
ar
X

iv
:2

40
4.

14
40

2v
1 

 [
m

at
h.

A
P]

  2
2 

A
pr

 2
02

4

A mean curvature flow arising in adversarial training
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Abstract

We connect adversarial training for binary classification to a geometric evolution equa-

tion for the decision boundary. Relying on a perspective that recasts adversarial training

as a regularization problem, we introduce a modified training scheme that constitutes a

minimizing movements scheme for a nonlocal perimeter functional. We prove that the

scheme is monotone and consistent as the adversarial budget vanishes and the perime-

ter localizes, and as a consequence we rigorously show that the scheme approximates a

weighted mean curvature flow. This highlights that the efficacy of adversarial training

may be due to locally minimizing the length of the decision boundary. In our analysis, we

introduce a variety of tools for working with the subdifferential of a supremal-type nonlocal

total variation and its regularity properties.

Keywords: mean curvature flow, adversarial training, adversarial machine learning, min-

imizing movements, monotone and consistent schemes
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1 Introduction

In the last decade, machine learning algorithms and in particular deep learning have experienced
an unprecedented success story. Such methods have proven their capabilities, inter alia, for the
difficult tasks of image classification and generation. Most recently, the advent of large language
models is expected to have a strong impact on various aspects of society.

At the same time, the success of machine learning is accompanied by concerns about the
reliability and safety of its methods. Already more than ten years ago it was observed that
neural networks for image classification are susceptible to adversarial attacks [35], meaning that
imperceptible or seemingly harmless perturbations of images can lead to severe misclassifica-
tions. As a consequence, the deployment of such methods in situations that affect the integrity
and safety of humans, e.g., for self-driving cars or medical image classification, is risky.

To mitigate these risks, the scientific community has been developing different approaches
to robustify machine learning in the presence of potential adversaries. The most prominent of
these approaches in the context of classification tasks is adversarial training [23, 27], which is
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a robust optimization problem of the form

inf
u∈H

E(x,y)∼µ

[

sup
x̃∈B(x,ε)

ℓ(u(x̃), y)

]

, (1.1)

where we use the notation Ez∼µ[f(z)] :=
∫

f(z) dµ(z). The ingredients of adversarial training
are readily explained: The probability measure µ ∈ P(X ×Y) models the distribution of given
training pairs in the so-called feature space X and the label space Y. Here X is a metric
space, and Y a set, e.g., Y = {0, . . . ,K − 1} describing K ∈ N classes. In realistic situations,

one uses an empirical distribution of the form µ = 1
M

∑M
i=1 δ(xi,yi) where (xi, yi) ∈ X × Y for

i = 1, . . . ,M . The optimization takes place in a so-called hypothesis class H which is nothing
but a class of functions from X to Y, e.g., linear functions, measurable functions, parametrized
neural networks, etc. We let ℓ : Y × Y → R be a so-called loss function, which is often chosen
as a power of a norm or f -divergence. Finally, in essence, the optimal classifier u should satisfy
u(x̃) ≈ y for µ-almost every (x, y) ∈ X × Y and all x̃ ∈ B(x, ε). Thereby, (1.1) enforces
robustness of the classification in ε-balls around the data points, where ε > 0 is called the
adversarial budget.

Already in [27] it has been empirically observed that (1.1) indeed allows one to compute neu-
ral networks that are significantly more robust than those trained with the standard approach
(corresponding to ε = 0 in (1.1)). However, the mathematical understanding of adversar-
ial training and related problems only began growing a few years ago: One line of research
connects (1.1) with (multimarginal) optimal transport or distributionally robust optimization
problems [21, 32, 33] and uses tools from these disciplines to analyse adversarial training. Ex-
istence of solutions to (1.1) in the binary classification case where Y = {0, 1}, ℓ is the 0-1 loss
ℓ(ỹ, y) = |ỹ − y|, and H is a class of measurable functions was proved in [2, 7]. In [2], the authors
consider closed balls B(x, ε) in (1.1) and work with classifiers which are characteristic functions
of universally measurable sets in R

N . In contrast, in [7] open balls are used and the classifiers
are characteristic functions of Borel measurable subsets of a generic metric measure space. The
authors of [7] also proved that adversarial training for binary classification is equivalent to the
following variational regularization problem:

inf
A∈B(X )

E(x,y)∼µ [|1A(x)− y|] + εPerε(A). (1.2)

Here, Perε is a non-local and data-dependent perimeter functional that regularizes the decision
boundary ∂A between the two classes. A similar decomposition into a “natural error” and
a “boundary error” was studied in [38] and used to derive the TRADES algorithm, which
essentially replaces the regularization parameter ε in (1.2) by 1

λ for λ > 0. Also for other
notions of robustness which are weaker than adversarial robustness, geometric interpretations
similar to (1.2) exists, see [7, Section 4] or [6]. We also remark that generalizations of some
of the results in [2, 7] to the case of multi-class classification can be found in [19]. Finally, an
overview of recent mathematical developments in the field can be found in [20].

The perspective in (1.2) opens the door for the geometric analysis of adversarially robust
classifiers. As a first step in this direction, in [7] it was shown that maximal and minimal
minimizers of (1.2) possess one-sided regularity properties, and that for X = R

N there exists
a solution with a boundary that is locally the graph of a C1,1/3 function. Subsequently, it
was shown in [8] that (even for discontinuous densities with bounded variation) the nonlocal
perimeter Perε Gamma-converges to a weighted local perimeter and, as a consequence, solutions
of (1.2) converge to perimeter-minimal solutions of (1.2) with ε = 0. In [22] it was shown that for
sufficiently small ε > 0 adversarially robust classifiers evolve (as parametrized by ε) according
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to a geometric flow, when smooth solutions starting from the Bayes classifier exist. Expansions
used to derive this result show that, infinitesimally in ε, this flow is a weighted mean curvature
flow, which shows that adversarial training is connected to decreasing the length of the decision
boundary.

The main contribution of the present paper is to make this connection with mean cur-
vature flow rigorous in a general setting and to move beyond the short time regime of [22]. To
achieve this, we will introduce a slight modification of the adversarial training problem (1.2).
Intuitively, the proposed iterative scheme prepares for attacks by an adversary with total ad-
versarial budget T > 0 and (instantaneous) adversarial budget ε > 0, allowing the adversary to
corrupt the data on scale ε and even to react to modified classifiers at most T/ε times. As we
will see in Section 2.1 below, the scheme can be interpreted as a minimizing movements scheme
for mean curvature flow, in the spirit of Almgren–Taylor–Wang [1]. To select unique solutions
we consider a strongly convex Chambolle-type scheme [11] and prove that it is monotone and
consistent with respect to a weighted mean curvature flow, thereby proving convergence of the
scheme to smooth flows (Theorem 1).

The main challenge and the reason why our results are not just straightforward extensions
of existing ones is that the adversarial budget ε > 0 in (1.2) acts both as a time step and as a
non-locality parameter for the perimeter Perε. Hence, in order to prove consistency with mean
curvature flow, we have to perform a careful analysis of the associated total variation functional
and its subdifferential, showing that the latter is consistent with the 1-Laplace operator for a
suitable class of functions.

We would like to emphasize that adversarial training is not the only method in data science
connected to mean curvature flow. In particular, in the field of graph-based learning the so-
called Merriman–Bence–Osher (MBO) algorithm has been employed frequently for clustering
data sets or solving semi-supervised learning problems, see, e.g., [9, 28, 29, 36]. For rigorous
connections of such approaches to mean curvature flow we refer to [24, 25].

Organization of the paper. The rest of the paper is organized as follows. In the next
section we precisely introduce the proposed adversarial training scheme and state our main
result—convergence of the method to weighted mean curvature flow. In Section 3, we deduce
the needed properties for the nonlocal total variation and, in particular, study its subdifferential.
Finally, in Section 4 we prove convergence of the adversarial training scheme by verifying that
it is monotone and consistent with respect to weighted mean curvature flow.

Notation. For the reader’s convenience, we collect notation used throughout the paper
here. Typically, Ω ⊂ R

N will be a bounded domain (i.e., a non-empty, open, and connected
set). We use LN to denote the N -dimensional Lebesgue measure and B(Ω) to denote the Borel
measurable subsets of Ω. Furthermore, we use |·| for the Euclidean norm of a vector in R

N and
1 for the N × N identity matrix. For a set A ⊂ R

N , we let 1A be the characteristic function
taking the value 1 on A and 0 otherwise. For any set Ω ⊂ R

N , we define the inner parallel set
of distance a > 0 through

Ωa := {x ∈ Ω : dist(x,RN \ Ω) > a}. (1.3)

Finally, for x ∈ R
N and ε > 0, we denote open balls by B(x, ε) := {y ∈ R

N : |x− y| < ε}.

2 From adversarial training to mean curvature flow

Let Ω ⊂ R
N be a bounded domain, µ ∈ P(Ω× {0, 1}) be a probability measure, and ℓ(ȳ, y) =

1ȳ 6=y be the 0-1 loss function. We are interested in binary classifiers found via adversarial
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training (1.1), i.e., minimizers of the problem

inf
A∈B(Ω)

E(x,y)∼µ

[

sup
x̃∈B(x,ε)∩Ω

ℓ(1A(x̃), y)

]

. (2.1)

We define the conditional distributions ̺i := µ(· × {i}) for i = 0, 1 and ̺ := ̺0 + ̺1. We pose
the following assumption which we shall use in the whole paper, without further reference.

Assumption 1 (The densities). We assume that ̺0 and ̺1 (and hence also ̺) have densities
with respect to the N -dimensional Lebesgue measure on Ω which are continuously differentiable
functions, i.e., ̺i ∈ C1(Ω). For notational convenience we shall identify ̺ and ̺i with their
densities, meaning

∫

f d̺(i) =
∫

f̺(i) dx. Furthermore, we assume that c̺ < ̺ < c−1
̺ in Ω for

some constant c̺ > 0.

In this situation it follows from the general results in [7] that problem (2.1) is equivalent to

inf
A∈B(Ω)

∫∫

Ω×{0,1}
|1A(x) − y| dµ(x, y) + εPerε(A), (2.2)

where the generalized perimeter functional Perε is defined as

Perε(A) :=
1

ε

[

∫

Ω

(

ess sup
B(x,ε)∩Ω

1A − 1A(x)

)

d̺0(x) +

∫

Ω

(

1A(x)− ess inf
B(x,ε)∩Ω

1A

)

d̺1(x)

]

.

Note that, in particular, the supremum in (2.1) can be replaced by essential suprema and infima
in (2.2). Furthermore, it was proved in [7] that minimizers to both problems (2.1) and (2.2) exist
and that the infimal values coincide. Studying the limit of the problem with small adversarial
budget, the first and third author showed in [8] that the perimeter functional Γ-converges as
ε → 0 to a weighted but local perimeter. In the current setting with smooth densities this
local perimeter is given by

∫

∂∗A∩Ω
̺ dHN−1, where HN−1 is the Hausdorff (surface) measure

and ∂∗A is the measure-theoretic reduced boundary of A. Therefore, for small values of ε the
problem (2.2) will effectively minimize the energy

1

ε

∫∫

Ω×{0,1}
|1A(x)− y| dµ(x, y) +

∫

∂∗A∩Ω

̺ dHN−1,

which bears a strong resemblance to the Almgren–Taylor–Wang scheme introduced in [1] for
the study of mean curvature flow, with ε > 0 acting as the time step size. Consequently, the
minimization problem (2.2) should roughly be approximated by a mean curvature flow. As
remarked in the introduction, similar conclusions were drawn in [22] on short time horizons.

The natural initial condition for the mean curvature flow is any solution of the adversarial
training problem (2.2) with ε = 0:

inf
A∈B(Ω)

∫∫

Ω×{0,1}
|1A(x) − y| dµ(x, y). (2.3)

Solutions are called Bayes classifiers and since we have
∫∫

Ω×{0,1}
|1A(x) − y| dµ(x, y) =

∫

Ω

1A d̺0 +

∫

Ω

1− 1A d̺1 = −
∫

Ω

1A d(̺1 − ̺0) + ̺1(Ω),

problem (2.3) is solved by every set A which is the positive part of a Hahn decomposition of
the signed measure ̺1 − ̺0. For continuous densities ̺0, ̺1 any set A which is sandwiched as
{̺1 > ̺0} ⊂ A ⊂ {̺1 ≥ ̺0} is a Bayes classifier.
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2.1 The minimizing movements scheme

Now we introduce an iterative adversarial training scheme starting from the Bayes classifier
which is a slight modification of (2.2) and has a rigorous connection to mean curvature flow.
Precisely, we replace (2.2) by a minimizing movements scheme in the spirit of [1, 26]:



















A0 ∈ argmin
A∈B(Ω)

∫∫

Ω×{0,1}
|1A(x) − y| dµ(x, y),

Ak+1 ∈ argmin
A∈B(Ω)

∫

Ω

|1A − 1Ak
| dist(·, ∂Ak)

ε
d̺+ Perε(A), k ≥ 0,

(2.4)

where in this special case we “overload” the distance function and define

dist(·, ∂A) := dist(·, A1) + dist(·,Ω \A1),

with A1 being the points in A with Lebesgue density 1, as the distance to the boundary of A
relative to Ω. The representative set A1 ensures that the distance function does not change
when A is modified by a Lebesgue null-set, and we further note that the function coincides with
the distance to ∂(A1) ∩ Ω when Ω is convex.

