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Abstract

In this work, we study type B set partitions for a given specific positive in-
teger k defined over ⟨n⟩ = {−n,−(n − 1), · · · − 1, 0, 1, · · · n − 1, n}. We found a
few generating functions of type B analogue for some of the set partition statistics
defined by Wachs, White and Steingrimsson for partitions over positive integers
[n] = {1, 2, · · · n}, both for standard and ordered set partitions respectively. We
extended the idea of restricted growth functions utilized by Wachs and White for
set partitions over [n], in the scenario of ⟨n⟩ and called the analogue as Signed
Restricted Growth Function (SRGF). We discussed analogues of major index for
type B partitions in terms of SRGF. We found an analogue of Foata bijection and
reduced matrix for type B set partitions as done by Sagan for set partitions of [n]
with sepcific number of blocks k. We conclude with some open questions regard-
ing the type B analogue of some well known results already done in case of set
partitions of [n].

Key words: q-analogue, signed set partitions, Stirling number, generating
functions, restricted growth functions
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1 Introduction

In the preliminary section, we initially describe four fundamental statistics introduced
by Wachs and White [1] using the technique of restricted growth functions as in [2],
where the number of blocks k of the set partition of [n] turns out to be the maximal
letter in the restricted growth function as observed by Sagan in [6]. In the preliminary
section, we initially describe the type-B analogue of ten set partition statistics over
⟨n⟩, which were defined by Steingrimsson over [n] in case of standard and ordered
both type of set partitions. We found the generating functions of the type B analogue
of some of the set partition statistics defined over ⟨n⟩ which were defined by Stein-
grimsson over [n], for any specified number of blocks k in terms of q-Stirling numbers
of the second kind. Stirling numbers of both kinds have been extensively studied in
combinatorics and have interesting applications in algebra and geometry. However,
q-Stirling numbers in type B have appeared sporadically in the literature over the last
several decades. In [5] Sagan and Swanson worked on various statistics over signed
or type B partition using type B q-Stirling number of second kind. Haglund, Rhoades,
and Shimozono [3] showed that there is a connection between ordered set partitions,
generalized coinvariant algebras, and the Delta Conjecture. In related work, Zabrocki
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[8] conjectured that the tri-graded Hilbert series 4 of the type A superdiagonal coin-
variant algebra has coefficients which are the ordered q-Stirling number of the second
kind. Swanson and Wallach [10] made a corresponding conjecture in type B. This led
them to conjecture that an alternating sum involving these ordered Stirling numbers
equals one. Sagan and Swanson proved that conjecture in [5].

There is a bijection between the set partitions of [n] in standard form and restricted
growth functions (RGF). Wachs and White defined four fundamental statistics on
those RGFs. In the final section of this paper, we defined an analogue of restricted
growth function in case of type B set partitions of ⟨n⟩ and called it as Signed Restricted
Growth Function. We found a similar kind of bijection between set partitions of
⟨n⟩ and SRGF. In [4] Steingrimsson defined ten set partition statistics over the set
partitions of [n]. Four of these were already defined by Wachs and White as above in
case of standard set partitions, and their treatment was in terms of restricted growth
functions, a different way of representing partitions in standard form only. Another
four statistics are mirror images of the aforementioned ones. The last two statistics,
essentially defined by Foata and Zeilberger for permutations, are in fact each equal to
the difference of two of the first eight statistics. In [6] Sagan has shown that the Foata
bijection interchanging inversion and major index for permutations also has a version
for partitions of [n]. In section 3, we discussed an analogue of Foata bijection and
using SRGF we have shown that is interchanging the inversion and major index for
type B partitions over ⟨n⟩. In [6] Sagan has given an interpretation of major index for
set partitions of [n] using reduced matrices. Here we discussed an analogue of such
matrices for type B set partitions and have shown that the analogue of reduced matrix
is preserving the major index as done by Sagan for set partitions of [n]. Utilizing the
idea of two inversion vectors for RGF as done in [6], we discussed eight vectors for
SRGF corresponding to the type B analogue of Steingrimsson’s statistics.

Preliminary[1]

Definition 1. [2] A restricted growth function (RGF) is a sequence w = a1...an of
positive integers subject to the restrictions

1. a1 = 1.

2. For i ≥ 2, ai ≤ 1 + max{a1, ..., ai−1}

In [2] a partition of [n] is written as σ = B1/ · · · /Bk ⊢ S where the subsets Bi are called
blocks. We use the notation Πn = {σ : σ ⊢ [n]}. In order to connect set partitions with
the statistics of Wachs and White, they are converted into restricted growth functions
as in [2] and . That requires the elements of Πn in standard form.

Definition 2. We say σ = B1/ · · · /Bk ∈ Πn is in standard form if min B1 < · · · < min
Bk. Thus it follows that min B1 = 1.

