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Relating microscopic interactions to macroscopic observables is a central challenge in the study of
complex systems. Addressing this question requires understanding both pairwise and higher-order
interactions, but the latter are less well understood. Here, we show that the Möbius inversion
theorem provides a general mathematical formalism for deriving higher-order interactions from
macroscopic observables, relative to a chosen decomposition of the system into parts. Applying
this framework to a diverse range of systems, we demonstrate that many existing notions of higher-
order interactions, from epistasis in genetics and many-body couplings in physics, to synergy in game
theory and artificial intelligence, naturally arise from an appropriate mereological decomposition.
By revealing the common mathematical structure underlying seemingly disparate phenomena, our
work highlights the fundamental role of decomposition choice in the definition and estimation of
higher-order interactions. We discuss how this unifying perspective can facilitate the transfer of
insights between domains, guide the selection of appropriate system decompositions, and motivate
the search for novel interaction types through creative decomposition strategies. More broadly, our
results suggest that the Möbius inversion theorem provides a powerful lens for understanding the
emergence of complex behaviour from the interplay of microscopic parts, with applications across a
wide range of disciplines.
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I. INTRODUCTION

Much of the study of complex systems is focused on characterizing general principles of complexity. Famously,
certain network or graph theoretical quantities have proven useful to describe the structure of complex systems
in fields ranging from physics to biology and the social sciences [12, 25, 31, 55, 62, 66, 83]. In addition, concepts
from a specific discipline, like phase transitions in physics or evolution in biology, have led to both qualitative
and quantitative understanding of complex systems in other fields [19, 32, 70, 74, 91]. This paper makes
another such attempt at revealing a general principle of complex systems, and aims to show that there is a
unified theory of higher-order interactions that is intimately related to the decomposition of a system into its
parts. We show that various notions of higher-order interactions across scientific fields are manifestations of
a single principle—the Möbius inversion theorem—that describes how higher-order interactions emerge from
decompositions of complex systems. In doing so, the framework presented here provides both a unified theory,
as well as a precise definition of the term higher-order structure, which is often used in a somewhat vague way
to refer to the non-additive interactions between parts of a system. In particular, we aim to show that when a
system is decomposed into parts that allow for a partial ordering, then the notion of higher-order structure is
uniquely determined, and certain quantities are higher-order with respect to this precisely this partial order. We
give a range of examples that show that this approach reproduces famous examples of higher-order quantities
in various scientific disciplines.

A. Higher-order interactions

Throughout the sciences, it is often said that a set of variables interact if their joint configuration affects
an outcome differently than the sum of their individual effects. In this sense, interactions are a kind of non-
additivity, and they form the basis for all properties of complex systems that are not simply the sum of the
properties of their parts. It is hard to imagine a scientific question that does not reduce to the problem of
understanding interactions and their effects. Still, in the majority of cases, interactions are only studied among
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pairs of variables. For this reason, interactions that involve more than two variables are often collectively
referred to as higher-order interactions. The reason higher-order interactions have been largely ignored is
manifold: they require more data to measure, they are harder to interpret, and pairwise models have been
surprisingly successful. In addition, pairwise interactions can be concisely represented as a graph, allowing
them to be analysed with the powerful tools of graph theory. Higher-order interactions, in contrast, can only
be represented as a hypergraph, a generalisation of a graph that allows for edges to connect more than two
nodes. Hypergraphs are not as well-understood as graphs, and the tools to analyse them less developed, though
significant progress is being made [23, 28, 49, 52].

While it has been shown that there are certain situations in which pairwise models are generally good
approximations [57, 80], higher-order interactions have proven to be of crucial importance to the rich dynamics
and multistability of complex systems [6, 69, 73, 79]. To motivate the attempt at a unified theory of higher-
order interactions made in this paper, we first highlight the importance of higher-order interactions to particular
problems in biology and physics.

In biology, higher-order interactions among genetic variants and mutations have been shown to play a key
role in the emergence of phenotype from genotype [22, 47]. Similarly, at the level of transcription, non-additive
higher-order effects are responsible for the complexity of BMP signalling [2, 45], embryonic development of
Drosophila [3] and the emergence of cell type from gene expression [38, 40]. On an ecological scale, certain
species of lichen crucially depend on a symbiosis that involves more than two species [77], and higher-order
interactions among species in the Drosophila gut microbiome affect the longevity of the host [29]. Also in the
brain, which is generally thought of as a network of pairwise connected neurons, higher-order and synergistic
functional interactions among brain regions are associated with more complex and integrative cognitive processes
than additive ones [53]. Each of these examples will be shown to be expressible in the framework of Möbius
inversions in Section III C.

However, higher-order interactions are perhaps most ubiquitous in physics, which has a long history of intro-
ducing non-pairwise terms into models. For example, while the Ising model on a lattice is commonly defined
with only pairwise nearest-neighbour interactions, a coarse-graining or renormalisation of the lattice necessarily
introduces higher-order interactions among the spins [54]. Furthermore, spin models with varying and arbitrary-
order interactions have been extensively studied in their own right, and are generally referred to as spin glasses
due to their importance to the study of glassy materials [27, 41, 43]. In quantum field theory, scattering ampli-
tudes are generally approximated by perturbative methods that sum increasing orders of particle interactions
[63, 84]. Both these examples will be shown to be expressible in the framework of Möbius inversions in Section
IIID.

B. Aim

The goal of this study is to show how the higher-order structure of a complex system uniquely emerges from
a decomposition of the system into parts. The goal is not to introduce new notions of higher-order interactions.
Rather, we offer a unified perspective through the lens of Möbius inversions. While the Möbius inversion
theorem has been previously applied in some of the individual examples covered here, viewing them together
through this unifying lens provides several key insights. First, it reveals a common mathematical structure
underlying seemingly disparate notions of higher-order interactions across scientific domains. Second, it provides
a general framework for deriving microscopic interactions from macroscopic observables, relative to a chosen
decomposition of the system into parts. We hope that this perspective inspires novel system decompositions
that yield new notions of higher-order interactions, and allows insights in one scientific discipline to be more
straightforwardly transferred to others. Finally, it reveals the choice of decomposition itself to be a key factor
in determining the nature of the higher-order interactions. It emphasis that the chosen decomposition should
be natural and useful for the given system and property, echoing Plato’s claim that the best way to understand
Nature is to carve it at its joints [64].

C. Related work

That Möbius inversions can be useful in the study of complex systems is itself not a novel observation. For
example, Section III will show that many instances of its use are based on the relationship between moments
and cumulants of a probability distribution, which were already realised as Möbius inversions on the appropriate
lattices in [68, 75]. Furthermore, within information theory, deriving general principles of complexity based on
system decompositions has been explored before in [4], and the authors of [37, 48] use Möbius inversion to connect
different concepts from information theory. However, each of these examples only considers decompositions
with the structure of a Boolean algebra, and as such essentially reduces to the inclusion-exclusion principle.
While solving the system of equations associated to the partial information decomposition (Section III B) has
historically been referred to as a Möbius inversion on a lattice of antichains, the corresponding Möbius function
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has only recently been identified [39]. The framework presented here holds for arbitrary partial orders, and it
will be demonstrated that decompositions into lattices different from Boolean algebras are ubiquitous.