We note that this departs from the original adversarial training problem derived in (2.2) by
the inclusion of a distance function. At a technical level, this is essential to recover the correct
surface velocity for the boundary of the regularized classifier. Furthermore, one can show as in
[15, Theorem 5.6] that, if A0 is a smooth set and ε > 0 is small, the scheme (2.4) without the
distance function would stagnate, i.e., Ak = A0 for all k ∈ N. At the level of the application,
we motivate this term in the following remark.

Remark 2.1 (The distance function). In the context of training a stable classifier the term
dist(·,∂Ak)

ε acts as an adaptive regularization parameter: For points far away from the decision
boundary ∂Ak of the previous classifier, the perimeter regularization is unimportant and the
first term in (2.4) gets more weight. Close to the boundary, the opposite holds true. If one just
performs two iterations of (2.4), the first A0 equals a Bayes classifier and the second one A1 a
solution to adversarial training, where the class labels are distributed according to the Bayes
classifier and weighted according to their distance to the respective other class. Computing
this distance function in practice can be done with several different methods, for instance
with the fast marching algorithm [34] or the heat flow [16] based on Varadhans formula [37].
In the high-dimensional settings that are characteristic for machine learning problems, such
methods are expensive which is why one resorts to so-called fast minimum norm attacks [31]
which computes an approximation of the radius of the smallest ball around a data point which
contains an adversarial attack. For binary classifiers as in (2.4) this is precisely the distance
function to the decision boundary.

As the solutions of (2.4) are not necessarily unique, we consider a selection procedure fol-
lowing Chambolle’s approach in [11]. To this end, let us introduce the signed distance function
of a set A relative to Ω as

sdist(·, A) := dist(·, A1)− dist(·,Ω \A1), (2.5)

where as before A1 denotes the points in A with Lebesgue density 1. Furthermore, we introduce
the total variation of a measurable function u : Ω → R which is naturally associated with Perε:

TVε(u) :=
1

ε

[

∫

Ω

(

ess sup
B(x,ε)∩Ω

u− u(x)

)

d̺0(x) +

∫

Ω

(

u(x)− ess inf
B(x,ε)∩Ω

u

)

d̺1(x)

]

. (2.6)
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By definition it holds Perε(A) = TVε(1A) and furthermore the perimeter and the total variation
are connected through a coarea formula, see [7] and Lemma 3.1 below. The central object of
study in this paper is the following modified adversarial training scheme



























A0 ∈ argmin
A∈B(Ω)

∫∫

Ω×{0,1}
|1A(x) − y| dµ(x, y),

w∗ := argmin
w∈L2(Ω)

1

2ε

∫

Ω

|w − sdist(·, Ac
k)|2 d̺+TVε(w), k ≥ 0,

Ak+1 := {w∗ > 0}, k ≥ 0.

(2.7)

We will prove that (2.7) constitutes a selection mechanism for (2.4); that is the sequence
of sets (Ak)k∈N0

found via (2.7) satisfies (2.4). We note that, in contrast to the work of
Chambolle [11], who in our notation considered the scheme Ak+1 := {w∗ ≤ 0} where w∗ :=

argminw∈L2(Ω)
1
2ε

∫

Ω |w − sdist(·, Ak)|2 dx+TV(w) and TV is the standard total variation, we
have to flip the sign of the signed distance function and pick the superlevel instead of sublevel
set of the resulting minimizer w∗ in order for (2.7) to select a solution of (2.4). This is necessary
since TVε sees orientation, in the sense that TVε(−u) 6= TVε(u), in contrast to the standard
total variation, for which TV(−u) = TV(u).

The objective of this paper is to show that, as the adversarial budget vanishes, meaning
ε→ 0, the sequence of sets given by (2.7) converge to a time-parametrized curve t 7→ A(t) which
is a solution of a weighted mean curvature flow equation with the following normal velocity (in
the direction νA(t))

V (t) = −1

̺
div
(

̺νA(t)

)

= HA(t) −∇ log ̺ · νA(t) on ∂A. (2.8)

Here νA(t) is (a smooth unit-length extension of) the inner unit normal to ∂A(t) and HA(t) :=
− div νA(t) denotes the mean curvature of ∂A(t). Note our orientation is such that HA > 0 if
A is a ball. The convergence to this mean curvature flow is the content of Theorem 1. The
mathematical challenges arising in this problem are mostly consequences of the nonlocal TVε

in (2.7): First, as the TVε functional is neither local nor smooth, we will need to carefully study
its subdifferential and consistency with the 1-Laplace operator, i.e., the subdifferential of the
classical total variation functional. Beyond this, we have not been able to show that minimizers
w∗ from (2.7) inherit the regularity of their data, e.g., Lip(w∗) ≤ Lip(sdist(·, Ac)) = 1, an
extremely convenient property to have at hand. Circumnavigating this obstacle, we instead
prove that minimizers are “almost” Lipschitz by explicitly constructing sub- and supersolutions
for conical data. Finally, in (2.7), the parameter ε (appearing in 1

2ε and in Perε) effectively
behaves as the time-step in the discretization of a time interval (0, T ) and as a non-locality
parameter. Consequently, the non-locality and time-step are of the same magnitude, and we
must ensure that this does not prevent localization of the minimizing movements scheme in the
limit as ε→ 0.

2.2 Main result

The main consequence of our results is that if the initial Bayes classifier is smooth and compactly
contained in Ω, then a time parametrized version of the scheme (Ak)k∈N0

given in (2.7) converges
to a solution of mean curvature flow with initial condition A0. Precisely, we parametrize the
sets (Ak)k∈N0

in (2.7) with a piecewise-constant curve t 7→ Aε(t) defined by

Aε(t) := Ak for t ∈ [kε, (k + 1)ε). (2.9)
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With this at hand, we may state our result.

Theorem 1 (Main theorem). Let Ω ⊂ R
N be a bounded and convex domain. Suppose that

in (2.7) the Bayes classifier A0 ⊂⊂ Ω has C2-boundary and that t 7→ A(t) is a parameterized
curve evolving by the weighted mean curvature flow with normal velocity (2.8) up to the first
singular time T∗, with initial condition A0.

Then as ε → 0, the time parametrized curves t 7→ Aε(t) defined in (2.9), coming from the
adversarial training scheme (2.7), converge in L∞

loc([0, T∗);L
1(Ω; {0, 1})) and in the Hausdorff

distance to the weighted mean curvature flow parametrized by t 7→ A(t).

A couple of remarks on this theorem are in order.

Remark 2.2 (Smooth Bayes classifiers). Note that existence of Bayes classifiers with C2-bound-
ary is guaranteed, e.g., if the levelset {̺0 = ̺1} is a C2-hypersurface in R

N . This follows from
the implicit function theorem if ̺0, ̺1 are C2-regular in a neighborhood of {̺0 = ̺1} and if
∇̺1 −∇̺0 6= 0 on {̺0 = ̺1}.
Remark 2.3 (Convexity). Convexity of the domain Ω is exclusively used in Lemma 4.7, a certain
comparison principle for (2.7) when A0 is a ball. In particular, we believe that the assumption
could be avoided with some more work.

Remark 2.4 (The first singular time). We also remark that the first singular time in Theorem 1
could, for instance, be due to vanishing bubbles, pinch-off, or intersection with ∂Ω.

Remark 2.5 (Generalized solutions of mean curvature flow). Theorem 1 is a direct consequence
of Theorem 2 further down which states monotonicity of the scheme (2.7) and consistency with
smooth sub- and superflows (see Definition 2 below). In [11, Theorem 4] for the Almgren–
Taylor–Wang scheme, sub- and superflows are used to define generalized flows that start from
more generic initial data so long as the viscosity solution is unique (see also [4, 14, 30] for more
general results of that kind). A key element for this to work is that the scheme selects a sequence
of open (or closed) sets. However, since we do not have a proof for (Lipschitz) continuity of
w∗ in (2.7) (see Corollary 4.10 and the discussion preceding it), the iterates {w∗ > 0} of our
scheme are in general neither open nor closed. Alternatively, density estimates can be used to
construct open (or closed) selections as in [12], but in our case those are not available because
of the non-locality of TVε. As a consequence, it is not clear how to use (2.7) to construct
viscosity solutions of the weighted mean curvature flow.

Remark 2.6 (Boundary conditions). Herein, we do not address boundary conditions, but we
note that—following the numerical experiments in [17]—incorporation of Neumann boundary
conditions for the Almgren–Taylor–Wang scheme has only recently been rigorously addressed
in [18]. Their techniques appear highly PDE dependent, and it is not clear a similar approach
can be used in our nonlocal setting.

3 Properties of the total variation

First, we recall that the total variation admits a coarea formula with respect to the nonlocal
perimeter Perε.

Lemma 3.1 (Coarea formula [7]). For every u ∈ L1(Ω) it holds that

TVε(u) =

∫

R

Perε({u > t}) dt, (3.1)

where both sides can take the value +∞.
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We remark that the above lemma is stated in [7, Proposition 3.13] using the sets {u ≥ t}.
However, as noted in [8, Section 4.1] for sufficiently regular densities (in particular, continuous
densities) the statement holds for strict super-level sets, as well.

Next we study some basic properties of the subdifferential of the total variation, regarded
as a convex functional on L2(Ω) with the standard inner product. We first record the following
lemma which will be familiar to readers used to working with 1-homogeneous functionals.

Lemma 3.2. Let X be a Banach space with dual pairing 〈·, ·〉 : X ∗ × X → R, and let J :
X → [0,∞] be a proper functional with J(cu) = cJ(u) for all u ∈ domJ and c ≥ 0. Then the
subdifferential of J at u ∈ dom J , defined as

∂J(u) := {p ∈ X ∗ : J(u) + 〈p, v − u〉 ≤ J(v) for all v ∈ X} , (3.2)

has the characterization

∂J(u) = {p ∈ X ∗ : 〈p, u〉 = J(u), 〈p, v〉 ≤ J(v) for all v ∈ X} . (3.3)

Remark 3.3. Elements p ∈ ∂J(u) are called subgradients of J at u.

Proof. The inclusion “⊃” in (3.3) is trivial. For the converse inclusion, we let p ∈ ∂J(u) and
choose v = 2u in (3.2), yielding J(u) + 〈p, u〉 ≤ J(2u) = 2J(u) and hence 〈p, u〉 ≤ J(u).
Choosing v = 0 and using J(0) = 0 yields the converse inequality J(u) ≤ 〈p, u〉. Hence, it holds
〈p, u〉 = J(u) which immediately also implies 〈p, v〉 ≤ J(v) for all v ∈ X , using again (3.2).
This concludes the proof of “⊂”.

