DECAY PROPERTIES OF SPATIAL MOLECULAR ORBITALS

R. A. ZALIK

ABSTRACT. Using properties of the Fourier transform we prove that if a Hartree-Fock molecular spatial orbital is in $L_1(\mathbb{R}^3)$, then it decays to zero as its argument diverges to infinity. The proof is rigorous, elementary, and short.

1. INTRODUCTION

We will use standard mathematical notation. In particular, \mathbb{Z} will denote the set of integers and \mathbb{R} the set of real numbers; if $r = (x_1, x_2, x_3) \in \mathbb{R}^3$, then $|r| = (x_1^2 + x_2^2 + x_3^2)^{\frac{1}{2}}$; If z is a complex number, z^* will denote its complex conjugate, and $\int f$ will stand for $\int_{\mathbb{R}^3} f$. For $1 \leq p < \infty$ we say that f is in $L_p(\mathbb{R}^3)$ (which we will abbreviate as L_p), if

$$\int_{\mathbb{R}^3} |f(r)|^p \, dr < \infty,$$

and the $L_p(\mathbb{R}^3)$ norm of f is defined by

$$||f|||_p = \left(\int_{\mathbb{R}^3} |f(r)|^p \, dr\right)^{1/p}$$

We say that f is in $L_{\infty}(\mathbb{R}^3)$ (which we will abbreviate as L_{∞}) if there is a constant C such that $|f(r)| \leq C$ for all $r \in \mathbb{R}^3$. If f is in L_{∞} , the L_{∞} norm is defined as

$$||f||_{\infty} = \sup |f(r)|, \qquad r \in \mathbb{R}^3$$

(where "sup" is the least upper bound). We also define $h(r) = |r|^{-1}$; $\mathfrak{F}[f]$ or \widehat{f} will stand for the Fourier transform of f; thus, if for instance $f \in L_1$, then

$$\widehat{f}(r) = \int_{\mathbb{R}^3} f(t) e^{-2\pi i r \cdot t} \, dt.$$

The convolution f * g of f and g is defined by

$$(f*g)(r) = \int f(s)g(r-s)\,ds = \int f(r-s)g(s)\,ds,$$

and ∇^2 will denote the Laplace operator.

The functions $\psi_a, a = 1, \ldots, n$, where n = N/2 and N is the number of occupied spin orbitals, are spatial molecular orbitals; therefore they are continuous on \mathbb{R}^3

²⁰²⁰ Mathematics Subject Classification: $35\mathrm{Q40}$ $35\mathrm{P05}$ $35\mathrm{J10}.$

Keywords: Laplace operator, Fourier transform, convolution, orbital.

The author is grateful to Professor Vincent Ortiz for his helpful comments.

and $||\psi_a||_{\infty} \leq 1$, the sequence $\{\psi_a; a = 1, \ldots, n\}$ is orthonormal in L_2 , and if Z_j is the atomic number of nucleus N_j , which is located at point $\xi_j \in \mathbb{R}^3$,

(1)
$$\left[-\nabla^2 - \sum_{j=1}^n \frac{Z_j}{|r-\xi_j|} \right] \psi_a(r) + 2\sum_{c=1}^n \int |\psi_c(s)|^2 \frac{1}{|r-s|} \, ds \, \psi_a(r) \\ - \sum_{c=1}^n \int \psi_c^*(s) \psi_a(s) \frac{1}{|r-s|} \, ds \, \psi_c(r) = \varepsilon_a \psi_a(r), \qquad a = 1, \dots, n$$

([2, 4]). The following auxiliary proposition, of some independent interest, shows that (1) is well posed:

Lemma 1. If $f \in L_1 \cap L_\infty$, then

$$||f * h||_{\infty} \le (4/\sqrt{3})\pi ||f||_{\infty} + ||f||_{1};$$

therefore, if $f, g \in L_2 \cap L_\infty$

$$||(fg) * h||_{\infty} \le (4/\sqrt{3})\pi ||f||_{\infty} ||g||_{\infty} + ||f||_{2} |||g||_{2}.$$

In particular,

$$\int \psi_a^*(s)\psi_b(s)\frac{1}{|s-r|}\,ds \,\bigg| \le (4/\sqrt{3})\pi + 1, \qquad a,b = 1,\dots,n.$$

