge in A (∆o(G)), thus, they are in the same connected component
of A (∆o(G)). This also means that for any v ∈ V (G), the open triangles
bordering v are also in the same connected component of A (∆o(G)) as we can
get from any open triangle bordering v to any one by crossing the open edges
of G starting from v one by one, and as we have seen it above, these are in the
same component.

Also, for any two neighbouring vertices of G, there exists an open triangle
bordering both of them. And since G is connected, the subgraphs defined in
the above paragraph are in the same connected component of A (∆o(G)). And
since all open triangles have at least one bordering vertex in G (in fact, exactly
3), this proves the statement.

Let the graph length of a path or closed path p in G′ be the number of its
edges. We denote it by l(p).

Let the spherical broken line of a path or closed path p in G′ be the curve
defined by connecting neighbouring vertices of p with spherical segments instead
of the edges connecting them.

Let the broken line length of a path or a closed path p in G′ be the length
of the spherical broken line belonging to p. We denote it by L(p).

Let the i-neighbourhood of a vertex v of G′ be the subgraph of G′ induced by
those vertices, which have graph distance at most i from v (denoted by Ni(v)).

Let the strict i-neighbourhood of a vertex v of G′ be the subgraph of G′

induced by those vertices, which have graph distance exactly i from v (denoted
by ni(v)).

For a vertex v and a set S of vertices, let e(v, S) mean the number of edges
starting from v and ending in any of the vertices of S.
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Figure 7: GT on the left and GT (z) for a specific z on the right

Define an infinite regular triangular grid G(T ) drawn in the Euclidean plane
as shown in Figure 7 left. Define open edges, triangles and open triangles in
G(T ) analogously as in G. Also define GT (z) for any vector z as the graph we
obtain from GT by merging all of its vertices, whose vector is of the form kz for
some integer k (see Figure 7 right).

Furthermore, define the following subgraphs of G(T ): G(h) (Figure 14),
G(h)+ (Figure 15), G(H)− (Figure 25) and G(H) (Figure 8).

Analogously to the colouring of the plane by Isbell, call a colouring of the
vertices of the infinite triangular grid T an Isbell colouring if it is constructed
in the following way:

We take a vertex in the grid and colour it and its neighbours with 7 different
colours. We then tile the grid with the disjoint translates of this coloured
hexagon.

Such a colouring is trivially nice and periodical, thus any Isbell colouring of
T can be generated using any of the vertices of T as the starting vertex. Also,
for all colourings of the starting hexagon, there are exactly two ways to colour
T depending on how we place the hexagons compared to each other. Also, all
Isbell colourings can be generated with the above procedure starting from any
hexagon formed by a vertex and its 6 neighbours.

Lemma 16. The GH (Figure 8) can only be nicely 7-coloured by a part of an
Isbell colouring.
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Proof. We may assume WLOG that the central Gh is coloured as in Figure
9. We now have to colour the remaining 12 vertices so that all border vertices
of the central Gh get exactly one neighbour from all colours (except for its
own colour). And since for all colours from 2 to 7, there are exactly 3 coloured
vertices that lack a neighbour with that colour and all of the uncoloured vertices
border 1 or 2 of the coloured ones, we must use all six of these colours at least
twice. But since there are 12 uncoloured vertices in total, we must use all of
them exactly twice. Now decide which two vertices get colour 2. Since only the
vertices coloured with 4, 5 and 6 lack a neighbour with colour 2, the only two
possibilities to place these two vertices are those shown in 10 and 11. Similarly,
there are two possibilities for the placement of the vertices with colours 3, 4,
5, 6 and 7, only with their placement being rotated. And (progressing in a
counterclockwise order if we chose the first option for 2 and in a clockwise order
otherwise) we can prove for these five colours that whichever option was chosen
for colour 2, should be chosen for these colours too (otherwise there would be
an overlap between neighbouring colours). So we get the colourings on 12 and
13, which indeed are parts of Isbell colourings.