It will be important to understand properties of the subdifferential of the total variation
TVε, regarded as an extended-valued functional on L2(Ω). According to (3.2) its subdifferential
is given by

∂ TVε(u) =

{

p ∈ L2(Ω) : TVε(u) +

∫

Ω

p(v − u) dx ≤ TVε(v) ∀v ∈ L2(Ω)

}

. (3.4)

Using the characterization (3.3) of ∂ TVε(u) with v ≡ ±1, we note that for p ∈ ∂ TVε(u) one
has

∫

Ω p dx = 0. Characterizing the subdifferential in full generality beyond (3.3) is both not
necessary for our purposes and beyond the scope of this paper, for which it suffices to restrict
ourselves to suitably nice functions u and a smaller class of test functions than v ∈ L2(Ω).
For this we start with a few informal considerations. Since TVε(u) is positively homogeneous,
according to (3.3) it suffices to find p such that

∫

Ω
pv dx ≤ TVε(v) for all test functions v with

equality for v = u to characterize the subdifferential. If we assumed that u was sufficiently nice
such that ess supB(x,ε)∩Ω u and ess infB(x,ε)∩Ω were attained at unique points Γε(x) and γε(x),
respectively, we could use a change of variables to obtain

∫

Ω

v d(Γε)♯̺0 ≤
∫

Ω

ess sup
B(·,ε)∩Ω

v d̺0 and

∫

Ω

v d(γε)♯̺1 ≥
∫

Ω

ess inf
B(·,ε)∩Ω

v d̺1

with equality for v = u. Consequently and not being concerned about regularity, the function

p :=
(Γε)♯̺0 − ̺0

ε
+
̺1 − (γε)♯̺1

ε

would be an element of ∂ TVε(u). For this to be rigorous, we would have to make sure that
the maps Γε(x) := argmaxB(x,ε)∩Ω u and γε(x) := argminB(x,ε)∩Ω u are well-defined and the

pushforwards (Γε)♯̺0 and (γε)♯̺1 have densities in L2(Ω). Towards this goal, we first of all work
with sufficiently regular functions u with non-vanishing gradients, and also with a restricted
class of test functions v for which we can prove the subdifferential inequality in (3.4) holds.
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Proposition 3.4. Let u ∈ C2(Ω) such that |∇u| ≥ c in Ω for a constant c > 0, and let Λmax

denote the largest eigenvalue of the Hessian of u over Ω. If 0 < ε < c/Λmax is small enough,
then

• for every x ∈ Ωε the maps

Γε(x) := argmax
B(x,ε)∩Ω

u and γε(x) := argmin
B(x,ε)∩Ω

u

are singletons;

• for every y ∈ Ω2ε the densities of the pushforward measures (Γε)♯̺0 and (γε)♯̺1 with
respect to the Lebesgue measure LN are given by

d(Γε)♯̺0
dLN

(y) =
d̺0
dLN

(

y − ε
∇u(y)
|∇u(y)|

) ∣

∣

∣

∣

det

(

∇
(

y − ε
∇u(y)
|∇u(y)|

))∣

∣

∣

∣

, (3.5a)

d(γε)♯̺1(y)

dLN
(y) =

d̺1
dLN

(

y + ε
∇u(y)
|∇u(y)|

) ∣

∣

∣

∣

det

(

∇
(

y + ε
∇u(y)
|∇u(y)|

))∣

∣

∣

∣

, (3.5b)

where by Assumption 1 it holds d̺i

dLN = ̺i for i ∈ {0, 1}.

• the function p ∈ L2(Ω2ε), defined by

p :=
d

dLN

[

(Γε)♯̺0 − ̺0
ε

+
̺1 − (γε)♯̺1

ε

]

, (3.6)

satisfies the inequality

TVε(u) +

∫

Ω

pϕdx ≤ TVε(u + ϕ) (3.7)

for all ϕ ∈ L2(Ω) with ϕ = 0 almost everywhere in Ω \ Ω2ε.

Proof. We will derive the first two statements only for Γε; the ones for γε follow from replacing
u by −u.

Step 1 (Optimality condition). First, we note that for any x ∈ Ωε there exists a point
y∗ ∈ argmaxB(x,ε)∩Ω u since u is continuous. Second, by the Karush–Kuhn–Tucker optimality

conditions (or direct verification) we get that y∗ satisfies

∇u(y∗)− λ∗(y∗ − x) = 0, |y∗ − x| ≤ ε, (3.8)

for a Lagrange multiplier λ∗ ≥ 0 which is such that λ∗(|y∗ − x|2−ε2) = 0. Since by assumption
|∇u| ≥ c > 0 on Ω, the maximum has to be taken on the boundary of B(x, ε), i.e., |y∗ − x| = ε.

Therefore, we obtain from (3.8) that the Lagrange multiplier is given by λ∗ = |∇u(y∗)|
|y∗−x| =

|∇u(y∗)|
ε .
Step 2 (Unique maximum). Next we prove that the maximizer y∗ is uniquely determined.

For this, we define the Lagrangian

L(y, λ) := −u(y) + λ

2

(

|y − x|2 − ε2
)

for λ ∈ [0,∞)

and observe that it holds

∇2
yL(y

∗, λ∗) = −∇2u(y∗) + λ∗1 = −∇2u(y∗) +
|∇u(y∗)|

ε
1 �

(

−Λmax +
c

ε

)

1 ≻ 0

9



by our assumption on ε. We let Mε := c
ε − Λmax and, supposing that ỹ ∈ ∂B(x, ε) is another

maximizer, we get using Taylor expansions and applying (3.8) that

−u(ỹ) = L(ỹ, λ∗)

= L(y∗, λ∗) +∇yL(y
∗, λ∗)(ỹ − y∗) +

1

2
(ỹ − y∗)T∇2

yL(y
∗, λ∗)(ỹ − y∗) + o

(

|ỹ − y∗|2
)

≥ −u(y∗) + Mε

2
|ỹ − y∗|2 − ω(|ỹ − y∗|) |ỹ − y∗|2

where ω is the modulus of continuity of ∇2
yL(y, λ

∗) in y, which is the same as the modulus of
continuity of ∇2u (and thereby independent of ε). Using that u(ỹ) = u(y∗), we find

Mε

2
|ỹ − y∗|2 ≤ ω(|ỹ − y∗|) |ỹ − y∗|2 . (3.9)

We note that Mε is positive for ε small enough and even limε→0Mε = ∞. Therefore, for
ε > 0 small enough, (3.9) becomes a contradiction unless ỹ = y∗. Hence, we have shown that
Γε(x) = {y∗} is a singleton.

Step 3 (Computation of the pushforward). Vice versa, solving(3.8) for x, we see that Γε is
one-to-one with inverse

Γ−1
ε (y∗) = y∗ − ε

∇u(y∗)
|∇u(y∗)| , (3.10)

and in particular, this is a well-defined injective C1 function on Γ(Ωε). Therefore we can use
the definition of the pushforward and the area formula to show for any continuous function
ϕ ∈ C(Ω) that

∫

Γε(Ωε)

ϕd(Γε)♯̺0 =

∫

Ωε

ϕ ◦ Γε d̺0

=

∫

Γε(Ωε)

ϕ(y)
∣

∣det(∇Γ−1
ε (y))

∣

∣ ̺0(Γ
−1
ε (y)) dy

=

∫

Γε(Ωε)

ϕ(y)

∣

∣

∣

∣

det

(

∇
(

y − ε
∇u(y)
|∇u(y)|

))
∣

∣

∣

∣

̺0

(

y − ε
∇u(y)
|∇u(y)|

)

dy.

Restricting ourselves to arbitrary continuous functions ϕ with suppϕ ⊂ Ω2ε ⊂ Γε(Ωε), we
obtain the claimed identity (3.6) for the pushforwards. Note that Ω2ε ⊂ Γε(Ωε) follows from
(3.10).

Step 4 (Local subgradient). To obtain the last claim (3.7), let N be the set of points,
which are not Lebesgue points for u + ϕ and hence LN (N ) = 0. In particular, also the sets
N1 := Γε(Ωε) ∩N and N2 := γε(Ωε) ∩N have zero Lebesgue measure. Since Γ−1

ε and γ−1
ε are

diffeomorphisms from Γε(Ωε) and γε(Ωε), respectively, to Ωε, we have

LN ({x ∈ Ωε : Γε(x) ∈ N or γε(x) ∈ N}) = LN ({x ∈ Ωε : Γε(x) ∈ N1 or γε(x) ∈ N2})
⊂ LN (Γ−1

ε (N1) ∪ γ−1
ε (N2)) = 0,

hence, for almost every x ∈ Ωε the points Γε(x) and γε(x) are Lebesgue points of u + ϕ.
Necessarily, it follows that for such x ∈ Ωε it holds

(u+ ϕ) ◦ Γε(x) ≤ ess sup
B(x,ε)

(u+ ϕ) and ess inf
B(x,ε)

(u+ ϕ) ≤ (u+ ϕ) ◦ γε(x).
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Hence, we obtain for any ϕ ∈ L2(Ω) with ϕ = 0 almost everywhere on Ω \ Ω2ε that

ε

∫

Ω

pϕdx =

∫

Γε(Ωε)

ϕd(Γε)♯̺0 −
∫

Ω

ϕd̺0 +

∫

Ω

ϕd̺1 −
∫

γε(Ωε)

ϕd(γε)♯̺1

=

∫

Ωε

ϕ ◦ Γε d̺0 −
∫

Ω

ϕd̺0 +

∫

Ω

ϕd̺1 −
∫

Ωε

ϕ ◦ γε d̺1

=

∫

Ωε

(

(u + ϕ) ◦ Γε − u ◦ Γε

)

d̺0 +

∫

Ωε

(

u ◦ γε − (u+ ϕ) ◦ γε
)

d̺1

−
∫

Ω

ϕd̺0 +

∫

Ω

ϕd̺1

≤
∫

Ω

(

ess sup
B(·,ε)∩Ω

(u+ ϕ)− ess sup
B(·,ε)∩Ω

u

)

d̺0 −
∫

Ω

(

ess inf
B(·,ε)∩Ω

u− ess inf
B(·,ε)∩Ω

(u+ ϕ)

)

d̺1

−
∫

Ω

ϕd̺0 +

∫

Ω

ϕd̺1

−
∫

Ω\Ωε

(

ess sup
B(·,ε)∩Ω

(u + ϕ)− ess sup
B(·,ε)∩Ω

u

)

d̺0 +

∫

Ω\Ωε

(

ess inf
B(·,ε)∩Ω

u− ess inf
B(·,ε)∩Ω

(u+ ϕ)

)

d̺1.

The last two integrals vanish because ϕ = 0 in Ω \ Ω2ε. Hence

ε

∫

Ω

pϕdx =

∫

Ω

(

ess sup
B(·,ε)∩Ω

(u + ϕ)− (u+ ϕ)

)

d̺0 +

∫

Ω

(

u+ ϕ− ess inf
B(·,ε)∩Ω

(u+ ϕ)

)

d̺1

−
∫

Ω

(

ess sup
B(·,ε)∩Ω

u− u

)

d̺0 −
∫

Ω

(

u− ess inf
B(·,ε)∩Ω

u

)

d̺1

= εTVε(u+ ϕ)− εTVε(u).

This shows (3.7) and concludes the proof.

Next we prove that the subgradient identified in the previous lemma is consistent with a
weighted 1-Laplacian operator which, neglecting boundary conditions, is the subgradient of a
local weighted total variation.

Proposition 3.5. Under the conditions of Proposition 3.4 it holds that

d

dLN

[

(Γε)♯̺0 − ̺0
ε

+
̺1 − (γε)♯̺1

ε

]

= − div

(

̺
∇u
|∇u|

)

+ oε→0(1) uniformly in Ω2ε. (3.11)

Proof. We start by investigating the density of (Γε)♯̺0 given in Proposition 3.4. Let us fix
y ∈ Ω2ε. Using a Taylor expansion of ̺0 ∈ C1(Ω) and utilizing |∇u(y)| ≥ c, we have uniformly
in Ω2ε that

̺0

(

y − ε
∇u(y)
|∇u(y)|

)

= ̺0(y)− ε∇̺0(y) ·
∇u(y)
|∇u(y)| + o(ε).

Furthermore, using a Taylor expansion of the determinant and utilizing u ∈ C2(Ω) with
|∇u| ≥ c, we get

det

(

∇
(

y − ε
∇u(y)
|∇u(y)|

))

= 1− ε div

( ∇u(y)
|∇u(y)|

)

+O(ε2).
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In particular, we see that the determinant is non-negative if ε > 0 is sufficiently small. Multi-
plying the two expressions and using the product rule yields

̺0

(

y − ε
∇u(y)
|∇u(y)|

) ∣

∣

∣

∣

det

(

∇
(

y − ε
∇u(y)
|∇u(y)|

))∣

∣

∣

∣

=

(

̺0(y)− ε∇̺0(y) ·
∇u(y)
|∇u(y)| + o(ε)

)(

1− ε div

( ∇u(y)
|∇u(y)|

)

+ O(ε2)

)

= ̺0(y)− ε∇̺0(y) ·
∇u(y)
|∇u(y)| − ε̺0(y) div

( ∇u(y)
|∇u(y)|

)

+ o(ε)

= ̺0(y)− ε div

(

̺0(y)
∇u(y)
|∇u(y)|

)

+ o(ε).

Using Proposition 3.4 we therefore obtain

d

dLN

[

(Γε)♯̺0 − ̺0
ε

]

= − div

(

̺0(y)
∇u(y)
|∇u(y)|

)

+ oε→0(1).

Repeating the same arguments for (γε)♯̺1 and using ̺ = ̺0+̺1 leads to the final conclusion.

Next, we prove that the total variation is a lower semicontinuous functional with respect to
the weak L2 topology. In [7], it was already proved that it is weak-∗ lower semicontinuous in
L∞, but this is insufficient for our purposes, because we will use additivity of the subdifferential
(see the proof of Proposition 4.2).

Lemma 3.6. Let (uk)k∈N ⊂ L2(Ω) be a sequence which converges weakly to u ∈ L2(Ω). Then
it holds that

TVε(u) ≤ lim inf
k→∞

TVε(uk).