Proof. We have

$$|(f*h)(r)| \le \int_{|s|\le 1} |f(r-s)| \, |s|^{-1} \, ds + \int_{|s|>1} |f(r-s)| \, |s|^{-1} \, ds = I_1 + I_2.$$

Applying Hölder's inequality and switching to spherical coordinates we get

$$I_1 \le \left(\int_{|s| \le 1} |f(r-s)|^2 \, ds \int_{|s| \le 1} |s|^{-2} \, ds \right)^{\frac{1}{2}} \le (4/\sqrt{3})\pi ||f||_{\infty}.$$

On the other hand,

$$I_2 \le ||f||_1$$

The proof of the following theorem relies on basic properties of the Fourier transform ([1, 3]).

Theorem 1. Let $\psi_a \in L_1$; then $\lim_{r\to\infty} \psi_a(r) = 0$.

Proof. Equation (1) may be written in the equivalent form

(2)
$$[\nabla^2 \psi_a](r) = g_a(r),$$

where

$$g_a(r) = -\sum_{j=1}^n \frac{Z_j}{|r - \xi_j|} \psi_a(r) + A\psi_a(r) - 2\sum_{c=1}^n B_{a,c}\psi_c(r) - \varepsilon_a\psi_a(r)$$

with

$$A = 2\sum_{c=1}^{n} \int |\psi_c(s)|^2 \frac{1}{|r-s|} \, ds$$

_

and

$$B_{a,c} = \int \psi_c^*(s)\psi_a(s) \frac{1}{|r-s|} \, ds.$$

On the other hand, let K be arbitrary but fixed and such that $|\xi_j| \leq K, j = 1, \ldots, n$; then

$$\int |r - \xi_j|^{-2} |\psi_a(r)|^2 dr = \int_{|r| \le K+1} |r - \xi_j|^{-2} |\psi_a(r)|^2 dr + \int_{|r| > K+1} |r - \xi_j|^{-2} |\psi_a(r)|^2 dr = J_1 + J_2.$$

We have:

$$J_1 \leq \int_{|r| \leq K+1} |r - \xi_j|^{-2} dr \leq \int_{|r| \leq K+1+|\xi_j|} |r|^{-2} dr = 4\pi (K+1+|\xi_j|)$$

and, since |r| > K + 1 implies that $|r - \xi_j| \ge 1$,

$$J_2 \le \int_{|r|>K+1} |\psi_a(r)|^2 \, dr \le ||\psi_a||_2^2,$$

which implies that $|r - \xi_j|^{-1}\psi_a(r)$ is in L_2 for all $1 \le j \le n$, which in turn implies that $g(r) \in L_2$. But $\psi_a \in L_1$ by hypothesis; thus

$$[\nabla^2 \psi_a](r) = -4\pi^2 |r|^2 \widehat{\psi}_a(r).$$

Since ψ_a is bounded, it is in L_2 as well (and therefore so is $\hat{\psi}_a$); thus (2) implies that $(1 + |r|^2)\hat{\psi}_a \in L_2$. Since

$$\widehat{\psi}_a(r) = \frac{1}{1+|r|^2} (1+|r|^2) \widehat{\psi}_a(r)$$

and $\frac{1}{1+|r|^2} \in L_2$, we deduce that $\widehat{\psi}_a \in L_1$, whence

$$\lim_{r \to \infty} \mathfrak{F}[\widehat{\psi}_a](r) = 0.$$

Since ψ_a is continuous on \mathbb{R}^3 we know that $\psi_a(r) = \mathfrak{F}[\widehat{\psi}_a](-r)$, and the assertion follows.

References

- [1] G. B. Folland, Real Analysis, 2nd edn. (Wiley, New York, 1999).
- [2] L. Lin, J. Liu, A Mathematical Introduction to Electronic Structure Theory (SIAM, Philadelphia, 2019).
- [3] E. M. Stein, R. Shakarchi, Fourier Analysis: An Introduction (Princeton University Press, 2003).
- [4] A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, revised edn. (Dover, 1996).

Department of Mathematics and Statistics, Auburn University, Auburn, Al. 36849-5310

Email address: zalikri@auburn.edu