
High Harmonic Tracking of Ultrafast Electron Dynamics across the Mott to Charge
Density Wave Phase Transition

Marlena Dziurawiec,1 Jessica O. de Almeida,2 Mohit Lal Bera,3, 2 Marcin P lodzień,2 Maciej
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Different insulator phases compete with each other in strongly correlated materials with simulta-
neous local and non-local interactions. It is known that the homogeneous Mott insulator converts
into a charge density wave (CDW) phase when the non-local interactions are increased, but there
is ongoing debate on whether and in which parameter regimes this transition is of first order, or of
second order with an intermediate bond-order wave phase. Here we show that strong-field optics
applied to an extended Fermi-Hubbard system can serve as a powerful tool to reveal the nature of
the quantum phase transition. Specifically, we show that in the strongly interacting regime charac-
teristic excitations such as excitons, biexcitons, excitonic strings, and charge droplets can be tracked
by the non-linear optical response to an ultrafast and intense laser pulse. Subcycle analysis of high
harmonic spectra unravels the ultrafast dynamics of these increasingly complex objects, which par-
tially escape the scrutiny of linear optics. Their appearance in the high harmonic spectrum provides
striking evidence of a first-order transition into the CDW phase, and makes a strong case for using
strong-field optics as a powerful tool to reveal the nature of quasiparticles in strongly correlated
matter, and to track the electron dynamics during a first-order quantum phase transition.

I. INTRODUCTION

Advances in laser technology, facilitating the creation
of high-intensity and ultrashort optical pulses [1, 2],
have ushered in a new era of exploring matter through
non-linear optical responses. High-harmonic generation
(HHG) has emerged as a focal point in this quest. This
process leads to the ultrafast emission of radiation with
frequencies as integer multiples of the initial driving fre-
quency. While HHG in atomic gases has long been rec-
ognized as a pivotal source of extreme ultraviolet at-
tosecond pulses [3–7], driving the foundational princi-
ples of attosecond physics [8–11], the past decade has
witnessed experimental breakthroughs that extend HHG
investigations to bulk solids. This expansion into con-
densed matter systems has ignited a surge of theoreti-
cal and experimental inquiries, offering a brand new tool
for unraveling intricate electronic properties within these
materials [12, 13]. In drawing parallels between atomic
and solid-state HHG, the theoretical foundation of both
processes is the semiclassical single-active-electron three-
step model [11, 14, 15]. Originating from the atomic
perspective, it appropriately captures the intricate se-
quence of events, describing how electrons tunnel, accel-
erate, and recombine, leading to high-harmonic emission.
Adapted to solids, the three-step model accounts for the
crystal’s band structure, in which the electrons traverse

the valence and conduction bands, creating and recom-
bining with holes, producing a harmonic spectrum with
distinctive features which encompass two distinct pro-
cesses — intraband motion associated with lower-order
harmonics and interband recombination dominating in
the high-order harmonics regime. This unified frame-
work bridges the gap between atomic and solid-state
HHG. Due to its high temporal resolution, high harmonic
spectroscopy provides the ability to probe ultrafast elec-
tronic motion in solid state systems [12, 16–20]. This has
ignited substantial theoretical and experimental inves-
tigations, recently including quantum electrodynamical
aspects [21]. These advancements in bulk material ex-
perimentation have spurred the development of method-
ologies to discern dynamical properties of Bloch elec-
trons, including the detection of electronic band struc-
tures [22–24], Berry curvature [25], transition dipole mo-
ment [26] and topology [27–34]. Despite the extensive
study of HHG in semiconductors and semimetals based
on a single-particle band picture, recent attention has
shifted toward unraveling the intricacies of many-body
effects on HHG in strongly correlated systems, includ-
ing recent experimental investigation of high-Tc cuprate
superconductors [35].

In the realm of strong electronic correlations, the
conventional single-particle framework mentioned ear-
lier proves inadequate. A vital minimal model is the
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one-dimensional (1D) extended Fermi Hubbard model
(EFHM), incorporating a competition between hopping
t0 and both on-site repulsion U and nearest-neighbor re-
pulsion V :

Ĥ = −t0
∑
j,σ

(
ĉ†jσ ĉj+1σ + H.c.