Proof. It suffices to show that

TV0
ε(u) :=

1

ε

∫

Ω

(

ess sup
B(x,ε)∩Ω

u− u(x)

)

d̺0(x)

is weakly lower semi-continuous. As TV0
ε is convex, it suffices to prove lower semi-continuity

with respect to strongly converging sequences. In particular, we assume uk → u in L2(Ω), and
may further suppose that uk(x) → u(x) for almost every x ∈ Ω.

Let δ > 0. The strong convergence of uk to u in particular implies for all y ∈ Ω and
0 < r < δ:

1

LN (B(y, r) ∩ Ω)

∫

B(y,r)∩Ω

u dz = lim
k→∞

1

LN (B(y, r) ∩ Ω)

∫

B(y,r)∩Ω

uk dz.

Taking Lebesgue points of u, for almost every y ∈ Ω we get

u(y) = lim
r→0

1

LN (B(y, r) ∩ Ω)

∫

B(y,r)∩Ω

u dz = lim
r→0

lim
k→∞

1

LN (B(y, r) ∩ Ω)

∫

B(y,r)∩Ω

uk dz

≤ lim inf
k→∞

ess sup
B(y,δ)∩Ω

uk.
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As δ > 0 is arbitrary, we conclude that for almost every x ∈ Ω

ess sup
B(x,ε)∩Ω

u ≤ lim inf
k→∞

ess sup
B(x,ε)∩Ω

uk.

As we have the pointwise convergence of uk, we improve this to

ess sup
B(x,ε)∩Ω

u− u(x) ≤ lim inf
k→∞

(

ess sup
B(x,ε)∩Ω

uk − uk(x)

)

,

from which Fatou’s lemma concludes the claimed lower semi-continuity.

Next we establish an important submodularity property of the total variation TVε. In fact
it follows from submodularity of the perimeter Perε (proved in [7, Proposition 3.3]) and the
coarea formula (see [13, Proposition 3.2]) but for self-containedness we elaborate on the proof.

Lemma 3.7. It holds for all u, v ∈ L2(Ω) that

TVε(u ∨ v) + TVε(u ∧ v) ≤ TVε(u) + TVε(v).

Proof. The statement follows from the directly obtained inequalities

ess sup
B(·,ε)∩Ω

(u ∨ v) ≤
(

ess sup
B(·,ε)∩Ω

u
)

∨
(

ess sup
B(·,ε)∩Ω

v
)

,

ess sup
B(·,ε)∩Ω

(u ∧ v) ≤
(

ess sup
B(·,ε)∩Ω

u
)

∧
(

ess sup
B(·,ε)∩Ω

v
)

,

the reverse analogues for the ess inf, and the elementary identity a∨b+a∧b = a+b for numbers
a, b ∈ R.

4 Convergence of the adversarial training scheme

For a set A ∈ B(Ω), let us define the one-step operator Sε(A) of the adversarial training scheme
(2.7) via

Sε(A) := {w∗
ε > 0} where w∗

ε := argmin
u∈L2(Ω)

1

2ε

∫

Ω

|u− sdist(·, Ac)|2 d̺+TVε(u). (4.1)

For convenience, we assume that w∗
ε is a Lebesgue representative with {w∗

ε > 0} = ({w∗
ε > 0})1,

where we recall the notation introduced in (2.5). In particular, with this representative con-
vention in place, one can verify by hand that

sdist(·, {w∗
ε > 0}c) = dist(·, {w∗

ε > 0}c)− dist(·, {w∗
ε > 0}),

circumventing the need for a well-chosen representative in sdist (see (2.5)) for another applica-
tion of Sε.

In Proposition 4.2 below, we will first prove that the operator Sε does in fact select a solution
of (2.4); in other words, the convex minimization problem arising in (2.7) is consistent with the
scheme (2.4). Second, to prove Theorem 1, we will connect the operator (4.1) to the limiting
equation by showing that the operator is monotone and consistent with respect to weighted
mean curvature flow in the following sense.
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Definition 1 (Monotonicity). The operator Sε defined in (4.1) is monotone if A′ ⊂ A ⊂ Ω
implies Sε(A

′) ⊂ Sε(A).

While monotonicity is a property of the operator by itself, consistency, on the other hand,
directly connects the scheme to mean curvature flow.

For consistency, we rely on the notions of sub- and superflows typically used to construct bar-
rier solutions for mean curvature flow, see for example [3, Chapter 9]. If [t0, t1] ∋ t 7→ A(t) ⊂⊂ Ω
is a smooth curve of smooth sets which evolve with normal speed V (t) = − 1

̺ div
(

̺νA(t)

)

, where

νA(t) is the inner normal vector to the boundary of A(t), i.e., as in (2.8), then the signed distance
function d(x, t) := sdist(x,Ac(t)) satisfies

∂td(x, t) =
1

̺(x)
div (̺(x)∇d(x, t)) (4.2)

for any (x, t) with d(x, t) = 0. This is because νA(t) = ∇d(x, t). The PDE (4.2) forms the
basis of our sub- and superflow definitions for weighted mean curvature flow, adapted from [14,
Definition 2.1]. Informally, a superflow is a smooth evolution of sets that moves strictly faster
than mean curvature flow, while a subflow moves slower. We emphasize that our meaning is the
same as in other works, but the inequalities are reversed as the gradient of the signed distance
function sdist(x,Ac) points into the evolving set (more consistent with BV -solution concepts).

Definition 2 (Sub- and superflows). Let A(t) ⊂⊂ Ω, t ∈ [t0, t1]. We say that A(t) is a subflow
of (4.2) if

• there exists a relatively open set B ⊂ Ω× [t0, t1] with
⋃

t0≤t≤t1
∂A(t)× {t} ⊂ B;

• the function d(x, t) := sdist(x,Ac(t)) is continuously differentiable in time and twice
continuously differentiable in space in B, which we abbreviate as d ∈ C2,1

x,t (B);

• there exists δ > 0 such that

∂td(x, t) ≥
1

̺(x)
div (̺(x)∇d(x, t)) + δ (4.3)

for any (x, t) ∈ B.

We say that A(t) is a superflow whenever δ < 0 and the reverse inequality holds in (4.3).

Definition 3 (Consistency). The operator Sε defined in (4.1) is consistent if

• for every subflow [t0, t1] ∋ t 7→ A(t) in the sense of Definition 2 there exists ε0 > 0 such
that Sε(A(t)) ⊂ A(t+ ε) for all 0 < ε < ε0 and all t ∈ [t0, t1 − ε];

• for every superflow the same holds with the converse inclusion.

The interpretation of this definition is that for ε > 0 sufficiently small the scheme Sε(A)
defined in (4.1) moves faster than a subflow and slower than a superflow starting at A. With
these definitions in hand, we may state the principle result of this paper.

Theorem 2 (Monotonicity and consistency). If Ω ⊂ R
N is a bounded and convex domain the

operator Sε is monotone and consistent with the weighted mean curvature flow (2.8) in the sense
of Definitions 1 and 3, respectively.

Theorem 2 will follow directly follow from Propositions 4.4 and 4.11 below. We briefly defer
the proofs of the aforementioned selection principle and Theorem 2, as we can now directly
conclude Theorem 1.
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Proof of Theorem 1. Let A0 and t 7→ A(t) be as in the hypothesis of the theorem and recall
t 7→ Aε(t) defined in (2.9). Then let t 7→ Asub(t) be any subflow with initial condition A0 ⊂
Asub(0) and parameter δ > 0. First, we will show that for any time t before the singular time
of Asub, we have that

Aε(t) ⊂ Asub(ε⌊t/ε⌋). (4.4)

for all ε sufficiently small. Similarly, the converse set containment holds for a superflow Asup

leading to

Asup(ε⌊t/ε⌋) ⊂ Aε(t) ⊂ Asub(ε⌊t/ε⌋) for all ε > 0 sufficiently small. (4.5)

It turns out (4.4) is a simple consequence of Theorem 2. Let (Ak)k∈N0
be the sets in the

definition of Aε in (2.9) coming from iteratively applying the scheme. By monotonicity and
consistency we have

A1 = Sε(A0) ⊂ Sε(Asub(0)) ⊂ Asub(ε).

Applying Sε to both sides once again, using monotonicity and consistency, we have

A2 = Sε(A1) ⊂ Sε(Asub(ε)) ⊂ Asub(2ε).

Iterating and recalling the definition of Aε in (2.9), we conclude (4.4) and hence also (4.5).
Consequently, using (4.5) and letting T be the earliest singular time of Asub and Asup, we

estimate for any s < T that

lim sup
ε→0

sup
t∈[0,s]

LN (Aε(t)△A(t)) ≤ sup
t∈[0,s]

(

LN (Asub(t)△A(t)) + LN (Asup(t)△A(t))
)

, (4.6)

where we have used continuity of the sub- and superflows to replace ε⌊t/ε⌋ with t. Simi-
larly, one can get an estimate for the Hausdorff distance dH(A,B) := supx∈A dist(x,B) ∨
supx∈B dist(x,A). Using (4.5) again we have

lim sup
ε→0

sup
t∈[0,s]

dH(Aε(t), A(t)) ≤ sup
t∈[0,s]

sup
y∈Asub(t)

d(x,A(t)) ∨ sup
x∈A(t)

dist(x,Asup(t))

≤ sup
t∈[0,s]

dH(Asub(t), A(t)) + dH(Asup(t), A(t)). (4.7)

It remains to argue that the right hand side of (4.6) and (4.7) can be made arbitrarily small by
approximating t 7→ A(t) by sub- and superflows. Briefly, let d(x, t) = sdist(x,Ac

sub(t)). Note
that if ∂td = 1

̺ div(̺∇d) + δ on ∂Asub(t), then as a curvature flow this may be written as

Vsub(t) = −1

̺
div
(

̺νAsub(t)

)

− δ = HAsub(t) −∇ log ̺ · νAsub(t) − δ on ∂Asub(t), (4.8)

following the convention of (2.8). As (4.8) is a perturbation of (2.8), one can show that if (2.8)
has a strong solutions up to time T∗, then for any T < T ∗, there is δT > 0 sufficiently small
such that the flow (4.8) has a strong solution up to time T for all |δ| < δT . With this in mind,
we see that the right-hand side of (4.6) and (4.7) can be made arbitrarily small by choosing
sub- and superflows satisfying the inequalities of Definition 2 with equality on the interface
and then sending δ → 0 (in the definition of sub-/superflow one must replace δ by δ/2 to get
the neighborhood B); at the same time this will allow one to take T → T∗, concluding the
theorem.
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4.1 Well-posedness

We first show that the optimization problem in (4.1) has a unique solution, up to equality on
Lebesgue null-sets. This follows from the following more general statement.

Proposition 4.1. For any f ∈ L2(Ω) there exists a unique element w ∈ L2(Ω) such that

1

2ε

∫

Ω

|w − f |2 d̺+TVε(w) = inf
u∈L2(Ω)

1

2ε

∫

Ω

|u− f |2 d̺+TVε(u).

Furthermore, if f ∈ L∞(Ω) then w ∈ L∞(Ω) with ‖w‖L∞(Ω) ≤ ‖f‖L∞(Ω).

Proof. We define the functional E : L2(Ω) → [0,∞] via

E(u) :=
1

2ε

∫

Ω

|u− f |2 d̺+TVε(u).

Thanks to Lemma 3.2 the functional u 7→ TVε(u) is convex and hence E is strictly convex.
This implies uniqueness. Existence of the minimizer w is a consequence of lower semi-continuity
of the functional (Lemma 3.6) and the direct method. For the claimed L∞-bound we note that
we can replace w by the truncation ŵ := (−C) ∨ w ∧ C with C := ‖f‖L∞(Ω) which satisfies

E(ŵ) ≤ E(w) (as may be directly checked using Lemma 3.7) and therefore by uniqueness it
holds that ŵ = w, and the bounds for w follow.

4.2 Selection property

Next we show that Sε selects a solution of (2.4). Our proof (lightly) deviates from that of [11,
Proposition 2.2] for the standard TV functional due to the asymmetry of TVε with respect to
super- and sublevel sets. In particular, we have Perε(A) 6= Perε(A

c).

Proposition 4.2 (Selection principle). Letting Sε be defined as in (4.1), it holds that

Sε(A) ∈ argmin
E∈B(Ω)

∫

Ω

|1E − 1A|
dist(·, ∂A)

ε
d̺+ Perε(A).

Proof. We may of course assumeA 6= ∅ andA 6= Ω. We use the abbreviation d(x) := sdist(x,Ac)
and recall that |d(x)| = dist(x, ∂A) following the notation introduced after (2.4). As the L2-
fidelity term and the TVε functional in the minimization problem (4.1) are both convex and
lower semi-continuous, we have that

0 ∈ w∗
ε − d

ε
̺+ ∂ TVε(w

∗
ε ).

