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Convex Ternary Quartics Are SOS-Convex

Amir Ali Ahmadi, Grigoriy Blekherman, and Pablo A. Parrilo ∗†‡

Abstract

We show that if a ternary quartic form is convex, then it must be sos-convex; i.e, if the
Hessian H(x) of a ternary quartic form is positive semidefinite for all x, then the biquadratic
form yTH(x)y in the variables x := (x1, x2, x3)

T and y := (y1, y2, y3)
T must be a sum of

squares. This result is in a meaningful sense the “convex analogue” of Hilbert’s celebrated
theorem on ternary quartics. We show that exploiting the structure of the Hessian matrix is
crucial in any possible proof of this result by presenting an explicit example of a biquadratic
form b(x,y) that is symmetric in x and y, nonnegative, but not a sum of squares.

1 Introduction

A form (i.e., homogeneous polynomial) p : Rn → R with real coefficients is said to be nonnegative
if p(x) ≥ 0 for all x ∈ R

n and a sum of squares (sos) if it can be written as p(x) =
∑m

i=1
q2i (x) for

some forms q1(x), . . . , qm(x). In 1888, Hilbert [21] showed that a ternary quartic form (i.e., a form
in 3 variables of degree 4) is nonnegative if and only if it is a sum of squares. Out of the degrees
and dimensions in which nonnegative forms can be written as a sum of squares, the case of ternary
quartics is the most astonishing. Several new proofs of this result as well as modern expositions of
Hilbert’s original proof have appeared in recent years; see [14], [27, p. 89-93], [31], [26], [25].

In this paper, we show that interestingly enough an analogous fact holds for convexity and sos-
convexity of ternary quartic forms. A polynomial p := p(x) in the variables x := (x1, . . . , xn)

T is
convex if its Hessian matrix Hp := Hp(x) is positive semidefinite (i.e., has nonnegative eigenvalues)
for all x ∈ R

n. It is easy to see that this condition holds if and only if the scalar polynomial
yTHp(x)y in the variables x and y := (y1, . . . , yn)

T is nonnegative. A polynomial p is said to be
sos-convex if the polynomial yTHp(x)y is a sum of squares. Clearly, sos-convexity is a sufficient
condition for convexity of polynomials.

The term “sos-convexity” was introduced by Helton and Nie in [20] in relation to the study
of semidefinite representability of convex sets. An alternative definition of sos-convexity that is
commonly used (e.g., in [20]) and is equivalent to the definition we gave above is given by the
requirement that the Hessian matrix Hp can be factored as Hp(x) = MT (x)M(x) for a possibly
nonsquare polynomial matrix M(x). There are also other natural sos relaxations for convexity
based on the usual definition of convexity (via Jensen’s inequality) or its first order characterization.
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However, these sos relaxations are shown in [5], [7] to also be equivalent to sos-convexity. All these
equivalence results confirm that sos-convexity is indeed the rightful analogue of sum of squares
when the notion of convexity instead of nonnegativity of polynomials is of interest.

From a computational viewpoint, the significance of sos-convexity stems from the fact that it
can be checked efficiently by solving a single semidefinite program. This is in contrast to decid-
ing convexity which has been shown to be strongly NP-hard already for polynomials of degree
four [4]. Motivated in part by its connection to semidefinite programming, sos-convexity has has
found a range of applications, e.g., in the study of polynomial norms [1], shape-constrained regres-
sion [17], [24], polynomial optimization [22], difference of convex optimization [2], robust multi-
objective optimization [16], and dynamics and control [12], [3]. There has also been much interest
in the role of convexity in semialgebraic optimization [23], [22], [18], [8], [20], [19], [30], and an
understanding of the relationship between convexity and sos-convexity is of direct relevance to this
line of research. For example, it is known that the semidefinite relaxation arising from the first
level of the so-called sum of squares hierarchy is exact for polynomial optimization problems whose
objective and constraints are given by sos-convex polynomials [22].

In [6], the first and third authors gave the first example of a convex polynomial that is not sos-
convex. In a subsequent paper [7], they gave a full characterization of the degrees and dimensions in
which the set of convex and sos-convex polynomials coincide. Such a characterization is also given
in [7] for homogeneous polynomials, except for the case of ternary quartics. The main contribution
of the current paper (Theorem 3.1 in Section 3) is to settle this remaining case by showing that
all convex ternary quartic forms are sos-convex. The intriguing overall outcome of this research
is that convex polynomials (resp. forms) are sos-convex exactly in degrees and dimensions where
nonnegative polynomials (resp. forms) are sums of squares, as characterized by Hilbert in [21].
However, neither the results in [7] nor the result of this paper follow (as far as we know) from the
characterization of Hilbert. See the discussion in [7, Sec. 5].