Figure 14: Gh Figure 15: G+
h

Figure 16: G−
H

Lemma 17. If we embed G+
h (see Figure 15) in the infinite triangular grid,

then any colouring of it is contained in at most one Isbell colouring of T .

Proof. As it was stated above, an Isbell colouring can be generated from the
colouring of any of its Gh’s with only two options and the colouring of the extra
vertex determines which option is used.

We will use the following lemmas later in the proof:

Lemma 18. For any path or closed path p in G, L(p) < d1l(p).

Proof. Since all pairs of neighbouring vertices have a distance less than d1, the
inequality directly follows from summing these inequalities up.

Lemma 19. Any cycle c can be contracted to a cycle c′, for which int(c′) ∪ c′

is a triangle using the following two kind of steps:

→

Figure 17: Step type 1

1. Take a triangle vivjvk in int(c)∪c, which has exactly two sides in common
with c. These two sides trivially form a 2-path and we can assume WLOG that
they are (vi, vj) and (vj , vk). Throw these sides out of c and replace them with
(vi, vk).



→

Figure 18: Step type 2

2. Take a triangle vivjvk in int(c)∪c, which has exactly one side in common
with c and its third vertex is in int(c). We can assume WLOG that this side is
(vi, vk). Throw this side out of c and replace it with (vi, vj) and (vj , vk).

Proof. It is enough to prove that at least one of these steps always can be
performed if int(c)∪ c is not a triangle, since this always reduces the number of
triangles contained in int(c) ∪ c by exactly 1, so in the end, int(c) ∪ c will be a
triangle.

Since G is a planar graph, there are at most n − 3 diagonals of c in Gi(c).
Thus there exists a vertex v (actually at least 3 vertices) with no diagonals of
c belonging to Gi(c) starting from v. This means that if (v, v′) is an edge of c,
then the triangle in int(c)∪ c bordering (v, v′) satisfies the conditions for one of
the steps: its third vertex v′′ is either the other neighbour of v in c or v′′ is in
int(c), otherwise (v, v′′) would be a diagonal of c as the edge connecting them is
clearly in Gi(c). And the first possibility means that we can perform step type
1, while the second possibility means that we can perform step type 2.

Lemma 20. The curvature of a cycle c is equal to 6 minus the number of
irregular vertices in int(c) (counted with multiplicity).

Proof. By using Lemma 19, we can transform c into a 3-cycle, for which c∩int(c)
is a triangle using the two kind of steps there.

Now examine the change of the curvature of c, while performing these steps.
If we perform step type 1, the curvature of c does not change as 2−degGi

(vi)
and 2− degGi

(vk) increase by 1 each, while 2− degGi
(vj), which was 2− 0 = 2

before, gets out of the sum.
If we perform step type 2 and vc is a regular vertex, the curvature of c does

not change either, since 2− degGi
(vi) and 2− degGi

(vk) increase by 1 each and
the new summand 2− degGj

(ve) starts as 2− 4 = −2.
If we perform step type 2 and vj is an irregular vertex with multiplicity

m, the curvature of c increases with m, since 2 − degGi
(vd) and 2 − degGk

(vf )
increase by 1 each and the new summand 2−degGj

(ve) starts as 2−4+k = k−2.
So since in the end, no vertices remain in int(c), the curvature of c has

increased by the number of irregular vertices originally in int(c) counted with
multiplicity. And the curvature of a triangle is trivially 6, so the original c has



a curvature of 6 minus the number of irregular vertices in int(c) (counted with
multiplicity).

→

Figure 19: On the left, a section of G is visible with t1 highlighted in red and
t2 highlighted in blue, while on the right, the corresponding section of G (t1, t2)
with t′1 highlighted in red and t2 highlighted in blue.