We define p := −w∗

ε
−d
ε ̺ ∈ ∂ TVε(w

∗
ε ) and Es := {w∗

ε > s}.
Step 1 (Subdifferential of the super-level sets). We claim that for almost every |s| ≤

diam(Ω) =: C,
p ∈ ∂ TVε(1Es

) =: ∂ Perε(Es).

We first note that by the ε-coarea formula in Lemma 3.1 and that ‖w∗
ε‖L∞ ≤ C by Proposition 4.1,

we have

TVε(w
∗
ε ) =

∫ C

−C

Perε(Es) ds.
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Similarly, by the layer cake formula and Fubini’s theorem

∫

Ω

pw∗
ε dx =

∫

Ω

p(x)

(

∫ C

−C

1Es
(x) ds− C

)

dx =

∫ C

−C

∫

Ω

p(x)1Es
(x) dxds,

where in the last equality we recall that
∫

Ω p dx = 0 as noted immediately after (3.4). By
Lemma 3.2, we have

∫

Ω
pw∗

ε dx = TVε(w
∗
ε ), so that we may combine the above displays to find

that
∫ C

−C

Perε(Es) ds =

∫ C

−C

∫

Ω

p(x)1Es
(x) dxds. (4.9)

Once again by the characterization of the subdifferential in Lemma 3.2, we have
∫

Ω
p1Es

dx ≤
Perε(Es), so that (4.9) implies

Perε(Es) =

∫

Ω

p1Es
dx (4.10)

for almost every s with |s| ≤ C. Applying the characterization (3.3) of the subdifferential gives
the claim.

Step 2 (Subdifferential for {w∗
ε > 0}). The claim of Step 1 can be improved to every

s ∈ [−C,C): Fixing such an s and taking a sequence sk ↓ s such that (4.10) holds for each
sk, we have that 1Es

k
→ 1Es

pointwise and thereby in L1. We pass to the limit in (4.10) as

k → ∞ using lower semi-continuity of Perε, the L1 convergence, and that p ∈ ∂ TVε(w
∗
ε ) (for

the last inequality below) to find

Perε(Es) ≤
∫

Ω

p1Es
dx ≤ Perε(Es).

Thus p ∈ ∂ Perε(Es) for any s ∈ [−C,C), and in particular p ∈ ∂ Perε(E0) = ∂ Perε({w∗
ε > 0}).

Step 3 (Conclusion). We apply the definition of subdifferential at E0 for any set E to find
that

Perε(E0) +

∫

Ω

p (1E − 1E0
) dx ≤ Perε(E). (4.11)

Noting by definition of p =
d−w∗

ε

ε ̺ that

∫

Ω

p (1E − 1E0
) dx =

1

ε

∫

Ω

d (1E − 1E0
) d̺− 1

ε

∫

Ω

w∗
ε (1E − 1E0

) d̺ ≥ 1

ε

∫

Ω

d (1E − 1E0
) d̺,

where we used that w∗
ε(1E − 1E0

) ≤ 0 almost everywhere, we can rearrange (4.11) as

Perε(E0) +
1

ε

∫

Ω

(−d)1E0
d̺ ≤ Perε(E) +

1

ε

∫

Ω

(−d)1E d̺.

However, one can verify that
∫

Ω
|1E − 1A| dist(·,∂A)

ε d̺ = 1
ε

∫

Ω
(−d)1E d̺+ 1

ε

∫

Ω
d1A d̺, so that

the previous display is equivalently written

Perε(E0) +

∫

Ω

|1E0
− 1A|

dist(·, ∂A)
ε

d̺ ≤ Perε(E) +

∫

Ω

|1E − 1A|
dist(·, ∂A)

ε
d̺,

concluding the proposition.
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4.3 Monotonicity

For proving monotonicity we start with a simple comparison principle for solutions of the
optimization problem in (4.1).

Proposition 4.3 (Comparison principle I). For d, d′ ∈ L∞(Ω) with d′ ≤ d almost everywhere
in Ω assume that w,w′ satisfy

w(′) = argmin
u∈L2(Ω)

1

2ε

∫

Ω

∣

∣

∣
u− d(′)

∣

∣

∣

2

d̺+TVε(u).

Then it holds w′ ≤ w almost everywhere in Ω.

Proof. Using optimality of w and w′ we have

1

2ε

∫

Ω

(

|w − d|2 + |w′ − d′|2
)

d̺+TVε(w) + TVε(w
′)

≤ 1

2ε

∫

Ω

(

|w ∨ w′ − d|2 + |w ∧w′ − d′|2
)

d̺+TVε(w ∨ w′) + TVε(w ∧w′).

(4.12)

Using Lemma 3.7 to cancel the total variations we obtain from the above that

∫

Ω

(

|w − d|2 + |w′ − d′|2
)

d̺ ≤
∫

Ω

(

|w ∨w′ − d|2 + |w ∧ w′ − d′|2
)

d̺.

Expanding squares, canceling terms, and reordering this inequality, we reduce to

0 ≤
∫

Ω

((w − (w ∨ w′)) d+ (w′ − (w ∧ w′)) d′) d̺

=

∫

Ω∩{w′>w}
(w′ − w) (d′ − d) d̺.

Using that ̺ > c̺ we infer that Ω∩ {w′ > w}∩ {d′ < d} has zero Lebesgue measure. As in [11,
Lemma 2.1] one can argue that in fact w′ ≤ w holds almost everywhere.

With this comparison principle at hand, the proof of monotonicity for Theorem 2 is straight-
forward.

Proposition 4.4 (Monotonicity). The operator Sε defined in (4.1) is monotone in the sense
of Definition 1.

Proof. Let w′ and w denote the solutions of the problem in (4.1) for A′ and A, respectively.
Since A′ ⊂ A we have sdist(·, (A′)c) ≤ sdist(·, Ac), and by Proposition 4.3, it follows that
w′ ≤ w outside of a Lebesgue null-set N . This immediately implies

Sε(A
′) = {w′ > 0} = ({w′ > 0} \ N )1 ⊂ ({w > 0} \ N )1 = {w > 0} = Sε(A),

where we have used that {w(′) > 0} = ({w(′) > 0})1 by choice of representative in (4.1) and
({w(′) > 0} \ N )1 = ({w(′) > 0})1 holds for any Lebesgue null-set N .
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4.4 Consistency

This subsection is devoted to the proof of consistency for Theorem 2. Consistency connects the
numerical scheme directly to mean curvature flow, and as such, will require a delicate analysis.
Our approach is motivated by Chambolle and Novaga’s in [14] for an anisotropic but local TV
functional.

We briefly summarize the strategy of the proof. To show that the evolving set of a subflow
stays outside the adversarial scheme, we show that the subflow for mean curvature flow can be
modified to construct a subsolution for a static TVε problem. To compare the modified subso-
lution to w∗

ε found using (4.1), we will apply the variational comparison principle proven below
in Proposition 4.6 below on a tubular neighborhood of the interface. For this to work, we must
know that the modified subsolution is greater than w∗

ε on the boundary of the tubular neigh-
borhood. This information comes from Lemma 4.7 below. In fact, this lemma can be used to
show that up to an error O(

√
ε), the minimizer w∗

ε is Lipschitz continuous (see Corollary 4.10),
and related estimates will allow us to recover the boundary conditions.

We first note that global minimizers give rise to local minimizers, so long as the boundary
conditions are frozen on an ε-neighborhood.

Lemma 4.5 (Restricted minimizer). Let d ∈ L∞(Ω), and let w ∈ L∞(Ω) solve

w = argmin

{

1

2ε

∫

Ω

|u− d|2 d̺+TVε(u) : u ∈ L2(Ω)

}

.

Let Ω′ ⊂ Ω be an open subset and recall the notation in (1.3). Then it also holds that

w = argmin

{

1

2ε

∫

Ω′

|u− d|2 d̺+TVε(u; Ω
′) : u ∈ L2(Ω′), u = w in Ω′ \ Ω′

ε

}

,

where TVε(u; Ω
′) is the total variation as defined in (2.6) with Ω replaced by Ω′.

Proof. Let u ∈ L2(Ω′) be a function such that u = w on Ω′ \Ω′
ε. We extend u to a function in

L2(Ω) by setting u := w on Ω \ Ω′. Hence, using also the minimization property of w it holds

1

2ε

∫

Ω′

|w − d|2 d̺+TVε(w; Ω
′)−

(

1

2ε

∫

Ω′

|u− d|2 d̺+TVε(u; Ω
′)

)

=
1

2ε

∫

Ω

|w − d|2 d̺+TVε(w; Ω
′)−

(

1

2ε

∫

Ω

|u− d|2 d̺+TVε(u; Ω
′)

)

≤ TVε(u)− TVε(u; Ω
′) + TVε(w; Ω

′)− TVε(w)

=
1

ε

∫

Ω\Ω′

(

ess sup
B(x,ε)∩Ω

u− u(x)

)

d̺0(x) +
1

ε

∫

Ω\Ω′

(

u(x)− ess inf
B(x,ε)∩Ω

u

)

d̺1(x)

− 1

ε

∫

Ω\Ω′

(

ess sup
B(x,ε)∩Ω

w − w(x)

)

d̺0(x)−
1

ε

∫

Ω\Ω′

(

w(x) − ess inf
B(x,ε)∩Ω

w

)

d̺1(x)

Utilizing that u = w on Ω \ Ω′
ε one easily sees that all terms in the right hand side of this

inequality cancel which renders it equal to zero. Therefore, since u was arbitrary, w is a
minimizer as claimed.

Next, we establish a comparison principle for solutions of the minimization problem in
(4.1). Because the subdifferential of TVε from Lemma 3.2 is not a differential operator, we use
variational instead of PDE techniques to prove this comparison principle.
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Proposition 4.6 (Comparison principle II). Let d ∈ L∞(Ω), let w ∈ L∞(Ω) solve

w = argmin

{

1

2ε

∫

Ω

|u− d|2 d̺+TVε(u) : u ∈ L2(Ω)

}

,

and assume that v ∈ L∞(Ω′) satisfies

1

2ε

∫

Ω′

|v − d|2 d̺+TVε(v; Ω
′) ≤ 1

2ε

∫

Ω′

|v ∨ w − d|2 d̺+TVε(v ∨w; Ω′)

for an open subset Ω′ ⊂ Ω. If v ≥ w almost everywhere on Ω′ \ Ω′
ε or if Ω′ = Ω, then v ≥ w

holds almost everywhere in Ω′.

Proof. Let us first abbreviate the energy E(u) := 1
2ε

∫

Ω′
|u− d|2 d̺+TVε(u; Ω

′) for u ∈ L2(Ω′).
Lemma 4.5 implies that w is a minimizer of E with fixed data w on Ω′ \Ω′

ε. By the assumption
that v ≥ w on Ω′ \Ω′

ε, we get that v∧w = w on Ω′ \Ω′
ε and hence v∧w is a feasible competitor

for w on Ω′. In the case Ω′ = Ω it is trivial that v ∧ w is a competitor for w on Ω.
Assuming that v ∧ w 6= w on a set of positive measure in Ω′ and using the strict convexity

of E, we get

E(w) < E(v ∧ w).
Furthermore, by assumption we get that

E(v) ≤ E(v ∨ w).
Summing these two inequalities and using Lemma 3.7 to cancel the total variations we get

∫

Ω′

|v − d|2 + |w − d|2 d̺ <

∫

Ω′

|v ∨ w − d|2 + |v ∧ w − d|2 d̺

=

∫

Ω′

|v − d|2 + |w − d|2 d̺

which is a contradiction. Hence, we have v ∧ w = w almost everywhere on Ω′, proving the
claim.

In the next lemma we derive a subsolution of the optimization problem in (4.1) where the
data is a cone which corresponds to controlling the action of the scheme (2.7) on a ball. Note
that, as opposed to the case of constant densities and a local total variation, we cannot compute
the explicit solution. However, a subsolution suffices for our purposes. For consistency with the
language in Definition 2, a subsolution is minimal with respect to competitors that are greater
than it.

Lemma 4.7 (Subsolution for cone data). Let Ω ⊂ R
N a bounded and convex domain, x0 ∈ Ω,

and define d(x) := |x− x0| for x ∈ R
N . Let furthermore

w := argmin
u∈L2(Ω)

1

2ε

∫

Ω

|u− d|2 d̺+TVε(u).

There exist constants C1, C2 ≥ 1 with 2C2 ≥ C1 > C2 and depending only on Lip(̺0), Lip(̺1),
c̺, diam(Ω), and the dimension N , such that for ε > 0 sufficiently small it holds for almost
every x ∈ Ω that

w(x) ≤ w(x) :=







C1

√
ε if |x− x0| ≤ C2

√
ε,

|x− x0|+
C2(C1 − C2)ε

|x− x0|
else.