)
+
∑
j

(Un̂j↑n̂j↓ + V n̂j n̂j+1) , (1)

with ĉjσ, ĉ
†
jσ, n̂jσ (n̂j = n̂j↑ + n̂j↓) being the fermionic

creation/annihilation/number operators. This model
effectively captures the diverse physical properties of
materials recognized as prototypical one-dimensional
Mott insulators, including conjugated polymers (e.g.,
ET − F2TCNQ [36, 37]), chain cuprates (e.g., Sr2CuO3

[38, 39]), or Ni halides. These materials boast signif-
icant optical non-linearity, and exhibit intricate phase
diagrams which arise out of strong inter-electron inter-
action effects, indicating their promising potential for
many applications [38, 40–42]. The EFHM proves to
be effective in portraying an interaction-induced metal-
insulator phase transition, giving rise to the Mott insu-
lator (MI) with quasi-long-range spin density wave anti-
ferromagnetic order or charge density wave (CDW) in-
sulating phases when V dominates. The CDW phase
spontaneously breaks the discrete translational symme-
try of the lattice. Despite its apparent simplicity, numer-
ical simulations of this model pose significant challenges.
The phase diagram of this model at half-filling has been
obtained by the density matrix renormalization group
(DMRG) method [43]. In addition to the MI and CDW,
it also contains a narrow intermediate region with bond
order wave (BOW) phase. However, in the strong inter-
action limit, a large charge gap prevents the BOW or-
der, and when V exceeds U/2, the system enters a CDW
phase through a first-order phase transition. Deep in the
Mott phase, the primary charge-conserving excitations
involve generating a doubly occupied site (doublon), in-
curring a local energy of approximately ∼ U , and an
empty site (holon), as an unbound pair of elementary
charge carriers moving independently through the lat-
tice. As the nearest-neighbor interaction parameter V
is increased, the low-energy optical excitations involve
collective manifestations of these doublon-holon pairs.
For V > 2t0, doublon-holon pairs amalgamate to form
various excitonic states. Consequently, within the Mott
phase of the EFHM, the optical response differs signifi-
cantly in the presence of these excitons compared to the
case with V = 0, as the motion of doublons and holons is
severely confined by the interactions between these pairs
[44], see also Fig. 1 for a schematic diagram. By increas-
ing the nearest-neighbor interactions, doublon-hole pairs
first bind to excitons, reducing the cost associated with
larger V . Such an exciton can also be viewed as the ele-
mentary cell of a CDW insulator, and the first-order tran-
sition into the CDW implies the growth of collective exci-
tations consisting of multiple doublon-hole pairs, known

MOTT
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BOW

free charge carries 

excitons
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gsCDW droplets

Figure 1. Schematic phase diagram of the extended Fermi-
Hubbard model, exhibiting Mott insulating phase, charge-
density wave (CDW) phase, and bond-order wave (BOW)
phase [43]. When the extended interactions V are increased
in the strongly interacting regime (i.e. at large U/t0), more
and more complex optical excitations are formed, and can be
interpreted as precursors of the first-order Mott-CDW tran-
sition [44].

as excitonic strings, with well-defined sizes, such as biex-
citons and triexcitons. Finally, as the system approaches
the critical point (0 < U − 2V ≲ t0), the low-energy ex-
citations evolve into a superposition of excitonic strings
of various sizes, termed CDW droplets. These droplets
are, in fact, precursors of the CDW order observed in the
ground state when U < 2V .