Definition 21. Take two trees t1 and t2 in G such that they do not cross each
other, but can have common vertices. Now define G (t1, t2) in the following way:
take a closed walk around t1 such that after reaching a vertex v following an
edge e, always take the closest exit to the right from e as the next step (see
Figure 19). We stop immediately before taking the first edge of the walk in the
same direction. It is obvious that if the original tree had k vertices and k − 1
edges, this closed walk has length k − 2: all edges are used in both directions.
Now move the edges very slightly outwards (creating two edges for all edges of
G)4 as seen in Figure 19, which also divides each vertex into as many copies as
the degree of said vertex. Call this new cycle t′1. Also, leave redraw the edges
starting from the vertices of t1 that are not edges of t1 (but their other endpoint
might also be part of t1) such that the triangles and their orientations remain
intact and no crossings are made. Now do the same for t2 (call the arising cycle
t′2). These changes can also be seen in Figure 19). Now define V (G (t1, t2)),
E (G (t1, t2)), ∆ (G (t1, t2)), Eo (G (t1, t2)) and ∆o (G (t1, t2)) analogously to as
we defined them forG. Note that V (G (t1, t2)), Eo (G (t1, t2)) and ∆o (G (t1, t2))
are also disjoint, but they only cover S \ (int (t′1) ∪ int (t

′
2)).

Definition 22. Now we also can define the local curvature for vertices within
cycles within G (t1, t2) as lc (vi (c) , c) = |{δ ∈ ∆o (G (t1, t2)) |vi (c) ∈ Clδ}| − 3

and the curvature of cycles within G (t1, t2) as curvG(t1,t2)(c) =
|E(c)|
∑

i=1

lc (vi (c)).

4The meaning of ”slightly” is analogous to how it was defined in 2.1 in the sense that
we only require the new edges not to cross or touch each other (at least in their interiors),
the distance of their endpoints remains smaller than d1, for all points of the edges and the
minimum distance from the respective endpoints remains smaller than d2. We again could
say that a virtual movement of the edges is satisfactory.



Lemma 23. If t1 and t2 are two trees in G containing all irregular vertices,
then the curvature of any cycle in G (t1, t2) for which int (t′1) ⊆ int(c) and
int (t′2) ⊆ ext(c), then curvG(t1,t2)(c) = 6− |V (t′1) ∩ I|.

Proof. For any vertex v of t1 with degree k within t1, the sum of the local
curvatures of the vertices of G (t1, t2) corresponding to v is exactly 6 − 3k
if v is regular and 6 − m − 3k if it is irregular with multiplicity m. Thus,
curvG(t1,t2) (t1) = 6 · |V (t1)| − 6 · |E (t1)| −M , if M is the sum of the multiplic-
ities of the irregular vertices belonging to t1.

For an arbitrary cycle fulfilling the condition of the lemma, the proof works
similarly as for 20, where we used 19.
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Figure 20: A part of G with
the chosen paths connecting
the vertices of I highlighted
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Figure 21: The
part of H corre-
sponding to this
part of G
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Figure 22: The corresponding
part of G with t1 and t2 de-
noted by bold

Now we have two cases:

Case 1:
H either has one connected component or it has two, both having a cardi-

nality of 6. Call these subcases Case 1a and Case 1b, respectively.

Lemma 24. If Case 1a holds, then there exist two subtrees t1 and t2 of G that
meet in exactly one vertex, they do not cross each other, they together cover all
the vertices from I and max (E (t1) , E (t2)) ≤ 22.

Proof. Take the smallest subtree t0 of G that contains all the elements of I.
Suppose that |E (t0)| > 33. In this case, we could take a spanning tree t (H) in
H and take a shortest path in G between all elements of I that are adjacent in
t (H) (for the irregular vertices of G with multiplicity more than 1, this path
has length 0, but in all cases it has length at most 3). The union UH of these
paths is a connected subgraph of G containing all the vertices from I and its