20



Remark 4.8. For a negative cone, i.e., d(x) = − |x− x0|, it is not immediately obvious that
−w will be a supersolution, in the sense that w ≥ −w. The reason for this is that TVε(−u) 6=
TVε(u). However, since all constants in the definition of w only depend on the Lipschitz con-
stants of ̺0 and ̺1, the density lower bound c̺, and the dimension N , one can just exchange the
roles of the densities in the definition of TVε and reduce to the subsolution case of Lemma 4.7.

Proof. For a lighter notation we assume without loss of generality that x0 = 0 ∈ Ω. Throughout
the proof, we let C1 ≥ 1 and C2 ≥ 1 be the constants from the lemma statement, deferring
their specific choice to the last step of the proof. The strategy is to construct p ∈ L2(Ω) that
satisfies

(w − d)̺+ εp ≥ 0 in Ω, (4.13)
∫

Ω

pϕdx ≤ TVε(w + ϕ)− TVε(w) for all ϕ ∈ L2(Ω), ϕ ≥ 0. (4.14)

These two properties immediately imply that for the energy E(u) := 1
2ε

∫

Ω |u− d|2 d̺+TVε(u)
for u ∈ L2(Ω) it holds E(w) ≤ E(ϕ + w) for all non-negative test functions ϕ ≥ 0. Then
Proposition 4.6 with the choice ϕ := w∨w−w ≥ 0 implies the claim that w ≤ w. The required
function p is reminiscent of a subgradient of TVε at w with the difference being that it only
satisfies the subdifferential inequality (4.14) for non-negative test functions.

Step 1 (Construction of a “subgradient”). Since w is a radial function, constructing p is
not difficult. In the spirit of Proposition 3.4, we will define argmin and argmax operators
corresponding to the capped cone w on R

N . We first note that w is radially non-decreasing.

Indeed, the derivative of the function f(r) := r + C2(C1−C2)ε
r satisfies for r ≥ C2

√
ε:

f ′(r) = 1− C2(C1 − C2)ε

r2
≥ 1− C2(C1 − C2)

C2
2

= 1− C1 − C2

C2
=

2C2 − C1

C2
≥ 0.

To construct p we begin by defining the argmax map

Γε(x) := σε(|x|)
x

|x| (4.15)

where the piecewise linear and increasing function σε is defined as

σε(t) := t+ εmin

{

t

C2
√
ε− ε

, 1

}

=







t

1−√
ε/C2

if 0 ≤ t < C2

√
ε− ε,

t+ ε if t ≥ C2

√
ε− ε,

which in particular satisfies σε(0) = 0 so that Γε is well defined at x = 0. Note that we can
assume ε < 1 so that C2

√
ε− ε > 0. It is important to note that here Γε is a “global” argmax

map of w that does not see the geometry of the domain Ω, i.e., Γε(x) ∈ argmaxB(x,ε) w. Note
that Γε is invertible and by construction an ε-perturbation of the identity. More precisely, the
function σε is invertible on [0,∞) → [0,∞) with inverse τε := σ−1

ε . Hence, the inverse of Γε is
given by

γε(x) := Γ−1
ε (x) = τε(|x|)

x

|x|
and thanks to the convexity of Ω it holds that γε(Ω) ⊂ Ω. It is immediate from the piecewise
definition of σε that

τε(s) := s− εmin

{

s

C2
√
ε
, 1

}

=

{

(1−√
ε/C2)s if 0 ≤ s < C2

√
ε,

s− ε if s ≥ C2

√
ε.

(4.16)
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Using this it is straightforward to see that γε is an argmin map for w on R
N .

We can now define the functions

p0(x) :=
1

ε

(

̺0(Γ
−1
ε (x))

∣

∣det∇Γ−1
ε (x)

∣

∣− ̺0(x)

)

,

p1(x) :=
1

ε

(

̺1(x)− ̺1(γ
−1
ε (x))

∣

∣det∇γ−1
ε (x)

∣

∣

)

1γε(Ω),

p(x) := p0(x) + p1(x).

Note that the reason why we have to introduce the characteristic function 1γε(Ω) in the definition
of p1 is that the argmax map Γε = γ−1

ε exits Ω, i.e., γ−1
ε (Ω) 6⊂ Ω.

Step 2 (Validity of the “subdifferential” inequality). Next we prove (4.14) by estimating the
L2-inner product of pi and ϕ for i = 0, 1, where slightly different arguments are required. We
start with i = 0. Using a change of variables and Γε(x) ∈ argmaxB(x,ε)∩Ωw for x ∈ Γ−1

ε (Ω) we
find

ε

∫

Ω

p0ϕdx =

∫

Ω

(

̺0(Γ
−1
ε )

∣

∣det∇Γ−1
ε

∣

∣− ̺0
)

ϕdx

=

∫

Γ−1
ε (Ω)

ϕ ◦ Γε d̺0 −
∫

Ω

ϕd̺0

=

∫

Γ−1
ε (Ω)

(w + ϕ) ◦ Γε d̺0 −
∫

Ω

w + ϕd̺0 −
[

∫

Γ−1
ε (Ω)

w ◦ Γε d̺0 −
∫

Ω

w d̺0

]

≤
∫

Ω

(

ess sup
B(·,ε)∩Ω

(w + ϕ)− (w + ϕ)

)

d̺0 −
∫

Ω

(

ess sup
B(·,ε)∩Ω

w − w

)

d̺0

+

∫

Ω\Γ−1
ε (Ω)

− ess sup
B(·,ε)∩Ω

(w + ϕ) + ess sup
B(·,ε)∩Ω

w d̺0.

The last integral on the right-hand side is non-positive because ϕ ≥ 0. In the last inequal-
ity above we used w ◦ Γε(x) = ess supB(x,ε)∩Ωw for x ∈ Γ−1

ε (Ω), and that (ϕ + w) ◦ Γε ≤
ess supB(·,ε)∩Ω(ϕ + w) almost everywhere in Γ−1

ε (Ω). The reasoning for the latter inequality
to hold is analogous to the one in the proof of Proposition 3.4, using that Γε is a Lipschitz
isomorphism and hence preserves Lebesgue null-sets.

The case i = 1 is treated similarly, although not entirely symmetrically. Using the fact that
ϕ ≥ 0 and that by convexity γε(Ω) ⊂ Ω we get

ε

∫

Ω

p1ϕdx =

∫

γε(Ω)

(

̺1 − ̺1(γ
−1
ε )

∣

∣det∇γ−1
ε

∣

∣

)

ϕdx

=

∫

γε(Ω)

ϕd̺1 −
∫

γ−1
ε (γε(Ω))

ϕ ◦ γε d̺1

≤
∫

Ω

ϕd̺1 −
∫

Ω

ϕ ◦ γε d̺1

=

∫

Ω

(w + ϕ) d̺1 −
∫

Ω

(w + ϕ) ◦ γε d̺1 −
[
∫

Ω

w d̺1 −
∫

Ω

w ◦ γε d̺1
]

≤
∫

Ω

(

(w + ϕ)− ess inf
B(·,ε)∩Ω

(w + ϕ)

)

d̺1 −
∫

Ω

(

w − ess inf
B(·,ε)∩Ω

w

)

d̺1.

Here again, we need to argue as before that γε preserves Lebesgue null-sets (as a diffeomorphism)
for the validity of the last inequality. Adding the two inequalities we have just established and
dividing by ε > 0 proves (4.14).
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Step 3 (Optimality conditions for supersolution). It remains to prove (4.13), i.e., the in-
equality (w − d)̺ + εp ≥ 0. The basic idea is that w − d ≈ √

ε by the choice of w, so that
the inequality will follow if we can show εp ≥ −√

ε (up to a constant multiple). Importantly,
within this step, we let C̺ > 0 be a constant (possibly changing from line to line) depending
only on Lip(̺i), c̺, diam(Ω), and the dimension N.

For this we first compute det∇Γ−1
ε (x) which appears in the definition of p0. The Jacobian

of Γ−1
ε is given by

∇Γ−1
ε (x) = τ ′ε(|x|)

x

|x| ⊗
x

|x| +
τε(|x|)
|x|

(

1 − x

|x| ⊗
x

|x|

)

=
τε(|x|)
|x|

[

1 +

(

τ ′ε(|x|)
|x|

τε(|x|)
− 1

)

x

|x| ⊗
x

|x|

]

.

The derivative of τε defined in (4.16) is given by τ ′ε(t) = 1−
√
ε

C2
1{t≤C2

√
ε}, so that

(

τ ′ε(|x|)
|x|

τε(|x|)
− 1

)

=

{

0 if |x| ≤ C2
√
ε,

ε
|x|−ε if |x| ≥ C2

√
ε.

Using this, we make a case distinction based on |x|: For |x| < C2
√
ε, using also the elemen-

tary inequality (1 + x)N ≥ 1 +Nx for x ≥ −1, we get

det(∇Γ−1
ε (x)) =

(

τε(|x|)
|x|

)N

det(1) =

(

1−
√
ε

C2

)N

≥ 1−
√
εN

C2
(4.17)

since ε ≤ 1 ≤ C2
2 . For |x| ≥ C2

√
ε we can use a Taylor expansion of the determinant to get

det(∇Γ−1
ε (x)) =

(

1− ε

|x|

)N

det

(

1 +
ε

|x| − ε

x

|x| ⊗
x

|x|

)

≥
(

1− εN

|x|

)

(

1 +
ε

|x| − ε
+O

(

(

ε

|x| − ε

)2
))

≥
(

1− εN

|x|

)

, (4.18)

where we note that for ε > 0 sufficiently small the term ε
|x|−ε dominates the quadratic one and,

consequently, both can be dropped.
Using Lipschitz continuity of ̺0 and the explicit formula for τε in (4.16) we also have

̺0(Γ
−1
ε (x)) = ̺0

(

τε(|x|)
x

|x|

)

≥ ̺0(x) − Lip(̺0)

∣

∣

∣

∣

x−
(

|x| − εmin

{ |x|
C2

√
ε
, 1

})

x

|x|

∣

∣

∣

∣

= ̺0(x) − εC̺min

{ |x|
C2

√
ε
, 1

}

. (4.19)

Combining (4.17), (4.18) and (4.19) we obtain the following lower bound for p0:

εp0(x) ≥
(

̺0(x) − εC̺min

{ |x|
C2

√
ε
, 1

})(

1− εN

max{|x| , C2
√
ε}

)

− ̺0(x)

≥ −√
εC̺

(

min

{ |x|
C2
,
√
ε

}

+

√
ε

max{|x| , C2
√
ε}

)

.

From this we obtain two lower bounds—a generic one and an improved estimate away from the
cone tip:

εp0(x) ≥ −√
εC̺

(√
ε+

1

C2

)

≥ −√
εC̺ for all x ∈ Ω, (4.20)
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εp0(x) ≥ −√
εC̺

(√
ε+

√
ε

|x|

)

≥ − ε

|x|C̺ if |x| ≥ C2

√
ε, (4.21)

where in the last inequality we have absorbed diam(Ω) into C̺.
We continue with proving a similar bound for p1. For this we remember that γ−1

ε (x) =
Γε(x) = σε(|x|) x

|x| . Analogous to before, we get that the Jacobian is

∇γ−1
ε (x) =

σε(|x|)
|x|

[

1 +

(

σ′
ε(|x|)

|x|
σε(|x|)

− 1

)

x

|x| ⊗
x

|x|

]

,

and we find σ′
ε(t) = 1 +

√
ε

C2−
√
ε
1{t≤C2

√
ε−ε} and compute

(

σ′
ε(|x|)

|x|
σε(|x|)

− 1

)

=







0 if |x| ≤ C2

√
ε− ε,

− ε

|x|+ ε
if |x| ≥ C2

√
ε− ε.

