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A new method recovers phase difference of interfering wavefronts from a pattern of interference
fringes, avoiding discontinuity problem. The continuous phase is a solution of the first order dif-
ferential equation of the interferogram function computed from the fringe intensity profile selected
along the pathway over the interferogram.

Unwrapping the phase from an interferogram is a
common process needed for interpretion of the ob-
ject wavefront shape [1]. In general, the interfero-
gram could be treated as a function with a phase
as an argument. Obtaining the phase from the in-
terferogram function requires solving a trigonomet-
ric equation by inversion [1], outputting the phase
in the so-called wrapped form. The wrapped phase
is periodic function exhibiting a 2π type of discon-
tinuity and spatially aligned with the interference
fringes on the interferogram. The process of unwrap-
ping, i.e., making the countinuous phase from the
2π pieces is challenging due to this discontinuity, be-
cause it requires to track where on the interferogram
the pieces of the phase must be shifted by 2π. The
current state of solving the 2π discontinuity problem
is based on the automatic algorithmic approach and
require to recognising, identifying and indexing the
phase pieces over the interferogram and then manip-
ulating them to remove each individual discontinu-
ity, thereby obtaining the absolute phase function. A
number of such methods for piecewise phase unwrap-
ping (PPU) are known and could be found elsewhere
[2–4].

However, it is possible to find a different math-
ematical treatment, bypass the trigonomentric ap-
proach, solve the phase unwrapping task and ob-
tain the continuous phase directly from the interfer-
ogram. This formulation eliminates the 2π discon-
tinuity problem, giving access to operate with the
phase as a whole piece in its absolute and continuous
form. Below we present the new method of contin-
uous phase unwrapping (CPU) and give an example
comparing both approaches.

Definitions. An interferogram is defined as an im-
age containing a pattern of bright (constructive) and
dark (destructive) fringes projected from the inter-
fering space to the image plane; see an example in
Fig.1a. The fringe pattern is characterized by the
grey values G(r) of the image pixels r = (x, y) oscil-

lating between minimal (black) and maximal (white)
pixel intensities over the chosen path of the interfer-
ogram image, Fig.1b. The function G(r) contains
the information of the phase difference θ(r) of the
interfering wavefronts of the beams. When a wave-
front of the first beam is fixed (used as a reference),
the whole phase difference is attributed to the wave-
front of the second beam (called the object beam).
The object beam, in this case, is treated as a probe
to measure or characterize the properties of physical
objects: topography of reflecting surfaces, shapes of
lenses, thickness of thin transparent films, and so on.
The phase difference θ, the optical path difference

(OPD) δ of the object wavefront with respect to the
referenced one, and the wavelength λ satisfy a rela-
tionship

θ = 2πδ/λ. (1)

If the phase difference θ(r) is recovered from the
grey function G(r), then Eq.(1) delivers the OPD
function δ(r) for given λ. OPD characterises the
above-mentioned physical properties of the interfer-
ence object once the refraction coefficients of the me-
dia where the wavefronts propagate are known.
Following [2] assume a general form of the func-

tion G suitable for the interference experiment with
a single pass of the object beam producing the inter-
ference fringes of infinite width

G = A+B cos θ, (2)

where the grey function G, the coefficients A,B, and
the phase θ are the functions of a particular point
r on the interferogram. While G oscillates in space,
the coefficients A,B are slowly varying functions of
spatial coordinates [2]. Depending on the experi-
mental conditions the coefficients A,B represent a
background illumination and an amplitude of the
recorded light modulation, respectively. For simplic-
ity we consider one-dimensional (1D) functions θ(x)
and G(x).

ar
X

iv
:2

40
4.