edge-count is at most 33, so if we take an arbitrary spanning tree in UH , it will
be shorter than t0, a contradiction. So |E (t0)| ≤ 33. Now we will prove that
there exist two subtrees of t0 that fulfill the criteria of the lemma. Take all
divisions of t0 into two trees such that they cover all of t0, but only meet in one
vertex, and choose one in which the maximum of the edge-counts of the two
trees is minimal: these will be t1 and t2. It is obvious that together they cover
all vertices from I, so we only have to prove thatmax (E (t1) , E (t2)) ≤ 22. Now
let the joint vertex of t1 and t2 be v. v divides t0 into at most 6 subtrees (in fact,
less as if v would be a regular vertex of G with at least 5 of its vertices in t0, then
t0 could be easily redrawn so that its vertex set would be V (t0) \ {v}, which
would contradict the choice of t0), let the set of these trees be F . Also, suppose
that one tree from F has more than 17 edges. Then this tree must be one of
t1 and t2, we can assume WLOG that it is t1. Now we can modify our choice
of t1 and t2 by removing one edge from t1 (the only edge of t1 starting from
v) and adding it to t2, and this reduces max (E (t1) , E (t2)), a contradiction.
So all of the trees from F have at most 17 edges. Now take the union F1 of
some trees from F that are placed consecutively around v such that their total
edge-length does not exceed 17 and it is maximal in terms of expansion among
the subsets of F with these properties. Now create a union F2 with the same
properties from F \F1, starting with the counterclockwise next tree after those
in F , but now we only require F2 to be maximal in the above-described sense
within F \ F1. Now denote the union of the remaining trees from F by F3.
Per definition, |E (F1) ∪ E (F2)| ≥ 18, so all of F1, F2 and F3 have a maximum
edge-count of 17 and since E (F1) ∪ E (F2) ∪ E (F3) = E(F ), at least one of
them has an edge-count of at least 11, meaning that in case this Fi is t1, while
the union of the other two Fi’s is t2, the statement holds (it is also possible that
the real t1 and t2 have an even smaller max (E (t1) , E (t2))).

Lemma 25. If Case 1b holds, then there exist two disjoint subtrees t1 and t2
of G that cover six vertices of I each (counted with multiplicity) and
max (E (t1) , E (t2)) ≤ 15.

Proof. Denote the two connected components of H by H1 and H2. Also, take
a spanning tree t (H1) for H1, then choose an arbitrary shortest path in G for
each edge of this tree. Now take a spanning tree of the union of these paths
and call the resulting graph H ′

1. Do the same procedure for H2 and call the
resulting graph H ′

2. Note that per definition, all vertices of H ′
1 have a graph

distance of at most one from at least one vertex of H1, meaning that H ′
1 and

H ′
2 cannot have any common vertices, as that would mean that some vertex of

H1 has graph distance (with respect to G) at most two from some vertex of H2,
and thus, it would contradict the definition of H1 and H2. And since H ′

1 is a
subgraph of the union of 5 paths all of length at most 3, it has at most 15 edges
and the same applies for H ′

2.

Now we will use the following lemma:
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′
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Figure 23

Lemma 26. There exists a series of cycles c1,0, ..., c1,p for some p) in G (t1, t2)
with c1,0 = t′1 and c1,p = t′2 satisfying 3 conditions:

1) All of them have graph length at most 44, and thus, broken line length
less than 44d1.

2) For any i, j with |i− j| = 1 and any vertex v of c1,i, there is a vertex of
c1,j neighbouring v in G (t1, t2) and thus, having spherical distance less than d1
from it.

3) For any i, j with |i− j| = 1 and any edge e of c1,i, there is a vertex of
c1,j having graph distance at most 1 from both of the endpoints of e in G (t1, t2),
and thus, having spherical distance less than d1 + d2 from all the points of e.

Proof. We will first describe an algorithm that results in a cycle in G (t1, t2)
that can be obtained from t′i for both i = 1 and i = 2 using the following types

of steps (the jth iteration of this procedure is called (t′i)
(j)

, where t′i = (t′i)
(0)

.

We will always use the pre-assumption that if Case 1a holds, all (t′i)
(j) have at

least one vertex in common and that if Case 1b holds, the curvature of (t′i)
(j−1)

is always 0, which can be trivially seen from the steps.