We assume all partitions in Πn are written in the standard form. Associate with
σ ∈ Πn the word w(σ) = a1 · · · an where ai = j if and only if i ∈ Bj. For example
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w(16/23478/5) = 12223122. Let, Πn,k be the set of all words in Πn with exactly k
many blocks. Rn = {w : w is an RGF of length n}. Let, Rn,k = {w : w is an RGF of
length n with maximal letter k}.

The four statistics of Wachs and White are denoted as lb, ls, rb and rs where “l”stands
for “left”, “r”stands for “right”, “b”stands for “bigger”, and “s”stands for “smaller”.
The left-bigger statistic is described and the other three should become clear by anal-
ogy. Given a word w = a1 · · · an define lb(aj) = #{ai : i < j and ai > aj}. It is
important to note that, the cardinality of a set is taken, so if there are multiple copies
of such an integer then it is only counted once. Also, clearly lb(aj) depends on the
word containing aj, not just aj itself. By way of example, if w = 12332412, then
lb(a7) = 3. Define lb(w) = lb(a1) + · · · + lb(an). Continuing the above example,
lb(12332412) = 0 + 0 + 0 + 0 + 1 + 0 + 3 + 2 = 6. To simplify notation, lb(σ) is taken
instead of more cumbersome lb(w(σ)). Accordingly, ls(σ), rb(σ), rs(σ) are defined.

Now let, OΠn be the set of all ordered partitions of [n] (that means the set partitions
are not necessarily in standard form). Let, OΠn,k be the set of all words in OΠn with
exactly k blocks.

In order to define the ten statistics, Steingrimsson first defined the openers and closers
of the blocks for any π ∈ OΠn,k. The opener of a block is its least element and the
closer is its greatest element.

Definition 3 (Steingrimsson). Given a partition π ∈ OΠn,k let open π and clos π be
the set of openers and closers, respectively, of π. Let, block(i) be the number (counting
from the left) of the block containing the letter i. Eight coordinate statistics are defined
as follows:

1. rosiπ = #{j|i > j, j ∈ openπ, block(j) > block(i)},

2. robiπ = #{j|i < j, j ∈ openπ, block(j) > block(i)},

3. rcsiπ = #{j|i > j, j ∈ closπ, block(j) > block(i)},

4. rcbiπ = #{j|i < j, j ∈ closπ, block(j) > block(i)},

5. losiπ = #{j|i > j, j ∈ openπ, block(j) < block(i)},

6. lobiπ = #{j|i < j, j ∈ openπ, block(j) < block(i)},

7. lcsiπ = #{j|i > j, j ∈ closπ, block(j) < block(i)},

8. lcbiπ = #{j|i < j, j ∈ closπ, block(j) < block(i)}.

The hash tags denote the cardinalities of the corresponding sets. Moreover, let rsbi
be the number of blocks B, to the right of the block containing i such that the opener
of B is smaller than i and the closer of B is greater than i (rsb is an abbreviation for
right, smaller, bigger). Also lsbi is defined in an analogous way, with right replaced
by left. Set rosπ = ∑i rosiπ and likewise for the remaining nine statistics, i.e. each of
rob, rcs, rcb, los, lob, lcs, lcb, rsb, lsb is defined to be the sum over all i of the respective
coordinate statistics.
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Defining ROSπ = rosπ + (k
2) (and RCB, LOS, LCB similarly), we have

Theorem 4. (Steingrimsson)[4] ROS, RCB, LOS, LCB are Euler-Mahonian on ordered par-
titions, that is, ∑π∈OΠn,k

qROSπ = [k]!Sq(n, k) and the same for the other three Statistics.

where [k]! = [k][k − 1][k − 2] · · · [1] with [k] = [k]q (we drop the q from the suffix to
make the notation simpler)= 1 + q + q2 + q3 + · · · qk−1 and Sq(n, k) is the q-Stirling
numbers of second kind which can be described as in Lemma 1 in [4], Sq(n, k) =

qk−1Sq(n − 1, k − 1) + [k]Sq(n − 1, k).

2 Steingrimsson’s Statistics for type B partitions and some
generating functions in terms of q-Stirling numbers[2]

Definition 5. [5] The type B Stirling numbers of the second kind are defined by the
following recurrence relation:
SB(n, k) = SB(n − 1, k − 1) + (2k + 1)SB(n − 1, k) and SB(0, k) = δ0,k (Kronecker delta)
The ordered version of SB(n, k) is So

B(n, k) = (2k)!!SB(n, k)

Definition 6. [5] The type B q-Stirling numbers of the second kind are defined by
replacing the above recurrence relation with
SB[n, k] = SB[n − 1, k − 1] + [2k + 1]SB[n − 1, k]. The ordered version of SB[n, k] is
So

B[n, k] = [2k]!!SB[n, k]

where [k]!! = [k][k − 2][k − 4] · · · ending at [2] or [1] depending on k is even or odd
respectively.