14
43

7v
1 

 [
ph

ys
ic

s.
da

ta
-a

n]
  1

9 
A

pr
 2

02
4



2
PPU method example. The PPU approach for un-

wrapping θ(x) from G(x) provides a discontinuous
form of θ(x) because θ being an argument of the co-
sine function is obtained directly from Eq.(2) [5]

θ = arccos
G−A

B
. (3)

Eq.(3) delivers the piecewise form of the phase θ,
where each phase piece θi is defined within the in-
terval 0 ≤ θi ≤ π corresponding to two adjacent
white and black fringes (and vice versa); see an ex-
ample in Fig.1c. Eq.(3) results in the oscillating or
wrapped form of θ which must be unwrapped, pro-
viding a continuous form of θ which has a physically
meaningful shape. The process of unwrapping for
the example in Fig.1c requires identification of the
types of the pieces monotonous function θi(x) [5].
Then, select one type (say with odd indices, θ1, θ3
in Fig.1c) as “true” and convert the opposite type
pieces (with even indices θ2, θ4 in Fig.1c) into the
“true” type by reflecting them as shown in Fig.1c.
Then shift the converted pieces with respect the pre-
ceding ones and obtain the joined pieces θ12 and θ34
corresponding now to 2π discontinuity interval and
representing only the “true” type of phase change.
The continuous shape of the θ profile would be the
result of sequentially shifting all “true” pairs θi,i+1

by 2π with respect to the preceding “true” pairs.
All the above requires application of the appropri-
ate pattern recognition and analysis methods to the
wrapped θ phase, allowing recognition and indexing
the fringes, splitting into pieces, converting, shifting,
and then obtaining the continuous form of the un-
wrapped θ phase by manipulating the adjacent pairs.
The current PPU methods are much more sophisti-
cated than the above, but they are all designed to
remove 2π discontinuities in a piecewise manner.

CPU method. Consider an arbitrary 2D interfer-
ogram characterized by a digital grey function G(x)
known for each pixel of the entire area of the inter-
ferogram. Select a straight pathway parallel to the
x-axis to obtain a 1D grey function of interest G(x)
defined over the interval xmin ≤ x ≤ xmax. Intro-
duce an interferogram function F – a relationship
between the phase difference θ(x) and the grey func-
tion G(x) obtained from a particular experimental
setup. Rewrite Eq.(2) to obtain F corresponding to
a single passage of the object beam through the in-
terfering medium with a unit refraction index

cos θ = F (x) =
G(x)−A

B
. (4)

Differentiating Eq.(4) with respect to x we find

−θ′(x) sin θ = F ′(x). (5)

Use Eqs.(4,5) in Pythagorean identity sin2 α +
cos2α = 1 to eliminate the trigonometric functions
from consideration and obtain

θ′(x)2 =
F ′(x)2

1− F 2(x)
(6)

Note that in the differential equation Eq.(6) the
phase difference is already unwrapped, i.e., θ(x) is
defined over the entire interval xmin ≤ x ≤ xmax.
Applying the relations

√
f2 = |f |, where |.| denotes

a modulus, and |f(x)| = sgn(f)f ≤ 0, where sgn(.)
stands for the sign function returning ±1, write the
solution of Eq.(6) as

θ(x) = sgn(θ′(x))

∫ x

xmin

|F ′(ξ)|√
1− F 2(ξ)

dξ. (7)

The function F (x) and its derivative can be obtained
from Eq.(4) by employing the interference pattern
G(x). The integrand in Eq.(7) at some points in
the integration interval represents the 0/0 indeter-
minate, however the computation shows that terms
contributing to a (possible) divergence cancel out.
The function sgn(θ′(x)) could be obtained once the
extremum points xi of θ(x) are found from the equa-
tion θ′(x) = 0. As at these points both sides of Eq.(6)
vanish, the equation for the extrema xi reads

F ′(x)2

1− F 2(x)
= 0. (8)

In general case Eq.(8) can be solved numerically. For
a sequence of n roots xi, 1 ≤ i ≤ n, of Eq.(8) the
whole interval should be divided into a sequence of
n + 1 segments si : {xi−1 ≤ x ≤ xi}, 1 ≤ i ≤ n + 1
where each segment is characterized by a specific
value of σi = sgn(θ′(x)) with x ∈ si. The sign alter-
nates between adjacent segments. Thus, the whole
sign sequence is determined by the σ1 in the first
segment s1 : {x0 = xmin ≤ x ≤ x1} and it does
not affect the shape of the unwrapped phase. The
integral of Eq.(7) must be applied for each individ-
ual segment si taking into account the phase of the
preceding segment.