1) Choose a k for which lc
(

vk

(

(ti)
(j−1)

)

, (ti)
(j−1)

)

= −2 and obtain (t′i)
(j)

from (t′i)
(j−1)

by leaving vk (t
′
i)

(j−1)
out and instead connect vk−1 (t

′
i)

(j−1)
and

vk+1 (t
′
i)

(j−1)
directly (they are neighbouring in G (t1, t2).

2) Choose a k for which lc
(

vk

(

(ti)
(j−1)

)

, (ti)
(j−1)

)

= −1 and obtain (t′i)
(j)

from (t′i)
(j−1)

by leaving vk (t
′
i)

(j−1)
out and replace it with the other common

neighbour of vk−1 (t
′
i)

(j−1)
and vk+1 (t

′
i)

(j+1)
.

3) Let (t′i)
(j) be the cycle defined by the neighbours of (t′i)

(j−1) within

ext
(

(t′i)
(j−1)

)

(we only use this step if lc
(

vk

(

(t′i)
(j−1)

)

, (t′i)
(j−1)

)

= 0 for

all k).
The procedure goes as follows:
If Case 1a holds, we will only use steps type 1 and 2 for t′1, until it is

possible with int
(

(t′1)
(j)

)

remaining disjoint from int (t′2), denote the number

of steps used by p1. If (t
′
1)

(p1) and t′2 are not the same cycle (without regard to



their direction), then we will use steps type 1 and 2 for t′2, until it is possible

with int
(

(t′2)
(j)

)

remaining disjoint from int (t′1), denote the number of steps

used by p2. Now suppose that (t′1)
(p1) and (t′2) are different (when regarded

as non-directed cycles). This means that all vertices of
(

(t′1)
(p1) \ (t′2)

(p2)
)

∪
(

(t′2)
(p2) \ (t′1)

(p1)
)

have a non-negative curvature, otherwise we could have used

a step type 1 or 2 for one of the two cycles. Also note that for any k for

which not only vk

(

(t′1)
(p1)

)

is part of (t′2)
(p2) too (besides (t′1)

(p1)), but also

the edges
(

vk−1

(

(t′1)
(p1)

)

, vk

(

(t′1)
(p1)

))

and
(

vk

(

(t′1)
(p1)

)

, vk+1

(

(t′1)
(p1)

))

,

lcr
(

v
(

(t′1)
(p1)

)

, (t′1)
(p1)

)

+lcr
(

v
(

(t′1)
(p1)

)

, (t′1)
(p1)

)

= 0, while if vk

(

(t′1)
(p1)

)

is part of (t′2)
(p2), but at least one of the edges

(

vk−1

(

(t′1)
(p1)

)

, vk

(

(t′1)
(p1)

))

and
(

vk

(

(t′1)
(p1)

)

, vk+1

(

(t′1)
(p1)

))

is not (and such a k obviously exists as

(t′1)
(p1) and (t′2)

(p2) coincide in some vertices but not in all of them), then

lcr
(

v
(

(t′1)
(p1)

)

, (t′1)
(p1)

)

+ lcr
(

v
(

(t′1)
(p1)

)

, (t′1)
(p1)

)

> 0. But from Lemma

23, curv
(

(t′1)
(p1)

)

+ curv
(

(t′2)
(p2)

)

= 0, which is a contradiction.

If Case 1b holds, we will do a similar procedure with the difference that if
we are completely stuck with using steps type 1 and 2 even for t′2, then we may

use step type 3 for the last (t′2)
(j)

. Now suppose that we are stuck with that

too, but (t′1)
(p1) and (t′2)

(p2) do not fully coincide (again when we regard them
as non-directed cycles). If they have at least one joint vertex, then this is a
contradiction exactly as written above, but if they do not have, then this must

mean lc
(

vk

(

(t′2)
(p2))

)

, (t′2)
((p2)

)

≥ 0 for all k (otherwise either step 1 or step 2

could be performed for (t2)
(p2), but since curv

(

(t′2)
(p2)

)

= 0 (from Lemma 23,

the above means lc
(

vk

(

(t′i)
(p2)

)

, (t′i)
(p2)

)

= 0 for all k. Thus, we can apply

step type 3, a contradiction.