II. MÖBIUS INVERSION AS A MEREOLOGICAL FRAMEWORK

In this section, we introduce various ways to decompose a system and relate the parts to the whole. Bringing
together parts to form a whole is the original meaning of algebra (al-jabr being Arabic for reunion of parts),
and we indeed find that system decomposition can be fruitfully described with an algebraic technique known as
a Möbius inversion. But before we present the central framework, we first define the terms and notations used
in this paper.

A. Definitions and notation

Definition 1. Let P be a set. A partial order on P is a binary relation ≤ with the following properties for all
a, b, c ∈ P :

Reflexivity: a ≤ a (1)

Transitivity: a ≤ b and b ≤ c =⇒ a ≤ c (2)

Antisymmetry: a ≤ b and b ≤ a ⇐⇒ a = b (3)

Whenever a ≤ b we say that a is less than or equal to b. Two elements a, b ∈ P are comparable when either
a ≤ b or b ≤ a, and incomparable otherwise. When a ̸= b and a ≤ b, then we write b > a, and say that a is
greater than b.

The tuple (P,≤) is referred to as a partially ordered set, or poset, but we often just write P when the ordering
is clear from context. Given a subset S ⊆ P , an element b ∈ P is a lower bound for S if ∀s ∈ S : b ≤ s (upper
bounds are defined similarly). An interval [a, b] on P is a set {x : a ≤ x ≤ b}, and a poset is called locally finite
if all such intervals are finite.
One can impose extra structure on the poset to form special cases. For example, a poset in which every two

elements are comparable is called a totally ordered set. An obvious example of this is the poset (N,≤) of the
natural numbers with their usual ordering. A poset P in which every two elements a, b ∈ P have a unique
greatest lower bound a ∧ b ∈ P and least upper bound a ∨ b is called a lattice.
Given a poset (P,≤), one can study how functions on the underlying set P interact with the ordering. For

example, a function f : P → R is called monotone if a ≤ b implies f(a) ≤ f(b). However, there is a particular
rich theory of functions on intervals on locally finite posets. Functions on intervals exploit the full structure of
the poset, and form an algebraic structure known as the incidence algebra, where the algebra’s multiplication
operation ∗ on two functions f, g : P × P → R is defined as the convolution of their values over the interval:

(f ∗ g)(a, b) =
∑

a≤x≤b

f(a, x)g(x, b) (4)

Of particular interest are three elements of the incidence algebra: the delta function δP , zeta function ζP and
the Möbius function µ.

Definition 2 (Delta function). Let (P,≤) be a locally finite poset. Then the delta function δP : P × P → R is
defined as

δP (x, y) =

{
1 if x = y

0 otherwise
(5)

Definition 3 (Zeta function). Let (P,≤) be a locally finite poset. Then the zeta function ζP : P × P → R is
defined as

ζP (x, y) =

{
1 if x ≤ y

0 otherwise
(6)

Definition 4 (Möbius function). Let (P,≤) be a locally finite poset. Then the Möbius function µP : P ×P → R
is defined as

µP (x, y) =


1 if x = y

−
∑

z:x≤z<y

µP (x, z) if x < y

0 otherwise

(7)
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When the underlying poset is clear from context, or irrelevant, we sometimes omit the subscript. Note that δ
corresponds to the multiplicative unit (δ ∗f = f ∗ δ = f for all f in the incidence algebra), and that multiplying
a function f : P → R with the zeta function amounts an integral over the poset: (f ∗ ζ)(x, y) =

∑
x≤z≤y f(z)

(to properly define the multiplication, interpret f as a function on P ×P that is constant in its first argument).
One of the most important results in the theory of incidence algebra then states that the Möbius function is the
multiplicative inverse of the zeta function (µ ∗ ζ = ζ ∗ µ = δ) and that therefore the following theorem holds:

Theorem 1 (Möbius inversion theorem, Rota [67]). Let P = (S,≤) be a finite poset and τ, η ∈ S. Let f : P → R
be a function on P , and let µP be the Möbius function on P . Then the following two statements are equivalent:

f(τ) =
∑
η≤τ

g(η) (8)

g(τ) =
∑
η≤τ

µP (η, τ)f(η) (9)

The Möbius inversion theorem states that decompositions over a poset can be inverted by looking up the
Möbius function of the poset. This powerful result forms the basis of this study. In the following sections, we
will show how this theorem can be applied to a wide range of systems, and how it can be used to define and
estimate many well-established notions of higher-order structure in complex systems.

B. Decomposing Systems from macro to micro

Given a system S with parts si, consider an arbitrary property Q(S) of the system. A purely additive property
would be one where

Q(S) =
∑
i

q(si) (10)

where q(si) is the contribution of the part si to the property Q(S). For example, if a person’s height is
determined purely additively in terms of the presence of genetic variants gi ∈ G, then one could write H(G) =
h(∅) +

∑
i h(gi), where h(∅) is the height of a person without any of the variants, and h(gi) is the contribution

of the genetic variant gi to the person’s height H(G). Note the difference in interpretation between H and h
here: H is the length of a person and easy to measure, whereas h is the length added by a genetic variant which
is generally impossible to directly observe.
However, as discussed in the introduction, many interesting properties of complex systems are non-additive

and emerge from the potentially complex interactions among the components. Still, it’s reasonable to assume
that Q could be decomposed into properties of the components in a nonadditive or interacting way, as anything
else would entail Q being strongly emergent (i.e. fundamentally not derivable from a description of its parts).
One option to allow for nonadditive effects is to introduce nonadditive terms (e.g. multiplicative) by hand.
Another way is to still only include additive contributions, but from elements of a more complex decomposition
of the system. Note that this is fully analogous to introducing more complex terms in the design matrix of a
linear regression problem. This invites one to instead write

Q(S) =
∑

t∈D(S)

q(t) (11)

where D(S) is some kind of decomposition of S that relates the whole to its parts. An obvious choice for D(S)
would be the powerset of S, but there are other choices. For example, while the powerset is essentially the
set of bipartitions, one could assume Q to be determined by the set of all partitions of S. Both powersets
and partitions are very simple and structured decompositions, and can be partially ordered by inclusion and
refinement, respectively, as shown in Figures 1 and 2. Choosing a particular D(S) amounts to a mereological
claim about the system S and property Q, so should be informed by prior knowledge of the system or the
method of observation. In the example of a person’s height, it is natural to decompose the set of genetic
variants into subsets of variants, based on the assumption that the only property of a variant that affects height
is its presence or absence. If we for simplicity assume that G contains just two variants, then a person’s height
H(S) = h(∅)+h(s1)+h(s2)+h(s1, s2), indicating that the height is determined by the individual variants, but
also by an interaction term h(s1, s2) among them.