Definition 7. (Sagan and Swanson)[5] A signed or type B partition is a partition of the
set ⟨n⟩ = {−n, · · · − 1, 0, 1, · · · n} of the form ρ = S0/S1 · · · /Sk, (We write ρ ⊢B ⟨n⟩)
satisfying

1 0 ∈ S0 and if i ∈ S0, then ī ∈ S0, and

2 for i ≥ 1 we have S2i = −S2i−1, where −S = {−s|s ∈ S}.

Let |S| = {|s| : s ∈ S}, so that |S2i| = |S2i−1| for i ≥ 1. For all i we let mi = min|Si|. Let
SB(⟨n⟩, k) denote the set of all type B partitions of ⟨n⟩ with 2k + 1 blocks in standard
form. We will always write signed partitions in standard form which means that

3 m2i ∈ S2i for all i, and

4 0 = m0 < m2 < m4 < · · · < m2k

Definition 8. (Sagan and Swanson) [5] An inversion of ρ ⊢B ⟨n⟩ written in Standard
form is a pair (s, Sj) satisfying
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1 s ∈ Si for some i < j and

2 s ≥ mj

Let Inv ρ be set of inversions of ρ and inv ρ = #Invρ

Theorem 9. (Sagan and Swanson)[5] SB[n, k] = ∑ρ∈SB(⟨n⟩,k) qinvρ

Definition 10. An ordered signed partition of ⟨n⟩ is a sequence ω =
(S0/S1/S2/.../S2k) satisfying the first two conditions in the definition of signed or
type B partition. Note that no assumption is made about standard form. The set of
such partitions with 2k + 1 blocks is denoted as So

B(⟨n⟩, k). The definition of inversion
remains unchanged.

Theorem 11. (Sagan and Swanson)[5] For n, k ≥ 0, So
B[n, k] = ∑ω∈So

B(⟨n⟩,k) qinvω

Note that defining inversion over an ordered signed partition of [n] in the above way,
matches with Steingrimsson’s ros, while the same is applied over any π ∈ OΠn,k. For
example consider π = 47/3/159/68/2 ∈ OΠ9,5. inv π =
#{(4, B2), (4, B3), (4, B5), (7, B2), (7, B3), (7, B4), (7, B5), (3, B3), (3, B5), (5, B5), (9, B4)
, (9, B5), (6, B5), (8, B5)} = 14 = rosπ.
This is the motivation to define in this work nine more statistics over any ordered
signed partitions of ⟨n⟩, so that they matches with Steingrimsson’s nine other statistics
accordingly, while the same is applied over any π ∈ OΠn,k.
To do this, we can further define Mi = max|Si|, like mi. For any ρ ∈ So

B(⟨n⟩, k), noting
that the negetive elements and 0 in the type B partition of ⟨n⟩ does not contribute in
invρ we define the following.

Definition 12. 1. rosBπ = #{(s, Sj)|s ∈ Si for some i < j and s ≥ mj},

2. robBπ = #{(s, Sj)|s ∈ Si for some i < j and s ≤ mj and s > 0},

3. rcsBπ = #{(s, Sj)|s ∈ Si for some i < j and s ≥ Mj},

4. rcbBπ = #{(s, Sj)|s ∈ Si for some i < j and s ≤ Mj and s > 0},

5. losBπ = #{(s, Sj)|s ∈ Si for some i > j > 0 and s ≥ mj},

6. lobBπ = #{(s, Sj)|s ∈ Si for some i > j > 0 and s ≤ mj and s > 0},

7. lcsBπ = #{(s, Sj)|s ∈ Si for some i > j > 0 and s ≥ Mj},

8. lcbBπ = #{(s, Sj)|s ∈ Si for some i > j > 0 and s ≤ Mj and s > 0},

9. rsbBπ = #{(s, Sj)|s ∈ Si for some i < j and mj ≤ s ≤ Mj},

10. lsbBπ = #{(s, Sj)|s ∈ Si for some i > j > 0 and mj ≤ s ≤ Mj}

As an example consider the same π above. Note that by the above definition losBπ =
{(5, B1), (5, B2), (9, B1), (9, B2), (6, B1), (6, B2), (6, B3), (8, B1), (8, B2), (8, B3), (2, B3)} = 11,
where as by Steingrimsson losπ = 0+ 0+ 0+ 0+ 2(corresponding to (5, B1), (5, B2))+
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2(corresponding to (9, B1), (9, B2)) + 3(corresponding to(6, B1), (6, B2), (6, B3)) +
3( corresponding to(8, B1), (8, B2), (8, B3)) + 1(corresponding to (2, B3), ) = 11.
Note in [4], given a partition π of [n], let πc be the partition obtained by comple-
menting each of the letters in π, that is, by replacing the letter i by n + 1 − i. Then it
follows that rcbπc = rosπ and that rcsπc = robπ. In order to have similar result for
type B partitions in S0

B(⟨n⟩, k), we define the complement of any π ∈ S0
B(⟨n⟩, k) in the

following way:

Definition 13. For any π ∈ S0
B(⟨n⟩, k), πc is obtained by replacing any positive i by

n + 1 − i, and ī by n + 1 − i and keeping 0 the same.