Now define p as p1 + p2, define c1,j for 0 ≤ j ≤ p1 as (t′1)
(j) and define c1,j

for p1 ≤ p as (t′2)
(p−j)

, but in the opposite direction.
It is straightforward from the construction that the above set of cycles fulfill

the second and the third condition of the lemma, while the first condition follows

from the fact that (t′i)
(j)

is shorter than (t′i)
(j−1)

for i = 1 and i = 2 and
j = 1, 2, ..., p1 and j = 1, 2, ..., p2, respectively, which again is straightforward
from the construction.

Note that the above proof is empirically based on the fact that G (t1, t2)
can be mapped (with a not necessarily bijective mapping) into Gt(z) for some
appropriate z with preserving edges, triangles and their orientations.

Now define a function g(i) = dist′S (ant (V (c1,i)) , c1,i). The sign of this
function depends on whether all of ant (V (c1,i)) is within int (c1,i), all of it is
within ext (c1,i) or otherwise. Thus, g(0) < 0 and g(p) > 0.



Now take the first i, for which g(i) is positive. From Lemma 13 and 14, we
can see that either g(i − 1) ≤ −d1 +

d2
2 or g(i) ≥ d1 +

d2
2 . Thus, at least one

of c1,i−1 and c1,i contains two points, whose distance is at least rπ − d1 −
d2
2 ,

while from Lemma 18, their distance could be less than 22d1. Thus, since
r ≥ 23d1+0.5d2

π
, this is a contradiction.

Case 2:
Case 1 does not hold, meaning that H either has more than two components

or only two, but they do not have a vertex number divisible by 6.

Lemma 27. If Case 2 holds, then there exists a cycle c2 in G, all of whose
vertices have graph distance at least 2 from all the irregular vertices and which
separates them into two groups so that both of the groups has a cardinality not
divisible by 6 (counted with multiplicity).

Proof. →

Figure 24: A part of G (left) and the same part of G′ (right)
Take the graph G′ which we get from G by deleting all the vertices that have

graph distance at most 1 (with respect to G) from any of the points of I and
all the edges that are incident to the deleted vertices.

Lemma 28. The connected components of S \ G′ are exactly those of the fol-
lowing two types:

1) Any open triangle with all vertices having graph distance at least 2 in G
from all points of I.

2) For a component Ha of H, take the union of the vertices of G with graph
distance at most 1 in G from any of the vertices of Ha and the open edges and
open triangles incident to these vertices.

Proof. If a set C is of type 1, then it is is fully inside S\G and since S\G′ ⊇ S\G,
it is fully inside S \ G′ too. And C is connected, so its points are in the same
connected component. And since ∂C ⊆ G′, C cannot be connected with any
other point inside S \G′.

If a set Ca is of type 2 (belonging to Ha), then all the vertices and open edges
inside it are part of S \ G′ per definition of G′ and it is straightforward that
they are in one connected component. Also, per definition, no vertices of Ca are
on its own border, and also per definition, all open edges of G outside G′ have



at least one endpoint outside G′. So if Ca borders anything from S \ (G′ ∪Ca),
it also borders a vertex from this set. And per definition this vertex has graph
distance at most 1 in G from a vertex of H \Ha, which, from the definition of
Ca, leads to a contradiction with the fact that all vertices of H from different
components have graph distance at least 4 in G.

And since all points of S \G′ belong to at least one set of type 1 or type 2,
this proves that indeed, these are the only connected components of S \G′.

