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DECAY PROPERTIES OF SPATIAL MOLECULAR ORBITALS

R. A. ZALIK

Abstract. Using properties of the Fourier transform we prove that if a Hartree-
Fock molecular spatial orbital is in L1(R

3), then it decays to zero as its argu-
ment diverges to infinity. The proof is rigorous, elementary, and short.

1. Introduction

We will use standard mathematical notation. In particular, Z will denote the
set of integers and R the set of real numbers; if r = (x1, x2, x3) ∈ R

3, then |r| =
(x21 + x22 + x23)

1

2 ; If z is a complex number, z∗ will denote its complex conjugate,
and

∫
f will stand for

∫
R3 f . For 1 ≤ p < ∞ we say that f is in Lp(R

3) (which we
will abbreviate as Lp), if ∫

R
3

|f(r)|p dr <∞,

and the Lp(R
3) norm of f is defined by

||f‖|p =

(∫

R3

|f(r)|p dr
)1/p

.

We say that f is in L∞(R3) (which we will abbreviate as L∞) if there is a constant
C such that |f(r)| ≤ C for all r ∈ R

3. If f is in L∞, the L∞ norm is defined as

||f ||∞ = sup |f(r)|, r ∈ R
3,

(where“sup”is the least upper bound). We also define h(r) = |r|−1; F[f ] or f̂ will
stand for the Fourier transform of f ; thus, if for instance f ∈ L1, then

f̂(r) =

∫

R
3

f(t)e−2πir·t dt.

The convolution f ∗ g of f and g is defined by

(f ∗ g)(r) =
∫
f(s)g(r − s) ds =

∫
f(r − s)g(s) ds,

and ∇2 will denote the Laplace operator.
The functions ψa, a = 1, . . . , n, where n = N/2 and N is the number of occupied

spin orbitals, are spatial molecular orbitals; therefore they are continuous on R
3
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2 Orbitals

and ||ψa||∞ ≤ 1, the sequence {ψa; a = 1, . . . , n} is orthonormal in L2, and if Zj is

the atomic number of nucleus Nj , which is located at point ξj ∈ R
3,

(1)


−∇2 −

n∑

j=1

Zj

|r − ξj |


ψa(r) + 2

n∑

c=1

∫
|ψc(s)|2

1

|r − s| dsψa(r)

−
n∑

c=1

∫
ψ∗
c (s)ψa(s)

1

|r − s| dsψc(r) = εaψa(r), a = 1, . . . , n

([2, 4]). The following auxiliary proposition, of some independent interest, shows
that (1) is well posed:

Lemma 1. If f ∈ L1 ∩ L∞, then

||f ∗ h||∞ ≤ (4/
√
3)π||f ||∞ + ||f ||1;

therefore, if f, g ∈ L2 ∩ L∞

||(fg) ∗ h||∞ ≤ (4/
√
3)π||f ||∞||g||∞ + ||f ||2|| ||g||2.

In particular,
∣∣∣∣
∫
ψ∗
a(s)ψb(s)

1

|s− r| ds
∣∣∣∣ ≤ (4/

√
3)π + 1, a, b = 1, . . . , n.

Proof. We have

|(f ∗ h)(r)| ≤
∫

|s|≤1

|f(r − s)| |s|−1 ds+

∫

|s|>1

|f(r − s)| |s|−1 ds = I1 + I2.

Applying Hölder’s inequality and switching to spherical coordinates we get

I1 ≤
(∫

|s|≤1

|f(r − s)|2 ds
∫

|s|≤1

|s|−2 ds

) 1

2

≤ (4/
√
3)π||f ||∞.

On the other hand,

I2 ≤ ||f ||1.
�

The proof of the following theorem relies on basic properties of the Fourier
transform ([1, 3]).

Theorem 1. Let ψa ∈ L1; then limr→∞ ψa(r) = 0.

Proof. Equation (1) may be written in the equivalent form

(2) [∇2ψa](r) = ga(r),

where

ga(r) = −
n∑

j=1

Zj

|r − ξj |
ψa(r) +Aψa(r) − 2

n∑

c=1

Ba,cψc(r) − εaψa(r)

with

A = 2

n∑

c=1

∫
|ψc(s)|2

1

|r − s| ds
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and

Ba,c =

∫
ψ∗
c (s)ψa(s)

1

|r − s| ds.

On the other hand, let K be arbitrary but fixed and such that |ξj | ≤ K, j =
1, . . . , n; then
∫

|r − ξj |−2|ψa(r)|2 dr =
∫

|r|≤K+1

|r − ξj |−2|ψa(r)|2 dr +
∫

|r|>K+1

|r − ξj |−2|ψa(r)|2 dr = J1 + J2.

We have:

J1 ≤
∫

|r|≤K+1

|r − ξj |−2 dr ≤
∫

|r|≤K+1+|ξj|

|r|−2 dr = 4π(K + 1 + |ξj |)

and, since |r| > K + 1 implies that |r − ξj | ≥ 1,

J2 ≤
∫

|r|>K+1

|ψa(r)|2 dr ≤ ||ψa||22,

which implies that |r − ξj |−1ψa(r) is in L2 for all 1 ≤ j ≤ n, which in turn implies
that g(r) ∈ L2. But ψa ∈ L1 by hypothesis; thus

[∇2ψa](r) = −4π2|r|2ψ̂a(r).

Since ψa is bounded, it is in L2 as well (and therefore so is ψ̂a); thus (2) implies

that (1 + |r|2)ψ̂a ∈ L2. Since

ψ̂a(r) =
1

1 + |r|2 (1 + |r|2)ψ̂a(r)

and 1

1+|r|2 ∈ L2, we deduce that ψ̂a ∈ L1, whence

lim
r→∞

F[ψ̂a](r) = 0.

Since ψa is continuous on R
3 we know that ψa(r) = F[ψ̂a](−r), and the assertion

follows. �
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