Making case distinctions, as before, and also using that (1 + x)N ≤ 1 + 2Nx for sufficiently
small x, it holds for |x| ≤ C2

√
ε− ε that

det(∇γ−1
ε (x)) =

(

1 +
ε

C2
√
ε− ε

)N

≤ 1 +
2
√
εN

C2 −
√
ε

(4.22)

whenever ε > 0 is sufficiently small (depending on C2). Similarly, for |x| ≥ C2
√
ε− ε, we have

det(∇γ−1
ε (x)) ≤

(

1 +
2εN

|x|

)

(

1− ε

|x|+ ε
+O

(

(

ε

|x|+ ε

)2
))

≤
(

1 +
2εN

|x|

)

(4.23)

for ε > 0 sufficiently small. Using Lipschitz continuity of ̺1 we have

̺1(γ
−1
ε (x)) = ̺1

(

σε(|x|)
x

|x|

)

≤ ̺1(x) + Lip(̺1)

∣

∣

∣

∣

x−
(

|x|+ εmin

{ |x|
C2

√
ε− ε

, 1

})

x

|x|

∣

∣

∣

∣

= ̺1(x) + εC̺ min

{ |x|
C2

√
ε− ε

, 1

}

. (4.24)

Combining (4.22), (4.23) and (4.24) we obtain the following lower bound on p1(x) for x ∈ γε(Ω):

εp1(x) ≥ ̺1(x)−
(

̺1(x) + εC̺ min

{ |x|
C2

√
ε− ε

, 1

})(

1 +
2εN

max{|x| , C2
√
ε− ε}

)

= −√
εC̺

(

min

{ |x|
C2 −

√
ε
,
√
ε

}

+

√
ε

max{|x| , C2
√
ε− ε}

)

−√
εC̺ min

{ |x|
C2 −

√
ε
,
√
ε

}

ε

max{|x| , C2
√
ε− ε}

≥ −√
εC̺

(

min

{ |x|
C2 −

√
ε
,
√
ε

}

+

√
ε

max{|x| , C2
√
ε− ε}

)

if we restrict
√
ε ≤ 1

2 which, in particular, means ε ≤ C2
√
ε − ε. Again we deduce two lower

bounds, using also that for x ∈ Ω \ γε(Ω) we even have p1(x) = 0 by definition of p1,

εp1(x) ≥ −√
εC̺ x ∈ Ω, (4.25)
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εp1(x) ≥ − ε

|x|C̺ |x| ≥ C2

√
ε− ε. (4.26)

Adding the bounds (4.20), (4.21), (4.25) and (4.26) we obtain the cumulative lower bound

εp(x) ≥ −√
εC̺ for all x ∈ Ω, (4.27)

εp(x) ≥ − ε

|x|C̺ if |x| ≥ C2

√
ε. (4.28)

Finally, we can now turn to proving (4.13), making a case distinction based on |x|. If
0 ≤ |x| ≤ C2

√
ε we can use the definition of w and the lower bound (4.27) to get

(w(x)− d(x))̺(x) + εp(x) ≥ (C1

√
ε− |x|)̺(x) + εp(x)

≥ √
ε (C1 − C2 − C̺) ̺(x) ≥ 0

if we choose the gap between C1 and C2 sufficiently large (depending only on C̺). In the case
|x| ≥ C2

√
ε we can use the sharper lower bound (4.28) to obtain

(w(x) − d(x))̺(x) + εp(x) ≥ C2(C1 − C2)ε

|x| ̺(x) − ε

|x|C̺̺(x)

=
ε̺(x)

|x| (C2(C1 − C2)− C̺) ≥ 0

if we choose the gap between C1 and C2 sufficiently large (again depending only on C̺). Hence,
we have proved (4.13) which concludes the proof.

The first corollary of Lemma 4.7 (in fact of Remark 4.8) is that it allows us to control the
evolution of a ball under the scheme (2.7).

Corollary 4.9 (Supersolution for balls). Under the conditions of Lemma 4.7 there exists a
constant C > 0, depending only on Lip(̺0), Lip(̺1), c̺, diam(Ω), and the dimension N , such
that for any x0 ∈ Ω, 0 < R < dist(x0, ∂Ω), and ε > 0 sufficiently small it holds that

Sε(B(x0, R)) ⊃ B(x0, R− C
√
ε).

Proof. We apply Remark 4.8 to d(x) := − |x− x0| and note that sdist(x,B(x0, R)
c) = d(x)+R

to infer that w∗
ε in the definition of Sε(B(x0, R)) satisfies for almost all x ∈ Ω that

w∗
ε(x) ≥ R− C

√
ε− |x− x0| .

Here, C > 0 is a constant depending on C1, C2 in the definition of w in Lemma 4.7. Hence, we
obtain Sε(B(x0, R)) = {w∗

ε > 0} ⊃ B(x0, R− C
√
ε).

We highlight the almost-regularity of L2-minimizers with Lipschitz data as an application of
the cone Lemma 4.7. Our proof of consistency basically relies on the same argument, allowing
us to avoid Lipschitz regularity. We note that in the periodic setting with constant densities,
one can use a simple comparison argument to show that minimizers of the functional in (4.29)
(just below) are Lipschitz regular; but the moment one destroys translational invariance of the
problem, such regularity becomes much more challenging. See for instance [18, Theorem 3.1] for
the related TV problem with boundary conditions. Similar almost-Lipschitz regularity results
for solutions of nonlocal problems can be found, for instance, in [5, 10].
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Corollary 4.10 (Almost-Lipschitz regularity.). Let Ω ⊂ R
N be a bounded, open, and convex

set. Suppose that w ∈ L∞(Ω) satisfies

w := argmin

{

1

2ε

∫

Ω

|u− f |2 d̺+TVε(u) : u ∈ L2(Ω)

}

, (4.29)

for a 1-Lipschitz function f ∈ C(Ω). Then for almost all x, x0 ∈ Ω it holds that

|w(x) − w(x0)| ≤ |x− x0|+ C
√
ε, (4.30)

where C > 0 depends only on ̺, diam(Ω), and the dimension N.

Proof. Fix x0 ∈ Ω. Let wshift be the minimizer

wshift := argmin

{

1

2ε

∫

Ω

|u(x)− |x− x0||2 d̺(x) + TVε(u) : u ∈ L2(Ω)

}

,

and w be the function defined in Lemma 4.7. As f is 1-Lipschitz, we have f(·) ≤ |·−x0|+f(x0),
and so by Proposition 4.3 applied to w and w′ = wshift+f(x0) and Lemma 4.7 applied to wshift,
we have w ≤ wshift + f(x0) ≤ w + f(x0). Applying the same reasoning with supersolutions
(using Remark 4.8) and noting that w(·) ≤ | · −x0|+ C

√
ε gives that

|w(x) − f(x0)| ≤ |x− x0|+ C
√
ε

for any x ∈ Ω. Using this inequality twice (once with x = x0), applying the triangle inequality,
and increasing C directly gives (4.30).

Finally, we conclude the proof of Theorem 2 by showing that the operator is consistent.

Proposition 4.11 (Consistency). The operator Sε defined in (4.1) is consistent in the sense
of Definition 3.

Proof. The proof follows the strategy of [14, Proposition 4.1] with non-trivial modifications
since the scheme (4.1) involves the nonlocal total variation instead of the local one. We show
that Definition 3 is satisfied for subflows, with superflows being analogous.

Step 1 (Construction of an variational subsolution). We let [t0, t1] ∋ t 7→ A(t) be a subflow
in the sense of Definition 2 contained in the neighborhood B. Recall that we define d(x, t) :=
sdist(x,Ac(t)).

For fixed t ∈ [t0, t1] and r > 0 we define

Ω′ := {|d(·, t)| < r}

to be the tube of width r around the boundary ∂A(t). Here we choose r sufficiently small such
that Ω′ ⊂ B ∩ (RN × {t}), so that d(x, t + τ) is in C2,1

x,τ (Ω
′ × [−ε, ε]) for all small ε; note the

choice of r can be made independent of t depending only on the smooth subflow. Let ψ : R → R

be smooth with ψ(s) ≥ s, ψ(s) = s for s in a neighborhood of 0, and ψ′(s) ≥ c > 0, and define
vε(x) := ψ(d(x, t+ ε)). By Definition 2, it holds that

vε(x)− d(x, t)

ε
≥ d(x, t+ ε)− d(x, t)

ε

= −
∫ ε

0

d

dτ
d(x, t + τ) dτ

= −
∫ ε

0

∂td(x, t+ τ) dτ
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≥ −
∫ ε

0

1

̺(x)
div (̺(x)∇d(x, t + τ)) dτ + δ.

Letting ω denote a modulus of continuity of 1
̺(x) div (̺(x)∇d(x, τ)) in τ (uniformly in x) on B,

we have

vε(x)− d(x, t)

ε
≥ 1

̺(x)
div (̺(x)∇d(x, t + ε)) + δ − ω(ε). (4.31)

Note furthermore that ∇vε(x) = ψ′(d(x, t + ε))∇d(x, t+ ε). On one hand this implies

|∇vε| ≥ c in Ω′, (4.32)

which will be useful later. On the other hand, we see that

∇vε(x)
|∇vε(x)|

=
∇d(x, t + ε)

|∇d(x, t + ε)| = ∇d(x, t+ ε).

Using this and reordering (4.31) we get

vε(x)− d(x, t)

ε
̺(x)− div

(

̺(x)
∇vε(x)
|∇vε(x)|

)

− ̺(x) (δ − ω(ε)) ≥ 0. (4.33)

Let ϕ ∈ L∞(Ω′) be a non-negative test function with suppϕ ⊂ Ω′
2ε. Let us also define the

energy

Eε(u; Ω
′) :=

1

2ε

∫

Ω′

|u− d(·, t)|2 d̺+TVε(u; Ω
′),

where TVε(u; Ω
′) denotes the total variation (2.6) with Ω replaced by Ω′. We let

Vε(y) :=
d

dLN

[

(Γε)♯̺0 − ̺0
ε

+
̺1 − (γε)♯̺1

ε

]

be the density of the pushforward, where the right-hand side is defined as in Proposition 3.4
with u replaced by vε, which is admissible due to (4.32). Multiplying (4.33) by ϕ, using its
non-negativity, and integrating over Ω′ yields

Eε(vε; Ω
′) ≤ Eε(vε; Ω

′) +

∫

Ω′

(

vε(x)− d(x, t)

ε
̺(x) − div

(

̺(x)
∇vε(x)
|∇vε(s)|

))

ϕ(x) dx

− (δ − ω(ε))

∫

Ω′

ϕ(x) d̺(x)

= Eε(vε; Ω
′) +

∫

Ω′

(

vε(x)− d(x, t)

ε
̺(x) + Vε(x)

)

ϕ(x) dx

−
∫

Ω′

(

Vε(x) + div

(

̺(x)
∇vε(x)
|∇vε(s)|

))

ϕ(x) dx

− (δ − ω(ε))

∫

Ω′

ϕ(x) d̺(x)

≤ Eε(vε + ϕ; Ω′) + (ω(ε) + oε→0(1)− δ)

∫

Ω′

ϕ(x) d̺(x),
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where in the last step, we completed a square, used Propositions 3.4 and 3.5 on Ω′ together
with the gradient bound (4.32) for vε and the fact that suppϕ ⊂ Ω′

2ε. Since δ > 0 we can
choose ε > 0 sufficiently small such that the second term is non-positive which implies

Eε(vε; Ω
′) ≤ Eε(vε + ϕ; Ω′) (4.34)

f or ε > 0 sufficiently small.
Step 2 (Conclusion, assuming ordered boundary values). Supposing that

vε ≥ w∗
ε on Ω′ \ Ω′

2ε, (4.35)

the non-negative test function ϕε := vε ∨ w∗
ε − vε (where w∗

ε solves the scheme (4.1)) can be
inserted into (4.34). Consequently, we have that Eε(vε) ≤ Eε(vε ∨ w∗

ε ), and Proposition 4.6
implies that vε ≥ w∗

ε on Ω′ (one must technically deal with null-sets, but this may be done as
in the proof of Proposition 4.4), and hence, we find

Sε(A(t)) ∩Ω′ = {w∗
ε > 0} ∩ Ω′ ⊂ {vε > 0} ∩ Ω′ = {d(·, t+ ε) > 0} ∩ Ω′ = A(t+ ε) ∩Ω′.

Similarly, we will see in the next step,

{w∗
ε > 0} \ Ω′ ⊂ {d(·, t) > 0} \ Ω′. (4.36)

Further, outside of the set Ω′, for sufficiently small ε (depending only on the smooth subflow),
we have A(t) \ Ω′ = A(t+ ε) \ Ω′. Putting these last two pieces together, we recover

Sε(A(t)) \ Ω′ = {w∗
ε > 0} \ Ω′ ⊂ {d(·, t) > 0} \ Ω′ = A(t+ ε) \ Ω′.

Uniting the subset relations for Sε(A(t)) concludes the proof. We now turn to the proof of
(4.35) and (4.36).

Step 3 (Ordered boundary values). To prove (4.35), we have to pick a suitable function ψ
in the definition of vε = ψ(d(·, t + ε)). So far we have only used that ψ(s) ≥ s, ψ(s) = s in a
neighborhood of 0, and that ψ′ ≥ c > 0.

First, we argue that one can find ψ such that vε ≥ w∗
ε in the part of the 2ε-neighborhood

of the boundary of Ω′ that lies inside of A(t): For all ε > 0 small enough and x ∈ ∂Ω′ with
d(x, t) = r, it holds that d(x, t+ ε) ≥ 7r

8 since d is uniformly continuous in time. Since d is also
uniformly continuous in space, we get d(x, t + ε) ≥ 3r

4 for all x in (Ω′ \ Ω′
2ε) ∩ A(t) if ε > 0 is

sufficiently small. On the other hand, by Proposition 4.1 it holds that w∗
ε ≤ ‖d(·, t)‖L∞(Ω) ≤

diamΩ. So if we choose ψ such that ψ(3r4 ) ≥ diamΩ, we get

vε(x) = ψ(d(x, t + ε)) ≥ ψ

(

3r

4

)

≥ diamΩ ≥ w∗
ε (x)

for all x ∈ (Ω′ \ Ω′
2ε) ∩ A(t).