Theoretically, signatures of these different excitations
should be present in the linear optical response, but the
smallness of the matrix elements between droplet and
ground state makes it extremely hard to detect them via
the linear response. In the present paper, we build up
on previous work which has established high harmonic
generation (HHG) as a tool to probe Hubbard-like sys-
tem. Specifically, these investigations extend to both
one-dimensional models [39, 45] and to higher dimen-
sions [46, 47]. Additionally, theoretical and experimental
exploration encompasses other models of strongly corre-
lated systems and diverse modifications of the Hubbard
model [48]. This also includes scrutiny of the extended
Hubbard model near its critical point [49] and within
the realm of intersite interactions, where the optical re-
sponse reveals the presence of excitons, that is, bound
states of doubly-occupied and empty sites [50]. Explor-
ing one-dimensional Mott insulators (MIs) through opti-
cal experiments, especially those that exhibit pronounced
third-harmonic responses, has already brought to light
the crucial role played by excitonic effects [38, 41, 51, 52].
While the anticipation is that the exciton within the Mott
insulator contributes to high harmonic generation (HHG)
[53], it is imperative to recall that, unlike a simple Mott
insulator with weak V , multi-exciton effects become truly
dominant in materials with strong V . This is the goal
of the present study which delves into the exploration
of excitonic effects on HHG within the Mott phase and
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unravels the intricacies of optical excitations character-
izing the transition from the Mott insulator phase to a
charge density wave (CDW) phase. Our investigation
encompasses the following key aspects: (a) elucidating
the varying roles played by different excitonic effects as
V increases, shaping the HHG response of the system,
(b) deciphering how these excitonic effects orchestrate a
first-order phase transition from a Mott insulator to a
CDW phase, (c) discerning the analogous role played by
spin droplet excitations, akin to excitons, in determining
the HHG spectrum in the CDW phase, and (d) utilizing
subcycle analysis to probe the structures of excitations
responsible for generating peaks in the emitted HHG sig-
nal. This comprehensive exploration enhances our un-
derstanding of the dynamic interplay between excitonic
effects and high harmonic generation, shedding light on
the rich phase transitions within an experimentally rele-
vant 1D strongly correlated system.

II. RESULTS

A. High harmonic spectra

Concentrating on the undoped and unpolarized
EFHM, we have calculated high harmonic spectra across
various regimes. The results are shown in Fig. 2.

a. MI phase at V = 0. We begin by examin-
ing the scenario characterized deep in the Mott phase,
with strong on-site copuling (U/t0 = 20) and negligi-
ble non-local interactions (V/t0 ≤ 2). The Mott in-
sulating ground state reveals quasi-long-range antifer-
romagnetic order, where electron spins exhibit a pref-
erence for anti-parallel alignment at neighboring sites
[54]. The elementary charge excitations are indepen-
dently delocalized doublon-holon pairs, set apart from
the half-filled N -electron ground state by the charge gap
≡ E0(N + 1) +E0(N − 1)− 2E0(N), where E0(N) is the
ground state energy of a system filled with N particles.
The creation of an excitation on top of the uniformly
filled ground state, with one particle per site, incurs an
energy cost on the order of ∼ U . This insulating behavior
is clearly represented in the HHG spectrum, as depicted
in Fig. 2a). Notably, a dip at the charge gap (orange line)
is discernible up to a harmonic order of ∼ (U−O(t20))/ω0,
succeeded by a plateau. The plateau arises from the en-
ergy continuum formed by a single delocalized doublon-
holon pair, which exhibits metallic behavior. The single
plateau above the Mott gap concludes at the cutoff, de-
termined by the maximal energy of a single doublon-hole
pair. This observation aligns with the spectrum observed
in the preceding work [39].

b. Effect of finite V on MI phase. Next, we delve
into the impact of a non-zero V < U/3 (specifically,
U/t0 = 20, V/t0 = 4) where a particularly intriguing set
of behavior unfolds. As illustrated in Fig. 2b), a distinct
peak becomes apparent in the high harmonic spectra at a
frequency corresponding to the excitonic energy Eexciton,

marked by the pink dashed line. Subsequently, there is a
discernible uptick in HHG around this peak, followed by
the initiation of a plateau that commences at the charge
or Mott gap (indicated by the orange line). This intrigu-
ing observation aligns with the findings documented in
[50]. The excitonic peak, as noted previously, originates
from the V -induced binding of the single doublon-holon
pair and hence has a lower energy than the Mott gap. Its
appearance in the high harmonic spectrum indicates the
partial shift of the spectral weight from the free charge
carriers to the exciton.