C. Inverting decompositions with Möbius functions

If the decomposition D(S) is indeed a partial order with a largest element S, then we can write

Q(S) =
∑
t≤S

q(t) (12)
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FIG. 1. The powerset of a set of n variables, ordered by set inclusion, forms a lattice known as a Boolean algebra. Shown
here are the transitive reductions (Hasse diagrams) of the Boolean algebras on 2 (left), 3 (middle) and 4 (right) variables.
For arbitrary n, the Hasse diagrams of a Boolean algebra describes an n-cube.
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1|2

123

13|2 12|3

1|2|3

1234

14|23 1|234 124|3 13|24 123|4 134|2 12|34

1|23|4 14|2|3 1|24|3 13|2|4 12|3|4 1|2|34

1|2|3|4

FIG. 2. The partitions of a set of n variables, ordered by refinement, form a lattice. Shown here are the transitive
reductions (Hasse diagrams) of the partition lattices on 2 (left), 3 (middle) and 4 (right) variables.

where the sum is now over elements from the partial order. If the microscopic contributions q(t) are known,
then predicting the macroscopic quantity Q(S) is known as the forward problem. However, in many cases we
might only be able to observe Q(S), and never the individual contributions q(t). To reverse-engineer q(t) from
Q(S), Equation (12) should be inverted to express q(t) in terms of observations of Q on different parts of the
decomposition. To invert sums like equation (12) over posets, one can use the Möbius inversion theorem:

q(τ) =
∑
η≤τ

µP (η, τ)Q(η) (13)

This is a powerful result: the problem of inverting the decomposition (which amounts to solving a large
system of equations) has been reduced to looking up the Möbius function of the partial order implied by the
decomposition.

The result can be represented diagrammatically as follows. Let Σ be the set of full systems, and ∆ the set
of decompositions. Let FD = {f |f : D(S) → R} be the set of functions on a decomposition D(S). Given a
decomposition map D, consider a map Oq : ∆ → FD that assigns a definition q of microscopic interactions to
a decomposition, and a map OQ : ∆ → FD that assigns a definition Q of macroscopic observables. The two
definitions Oq and OQ are called D-compatible if the following diagram commutes:

Σ ∆ FD

FD

D Oq

OQ

µD ∗
ζD ∗ Or concretely:

S D(S) q

Q

D Oq

OQ

µD ∗

ζD ∗
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If the definitions of Q and q are D-compatible, then the forward problem is solved by multiplying q by ζD, and
the inverse problem is solved by multiplying Q by µD. In fact, the Möbius inversion theorem states that for any
macroscopic observable Q there is a unique notion of microscopic higher-order interaction q that is D-compatible
with Q, and vice versa. Since many decompositions use the same partial order, the Möbius function can be
precomputed, and the inversion can be done in a single step. In fact, by far the most common decompositions of
a system into parts are the powerset and partition lattices, ordered by inclusion and refinement respectively, and
the Möbius function of these lattices is well-known. Denoting the powerset lattice by P(S), and the partition
lattice by Π(S), the Möbius functions are given by

µP(S)(x, y) =

{
(−1)|y|−|x| if x ≤ y

0 otherwise
(14)

µΠ(S)(x, y) =

{
(−1)|x|−1(|x| − 1)! if x ≤ y

0 otherwise
(15)

where |x| is the cardinality of the set x. These functions are well-known and have been used to invert decom-
positions across scientific disciplines, as will be discussed in more detail in Section III.
In the example of genetic variants determining a person’s height, inserting Equation (14) into (13) allows us

to calculate the effect of individual genetic variants, as well as the interaction between them, from observations
of a population’s height. To see this, order the powerset of genetic variants P(S) = {∅, {g1}, {g2}, {g1, g2}} by
inclusion. Then Eq. (13) yields

h(g1) = Q(g1)−Q(∅) (16)

h(g2) = Q(g2)−Q(∅) (17)

h(g1, g2) = Q(g1, g2)−Q(g1)−Q(g2) +Q(∅) (18)

= (Q(g1, g2)−Q(g2))− (Q(g1)−Q(∅)) (19)

This is easily interpreted: the effect of a single genetic variant is the difference between the height of a person
with only that variant and the height of a person without any of the variants. The effect of the interaction
among two variants g1 and g2 is the difference between the effect of g1 in people with g2, and the effect of g1 in
people without g2. Given a population sample containing people with all combinations of these variants, both
of these quantities can be directly estimated. This argument straightforwardly extends to higher-order effects:
the third-order interaction among three genetic variants g1, g2, g3 is given by

h(g1, g2, g3) = H(g1, g2, g3)−H(g1, g2)−H(g1, g3)−H(g2, g3) +H(g1) +H(g2) +H(g3)−H(∅) (20)

In genetics, interaction terms like h(g1, g2) are called epistatic effects and commonly defined and estimated using
exactly this estimator [9, 29] (see Section III C), though not generally linked to Möbius inversions. Section III
will show in more detail how this construction can be applied to any system with a well-defined partial order
of parts, and how it reproduces many well-established notions of higher-order structure in complex systems.

III. MÖBIUS INVERSIONS IN COMPLEX SYSTEMS

We aim to show that the framework presented in Section II reproduces many notions of higher-order inter-
actions throughout the sciences. First, the role of Möbius inversions in statistics is discussed in Section IIIA.
We next recover various quantities from information theory in Section III B. Within the natural sciences, mul-
tiple kinds of interactions in biology (Section III C), physics (Section IIID), and chemistry (Section III E) are
discussed. Finally, we discuss the role that Möbius inversions play in game theory and artificial intelligence in
Sections III F and IIIG, respectively. An overview of all dualities between macroscopic and microscopic quan-
tities is given in Table I of the Discussion. The wide range of examples covered here serve mainly to illustrate
the broad applicability of the framework, but it is by no means necessary to understand the details of all of
them to appreciate the general idea.

A. Statistics

Of central importance in statistics are the moments of a distribution. Given a joint distribution p over N
variables (X1, . . . , XN ) ∈ X , the mixed moment of a set of variables S is given by

E(
∏
i

Si) =
∑

x1,...,xN∈X
p(X1 = x1, . . . , XN = xN )

∏
i

Si (21)

:= ⟨S⟩ (22)
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Since the variables might be dimensionful quantities, any decomposition of this moment into a sum over more
elemental contributions e(X) must comprise only terms with the same dimension. If we decompose τ into its
powerset, it is therefore natural to write:

⟨S⟩ =
∑

T∈P(S)

e(T )
∏

Si∈S\T

e(Si) (23)

where P(S) is the powerset of S. To find out what the elemental contributions e(Si) are, we can invert this
sum using a Möbius inversion:

e(S) =
∑
T≤S

µP(T, S)⟨T ⟩
∏

Si∈S\T

⟨Si⟩ (24)

=
∑
T≤S

(−1)|T |−|S|⟨T ⟩
∏

Si∈S\T

⟨Si⟩ (25)

which for the case of three variables X1, X2, X3 yields

e(Xi) = ⟨Xi⟩ (26)

e(Xi, Xj) = ⟨Xi, Xj⟩ − ⟨Xi⟩⟨Xj⟩ (27)

e(X1, X2, X3) = ⟨X1, X2, X3⟩ − ⟨X1, X2⟩⟨X3⟩ − ⟨X1, X3⟩⟨X2⟩ − ⟨X2, X3⟩⟨X1⟩+ 2⟨X1⟩⟨X2⟩⟨X3⟩ (28)

These are exactly the mixed central moments (it can be readily verified that this construction generalises to all
higher-order moments), so that central moments are the Möbius inverse of mixed moments with respect to the
powerset lattice.
What would happen if we chose a different decomposition of the moments? For example, one might decompose

a moment into contributions from all possible partitions π of the system. Again, making sure that dimensions
match, we write this as

⟨S⟩ =
∑

π∈Π(S)

∏
πi∈π

κ(πi) (29)

where now κ(πi) is the contribution of the partition πi to the mixed moment, and Π(S) is the set of all partitions
of S. Inverting this sum over the lattice of partitions ordered by refinement yields

κ(S) =
∑

π∈Π(S)

µΠ(π, S)
∏
πi∈π

⟨πi⟩ (30)

=
∑

π∈Π(S)

(−1)|π|−1(|π| − 1)!
∏
πi∈π

⟨πi⟩ (31)

where we have written S for the partition {S, ∅}. This happens to be the same as the central moments for up
to three variables, but is different from them afterwards. The κ are called the mixed cumulants, and famously
offer an equivalent way to characterise the distribution p.