Then it follows that rcbπc = rosπ and that rcsπc = robπ, as because each (s, Sj)
contributing in rosπ gives (n + 1 − s, Sj) contributing in rcbπc and conversely.

Although, as in [4] where every right statistic is equidistributed with its corresponding
left statistic (since reversing the order of the blocks in an ordered partition turns a left
opener into a right opener and likewise for closers), the exact same is not the case for
type B partitions. We have

Theorem 14. qk(k+1)SB[n, k] = ∑ρ∈SB(⟨n⟩,k) qlosB′ρ where losB′ρ = losBρ dropping the con-
dition j > 0 in the definition of losBρ.

Proof. We follow the idea of the proof of theorem 4 in [4] and theorem 3.7 in [5]. The
proof follows by induction on n.
Base case: If n = 1, then there are two possibilities about k. k = 0, k = 1. If k=0, then
2k + 1 = 1 and the only element of SB(⟨1⟩, 0) to consider is 011̄ which gives the result.
If k = 1, then 2k + 1 = 3. The only set partition to consider is 0/1̄/1 giving losB′ as 2
and hence giving the result.
Now suppose the result be true for some n − 1. Given ρ ∈ SB(⟨n⟩, k) we can remove
n and −n to obtain a new partition ρ′.
If n (and thus −n) is in a singleton block then ρ′ ∈ SB(⟨n − 1⟩, k − 1) and there is
only one way to construct ρ from ρ′. Furthermore, in this case the standardization
condition forces S2k−1 = {−n} and S2k = {n} in ρ. It follows the losB′ρ = losB′ρ′ + 2k.
So, by induction such ρ contributes q(k−1)k.q2kSB[n − 1, k − 1] = qk(k+1)SB[n − 1, k − 1].
If n and −n are in a block with other elements, then ρ′ ∈ SB(⟨n− 1⟩, k) which induces i
many (n, Sj), namely (n, S0), (n, S1), · · · (n, Si−1) elements adding to previous losB′ and
thus for any such ρ, losB′(ρ) = losB′(ρ′) + i ∀i with 0 ≤ i ≤ 2k. Thus the contribution
of these ρ are [2k + 1]qk(k+1)SB[n − 1, k]. Hence, we are done.

Theorem 15. We have qkS0
B[n, k] = ∑ρ∈S0

B(⟨n⟩,k)
qlosB′ρ

Proof. We follow the idea of the proof of theorem 4 in [4] and theorem 3.7 in [5] along
with the above theorem. The proof follows by induction on n
Base case: For n = 1, k = 1 the result holds. For the rest we take the same approach
as in the proof of the last theorem. Given ρ ∈ SB(⟨n⟩, k) we can remove n and −n to
obtain a new partition ρ′.
If n (and thus −n) is in a singleton block then ρ′ ∈ SB(⟨n − 1⟩, k − 1) and now n can
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stay in any block except S0 adding 1, 2, 3, · · · 2k respectively. Thus these type of ρ′

gives all together by induction hypothesis
losB′ρ′ = (q + q2 + q3 + · · · q2k)[2(k − 1)]!!qk−1SB[n − 1, k − 1] = qkS0

B[n − 1, k − 1].
Now if n and −n are in a block with other elements, then ρ ∈ SB(⟨n − 1⟩, k) and
as in the end of the proof of the last theorem using induction hypothesis these type
of ρ all together contributes [2k]!!SB[n − 1, k]qk[2k + 1]. Hence the result follows, as
S0

B[n, k] = [2k]!!SB[n, k].

Lemma 16. Let Ak be the set of standard type B partitions on 2k + 1 blocks and Zk be the set
of ordered type B partitions on 2k + 1 blocks with lobB′(π) = 0 for all π ∈ Zk. Then there
exists a bijection between Ak and Zk. Additionally, we have that lobB(π) = k for all π ∈ Ak,
where lobB′ρ = lobBρ dropping the condition j > 0 in the definition of loBBρ.

Proof. Suppose that π ∈ Ak. As lobB′(π) is the cardinality of the set lobB′(π) =
{(s, Sj) : s ∈ Si for some i > j and 0 < s ≤ mj} and s ≥ mi for all s ∈ Si, we know
that (s, Sj) ∈ LobB′(π) implies mi ≥ mj for some i > j. Since π is a standard type B
partition, this occurs exactly for the case where i = 2ℓ and j = 2ℓ− 1 for 1 ≤ ℓ ≤ k.
The only entry s of S2ℓ that satisfies s ≤ m2ℓ−1 is of course s = m2ℓ = m2ℓ−1. Thus
(m2ℓ, S2ℓ−1) is an element of lobB′(π) for 1 ≤ ℓ ≤ k. Hence lobB′(π) = k.