As V exceeds U/3, a notable shift occurs, giving rise
to the production of multiple doublon-holon pairs bound
together to form nex-excitons. In the specific case of
U/t0 = 30 and V/t0 = 12, below the Mott gap, a signifi-
cant augmentation in the HHG spectra is evident around
energies corresponding to excitations comprised of multi-
ple doublon-hole pairs, such as biexcitons (Fig. 2c). No-
tably, the excitonic peak is marked by the dashed pink
line, occurring at a considerably lower energy. Simulta-
neously, at a higher yet still sub-Mott gap energy level, a
bi-exciton is discernible in the spectra, indicated by the
dashed purple line. This exploration underscores that by
adjusting the parameter V , we have the ability to induce
heightened HHG peaks precisely localized around spe-
cific nex-exciton energies. The ability to finely control
such excitonic features through parameter tuning opens
avenues for tailoring the non-linear HHG response of the
system at particular frequencies.

c. Critical regime. In the proximity of the critical
point (U − V )/t0 < 2 in the Mott phase, where size fluc-
tuations become increasingly likely, a noteworthy phe-
nomenon emerges — the formation of CDW droplets.
This intriguing development is vividly depicted in the
HHG spectrum, showcasing a distinctive plateau below
the Mott gap (Fig. 2d). This plateau initiates around
a frequency corresponding to the energy ∼ U − V − 4t0
(indicated by the dashed cyan line), marking the onset
of a continuum of CDW droplet states. The non-linear
optical response from this continuum, composed of exci-
tonic strings of various sizes, gives rise to the observed
plateau below the Mott gap (highlighted by the orange
line). This subtle observation helps to differentiate the
nature of excitations within the system, emphasizing the
importance of understanding the dynamic behavior near
the critical point in such a system. Furthermore, the
observed enhanced HHG response, as compared to the
weak signals in the linear response, yields a significant
advantage.

d. CDW phase. We now devote our attention to
the case where 2V > U , which means that the ground
state of the system has a spontaneously broken transla-
tional symmetry of the lattice and exhibits the CDW
order. An exemplary case that vividly illustrates the
complexity introduced by the CDW order is the HHG
spectrum of the “pure” (U = 0) CDW phase, shown in
Fig. 2e). The CDW phase brings forth a distinctive op-
tical landscape, considerably more intricate than that of
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Figure 2. HHG spectra calculated for laser parameters: A0 = 4, ω0 = 0.2, nc = 5, system size N = 12, for Hamiltonian 1
parameters corresponding to: a) Mott phase with free charge carriers, b) Mott with an exciton, c) Mott with excitonic strings,
d) Mott with CDW droplets, e) CDW phase with zero-U , f) realistic (U > V ) CDW phase. Vertical lines correspond to the
characteristic energies of the system. The additional below-gap peak, present in all of the spectra at frequency ≃ 50ω0 is an
effect of a finite size of the system and disappears in the thermodynamic limit; see Supplementary Materials for details.

the ”pure” (V = 0) Mott insulator, owing to the var-
ious possible optical excitations present in this regime.
Notably, the CDW phase is characterized by the open-
ing of an additional spin gap ≡ E0(N↑ + 1, N↓ − 1) +
E0(N↑ − 1, N↓ + 1) − 2E0(N↑, N↓) which is the gap to
spin excitations. Intuitively, the CDW ground state at
U/t0, V/t0 ≫ 1, consists of doublon-holon pairs arranged
alternately on each site. A spin flip on a doublon site
would be impossible due to Pauli exclusion, and there-
fore, the flipped spin must occupy an empty site leaving
behind a singlon in one of the doublon sites. Thus, the
presence of neighboring interactions would incur an en-
ergy cost ∼ V which implies that there is a gap to spin
excitations.

The spin gap thus corresponds to the excitations with
one broken doublon-hole pair with two created singlons.
When such singlons are bound together, they are referred
to as spin density wave (SDW) droplets. Ignoring their
delocalization over L sites for low values of t0, their ex-
cess energies are given by ∼ V − n(U − 2V ), where n
is a droplet size [55]. The lowest energy droplet (for V
higher than the critical value V > U/2) is a droplet of
size n = 1 and has energy ∼ 3V − U (pink dashed line)
that corresponds to the spin gap (green solid line). On
the other hand, the charge gap (thick orange line) corre-
sponds to the two delocalized free singlons, coming from
the one broken pair, and has an energy ∼ 4V −U (green
ochre dashed line). In the HHG spectrum, there are also
small peaks at higher energies – centered around the fre-

quency corresponding to 5V −2U – coming from the exci-
tations made up of two broken pairs, bound together and
forming a magnetic domain. They correspond to SDW
droplets of size n = 2. The signatures of both the gaps
can also be observed in a more realistic CDW scenario,
where U > V (Coulomb repulsion stronger on the same
site than between neighboring sites), see Fig. 2f). The
additional peaks centered around 5V cannot be observed
in this case, as their energy is higher than the charge gap
only when V > U .