Note that a decomposing a set of variables S into partitions only makes sense if the variables commute. In the
noncommutative case, it is more natural to decompose S into so-called non-crossing partitions. A non-crossing
partition is a partition of S such that no two elements of the partition cross each other. For example, the
partition {{1, 2}, {3, 4}} is non-crossing, but {{1, 3}, {2, 4}} is not. In general, a partition is non-crossing if
there is no chain of elements A > B > C > D such that A and C are in the same block, B and D are in the
same block, but A and D are in different blocks. The Möbius function of the lattice of non-crossing partitions
is known to be given by signed Catalan numbers, and can be used to define the noncommutative version of
cumulants, called free cumulants [76]. When sampling from stochastic processes, one might encounter path-
valued variables. The statistics of such path-values samples can be summarised in a sequence of path signature
moments. The authors of [11] argue that the sequential nature of these path-valued variables makes it most
natural to decompose them into ordered partitions, which is a different subset of partitions that can again be
ordered by refinement. Inverting the path signature moments over this lattice of ordered partitions yields the
path signature cumulants, which are the natural generalisation of the cumulants to path-valued variables.

B. Information theory

1. Entropy and Mutual Information

Given a set X of random variables Xi, the joint entropy H(X) is the total amount of uncertainty about
the state of X before an observation, or equivalently, the amount of information gained by observing X. It is
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defined as

H(X) = −
∑
x∈X

p(X = x) log p(X = x) (32)

where X is the set of all possible states of X, and p(X = x) is the probability of observing state x. One might
assume that the total information in the system can be decomposed into information contained in different
parts of the system. To do this, we decompose the system into the powerset of X. The joint entropy can then
be written as

H(X) =
∑

S∈P(X)

I(S) (33)

where I(S) is the information contributed by the part S. These individual contributions to the joint entropy
are given by a Möbius inversion on the powerset of X, ordered by inclusion:

I(X) =
∑
S≤X

µP(S,X)H(S) (34)

=
∑
S≤X

(−1)|S|−|X|H(S) (35)

For the example of two variables X1 and X2 this yields

I(X1) = H(X1) (36)

I(X2) = H(X2) (37)

I(X1, X2) = H(X1, X2)−H(X1)−H(X2) (38)

This is, up to a minus sign, exactly the definition of mutual information, which is the amount of information
shared between two variables (or equivalently: the Kullback-Leibler divergence between the joint distribution
and the product of the marginals):

I(X1, X2) =
∑
x1,x2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
(39)

In general, the mutual information among a set of variables, also referred to as their interaction information, is
indeed given by the Möbius inversion of the entropy of the powerset of the variables, with some authors adding
a minus sign to even orders to make sure that the entropies of single variables always get a + sign. This is a
well-established result, and is based on the analogy between Shannon information theory and set theory [89].
In fact, the same argument holds for the pointwise information, or surprisal h(x), which is the amount of

information gained by observing a particular realisation X = x:

h(x) = − log p(X = x) (40)

A Möbius inversion on P(X) then leads to the definition of pointwise mutual information:

i(X1, X2) = log
p(x1, x2)

p(x1)p(x2)
(41)

This construction is covered in more detail in [37]. The powerset decomposition of entropy and surprisal is the
simplest option, by far the most common, and the basis of all Shannon information theory. However, in recent
years, other decompositions have been proposed, motivated at least in part by the fact that higher-order mutual
information can become negative, which has hindered the operational interpretation of higher-order information
quantities.

2. The Partial Information Decomposition

The partial information decomposition (PID) framework, introduced by Williams and Beer [87], proposes
that the information a set of predictor variables X contains about a target Y can be decomposed into various
terms representing synergistic information (available only in the joint state of the variables), unique informa-
tion (exclusively contained in a single predictor variable), and redundant information (shared among multiple
predictor variables). In their seminal work, Williams and Beer [87] utilized the PID to demonstrate that three-
way mutual information is the difference between synergistic and redundant information, with negative values
indicating the prevalence of synergistic effects.
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The PID is constructed by defining the types of information sources that can be built from predictor vari-
ables. For instance, given two predictor variables X1 and X2, the information they carry about Y , denoted
I({X1, X2};Y ), can be decomposed as follows:

I({X1, X2};Y ) = Π({X1};Y ) + Π({X2};Y ) + Π({X1}{X2};Y ) + Π({X1, X2};Y ) (42)

where Π({Xi};Y ) represents the unique information carried by Xi about Y , Π({X1, X2};Y ) denotes the syn-
ergistic information available only from the joint state of the variables, and Π({X1}{X2};Y ) represents the
redundant information about Y shared by X1 and X2. To construct information sources from an arbitrary
set S of predictor variables, one should consider redundancies among all possible combinations of subsets of S.
However, note that the redundancy among a set a and a set b reduces to the unique information of a if a ⊆ b.
This restricts the set of information sources to combinations of predictor subsets that are mutually incomparable
by the ordering ⊆. Such incomparable sets are called antichains of the poset (P(S),⊆). Two antichains A and
B can be ordered by redundancy by setting A ≤ B if for every b ∈ B there is an a ∈ A such that a ⊆ b. That is,
A ≤ B if B contains at least the redundancy with respect to the outcome Y that A does. The Hasse diagram
of this lattice of antichains is shown in Figure 3 for up to |S| = 4. Note that the redundancy lattice is different
from both the powerset and partition lattices, but is completely isomorphic up to N = 2 variables (cf. Figures
1 and 2).
Let Rn be the redundancy lattice of n variables. The PID decomposition of the information I(S;Y ) that a

set of variables S carries about Y can then be written as

I(S;Y ) =
∑
R≤S

Π(R;Y ) (43)

This can be inverted to get expressions of the individual contributions Π(R;Y ) in terms of the mutual informa-
tion I(T ;Y ):

Π(R;Y ) =
∑
T≤R

µRn
(T,R)I(T ;Y ) (44)

This inversion, however, is far from trivial. One problem is that |Rn| = D(n), where D(n) is the nth Dedekind
number. The series of Dedekind numbers grows so quickly that it is only known up to D(9) [36, 81]. This makes
the Möbius inversion of the PID computationally infeasible for large n, although a closed-form expression for
the Möbius function on the redundancy lattice has recently been derived [39].
However, even when the Möbius function can be calculated, this inversion leads to an ambiguity, as the

definition of I(T ;Y ) is unclear when the antichain T contains more than a single set of variables. Consequently,
solving the PID requires a well-defined notion of information on arbitrary antichains. A significant portion of
the literature on the PID has focused on constructing such definitions, but no consensus has been reached thus
far.
Recently, the PID framework has been extended to accommodate multiple target variables and information

dynamics in time [56]. The associated ΦID decomposition lattice is the product of the standard redundancy
lattices associated to the individual targets. Since the Möbius function of a product of lattices is the product
of Möbius functions of the lattices [78], the ΦID decomposition reduces to that of the normal PID when the
Möbius function of the redundancy lattice is known.