CPU method example. To illustrate the CPU
method consider the phase difference defined as a one
dimensional even parabolic function θ(x) = R2 −x2,
in the interval −R ≤ x ≤ R with constant R. Use
Eq.(2) to obtain the grey function

G = A+B cos(R2 − x2), (9)
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where A,B are constants. The goal is to evaluate
Eq.(7) and find the phase θ(x). For the interferogram
function F is given by

F (x) = (G(x)−A)/B = cos(R2 − x2) , (10)

leading to F ′(x) = 2x sin(R2 − x2). Eq.(8) gives
an equation for the roots 4x2 = 0. In the interval
−R ≤ x ≤ R there is a single root x1 = 0, being an
extremum point of the phase function, so it produces
only two sign segments. In the first segment s1 :
{−R ≤ x ≤ 0} the sign σ1 = +1, the integrand of
Eq.(7) is −2x, and the phase θ1(x) for this interval
reads

θ1(x) = θs1(x) = −2

∫ x

−R

ξdξ = R2 − x2, (11)

where θs1(x) denotes the phase per segment. The
phase shift for the whole first segment Θ1 = R2.
For the second segment s2 : {0 ≤ x ≤ R} we have
σ2 = −1, the integrand is 2x, and the phase for this
interval θ2(x) evaluates to

θ2(x) = Θ1 + θs2(x) = R2 − 2

∫ x

0

ξdξ = R2 − x2,

(12)
Uniting the intervals we obtain the final phase θ(x) =
θ1(x) ∪ θ2(x) = R2 − x2 in the entire interval −R ≤
x ≤ R reproducing the identity of the input and
recovered phase, see Fig.1d.
The proposed method can be applied for G(x) de-

fined numerically (as an array), an unknown phase
θ(x) may include more than one extreme point. In
this case, the roots of Eq.(8) and the integral Eq.(7)
are computed numerically, once the process of digi-
tizing the experimental interference pattern provides
a sufficient number of points per the narrowest fringe
in the G(x) function used as an input for the inter-
ferogram function F . Note, this method allows us to
obtain the phase θ(x) profile from the experimental
G(x) profile with the accuracy of the first segment
s1. The sign σ1 for the segment s1 is set arbitrarily,
then one obtains two θ(x) profiles of the same shape

but mirror reflected to each other with respect to the
x-axis. One might choose the correct shape by using
the experimental insights usually existing for some
characteristic points on the interferogram.

The presented method of continuous phase un-
wrapping (CPU) could be considered as compli-
mentary to the existing one – piecewise phase un-
wrapping (PPU). Regarding the fundamental differ-
ence between the methods, the CPU method uses
the numerical calculus approach providing access to
the whole phase function without 2π discontinuities,
while PPU applies automatic algorithmic manipu-
lations to the phase pieces to remove these 2π dis-
continuities. The CPU approach may offer a new
perspective in developing the methods for interfero-
gram analysis. For example, the CPU method allows
one to obtain the phase and OPD profiles [6] with-
out the extensive programming required for the PPU
method.
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FIG. 1. The interferogram (a) with the grey function
G(x, y) = 1 + cos(62 − x2 − y2). (b) is a profile of the
function G(x, 0) = G(x) = 1+cos(62−x2) sampled along
the straight path y = 0 for analysis. (c) illustrates the
PPU method: a profile of arccos(G − A)/B in Eq.(3)
is represented by the black curve, the phase pieces θi
correspond to π intervals and the pieces joined in pairs
θi,i+1 to 2π intervals, respectively. The black arrows show
a method of converting the even pieces of phase θ2, θ4
into the “true” directed pieces and then shifting them
with respect to the “true” preceeding pieces θ1 and θ3 to
obtain the “true” pair-joined pieces θ12, θ34, see the text.
(d) illustrates the CPU method: the black dashed curves
present the phases for intervals s1 and s2; the functions
θs1(x), θs2(x) and the phase shift Θ1 all are computed
from Eq.(7). The green curve represents the resulting
phase θ(x). All graphics are aligned along x coordinate.
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