Therefore, in essence, HHG not only captures the pres-
ence of CDW or SDW droplets on either side of the tran-
sition but also traces the system’s transition from one
phase to the other through nucleation (formation of clus-
ters of the new phase within the existing phase), signify-
ing the occurrence of a first-order transition. Therefore,
this comprehensive analysis also reveals the potential of
HHG as a powerful tool for probing and understanding
the dynamics of phase transitions in the strongly corre-
lated regime.

B. Subcycle analysis

To delve deeper into the electron dynamics, we turn
our attention towards subcycle analysis - a methodol-
ogy designed to dissect the temporal intricacies of laser-
driven electron dynamics at the sub-optical-cycle level.
Within the domain of HHG, where electrons undergo ion-
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Figure 3. Subcycle analysis of HHG spectra, supplementing the raw HHG data presented in Fig. 2, the color encodes the value
of log10(P ). The left and middle panels show the whole spectra above the optical gap. The dashed white lines are charge
gap and, for subplot a) charge gap +8t0, dashed black lines – exciton, biexciton, U − V − 4t0 and SDW droplet of size n = 2
(compare with Fig. 2), white dash-dot line – spin gap. The plots on the right panels show characteristic parts of the full spectra
with oscillations proportional to E(t) and −E(t), see the Sec. II B for details.

ization and subsequent return to the parent ion, subcycle
analysis becomes instrumental in understanding the pre-
cise timing and phase relationships governing the emis-
sion of high-energy harmonics within a single optical cy-
cle. The results of the subcycle analysis are shown in
Fig. 3

a. Free carrier regime. In the free charge carrier
optical regime, dominated by a freely moving single
doublon-holon pair, we observe that the plateau above
the Mott gap (marked by the lowest dashed white line)
consists of many interfering trajectories. This makes it
difficult to easily track individual oscillations, Fig. 3a).
In the Methods sections, we show to gain insight to this
regime by restricting the dynamics of the system.

b. Excitonic regime. On the contrary, the subcycle
analysis in proximity to excitonic and biexcitonic ener-
gies reveals distinct oscillations around the respective en-
ergy levels, as illustrated in Fig. 3b) and c). Two trajec-
tories closely align with the shape of the electric field
E(t) = E0f(t) = −∂tA(t) and −E(t). The amplitude of

excitonic oscillations lies within the range of E0 to 2E0

(solid lines), while for the biexciton with higher dipole
moments, it is approximately twice as high, spanning
between 2E(t) (solid line) and 3E(t) (dashed line), as
depicted in Fig. 3g) and h).

c. CDW droplets. In the regime of CDW droplets,
there is a noteworthy phenomenon of interference among
multiple trajectories at frequencies corresponding to the
plateau formed below the Mott gap, as depicted in
Fig. 3d). It appears that optical excitations originating
from a continuum of states, such as free charge carri-
ers and CDW droplets, amalgamate to form a plateau
featuring multiple interfering trajectories in the nonlin-
ear response. In contrast, excitations that manifest as
peaks in the linear response, such as excitons and ex-
citonic strings, are distinctly observed in the nonlinear
response as clear oscillations proportionate to the elec-
tric field.

d. CDW phase. The subcycle analysis of the CDW
phase unveils various time-dependent responses, each in-
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tricately associated with the distinctive peaks/plateaus
observed in the HHG spectrum, as elucidated in Fig. 3e)
and f). The oscillations linked to the spin gap exhibit
a compelling fluctuation of amplitude, ranging between
E0 and 2E0 (Fig. 3i). Simultaneously, excitations asso-
ciated with the charge gap contribute to the creation of
a complex interference-plateau structure, as visualized in
Fig. 3j). This intricate temporal behavior highlights the
intricate interplay of charge and spin dynamics within
the CDW phase. Furthermore, the subcycle analysis un-
veils peaks around 5V that manifest themselves as oscilla-
tions with amplitudes ranging from 2E0 to 3E0 (Fig. 3k).
This distinctive pattern sheds light on the diverse nature
of excitations occurring within the CDW phase, offering
a detailed perspective on the underlying processes that
contribute to the observed harmonic generation.