C. Biology

1. Epistasis

In the last decade, improved genetic sequencing of genomes and transcriptomes has revealed that traits
often depend on many, if not most genes. This change in perspective has been described as a transition from
monogenic, to polygenic and omnigenic models [13]. Furthermore, the effect of a single genetic variant can
depend on the presence of other genetic variants, a type of genetic interaction called epistasis. As in the
example of a person’s height in the introduction, a general phenotype F (G) that depends on the presence of a
set of genetic variants gi ∈ G can be decomposed into the sum of the effects of subsets gi ∈ P(G) of genetic
variants. A Möbius inversion on the lattice of subsets of genetic variants gives the following definitions for
genetic effects and epistatic interactions I(g):

F (g = 1⃗, G \ g = 0⃗) =
∑

s∈P(g)

I(s) (45)

⇐⇒ I(g) =
∑
s⊆g

(−1)|s|−|g|F (s = 1⃗, G \ s = 0⃗) (46)
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FIG. 3. The redundancy terms of a powerset of n variables can be partially ordered: if A and B are redundancy
terms, then A ≤ B if for every b ∈ B there is an a ∈ A such that a ≤ b. Shown here are the transitive reductions
(Hasse diagrams) of the redundancy lattices on 2 (left), 3 (middle) and 4 (right, labels not shown) variables. Note that
redundancies among n variables are the antichains in the powerset of n-variables.

That is, the interaction among a set of genes g can be expressed in terms of observed phenotypes of individuals
with varying genotypes. For example, the interaction among three genes g1, g2, g3 is given by

Ig1g2g3 = I({g1, g2, g3}) = F (1, 1, 1, 0⃗)− F (1, 1, 0, 0⃗)− F (1, 0, 1, 0⃗)− F (0, 1, 1, 0⃗) (47)

+ F (1, 0, 0, 0⃗) + F (0, 1, 0, 0⃗) + F (0, 0, 1, 0⃗)− F (0, 0, 0, 0⃗)

This expression is indeed the one used to estimate epistasis in much of the literature. The authors of [9]
arrive at a similar expression based on volumes of polytopes, which has been used to describe epistasis among
genetic variants [22] as well as in the context of microbiomes [29].

Even though interactions are necessarily defined with respect to some outcome, this need not be a phenotype
in the traditional sense of the word. One possible outcome that requires no macroscopic measurements, for
example, is the population probability of a particular gene expression pattern. If we represent gene expression
as a binary vector G, where Gi = 1 if gene i is expressed above some threshold, then inverting the log-probability
of observing transcriptome G gives the following definition of the interaction among genes gi:

I(g) =
∑
s⊆g

(−1)|s|−|g| log p(s = 1, g \ s = 0) (48)

which can be directly estimated from a population sample. A method to estimate such interactions from single-
cell RNA-seq data was recently developed, and used to identify novel cell states and types in various organisms
[40].
Instead of inferring the log-probability, i.e. the surprisal, one could also invert its expected value, i.e. the

entropy. As explained in Section III B, this yields (higher-order) mutual information, which is used by the
algorithm that won the DREAM2 challenge of inferring gene regulatory networks from expression data [82].

2. Epidemiology

The central question in epidemiology is to understand the influence of various factors on an individual’s health
outcomes. One obvious example is estimating the effect a vaccine has on disease risk. However, disease risk
after vaccination is not only determined by the vaccine itself, but also by innate factors like the individual’s
immune system and external factors like the presence of other pathogens, as well as interactions among these.
Typically, the effect on outcome Y of a factor X is isolated from all other factors by randomly dividing the
population into groups, and then intervening such that X = 1 in group 1, and X = 0 in group 2. The Average
Treatment Effect (ATE) is then defined as

ATE(Y ;X) = E(Y |X = 1)− E(Y |X = 0) (49)

However, in observational studies, where randomisation followed by intervention is not possible, the effect of X
generally cannot be isolated, and the outcome Y depends on a potentially large set of factors S such that:

E(Y |S = 1) =
∑

s∈P(S)

I(s) (50)
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where I(s) now represents the effect of the collection of factors s on the outcome Y . The effect of a single factor
s = X is then seen to be given by an ATE in the absence of any of the other factors:

I(X) = E(Y |X = 1, S \X = 0)− E(Y |X = 0, S \X = 0) (51)

whereas the second- and higher-order terms correspond to interactions among the factors, equivalent to the
epidemiological interactions defined in [8]. For example, the interaction among two factors X1, X2 is given by

I(X1, X2) = E(Y |X1 = 1, X2 = 1, S \ {X1, X2} = 0)− E(Y |X1 = 1, X2 = 0, S \ {X1, X2} = 0) (52)

− E(Y |X1 = 0, X2 = 1, S \ {X1, X2} = 0) + E(Y |X1 = 0, X2 = 0, S \ {X1, X2} = 0)

= ATE(Y ;X1|X2 = 1, S \ {X1, X2} = 0)−ATE(Y ;X1|X2 = 0, S \ {X1, X2} = 0) (53)

In theory, this allows one to estimate drug interactions from population statistics.

3. Neuroscience

As biology tends to deal with very complex systems, decompositions are ubiquitous. The history of neuro-
science can accordingly be described by evolving views on what the appropriate decomposition of the brain
is: from neurons, to neural circuits, to hierarchical structures, to the currently popular approach that focuses
on different spatial and functional regions [7]. To describe the correlations and higher-order relationships be-
tween parts of the brain, both the classical approach to higher-order information theory, as well as the PID are
commonly used, reflecting concurrent use of both the powerset and redundancy decomposition [24, 33, 59, 72, 86]

D. Physics

1. Equilibrium dynamics

Statistical physics is largely focused on relating the large-scale behaviour of a system to the microscopic
interactions. Commonly, this is done through an energy function E : S → R that maps a state s ∈ S of the
system to its energy. Writing down a form of E amounts to choosing a decomposition of the system into parts.
For example, the Ising model assumes that the energy of a system S = {s1, . . . , sn}, si ∈ {0, 1}, decomposes
into singleton and pairwise contributions and is given by

E(S = s) = −
n∑

i,j=1

Jijsisj −
n∑

i=1

hisi (54)

or, for a subsystem Ŝ ⊆ S

E(Ŝ = 1⃗, S \ Ŝ = 0⃗) = −
∑

i,j: si,sj∈Ŝ

Jij −
n∑

i: si∈Ŝ

hi (55)

where hi is the external field acting on spin i and Jij is the interaction strength between spins i and j, typically
only nonzero for nearest neighbours on a lattice. Limiting the interactions to linear and pairwise quantities only
is an assumption imposed by the Ising model. A more general form of the energy function would be

E(S = s) = −
∑

t∈P(S)