Next, we argue that also in the 2ε-neighborhood of the exterior part of the boundary of Ω′

one can find an appropriate ψ such that vε ≥ w∗
ε : The argument for this is more involved than

for the inner part since in principle w∗
ε could be arbitrarily close to zero outside of A(t) whereas

the signed distance function d(·, t + ε) in the definition of vε might be substantially negative.
If this happened, to obtain vε ≥ w∗

ε we could be forced to take ψ(−3r/4) = 0 breaking the
constraint ψ′ ≥ c.

Instead, fix a point x ∈ ∂Ω′ such that d(x, t) = −r. Since the distance function is 1-Lipschitz

d(·, t) ≤ |· − x| − r,
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and therefore Proposition 4.3 ensures that w∗
ε ≤ wε in Ω where

wε := argmin
u∈L2(Ω)

1

2ε

∫

Ω

|u− (|· − x| − r)|2 d̺+TVε(u).

However, by Lemma 4.7, wε ≤ w−r, and it follows that w∗
ε ≤ −r+C1

√
ε for all |x′−x| ≤ C2

√
ε.

Noting that this reasoning can be uniformly applied at all points x ∈ ∂Ω′ with d(x, t) = −r,
we see that for sufficiently small ε > 0,

w∗
ε ≤ −3

4
r on (Ω′ \ Ω′

2ε) \A(t). (4.37)

Restricting ψ to satisfy ψ(t) ≥ − 3r
4 for any t ≥ − diamΩ we therefore get

vε(x) = ψ(d(x, t+ ε)) ≥ −3r

4
≥ w∗

ε (x)

for all x ∈ (Ω′ \ Ω′
2ε) \A(t). Hence, we have shown (4.35). The same reasoning used to obtain

(4.37), but now at a point for which d(x, t) ≤ −r, shows

{w∗
ε > 0} \ (Ω′ ∪A(t)) ⊂ {d(·, t) > 0} \ (Ω′ ∪A(t)) = ∅

which directly gives (4.36), completing the proof.
Note we have proven that there exists an ε0 > 0 sufficiently small such that consistency

in Definition 3 is satisfied at a given time t for all ε < ε0, but actually, our estimate for ε0 is
uniform in t ∈ [t0, t1].

Acknowledgments

The authors would like to thank Antonin Chambolle for fruitful discussions around the con-
struction subsolutions for cone data which happened during the Oberwolfach workshop 2349
“Variational Methods for Evolution”. Parts of this work were done when LB was affiliated with
the Technical University of Berlin, supported by Germany’s Excellence Strategy – The Berlin
Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689). The authors
were affiliated with the Hausdorff Center for Mathematics during parts of this project and the
funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) un-
der Germany’s Excellence Strategy – EXC-2047/1 – 390685813 is greatly appreciated. KS was
also supported by the DFG project 211504053 - SFB 1060.

References

[1] F. Almgren, J. E. Taylor, and L. Wang, “Curvature-driven flows: A variational approach,”
SIAM Journal on Control and Optimization, vol. 31, no. 2, pp. 387–438, 1993 (cit. on
pp. 3–5).

[2] P. Awasthi, N. Frank, and M. Mohri, “On the existence of the adversarial bayes classifier,”
in Advances in Neural Information Processing Systems 34, NeurIPS 2021, M. Ranzato,
A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021, pp. 2978–2990
(cit. on p. 2).

[3] G. Bellettini, Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturba-
tions. Scuola Normale Superiore, 2013 (cit. on p. 14).

29



[4] G. Bellettini and M. Novaga, “Minimal barriers for geometric evolutions,” Journal of
Differential Equations, vol. 139, no. 1, pp. 76–103, 1997 (cit. on p. 7).

[5] L. Bungert, J. Calder, and T. Roith, “Uniform convergence rates for lipschitz learning on
graphs,” IMA Journal of Numerical Analysis, vol. 43, no. 4, pp. 2445–2495, 2023 (cit. on
p. 25).

[6] L. Bungert, N. García Trillos, M. Jacobs, D. McKenzie, Ð. Nikolić, and Q. Wang, It
begins with a boundary: A geometric view on probabilistically robust learning, 2023. arXiv:
2305.18779 [cs.LG] (cit. on p. 2).

[7] L. Bungert, N. García Trillos, and R. Murray, “The geometry of adversarial training in
binary classification,” Information and Inference: A Journal of the IMA, vol. 12, no. 2,
pp. 921–968, Jun. 2023, issn: 2049-8772 (cit. on pp. 2, 4, 6–8, 12, 13).

[8] L. Bungert and K. Stinson, “Gamma-convergence of a nonlocal perimeter arising in ad-
versarial machine learning,” Calculus of Variations and Partial Differential Equations,
2024, forthcoming (cit. on pp. 2, 4, 8).

[9] J. Calder, B. Cook, M. Thorpe, and D. Slepcev, “Poisson learning: Graph based semi-
supervised learning at very low label rates,” in International Conference on Machine
Learning, PMLR, 2020, pp. 1306–1316 (cit. on p. 3).

[10] J. Calder, N. García Trillos, and M. Lewicka, “Lipschitz regularity of graph laplacians on
random data clouds,” SIAM Journal on Mathematical Analysis, vol. 54, no. 1, pp. 1169–
1222, 2022 (cit. on p. 25).

[11] A. Chambolle, “An algorithm for mean curvature motion,” Interfaces and Free Bound-
aries, vol. 6, no. 2, pp. 195–218, 2004 (cit. on pp. 3, 5–7, 16, 18).

[12] A. Chambolle, D. De Gennaro, and M. Morini, “Minimizing movements for anisotropic
and inhomogeneous mean curvature flows,” Advances in Calculus of Variations, no. 0,
2023 (cit. on p. 7).

[13] A. Chambolle, A. Giacomini, and L. Lussardi, “Continuous limits of discrete perimeters,”
ESAIM: Mathematical Modelling and Numerical Analysis, vol. 44, no. 2, pp. 207–230,
2010 (cit. on p. 13).

[14] A. Chambolle and M. Novaga, “Approximation of the anisotropic mean curvature flow,”
Mathematical Models and Methods in Applied Sciences, vol. 17, no. 06, pp. 833–844, 2007
(cit. on pp. 7, 14, 19, 26).

[15] T. F. Chan and S. Esedoglu, “Aspects of total variation regularized L1 function approx-
imation,” SIAM Journal on Applied Mathematics, vol. 65, no. 5, pp. 1817–1837, 2005
(cit. on p. 5).

[16] K. Crane, C. Weischedel, and M. Wardetzky, “Geodesics in heat: A new approach to
computing distance based on heat flow,” ACM Transactions on Graphics (TOG), vol. 32,
no. 5, pp. 1–11, 2013 (cit. on p. 5).

[17] T. Eto and Y. Giga, “On a minimizing movement scheme for mean curvature flow with
prescribed contact angle in a curved domain and its computation,” Annali di Matematica
Pura ed Applicata, pp. 1–27, Nov. 2023 (cit. on p. 7).

[18] T. Eto and Y. Giga, A convergence result for a minimizing movement scheme for mean
curvature flow with prescribed contact angle in a curved domain, 2024. arXiv: 2402.16180 [math.AP]

(cit. on pp. 7, 25).

[19] N. Garcá Trillos, M. Jacobs, and J. Kim, On the existence of solutions to adversarial
training in multiclass classification, 2023. arXiv: 2305.00075 [cs.LG] (cit. on p. 2).

30

https://arxiv.org/abs/2305.18779
https://arxiv.org/abs/2402.16180
https://arxiv.org/abs/2305.00075


[20] N. García Trillos and M. Jacobs, “An analytical and geometric perspective on adversarial
robustness,” Notices of the American Mathematical Society, vol. 70, no. 08, 2023 (cit. on
p. 2).

[21] N. García Trillos, M. Jacobs, and J. Kim, “The multimarginal optimal transport for-
mulation of adversarial multiclass classification,” Journal of Machine Learning Research,
vol. 24, no. 45, pp. 1–56, 2023 (cit. on p. 2).

[22] N. García Trillos and R. Murray, “Adversarial classification: Necessary conditions and
geometric flows,” Journal of Machine Learning Research, vol. 23, no. 187, pp. 1–38, 2022
(cit. on pp. 2–4).

[23] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial ex-
amples,” in 3rd International Conference on Learning Representations, ICLR 2015, Con-
ference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015 (cit. on p. 1).

[24] T. Laux and J. Lelmi, Large data limit of the mbo scheme for data clustering: Γ-convergence
of the thresholding energies, 2022. arXiv: 2112.06737 [math.AP] (cit. on p. 3).

[25] T. Laux and J. Lelmi, “Large data limit of the mbo scheme for data clustering: Conver-
gence of the dynamics,” Journal of Machine Learning Research, vol. 24, no. 344, pp. 1–49,
2023 (cit. on p. 3).

[26] S. Luckhaus and T. Sturzenhecker, “Implicit time discretization for the mean curvature
flow equation,” Calculus of Variations and Partial Differential Equations, vol. 3, no. 2,
pp. 253–271, 1995 (cit. on p. 5).

[27] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning
models resistant to adversarial attacks,” in 6th International Conference on Learning
Representations, ICLR 2018, Conference Track Proceedings, 2018 (cit. on pp. 1, 2).

[28] E. Merkurjev, A. L. Bertozzi, and F. Chung, “A semi-supervised heat kernel pagerank
mbo algorithm for data classification,” Communications in Mathematical Sciences, vol. 16,
no. 5, pp. 1241–1265, 2018 (cit. on p. 3).

[29] E. Merkurjev, T. Kostic, and A. L. Bertozzi, “An mbo scheme on graphs for classification
and image processing,” SIAM Journal on Imaging Sciences, vol. 6, no. 4, pp. 1903–1930,
2013 (cit. on p. 3).

[30] M. Novaga and A. Chambolle, “Implicit time discretization of the mean curvature flow
with a discontinuous forcing term,” Interfaces and Free Boundaries, vol. 10, no. 3, pp. 283–
300, 2008 (cit. on p. 7).

[31] M. Pintor, F. Roli, W. Brendel, and B. Biggio, “Fast minimum-norm adversarial attacks
through adaptive norm constraints,” in Advances in Neural Information Processing Sys-
tems 34: NeurIPS 2021, M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W.
Vaughan, Eds., 2021, pp. 20 052–20 062 (cit. on p. 5).

[32] M. S. Pydi and V. Jog, “Adversarial risk via optimal transport and optimal couplings,”
in International Conference on Machine Learning, PMLR, 2020, pp. 7814–7823 (cit. on
p. 2).

[33] M. S. Pydi and V. Jog, “The many faces of adversarial risk,” Advances in Neural Infor-
mation Processing Systems, vol. 34, pp. 10 000–10 012, 2021 (cit. on p. 2).

[34] J. A. Sethian, “A fast marching level set method for monotonically advancing fronts.,”
proceedings of the National Academy of Sciences, vol. 93, no. 4, pp. 1591–1595, 1996 (cit.
on p. 5).

31

https://arxiv.org/abs/2112.06737


[35] C. Szegedy et al., “Intriguing properties of neural networks,” in 2nd International Confer-
ence on Learning Representations, ICLR 2014, Conference Track Proceedings, Y. Bengio
and Y. LeCun, Eds., 2014 (cit. on p. 1).

[36] Y. Van Gennip, N. Guillen, B. Osting, and A. L. Bertozzi, “Mean curvature, threshold
dynamics, and phase field theory on finite graphs,” Milan Journal of Mathematics, vol. 82,
pp. 3–65, 2014 (cit. on p. 3).

[37] S. R. S. Varadhan, “On the behavior of the fundamental solution of the heat equation
with variable coefficients,” Communications on Pure and Applied Mathematics, vol. 20,
no. 2, pp. 431–455, 1967 (cit. on p. 5).

[38] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan, “Theoretically prin-
cipled trade-off between robustness and accuracy,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, K. Chaudhuri and R. Salakhutdinov, Eds.,
ser. Proceedings of Machine Learning Research, vol. 97, PMLR, 2019, pp. 7472–7482 (cit.
on p. 2).

32


	Introduction
	From adversarial training to mean curvature flow
	The minimizing movements scheme
	Main result

	Properties of the total variation
	Convergence of the adversarial training scheme
	Well-posedness
	Selection property
	Monotonicity
	Consistency