III. DISCUSSION

Our results have elucidated the quantum processes
governing the interaction of intense laser fields with mat-
ter. We have shown that HHG spectroscopy can not only
locate the presence of the various optical many body ex-
citations, but through subcycle analysis it also enables
us to probe the structure of the excitations based on
the response of the trajectories of their constituents to
the incident electric field of the laser. From this per-
spective, it has become evident that the subcycle anal-
ysis serves as a powerful tool for unraveling the intri-
cate trajectories responsible for the formation of peaks
or plateaus, characterizing diverse excitations across the
optical spectra in the four distinct regimes. When fo-
cusing on isolated peaks, the analysis discerns a note-
worthy correlation: excitations characterized by higher
charges or increased dipole moments manifest with pro-
portionally elevated amplitudes of oscillation. This in-
sightful observation allows for decoding the nature and
complexity of the excitations, distinguishing whether the
observed peaks originate from single excitons or extend
to higher-order states such as biexcitons, triexcitons, or
even more complex configurations. Remarkably, this ap-
proach extends its utility to the realm of spin droplets as
well, particularly in the parameter space associated with
the CDW phase.

To conclude let us emphasize that insight obtained
from non-linear optics goes far beyond the information
revealed by the linear optical conductivity. Linear op-
tical response, excels at identifying simple excitations
like free charge carriers (holon-doublon pairs) and tightly
bound excitons. In the context of strongly correlated
systems often represented by the EFHM studied here,
this translates to a continuous band in the optical spec-
trum marking the Mott gap and a prominent delta peak
at a specific energy corresponding to the tightly bound
exciton state. These features arise because the linear
response regime deals with weak perturbations to the
ground state. The creation of such excitations requires

minimal energy investment, and their well-defined elec-
tronic states lead to strong optical transitions easily cap-
tured by linear probes. However, the limitations of linear
response become apparent when investigating more com-
plex phenomena like excitonic strings and CDW droplets.
These features involve multiple excitations interacting
and forming extended structures. In the case of excitonic
strings, the creation of each additional exciton within the
string requires overcoming a smaller energy barrier com-
pared to the initial exciton formation. While this reduced
energy cost facilitates string formation, the transition
matrix elements between the ground state and higher-
order excited states containing excitonic strings become
significantly weaker. These weak matrix elements trans-
late to faint peaks in the optical conductivity spectrum,
making them challenging to detect with linear response
methods.

This is where non-linear optical response becomes
advantageous. By employing stronger external fields,
non-linear techniques can access higher-order excita-
tions. When dealing with excitonic strings, non-linear
approaches can overcome the weak ground state to ex-
cited state transitions observed in linear response. Ad-
ditionally, they can explore the interplay between mul-
tiple excitons within the string, providing a deeper un-
derstanding of their binding energies and spatial config-
urations. Similarly, non-linear methods can shed light
on CDW droplets as well and can potentially reveal the
characteristic energy scales associated with CDW droplet
formation and their size dependence.

In summary, we have shown that the high-harmonic
generation can serve as a tool for probing optical excita-
tions in strongly correlated systems. It has been demon-
strated that the strongly nonlinear response of the ex-
tended Fermi Hubbard model contains information about
different excitonic patterns, both in the Mott and CDW
phases. Moreover, the observed changes in the high har-
monic spectrum, resulting from the increased nearest-
neighbor interaction strength, make it possible to track
the formation of clusters, a process that governs the first-
order phase transition. Subcycle analysis provides addi-
tional insight into the properties of excitons at given en-
ergies, allowing one to distinguish between exciton chains
or SDW droplets of different sizes and to decode whether
the contribution originates from a continuum of states or
from single peaks in the linear response of the system.