Jt

|t|∏
i=1

ti (56)

where Jt is the interaction strength of the part t and P(S) denotes the powerset of S. If one is given the
parameters Jt, the forward problem is to calculate the behaviour of the system S under the influence of the
energy function E. The inverse problem is to infer the parameters Jt from observations of the system S. The
inverse problem is in general intractable, as direct observations of the energy are not possible. However, at
equilibrium, the probability of observing a state s is given by the Boltzmann distribution

p(s) =
1

Z
e−E(s) (57)

where Z =
∑

s∈S e−E(s) is the partition function. This means that one can observe the energy (up to an
unimportant global shift) of a state indirectly as − log p(s) by simply estimating the probability of a state from
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a collection of samples. From this, a Möbius inversion quickly yields precise values for the parameters Jη [37]:

E(S = 1⃗) =
∑

t∈P(S)

Jt (58)

⇐⇒ JS =
∑
t≤S

µP (t, S) log p(t = 1, S \ t = 0) (59)

=
∑
t≤S

(−1)|t|−|S| log p(t = 1, S \ t = 0) (60)

For example, the inverse Ising problem for pairwise nearest-neighbour interactions at equilibrium is solved by

Jij = log
p(si = 1, sj = 1, s−(i,j) = 0)p(si = 0, sj = 0, s−(i,j) = 0)

p(si = 1, sj = 0, s−(i,j) = 0)p(si = 0, sj = 1, s−(i,j) = 0)
(61)

where s−(i,j) denotes all spins except i and j. Simplifying notation further by writing pabc = p(si = a, sj =
b, sk = c, s−(i,j,k) = 0), the 3-point coupling is given by

Jijk = log
p111p100p010p001
p000p011p101p110

(62)

This solution to the inverse problem was already noted in [8], but the argument presented here shows that the
forward and inverse problem are exactly related through a Möbius inversion.
The chosen powerset decomposition of the energy function restricts this approach to binary variables. How-

ever, categorical variables can obey different partial orders but be treated in the same way, leading to a new
notion of interaction that is no longer related to spin models. This construction is briefly discussed in [8, 37].

2. Statistical mechanics

In the approach above, one still needs access to observations of all microscopic variables to estimate the
energy of observed states and solve the inverse problems. However, one could also start the line of reasoning
from more macroscopic quantities, like averages over an ensemble. For example, one might only be able to
measure the expected value of variables and their products, called correlation functions. For example, the
two-point correlation function is given by

⟨X1X2⟩ =
∑
x1,x2

p(X1 = x1, X2 = x2)x1x2 (63)

where the summation is over the full state space of the joint system (X1, X2). The observed correlations will be
the result of microscopic interactions, but the exact form of the interactions might be unknown. To decompose
the correlation function into contributions from individual interactions, it should be noted that to respect the
multiplication rule of probability, contributions of multiple interactions happening in a single process should be
multiplied. For this reason, a decomposition of a system of variables X into products over partitions is most
appropriate:

⟨X⟩ =
∑

π∈Π(X)

∏
πi∈π

u(πi) (64)

where Π(X) is the set of all partitions of X, and u(πi) is the contribution by the members of partition element
πi. For example, the 4-point correlation function can be decomposed into the following contributions, where
variables that appear together in a given partition are connected by a line:

⟨X1X2X3X4⟩ =
X1 X2

X3 X4

+ + + + + + + + + + + + + + (65)

For example, a diagram like corresponds to a term u(X1, X3)u(X2)u(X4), and might be interpreted as the
contribution of the situation in which X1 and X3 interact, but X1 and X4 do not. The correlation functions
can then be inverted over the lattice of partitions to give the contributions of individual diagrams, as well as
those of terms involving a single u. For example, the first three orders of u are easily seen to be given by

u(X1) = ⟨X1⟩ (66)

u(X1, X2) = ⟨X1X2⟩ − ⟨X1⟩⟨X2⟩ (67)

u(X1, X2, X3) = ⟨X1X2X3⟩ − ⟨X1X2⟩⟨X3⟩ − ⟨X1X3⟩⟨X2⟩ − ⟨X2X3⟩⟨X1⟩+ 2⟨X1⟩⟨X2⟩⟨X3⟩ (68)
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These are exactly the famous Ursell functions of statistical mechanics. Ursell functions are also called connected
correlation functions, because a single u term involves only the connected part of a diagram in the expansion of
Equation (65). While the first three Ursell functions coincide with the mixed central moments, the higher-order
Ursell functions are different, and used throughout statistical mechanics. The Ursell functions are related to
the higher-order interactions of the theory and are essentially the cumulants of the dynamics, which is why they
rely on exactly the same decomposition of moments as was described in Section IIIA. Note, however, that Ursell
functions are the partition-inverse of the moments, while the higher-order interactions of equilibrium dynamics
are the powerset-inverse of the energy.

3. Quantum & Statistical Field Theory

In quantum field theory, the random variables are replaced by field operators ϕ(x). The correlation functions—
or Green’s functions—are then defined as expectation values of time-ordered products of field operators in the
vacuum state |Ω⟩:

G(4)(x1, x2, x3, x4) = ⟨Ω|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) |Ω⟩ (69)

= Z−1

∫
DϕeiS[ϕ]ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) (70)

where T is the time-ordering operator, S[ϕ] is the action of the field theory, Z =
∫
DϕeiS[ϕ], and the integral

is over all possible field configurations. The reason that such time-ordered correlation functions are of great
interest, is that they determine the particle scattering amplitudes in a given quantum field theory through the
LSZ reduction formula [50, 63]. To calculate the correlation functions, one typically introduces a functional
Z[J ], defined as

Z[J ] =

∫
DϕeiS[ϕ]+i

∫
d4xJ(x)ϕ(x) (71)

such that

G(4)(x1, x2, x3, x4) =
1

i4
δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
Z[J ]

∣∣∣∣
J=0

(72)

where δ
δJ(x) is the functional derivative with respect to J(x). The functional Z[J ] can be expanded in a power

series in J , and the coefficients of this expansion are the correlation functions, which is why Z[J ] is called the
generating functional, in analogy with the moment generating function of probability theory. Note, however,
that the analogy is not perfect: correlation functions are complex-valued, and are not defined with respect to a
joint distribution over states so cannot be interpreted as the moments of a probability distribution.
Now, as in the case of statistical classical mechanics, one might decompose the quantum correlation functions

over the lattice of partitions:

G(4)(X) =
∑

π∈Π(X)

∏
πi∈π

u(πi) (73)

where the u(πi) are the contributions of the members of the partition element πi. This can of course be
represented by the same diagrams as in the case of statistical mechanics in Equation 65, but there is an
important difference. By expanding eiS[ϕ] as a power series around the non-interacting theory up to certain
order and applying Wick’s theorem to the resulting products of operators, one can show that the connected
correlation functions are given by the sum of all Feynman diagrams with the same external vertices, but with
an arbitrary number of internal vertices and loops. To emphasise that the diagrammatic representations of the
deomposition may contain arbitrary internal processes, we draw the quantum diagrams with a shaded internal
circle:

Statistical Mechanics: Quantum Field Theory:

A single connected component of one of the diagrams now represents an infinite sum over Feynman diagrams.
For example, in a theory with quartic interactions:

= + + + . . .+ + . . . (74)
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A Möbius inversion on the lattice of partitions then gives an expression for the connected components of these
graphs in terms of the correlation functions. For example:

= ⟨Ω|Tϕ(x1)ϕ(x2) |Ω⟩ − ⟨Ω|ϕ(x1) |Ω⟩ ⟨Ω|ϕ(x2) |Ω⟩ − 1 (75)

= ⟨Ω|Tϕ(x1)ϕ(x2)ϕ(x3) |Ω⟩ − ⟨Ω|ϕ(x1) |Ω⟩ ⟨Ω|ϕ(x2)ϕ(x3) |Ω⟩ (76)

− ⟨Ω|ϕ(x2) |Ω⟩ ⟨Ω|ϕ(x1)ϕ(x3) |Ω⟩ − ⟨Ω|ϕ(x3) |Ω⟩ ⟨Ω|ϕ(x1)ϕ(x2) |Ω⟩ (77)

+ 2 ⟨Ω|ϕ(x1) |Ω⟩ ⟨Ω|ϕ(x2) |Ω⟩ ⟨Ω|ϕ(x3) |Ω⟩ (78)

The expansion of a quantum amplitude associated to a scattering process only involves such diagrams where
all external lines are connected, so for any given quantum field theory, one can identify scattering amplitudes
as the Möbius inverse of correlation functions on the lattice of partitions.