Now, suppose π ∈ Zk. As lobB′(π) = 0, there is no (s, Sj) such that mi ≥ mj and s > 0
for some i > j. This implies that 0 < m1 = m2 < m3 = m4 < · · · < m2k−1 = m2k.
Additionally, we know that m2ℓ ∈ S2ℓ−1 for 1 ≤ ℓ ≤ k. Otherwise, we would have
(m2ℓ, S2ℓ−1) ∈ LobB′(π) as before. Thus π is simply a standard type B partition with
every S2ℓ swapped with S2ℓ−1. Hence, there is a bijection between Ak and Zk.

Corollary 17. The generating function of lobB′ over the standard type B partitions is given
by

∑
π∈SB[⟨n⟩,k]

qlobB′ (π) = SB[n, k]qk.

Additionally, the generating function of lobB′ over the ordered type B partitions satisfies the
following

∑
π∈S0

B[⟨n⟩,k]
qlobB′ (π) = SB[n, k].

In particular,

∑
π∈S0

B[⟨n⟩,1]
qlobB′ (π) = SB[n, 1]q + SB[n, 1].

Lemma 18. The statistics rosB and rcbB are equidistributed over the ordered type B set par-
titions. The statistics robB and rcsB are equidistributed over the ordered type B set partitions.

Proof. The proof follows as rcbπc = rosπ and that rcsπc = robπ, as because each (s, Sj)
contributing in rosπ gives (n + 1 − s, Sj) contributing in rcbπc and conversely.

Lemma 19. Let f (π) be the function given by taking the standardization of πc for any
π ∈ SB(⟨n⟩, k). Then f is a bijection of SB(⟨n⟩, k) with f 2(π) = π.
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Conjecture 20. We have that rcbB( f (π)) = rosB(π) + k(k − 1) for all π ∈ SB(⟨n⟩, k).
This gives us that the generating function of rcbB over the standard type B set partitions is
given by

∑
π∈SB(⟨n⟩,k)

qrcbB(π) = qk(k−1)SB[n, k].

Proof. Let T be a part of f (π) for some π ∈ SB(⟨n⟩, k). Then T is the complement of
Si for some Si that is a part of π. This forces the complement of T to be Si. Hence
f 2(π) is a standard partition with the same parts as π. As π was already a standard
partition, we have f 2(π) = π and that f is a bijection.

3 Signed Restricted Growth Functions[3]

Definition 21. (SRGF):

A Signed Restricted Growth Function is a sequence of the form
w = a0a1a∗1a2a∗2 · · · ana∗n of length 2n + 1, where

1. a0 = 0

2. If ai = j, then a∗i = j̄ and conversely ∀i, j ∈ {1, 2 · · · n}.

3. ∀i ≥ 1, |ai+1| ≤ 1 + Max{|a0|, |a1|, |a2|, · · · |ai|}

4. The pair j̄j appears before jj̄ (if there is a jj̄ in the sequence) for any j ∈
{1, 2 · · · n}

Calling the set of all such SRGF of length 2n+1 as SRn and SRn,k accordingly for
SRGF of length 2n+1 with maximal letter k, we can show analogously as in RGF that
there is a bijection between the set of all type B partitions of ⟨n⟩ and SRn, which
preserves the one to one correspondence between SRn,k and SB(⟨n⟩, k). The bijection
is the following: Consider any type B partition π of ⟨n⟩. Associate with π, the word
w(π) = a0a1a∗1a2a∗2 · · · ana∗n, where

1. a0 = 0, ai = a∗i = 0, iff i, ī ∈ S0, for i ∈ {1, 2 · · · n}

2. ai = j̄, a∗i = j iff i ∈ S2j for i, j ∈ {1, 2 · · · n}

3. ai = j, a∗i = j̄ iff i ∈ S2j−1 for i, j ∈ {1, 2 · · · n}

Note that for any type B partition π of ⟨n⟩, w(π) satisfies the condition i. and ii. in
the definition of SRGF. Due to standardization of π, w(π), satisfies condition iii. and
iv.

Example 22.

For π = 022̄/1̄7/17̄/3̄6̄/36/4̄5/45̄, w(π) = 01̄1002̄23̄333̄2̄211̄
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For w = 0001̄1002̄211̄22̄3̄34̄444̄, the corresponding π is 011̄33̄/2̄5/25̄/4̄6/46̄/7̄/7/8̄9/89̄

Questions:

1. Is there any way to find the generating functions of the type B-analogue of the
ten statistics due to Steingrimsson for set partitions of ⟨n⟩ in standard form by
using the correspondence with SRGF as in the approach in [2] or for some other
known statistics like m̂aj (dual major index) for set partitions of ⟨n⟩ in standard
form as in standard set partitions of [n] in [6]?

2. What are the generating functions of the rest of the B-analogues of Steingrims-
son’s statistics for ordered set partitions of ⟨n⟩?