Now suppose that Ha is a connected component of H whose vertex count is
different from 6 and let Ca be the connected component of S \G′ belonging to
Ha. Now take the connected components of S \ ClCa. Obviously, the number
of irregular vertices (counted by multiplicity) contained in them is not divisible
by 6 for all of them, since they contain 12 − |V (Ha)| irregular vertices in total
(counted by multiplicity), and this number cannot be obtained as the sum of
numbers divisible by 6. And the boundary of each such component is a cycle in
G, finishing the proof of Lemma 27.

Definition 29. For all applicable i, define a function ψi from GH (as labeled
in Figure 26) to N2 (vi (c2)) in the following way: let ψi(u) be vi (c2), let ψi (u1)
be vi+1 (c2) (counted modulo l (c2)) and then let ψi (u2) , ψi (u3) , ..., ψi (u6) be
the other neighbours of vi (c2) starting from ψi (u1) in a positive order. Now for
all j = 1, 2, ..., 6, let ψi (uj,j+1) (with the j’s being counted modulo 6) be the
joint neighbour of ψi (uj) and ψi (uj+1) that is not vi (c2) and let ψi (uj,j) be
the neighbour of ψi (uj) between ψi (uj−1,j) and ψi (uj,j+1) (since both vi (c2)
and its neighbours are regular vertices, the above definitions are meaningful).

It is straightforward to see that ψi (GH) preserves adjacencies, triangles and
the orientation of triangles. Note though that since only the immediate neigh-
bours of vi (c2) are known to be regular, additional adjacencies and even coinci-
dences might occur (see Figure 27), but these can only cause extra restrictions
for the colouring, so they do not affect the proof.

Lemma 30. The curvature of c2 is divisible by 6.

Proof. From Lemma 16, we know that σ (ψi (GH)) is part of an Isbell colouring
σI(i) for all i (i = 1, ..., l (c2)), moreover, since the setN2 (vi (c2))∩N2 (vi+1 (c2))
is the image of a G−

H within GH both when using the function ψi and the func-
tion ψi+1 (the indices being counted modulo l(c)), this colouring is the same
apart from a rotation because of Lemma 17 due to the fact that G+

h is a sub-
graph of G−

H . Now define a function g : {1, 2, ..., 7} × {1, 2, ..., 7} → {0, 1, ..., 5}

as follows: g(i, j) = 3
π
· ∠

(

~uu1, ~vv′
)

where v and v′ denote two arbitrary ad-

jacent vertices of GH , whose colours are i and j (this function exists as the
ordered pair of colours of two adjacent vertices uniquely determines the cor-
responding vector in any Isbell colouring). It is straightforward to see that
lc (vi (c2) , c2) ≡ g (σ (vi (c2)) , σ (vi+1 (c2)))−g (σ (vi−1 (c2)) , σ (vi (c2))) mod 6



modulo 6 (where the indices are counted modulo l(c)). Thus, curv (c2) ≡
i=l(c2)−1

∑

i=0

g (σ (vi (c2)) , σ (vi+1 (c2)))− g (σ (vi−1 (c2)) , σ (vi (c2)))(= 0) mod 6.

Figure 25: G−
H

u u1

u2u3

u4

u5 u6

u1,1

u1,2

u2,2u2,3u3,3

u3,4

u4,4

u4,5

u5,5 u5,6
u6,6

u6,1

Figure 26: The labeling of GH we use

vi (c2)

vi+1 (c2)

vi−1 (c2)
vi+2 (c2)

i4, i5

vi−2 (c2)
i1, i2, i3

ψi (u)
ψi (u1)

ψi (u2)ψi (u3)

ψi (u4)

ψi (u5) ψi (u6)

ψ (u6,1)

ψi (u1,1)

ψi (u1,2)

ψi (u2,2)

ψi (u2,3)

ψ (u3,3)

ψ (u3,4)

ψi (u4,4)

ψ (u4,5)

ψ (u5,5) = ψ (u6,6)

ψ (u5,6)

Figure 27: A portion of G around vi (c2) and the image of ψi shown on the same
part

So Lemma 30 leads to a contradiction as per definition, the number of irreg-
ular vertices c2 contains in its interior (counted with multiplicity) is not divisible
by 6, so according to 20 its curvature is also not divisible by 6.