It should be emphasised that while we used the language of quantum field theory throughout this section,
similar methods lead to definitions of cumulants in classical- and mean-field theories as well. In fact, classical
statistical field theory is directly related to quantum field theory through aWick rotation (by replacing imaginary
time by inverse temperature). While there is a strong analogy to the decomposition of the moments in Section
IIIA, it should be emphasised that the correlation functions treated here are not the moments of some probability
distribution over field configurations. Rather, the analogy holds only at the level of the expectation values, and
the fact that one can define a moment generating function Z[J ], as well as a cumulant generating function
log(Z[J ]). This fact has been used for decades to define cumulants in any setting where a suitable notion of
average can be defined, and is known as the generalised cumulant expansion method [46]. Such approaches have
been used to define connected correlations in networks of neurons [61], on belief propagation graphs [14, 85],
and in chemical dynamics [21, 44].

E. Chemistry

A significant challenge in chemistry is predicting the properties of molecules from their configuration, com-
monly referred to as the quantitative structure-activity relationship (QSAR). To describe a molecular property
X in terms of the configuration of a molecule M , one might associate a graph GM with the molecule, where the
nodes are atoms and the edges are bonds. The property X can then be expressed as a function of the subgraphs
of G:

X(M) =
∑

G≤GM

x(G) (79)

where x(G) is the contribution of the subgraph G to the property X and the sum is over all subgraphs of
G. A straightforward Möbius inversion is of course possible, but some chemical properties are more naturally
decomposed over other posets. For example, a molecule’s resonance energy is most naturally decomposed
into contributions from acyclic graphs only. Motivated such chemical questions, the authors of [5] derived a
closed-form expression for the Möbius function on this poset of acyclic graphs.
Also studied in chemistry is how properties of a family of molecules are related. The authors of [34], for

instance, study how toxic molecules from the family of Chlorobenzenes are to guppies. A chlorobenzene is a
benzene molecule where one or more hydrogen atoms have been replaced by chlorine atoms. That means that
there is a certain partial order one can impose on the set of 13 possible chlorobenzenes (taking into account the
6-fold rotational symmetry of the benzene ring). Namely, two chlorobenzenes c1 and c2 are related by c1 ≤ c2
if c2 can be created from c1 by adding a single chlorine atom. The toxicity T can then be expressed as a sum
over the toxic contributions t of the chlorobenzenes that come before it in the reaction chain:

T (c) =
∑
c′≤c

t(c′) (80)

Similarly, the authors of [35] construct the poset of adding methyl groups to cyclobutanes. As the molecules
higher-up in the partial order are constructed from the lower ones, one could expand the property of a molecule
in terms of the contributions of the molecules that come before it. This means that every molecule defines
its own poset and thus Möbius function, but these have been calculated and used to verify that higher-order
contributions decrease so that truncating the expansion at a certain level leads to a good approximation of the
property [35].

F. Game Theory

In coalitional game theory, players can form coalitions and cooperate, potentially increasing their expected
payoff. The core idea is that value might add synergistically, or superadditively. For example, a pair of shoes
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might be worth more than twice the value of an individual shoe. Therefore, one could decompose the total
value v(S) of a coalition S into the sum of the synergistic contributions w(R) of all subsets of S:

v(S) =
∑
R⊆S

w(R) (81)

If the value of the coalitions is known, then this can be inverted on the Boolean algebra of subsets of S to yield
a definition of the synergistic contributions w(R):

w(R) =
∑
R⊆S

(−1)|S|−|R|v(S) (82)

One reason that exact values for the synergy of coalitions might be relevant, is that they are a natural answer
to the question of how to distribute the value of a coalition among its members. Since the synergy of a given
coalition cannot be attributed to any single member, it should be distributed evenly among all members. The
payout any individual player i should then expect in a grand coalition involving all of N players is then the
average synergy that player i adds to each possible coalition that includes them:

ϕi =
∑

S⊆N :i∈S

w(S)

|S|
(83)

This is a very well-known quantity, known as the Shapley value for player i. It is more commonly written as

ϕi =
1

|N |
∑

S⊆N\{i}

(
|N | − 1

|S|

)
(v(S ∪ {i})− v(S)) (84)

and is the unique payout function that satisfies a number of favourable properties. In other words: the Shapley
value of a player i is the Möbius inverse of the normalised synergy of a coalition on the inclusion lattice of
subsets of N that include i.
Choosing a different normalisation in the decomposition of ϕi, one that for example depends on the identity

of player i, the Möbius inversion recovers a family of distribution rules [10].

G. Artificial Intelligence

Modern artificial intelligence systems are complex and involve many interacting parts. While the practical and
commercial success of machine learning models has been undeniable, a good understanding of the relationship
between the microscopic structure of the model and its emergent macroscopic behaviour is still lacking in most
applications. In many situations, like medical applications, a way to link the microscopic structure of a model
to its macroscopic behaviour is a crucial step towards widespread adoption.
Predictive machine learning models are generally trained on many features, but once the final model has been

constructed it can be difficult to determine how much each feature contributes to the prediction. One way to
address this issue is to decompose the prediction of the model into contributions of individual features, and
using the Shapley value to assign a total contribution to each feature, replacing the value function v(S) with
the model’s prediction, and marginalising over the features not in S [15, 26, 88]. This allows one to determine
which features are most important for a particular model’s prediction, as well as which groups of features show
synergistic effects.
In generative machine learning, the features do not contribute to a prediction, but to a probability distribution.

Since energy-based models have a closed-form expression for the generated probability distribution, they allow
for a precise understanding of the relationship between their internal structure and the encoded distribution.
One architecture that has led to particularlty fruitful insights has been the Restricted Boltzmann machine, in
which the probability of a sample is essentially the Boltzmann distribution of a statistical physics model. An
argument similar as above reveals that the cumulants of the model are the Möbius inverse of the mixed moments
of the model and describe the interactions among the features, with higher-order interactions corresponding to
synergistic effects among the features [17, 37, 60].
Even before the modern success of machine learning techniques, artificial intelligence has created formal

methods to treat reasoning agents. Dempster-Shafer theory is a generalisation of Bayesian probability theory
[18, 71] (though its precise relationship to Bayesian inference is controversial [20]) that formalises how agents
combine evidence to update beliefs. It decomposes the set of all properties of the universe X into the powerset
of propositions about X. Each element (A) from the powerset P(X) then gets assigned a certain belief mass
through the basic belief assignment function m : P(X) → [0, 1], where

∑
A∈P(X) m(A) = 1. The total belief an

agent has about a proposition A is then given by the mass of A and the mass of all subsets of A

Bel(A) =
∑
B⊆A

m(B) (85)
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such that the belief assignment function can be expressed in terms of the belief of agents after observing varying
evidence

m(A) =
∑
B⊆A

(−1)|A|−|B|Bel(B) (86)

which is used to define the generalised Bayesian update rule. While classical Dempster-Shafer theory always used
the powerset decomposition, more modern approaches have generalised this to other lattices where properties
of the Möbius function are known [30, 90].