In reference [6] section 4, we observe that, if for a set partition π, a positive integer
contributes in the descent set of F(π), where F(π) is the Foata bijection as defined
in [6], then the number of it’s contribution is the number of it’s corresponding occur-
rence in the inversion set of π. For example, in [6] section 4, for π = 138/2/476/59
the positive integer 7 contributes 1 in the descent of F(π) = 1367/2/48/59, which is
the number of it’s occurrence in the inversion set of π, namely as (7, B1). This obser-
vation motivates us to define an analogue of Foata bijection for type B set partitions
in SB(⟨n⟩, k) as follows:
This bijection F is analogously defined via induction on n, as F is identity whenever
n = 0. If π ∈ SB(⟨n⟩, k), for n > 1, let π′ = π with n, n̄ deleted. We construct
σ = F(π) from σ′ = F(π′) as follows. If

1. π = S0/S1/S2/ · · · /S2k, with S2k−1 = {n̄} and S2k = {n}, (due to standardiza-
tion condition, the other way can’t happen), then let σ = σ′ with n̄ and n added
in S2k−1 and in S2k as singleton blocks respectively.

2. If n is strictly contained in the block S2k, then let σ = σ′ with n added in the
block S2k and n̄ added in the block S2k−1.

3. If n is in S2k−1 and if n̄ is in S2k, then let σ = σ′, along with both n, n̄ added in
S0.

4. If n or n̄ are contained in S2i, where 0 < i < k, then σ = σ′ with n or n̄ added in
S2(k−i)−1 and S2(k−i) respectively in a way so that the mutual ordering is flipped.

5. If n, n̄ are in S0, then n is added in S2k−1 and n̄ is added in S2k.

So, we consider the following example where π = 022̄/1̄7/17̄/3̄6̄/36/4̄5/45̄

Table for the bijection F
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n π σ = F(π)
0 0 0
1 0/1̄/1 0/1̄/1
2 022̄/1̄/1 0/1̄2/12̄
3 022̄/1̄/1/3̄/3 0/1̄2/12̄/3̄/3
4 022̄/1̄/1/3̄/3/4̄/4 0/1̄2/12̄/3̄/3/4̄/4
5 022̄/1̄/1/3̄/3/4̄5/45̄ 055̄/1̄2/12̄/3̄/3/4̄/4
6 022̄/1̄/1/3̄6̄/36/4̄5/45̄ 055̄/1̄26/12̄6̄/3̄/3/4̄/4
7 022̄/1̄7/17̄/3̄6̄/36/4̄5/45̄ 055̄/1̄26/12̄6̄/3̄7̄/37/4̄/4

We note that inv (π) = maj(F(π)) =10 and inv(F(π)) = maj(π) =14. We have the
following theorem as an analogue of theorem 4.1 in [6]:

Theorem 23. The map F : SB(⟨n⟩, k) 7→ SB(⟨n⟩, k) defined above is a bijection where ∀π ∈
SB(⟨n⟩, k)

1. inv(π) = maj(F(π))

2. inv(F(π)) = maj(π)

As an analogue of section 2 in[6], we define lb vector and ls vector for SRGF induced
by type B set partitions and denote them as lbB, lsB respectively. We further extend
the idea of major index as in section 2 in[6], via lbB for any element in SRn,k.

We define an lbB vector for SRGF as follows:

Definition 24. Let w = a0a1a∗1a2a∗2 · · · aka∗k be an SRGF. Then,

1. lbB(al) = 0, if l = 0 or if al = j̄ for some j > 0.

2. If we have an occurrence of 00 after nonzero digits, each 0 contributes m, where
m is the number of j to it’s left, so that |j| > 0.

3. If jj̄ appears after j̄j, then the later j > 0 contributes 1 + 2m where m is the
number of distinct i to the left of that j, so that i > j.

4. If j̄j has repeated occurrences, the later j contributes 2m, where m is the number
of distinct i to the left of that j, so that i > j.

5. If we get ll̄ to the right of jj̄ or j̄j, where l < j, then l contributes 2m + 1 where
m is the number of j to it’s left such that j > l.

6. If we get l̄l to the right of jj̄ or j̄j, where l < j, then l contributes 2m where m is
the number of j to it’s left such that j > l.

Example 25. Let π = 01̄133̄/2̄4/24̄/5̄/5/6̄8̄/68/7̄/7. The corresponding SRGF is
w(π) = 0001̄10011̄2̄23̄34̄43̄3. The corresponding lbB vector is 00000111000000002 giv-
ing us the lbB statistics (as one of the four fundamental statistics of Wachs and White)
as the sum of the digits in the vector as 5 which is the same as the inversion of π.
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Observing this we define the major index of any such SRGF w = w(π) =
a0a1a∗1a2a∗2 · · · aka∗k analogously as in [6] as follows:

Definition 26. maj(w) = ∑lbi(w)>0 ti, (where lbi(w) is the i − th digit of the corre-
sponding lb-vector).

1. ti = 1, ti+1 = 0 if ai = ai+1 = 0.

2. ti = 2j, if ai = j, ai+1 = j̄

3. ti = 2j + 1, if ai = j̄, ai+1 = j

4. ti = 0, otherwise.