3 Concluding remarks
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In the following, we will discuss issues regarding the optimality of the above
results, for example the necessity of the conditions in Theorem 12.

Remark 31. First, note that the obvious condition that no two vertices with
distance at most 1 can have the same colour (as they represent tiles that have
distance at most 1) was not even included in Theorem 12. The only way the
condition that tiles of the same colour have distance more than 1 is transferred
into the conditions of Theorem 12 is the nice colouring condition.

Now examine the necessity of the conditions of Theorem 12.
Note that while in the proof of Theorem 12, the second case used a fully

combinatorial argument, the first case was more geometric: it did not only use
the combinatorial properties of G, but it also built on the fact that S is a sphere.
So the question logically arises: is it really necessary that S is a sphere or there



exist arbitrarily large spaces that are topologically isomorphic to the sphere,
but the statement of 12 cannot be generalized to them, and if so, can they be
nicely 7-tiled. The following lemma answers this question:

Lemma 32. There exists arbitrarily large L, such that a fully triangulated
crossing-free graph can be drawn on the surface of the cylinder with height L

and a disk of radius (1 + ε) ·
√
21
π

as a base such that this graph can be nicely
coloured. Moreover this cylinder can be nicely 7-tiled with the aforementioned
graph being its adjacency graph.

Proof. Figure 28 shows a construction for the graph and Figure 29 shows a
construction for the tiling.

Now suppose that we do not require the edges to be short enough.
One could also ask the question for two-dimensional manifolds in general:

is it possible to nicely tile such a manifold M using only 7 colours? First, we
make a simple observation for toruses:

Lemma 33. There exist arbitrary large toruses in R
3 which can be nicely tiled

with 7 colours.

Proof. The Isbell colouring is periodic both horizontally and vertically if we
draw it in the way as in 2. Also note that (as all nice tilings) it can be slightly
scaled or deformed and still remains a nice tiling. Thus, if we take a torus
with a large enough minor radius and a major radius that is large enough even
compared to its minor radius, the Isbell colouring can be drawn on the surface
of the torus.

But this does not work for other bounded 2-dimensional manifolds:

Lemma 34. Let M be a bounded 2-dimensional manifold without any non-
contractible curves with diameter less than 1. Then M cannot be nicely coloured.

Proof. We can construct G in a similar way as in case of a sphere (as described
in Section 2.1). Now again we get a triangulation ofM , thus χE(M) = |V (G)|−
|E (G)| + |∆(G)| (where χE(M) denotes the Euler characteristic of M). And
since |∆(G)| = 2

3 · |E (G)|, |E (G)| = 3 · |V (G)| − 3 · χE(M). And since the
Euler characteristic of M is negative, this means that at least one vertex of G
must have degree more than 6, thus, it cannot be nicely coloured.

But it is not straightforward to generalize Theorem 3 from here.

Lemma 35. For any non-negative integer numbers k and nmin and real num-
bers amin and Amin we can find a 2-dimensional bounded manifold M with k
genuses that is embeddable to R

3 such that it has at least nmin tiles, a diameter
at least amin and a surface area at least Amin and it can be nicely tiled using 4
colours.



Proof. 0.9

0.45 0.9

Figure 30
Take two parallel line segments in the plane with distance 0.9 and tile both

of them with red, blue and green segments of length 0.9 periodically such that
the difference of the two periods is 1.35. Then put k+1 perpendicular segments
between them such that their minimum distance is more than 1, otherwise let
their placement be arbitrary. Now colour these segments with black (see Figure
30). In this drawing, all tiles of the same colour have distace more than 1: the
minimal distance of the horizontal tiles of the same colour is

√

(0.45)2 + (0.9)2 =
1.006.... So if the two segments were taken long enough, then by replacing this
drawing by a system of thin enough tubes, we get the desired M .

Such constructions are the reason why Thomassen needed condition 2 in 2
and we needed a similar condition in Lemma 34.
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