IV. DISCUSSION

Field of Study Macro Quantity Decomposition Micro Quantity/Interactions

Statistics Moments Powerset Central moments

Moments Partitions Cumulants

Free moments Non-crossing partitions Free cumulants

Path signature moments Ordered partitions Path signature cumulants

Information Theory Entropy Powerset Mutual information

Surprisal Powerset Pointwise mutual information

Joint Surprisal Powerset Conditional interactions

Mutual Information Antichains Synergy/redundancy atoms

Biology Pheno- & Genotype Powerset Epistasis

Gene expression profile Powerset Genetic interactions

Population statistics Powerset Synergistic treatment effects

Physics Ensemble energies Powerset Ising interactions

Correlation functions Partitions Ursell functions

Quantum corr. functions Partitions Scattering amplitudes

Chemistry Molecular property Subgraphs Fragment contributions

Molecular property Reaction poset Cluster contributions

Game Theory Coalition value Powerset Coalition synergy

Shapley value Powerset Normalised coalition synergy

Artificial intelligence Generative model probabilities Powerset Feature interactions

Predictive model predictions Powerset Feature contributions

Dempster-Shafer Belief Distributive Evidence weight

TABLE I. An overview of the various ways in which macroscopic quantities can be linked to microscopic interactions by
the Möbius inversion associated with a certain decomposition.

The aim of this study has been to provide a unified perspective on the various notions of higher-order
interactions in complex systems. We have shown that decomposing a system into parts leads to a unique
definition of the interactions among the parts, through a Möbius inversion of the outcome of interest. We
found that this approach reproduces well-known notions of higher-order structure in a variety of scientific fields,
an overview of which is provided in Table I. While some of the relationships in Table I have previously been
described as Möbius inversions, to our knowledge this is the first time that the shared structure underlying
these definitions has been made explicit.

The presented framework shows how the choice of system decomposition determines the nature of the derived
interactions. This highlights decomposition selection as a key step in studying complex system behaviour. While
there are no universal criteria for a ”good” decomposition, in each case the decomposition should be motivated
by knowledge of the system’s structure and the macroscopic property of interest. For example, a partition-
based decomposition may be natural when the property depends on how different parts come together, while a
powerset-based decomposition is more suited to properties that depend binary configurations of the parts.

Fundamentally, this framework mathematises the notion that complex system properties depend on the way
the system is carved up into parts. Different decompositions reveal different kinds of interactions; there is no
single, privileged decomposition. The ”correct” decomposition is the one that yields meaningful interactions for
the question of interest, as seen in the various examples.

One way to interpret the Möbius inversion theorem is as a relationship between the macro- and microscopic
degrees of freedom of a system. If f(S) =

∑
t≤S g(t), then since f is the sum of contributions of all parts, it

can be considered a macroscopic feature of the system. The Möbius inversion theorem then states that the
microscopic contributions g(t) can be recovered from the macroscopic feature f observed on the parts. In this
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sense, it provides a way to study the emergent properties of complex systems, but it should be emphasised that
the inversion is only possible if the macroscopic quantity is also defined for the smaller parts. For many classic
examples of emergence, like bird flocks, temperature, etc, this is not possible.
An interesting example of this problem arose in the partial information decomposition. With the decompo-

sition defined on the redundancy lattice of antichains, estimating the contribution of the information atoms is
only possible given a suitable notion of redundant information on each of the antichains. Much of the PID
literature has focused on resolving this ambiguity in different ways, but no concensus has been reached so far.
However, this also highlights how versatile the Möbius inversion framework is: even when the decomposition
results in ambiguity, different resolutions of this ambiguity can give rise to a rich set of higher-order structure,
which in the case of the PID have been used to characterise different properties of neural information processing
[53, 72, 86].

As a general rule, observations of a system provide access to the macroscopic features (moments, phenotypes,
energies, predictions, etc), which can then be used to infer the microscopic interactions (cumulants, genetic
interactions, Ising interactions, feature contributions, etc), so the Möbius inversion theorem is essentially a
solution to the inverse problem of inferring microscopic structure from macroscopic observables. Note, however,
that it solves the inverse problem relative to a chosen decomposition. If the chosen decomposition is not
appropriate, then the Möbius inversion theorem will not provide a meaningful interpretation of the microscopic
interactions either. One example of this is the Möbius inversion on the lattice of partitions that related scattering
amplitudes of quantum field theory to correlation functions. The Möbius inversion still gave infinite sums over
Feynman diagrams, not the contribution of individual diagrams, so the microscopic interactions were not directly
accessible from the macroscopic observables. Furthermore, collections of particles can carry more structure, like
fermion number and colour, which also implies that partitions are not the most appropriate decomposition for
the problem.
One interesting phenomenon not explored in the present study is that of lattice dualities. It was observed

in [37] that since the order-theoretic dual of a lattice is again a lattice, there are dual higher-order structures
implied by a given decomposition lattice. In information theory, the dual to information theory was found
to be conditional mutual information, with a similar dual quantity derived for Ising interactions. It is an
unexplored but interesting question whether the quantities dual to the ones presented here also offer a meaningful
interpretation, but this is left for future work.

Another exciting direction for future work is to use the current framework to transfer insights from one
scientific discipline to another. For example, in the so-called cluster variation method, physical intuition has
motivated the truncation of sums over lattice subsets to obtain approximations to thermodynamic quantities
of crystals [42]. This summation can be seen as a truncated Möbius inversion over the lattice of physical
crystal lattice sites [1, 58], and could be explored as an approximation scheme in other settings as well. In fact,
precisely such a truncation has been suggested in decompositions of chemical properties of molecules [35]. In
addition, the authors of [40] use causal discovery methods to improve the estimation of genetic interactions (the
Möbius inverse of gene-expression profiles). Since the estimation of microscopic interactions from macroscopic
observables can require many observations, similar methods could be used to improve the estimability of higher-
order interactions in other fields.
Other future work could explore different kinds of decompositions and the higher-order structure they imply.

For example, a recent study has started to explore the combinatorics of nucleotide sequences in polyploid
genomes by decomposing sequencing data over the lattice of integer partitions ordered by refinement [65]. More
speculatively, decompositions beyond locally finite partial orders could be explored by suitably generalising
the Möbius inversion theorem. It is well-known that the Möbius inversion theorem can be generalised to a
more general class of skeletal categories that includes not just posets but also monoids and groupoids [16, 51].
Whether these more general decompositions faithfully and fruitfully describe higher-order structure in complex
systems is, to our best knowledge, a mostly unexplored and open question. We hope that this work inspires
others to explore novel decompositions and discover new types of higher-order structures in complex systems.
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