Example 27. : By the above definition, we see that the above w(π) has maj as follows:
0+ 0+ 0+ 0+ 0+ 1+ 0+ 2(1)+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 2(3)+ 1 = 10 = maj(π).
And we have the theorem as an analogue of theorem 2.1(i) in [6]

Theorem 28. Let f : SB(⟨n⟩, k) 7→ SRn,k be the above bijection in between SB(⟨n⟩, k) and
SRn,k. Then for any π ∈ SB(⟨n⟩, k), maj( f (π)) = maj(π).

We define an analogue of ls vector for SRGF as follows:

Definition 29. If w = w(π) = a0a1a∗1a2a∗2 · · · aka∗k is an SRGF, then

1. lsB(al) = 0, if al = 0, or j̄ for some j > 0.

2. Each pair j̄j, j, contributes 2j − 1 and each pair jj̄, j contributes 2j − 2, if j > 0.

3. lsB statistics is the sum of the digits in the lsB vector.

4. Adding the digits of lsB(w(π)), we get losB(π) always.

Example 30. If we consider again π = 01̄133̄/2̄4/24̄/5̄/5/6̄8̄/68/7̄/7, then the lsB
vector is 00001000(= 2(1)− 2)003(= 2(2)− 1)05(2(3)− 1)07(= 2(4)− 1)05(2(3)− 1).
If we add the digits we get 21 which is same as the losB(π).

Definition 31. We define a bijection between SB(⟨n⟩, k) and RR(⟨n⟩, k), where RR(⟨n⟩, k),
is the set of all (2k + 1)X(2n + 1) row echelon form matrices where

1. Every entry is either 0, or 1̄, or 1 and the first entry in the first row is always 1
as, 0 ∈ S0 and we choose keeping the 1̄ in the column prior to that of 1.

2. After that, in the first row 1 and 1̄ appear as a pair (since in S0 positive and the
corresponding negetive integer appears as a pair) always 1̄1 is placed as a pair
in consequtive columns.

3. There is at least one 1 or one 1̄ in each row and exactly one 1̄ or one 1 in each
column.
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4. Excluding the first row and first column, if we have 1̄ (or 1) in the row 2i and
column j, then we have 1 (or 1̄ in the row 2i + 1 or 2i − 1(i > 1) and in column
j + 1 or in j − 1(j > 2) and conversely.

5. Due to the standardization condition, always a pair 1̄1 in two consecutive rows
and columns respectively appear in some prior columns before the pair 11̄, if
the second pair belong to two same consecutive rows as in the prior 1̄1.

6. In any column j > 1, the leading non zero element is 1, if the row i is odd and
the leading non zero element is 1̄, if the row i is even (as mi ∈ S2i always).

Next we define an analogue of six more vectors in case of SRGF corresponding the
type B analogues of six more statistics defined by Steingrimsson as follows. Consider
the SRGF w = a0a1a∗1a2a∗2 · · · aka∗k .

Definition 32. An analogue for rcb vector in case of SRGF is as follows:

1. Because of the condition s > 0, in the definition of rcbB, we set rcbB(a0) = 0, and
rcbB( j̄) = 0 for any j > 0.

2. If we have an occurrence of 00 after the first a0 = 0 in the SRGF, each 0 con-
tributes m, where m is the number of j to it’s right, so that |j| > 0.

3. For any j̄j(j > 0), rcbB(j) = 2m, where m is the number of i to the right of j, so
that i > j.

4. For any jj̄ afterwards, we set rcbB(j) = 2m + 1 where i is as before.

Example 33. If π = 01̄133̄88̄/2̄4/24̄/5̄/5/6̄8̄/68/7̄9/79̄, then the rcbB vector is
0080608700402000210. And if we add the digits we get 38 which is same as the
rcbB(π).

Definition 34. An analogue for lcb vector in case of SRGF as follows:

1. Define lcbB(al) = 0, if al = a0 or negetive.

2. If al = j > 0, then that al does contribute 0, for each pair of zeros to it’s right
and if we have a pair j̄j and no smaller positive element to it’s right, then that
j > 0 contributes 1.

3. Any pair j̄j, the j > 0, gives 2 for each pair īi and/or iī to it’s right for each i < j.
Additionally, j > 0, gives 1 for itself in that case.

4. Any pair, jj̄, the j > 0 gives 2l, where l is the number of i′s to it’s right i > 0, i < j.

Example 35. If π = 01̄133̄/2̄4/24̄/5̄/5/6̄8̄/68/7̄/7, then the rs vector is
00001000001010301. If we add the digits we get 7 which is same as the lcbB(π).

Definition 36. An analogue for robB vector in case of SRGF as follows:

1. Define robB(al) = 0, if l = 0 or if al is negetive.
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2. If we have a pair 00, then we consider the first 0 gives 0 and the second one
gives 2l, where l is the number of distinct i > 0 to the right of that 0, that does
not appear to the left of that 0.

3. If there is a pair j̄j or jj̄, j > 0, then the j > 0 gives 2l, where l is the number of
distinct i > j to the right of j, that are not to the left of that j.