IV. METHODS

A. Non-linear optical response

We begin with the system’s ground state as our ini-
tial condition, obtained through exact diagonalization
calculations. Next, we time-evolve this state using the
Runge-Kutta method while subjecting it to a laser field
described by a vector potential exhibiting a sine-square
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envelope,

A(t) = A0 sin2

(
ω0t

2nc

)
sin (ω0t) , 0 < t <

2πnc
ω0

. (2)

where ω0 is a laser frequency, A0 is an amplitude and
nc is the number of cycles. In contrast to some previous
works [39], here, we choose a low enough laser ampli-
tude to avoid the light-induced phase transition and the
breakdown of an insulating state. We use the velocity
gauge and simulate the light-matter coupling via Peierls
substitution,

t0ĉ
†
jσ ĉj+1σ → t0e

iaA(t)ĉ†jσ ĉj+1σ. (3)

The intensity of the HHG spectrum P (ω) is given by a
Fourier transform of the time derivative of the current
operator proportional to the acceleration of charges in
the system,

P (ω) =
∣∣∣FTW

[
⟨ ˙̂
J(t)⟩

]∣∣∣2 , (4)

where

Ĵ(t) = iat0
∑
j,σ

[
eiaA(t)ĉ†jσ ĉj+1σ − e−iaA(t)ĉ†j+1σ ĉjσ

]
.

(5)

B. Subcyle analysis

The results of the subcycle analysis are obtained
through the Gabor transform,

P (ω, τ) =

∣∣∣∣∣
∫ 2πnc/ω0

0

e−(t−τ)2/σ2

e−iωt ⟨ ˙̂
J(t)⟩ dt

∣∣∣∣∣
2

(6)

with a sliding window width σ = 1/(2ω0), see Fig. 3.

C. Linear response

The linear optical response of the system is captured
by the optical conductivity,

σ(ω > 0) =
1

ω
Im

 1

aL

∑
n

−
∣∣∣⟨0|Ĵ0|n⟩∣∣∣

ℏω − (En − E0) + iη

 . (7)

Here, a is the lattice constant, L is the size of the system,
and the sum goes over the eigenstates |n⟩ of Hamiltonian
(1), corresponding to the energies En. The contribution

iη broadens the signal, and the current operator Ĵ0 is
given by

Ĵ0 = iat0
∑
j,σ

(
ĉ†jσ ĉj+1σ − ĉ†j+1σ ĉjσ

)
. (8)

D. Finite size effects

Here, we compare the results of exact calculations for
two system sizes N = 8 and N = 12 as well as results
obtained in the time-evolution block-decimation method
with infinite boundary conditions (iTEBD), see Fig. 4 for
examples. We observe that the finite system affects the
low-frequency nonlinear response of our model by intro-
ducing an additional peak below the optical gap of the
system. The intensity of this peak decreases with system
size, and finally it disappears in the thermodynamic limit
represented by the iTEBD calculations. The subcycle
analysis shows a clear oscillating trajectory proportional
to the |E(t)|, see Fig. 5 In the main part of the paper,
we decided to include exact finite-size results due to their
precision even in high frequency ranges and long evolu-
tion times, where convergence of iTEBD calculations is
computationally very demanding.

Figure 4. Finite size analysis for two sets of parameters of the
Hamiltonian (1), laser parametrs: A0 = 4, ω0 = 0.2, nc = 5.

E. Separating dynamical processes in HHG

a. Restricted subcycle analysis of unbound doublon-
hole pair. The kinetic part of the Hamiltonian (1), as
well as the current operator, can be rewritten using

ĉ†jσ ĉkσ = ĉ†jσ(I− n̂jσ′ + n̂jσ′)ĉkσ(I− n̂kσ′ + n̂kσ′)

= [ĉ†jσĥjσ′ + ĉ†jσn̂jσ′ ][ĉkσĥkσ′ + ĉkσn̂kσ′ ]

= ĉ†jσĥjσ′ ĉkσn̂kσ′ + ĉ†jσn̂jσ′ ĉkσĥkσ′ (9)

+ ĉ†jσĥjσ′ ĉkσĥkσ′ + ĉ†jσn̂jσ′ ĉkσn̂kσ′ , (10)

where ĥjσ = I − n̂jσ. The first two terms of the sum
above (9) correspond to the annihilation and creation of
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Figure 5. Finite size effect in Gabor transform for two laser
field intensities: a) A0 = 4.0 and b) A0 = 8.0 for the Mott
insulator with parameters U = 20.0 and V = 0.0. The color
encodes the value of log10(P )

a doublon-holon pair, while the terms in (10) correspond
to the hopping of a holon and a doublon, respectively.
This dynamics separation bears a resemblance to the 3-
step model in Mott insulator described in [45].