Example 37. If π = 01̄133̄/2̄4/24̄/5̄/5/6̄8̄/68/7̄/7, then the robB vector is
0080606600402000000. If we add the digits we get 32 which is same as the robB statis-
tics of that type B partition.

Definition 38. An analogue for lob vector in case of SRGF as follows:

1. If al = 0 or negetive, then lobB(al) = 0. Otherwise, for the first occurrence of
j̄j(j > 0), the j > 0 gives 1.

2. If there is any j̄j or jj̄ repeated for the same j, that does not contribute anything.

Example 39. If π = 01̄133̄/2̄4/24̄/5̄/5/6̄8̄/68/7̄/7, then the lobB vector is
00001000001010100 and if we add the digits, then we get 4 which is the same as the
lobB statistics for that π.

Definition 40. An analogue for rcs vector in case of SRGF is as follows:

1. We define rcsB(al) = 0, if al = 0 or negetive.

2. The first occurrence of j̄j does not contribute anything.

3. If j̄j repeats after j̄j, then the j > 0, gives 2(l −m), where l is the number of pairs
īi and/or iī to the left of j̄j with i < j and m is the number of pairs īi and/or iī
to the left of j̄j with i > j.

4. If jj̄, after the j̄j appears, then the j > 0 gives 1 + 2(l − m), where l, m are as
before.

Example 41. If π = 02̄2/1̄7/17̄/3̄6̄/36/4̄5/45̄, then the rcsB vector is 000000000100250.

Definition 42. An analogue for lcs vector in case of SRGF as follows:

1. lcsB(al) = 0, if al = 0 or negetive. The pair 11̄ does not contribute anything. If
we have repeated occurrence of 1̄1, the right most 1 contributes 1 provided there
is no 1̄ to it’s right, otherwise that 1 contributes 0.

2. Consider any j̄j, j > 1. Then j contributes 2l + 1, where l is the number of distinct
i to the left of j, that are not to the right of j, such that 0 < i < j, provided there
is no j to the right of that j again.

3. If j > 1 is like above, then it contributes 2l, where l is as above, provided there
is some (possibly more than 1) j to the right of that j.

4. Consider any jj̄, j > 1. Then, that j contributes 2l, where l is as above.
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Example 43. Thus for example if π = 01̄133̄/2̄4/24̄/5̄/5/6̄8̄/68/7̄9/79̄, then the lcsB
vector is 0000000000304040560, adding the digits we get 22 which is the lcsB statistics
for the partition π.

As in [6] we can create an analogous bijection h : SB(⟨n⟩, k) 7→ RR(⟨n⟩, k) as follows
h(π) = M, where M = (mi,j)(2k+1)X(2n+1), with

1. m1,1 = 1 (as 0 ∈ S0)

2. m1,j = 1̄, m1,j+1 = 1, if j̄, j ∈ S0∀j ∈ {1, 2, · · · 2n + 1}

3. For i ∈ {1, 2, · · · 2k + 1}1, mij = 1̄ if j̄ ∈ Si−1 and mij = 1, if j ∈ Si−1

Now if we define the major index of such a matrix M as maj(M) = ∑mi,j=1 i, where the
sum is restricted to those 1’s which have another 1, strictly to their south-west (as in
[6]) then we have the following theorem as an analogue of theorem 3.3 (i) as follows:

Theorem 44. For the above bijection h, and for any π ∈ SB(⟨n⟩, k) maj(h(π)) = maj(π)

For example for our π = 01̄133̄/2̄4/24̄/5̄/5/6̄8̄/68/7̄/7, h(π) is a 9X17 matrix as
follows: 

1 1̄ 1 0 0 1̄ 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1̄ 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1̄ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1̄ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1̄ 0 0 1̄ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1̄ 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Let us define the dual descent multiset analogously as in [6] in case of type B parti-
tions.

Definition 45. For any π ∈ SB(⟨n⟩, k) the dual descent set of π is denoted as D̂esπ
and is defined as the multiset{2a23a3 , · · · (2k + 1)a2k+1} where ai is the number of s ∈ Si
such that s > mi−1, ∀i ∈ {1, 2, · · · 2k + 1}

Accordingly, we define the natural analogue of dual major index for any type B par-
tition as m̂ajBπ = ∑i∈D̂esπ

(i − 1).

Afterwards, we find a reccurrence relation for the generating function of the dual
major index for type B partitions as follows:

Theorem 46. ŜB[n, k] = q2kŜB[n − 1, k − 1] + [2k + 1]ŜB[n − 1, k], where ŜB[n, k] is the
generating function of m̂ajBπ

Questions:
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1. Does the analogous result follow for dual major index for the set of standard
type B partitions as in [6]?

2. Is there any way to define analogue of r − maj index for standardized type B
partitions, and finding the corresponding generating functions as in [6] ?

3. Is there any analogue of p, q-Stirling number (first introduced by Wachs and
White) of second kind for type B partitions and a way to find the generating
function of the corresponding joint distributions as in [6]?
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