We performed calculations on the high harmonic spec-
tra of the Mott phase, constraining electronic hoppings
solely to the terms specified in (10) or (9). Refer to Fig. 6
for the HHG spectra and Fig. 7 for the subcycle analysis.
It is important to note that the initial state of the evo-
lution remains the ground state of the full Hamiltonian.

When dynamics are confined to doublon and holon
hopping terms, a single below-gap plateau is observed, as
per expectations. In the subcycle analysis, this plateau
manifests itself as multiple interfering trajectories. Con-
versely, when only pair creation/annihilation processes
are allowed and the resulting HHG spectrum solely arises
from the recombination of doublon-hole pairs, three dis-
tinct peaks emerge. The first, below-gap peak is at-
tributed to effective hopping resulting from the simul-
taneous annihilation and creation of a pair at different
lattice sites. The highest and dominant peak, centered
around U , can be explained as the recombination of a sin-
gle doublon-hole pair. The third peak, centered around
2U probably originates from the recombination of two
pairs simultaneously, a phenomenon suppressed in the
full spectrum derived from non-restricted dynamics. In-
terestingly, the overall intensity of the spectrum increases
for the restricted dynamics of the system. This analysis
provides insight on the nature and origin of plateaus seen
in the optical regime with free charge carriers.

b. Interband vs. intraband contributions In the case
of band insulators, the current can be split into the intra-

Figure 6. High-harmonic spectra of the full Hamiltonian and
the truncated Hamiltonians [according to Eq. (9) or (10] at
V = 0.0, U = 20.0, A0 = 4.0, ω0 = 0.2, nc = 5. Vertical
lines correspond to U and 2U

Figure 7. Subcycle analysis of the HHG spectra presented
in the Fig.6, the color encodes the value of log10(P ). The a)
panel corresponds to the doublon-hole pair creation and anni-
hilation processes, as in Eq.(9), and the b) panel corresponds
to the hopping of a doublon or hole, as in Eq.(10).

and inter-band contributions in the following way,

Jtot = Jinter + Jintra,

Jinter =
∑
b

∑
n,m

⟨ψ(t)|ϕbn⟩⟨ϕbn|Ĵ |ϕbm⟩⟨ϕbm|ψ(t)⟩,

Jinter =
∑
b,p̸=b

∑
n,m

⟨ψ(t)|ϕbn⟩⟨ϕbn|Ĵ |ϕpm⟩⟨ϕpm|ψ(t)⟩, (11)

where |ϕbn⟩ is a n-th eigenstate from band b. The intra-
band current includes the transitions between states from
the same band, whereas the interband current involves
transitions between different bands. In the case of single-
active-electron picture, it was shown that the intraband
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contribution is dominant for lower-order harmonics and
the interband current dominates in the higher-harmonic
region [56].
However, we realize that deciphering the processes that
govern both the low- and high-order harmonic regimes in
strongly correlated systems poses a greater challenge due
to the absence of a well-defined band structure. Never-
theless, by analogy, a three-step model for Mott insula-
tors akin to semiconductors can still be proposed. In this
model, the creation of doublon-hole pairs is analogized to
electron tunneling to the conduction band, doublon-hole
hopping mirrors intraband current, and doublon-hole an-
nihilation represents the recombination of electrons and
holes, consequently giving rise to interband harmonics.
In this scenario, the formulas in Eq. (11) are not appli-
cable to disentangle these processes. Instead, an alter-
native approach involves projecting the current operator
onto the subspace in the position basis, rather than the
eigenstate basis. This allows for the identification of a
subspace comprising basis states with a specific number
of doublon-hole pairs:

Jhopping =
∑
i

⟨ψ(t)|P̂iĴ P̂i|ψ(t)⟩,

Jcr/an =
∑
i,j ̸=i

⟨ψ(t)|P̂iĴ P̂j |ψ(t)⟩, (12)

where P̂i represents a projector onto a subspace with i =
0, 1, ..., N doublon-holon pairs. It is important to note
that this approach does not impose constraints on the
evolution of the initial state, which may not conserve the
number of doublon-holon pairs.
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