Upon dehomogenization (see, e.g., [28, Sec. 2]), the result of Hilbert on ternary quartic forms
is equivalent to the statement that all nonnegative bivariate quartic polynomials are sos. The
situation, however, is quite different for convexity and sos-convexity. It turns out that the proof
of the fact that all convex bivariate quartic polynomials are sos-convex follows from a theorem on
factorization of positive semidefinite bivariate and homogeneous polynomial matrices without the
need to exploit the additional structure of the Hessian matrix [7, Thm. 5.6]; see also [7, Rmk.
5.1]. By contrast, the result for ternary quartic forms crucially relies on linear relations that are
imposed on the entries of a matrix that is a valid Hessian. In Section 2, we make this fact evident
for the reader. We present an explicit example of a positive semidefinite polynomial matrix which
has dimension, degree, and a special symmetry property in common with the Hessian of ternary
quartics, but yet fails to have a sum of squares decomposition since it violates a few of the linear
relations imposed by the Hessian structure. Following this result, we give the proof of our main
theorem on equivalence of convexity and sos-convexity of ternary quartics in Section 3.

2 Symmetric biquadratic forms and Hessian biquadratic forms

A biquadratic form b(x,y) is a form in two sets of variables x = (x1, . . . , xn)
T and y = (y1, . . . , ym)T

that can be written as
b(x,y) :=

∑

i≤j, k≤l

αijklxixjykyl.

Equivalently, a biquadratic form is a quartic form that can be written as

yTA(x)y,
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where A(x) is a polynomial matrix with quadratic forms in x as its entries. The relation between
nonnegative and sum of squares biquadratic forms is a well-studied subject. In particular, it is
known that when nm ≤ 6, all nonnegative biquadratic forms are sos; see, e.g., [15] and references
therein.

The question of checking nonnegativity of biquadratic forms arises in the study of convexity of
quartic forms. If Hp(x) is the Hessian of a quartic form p(x), then the entries of Hp(x) must be
quadratic forms and hence yTHp(x)y is a biquadratic form. Convexity (resp. sos-convexity) of p
is equivalent to this biquadratic form being nonnegative (resp. sos).

In particular, when p(x) = p(x1, x2, x3) is a quartic form in three variables, the Hessian Hp(x)
is a 3× 3 matrix, and we are in the situation where yTHp(x)y is a biquadratic form in two sets of
three variables x = (x1, x2, x3) and y = (y1, y2, y3). It is well known that there exist biquadratic
forms in two sets of three variables—henceforth referred to as ternary biquadratic forms—that are
nonnegative but not sos. This fact was originally proven through a nonconstructive argument by
Terpstra in [32] and later independently by Choi [13] via an explicit example. In [13], Choi showed
that the biquadratic form yTC(x)y with

C(x) =













x21 + 2x22 −x1x2 −x1x3

−x1x2 x22 + 2x23 −x2x3

−x1x3 −x2x3 x23 + 2x21













(1)

is nonnegative but not sos. However, the matrix C(x) above is not a valid Hessian, i.e., it cannot
be the matrix of the second derivatives of any polynomial. If this was the case, the third partial
derivatives would commute. But for this matrix, we have, e.g.,

∂C1,1(x)

∂x3
= 0 6= −x3 =

∂C1,3(x)

∂x1
.

Our main result in this paper (Theorem 3.1) can be equivalently phrased as the statement that
all nonnegative ternary biquadratic forms that arise from valid Hessians are sos. It turns out that
biquadratic forms that arise from valid Hessians have a special symmetry property. To facilitate
discussion, let us define three families of biquadratic forms.

Definition 2.1.

• An n-ary biquadratic form is a biquadratic form b(x,y) in two sets of n scalar variables
x = (x1, . . . , xn)

T and y = (y1, . . . , yn)
T .

• A symmetric biquadratic form is an (n-ary) biquadratic form that satisfies b(y,x) = b(x,y).

• A Hessian biquadratic form is a biquadratic form b(x,y) = yTHp(x)y where Hp(x) is a valid
Hessian, i.e., it is the matrix of second derivatives of some quartic form p(x).

A simple counting argument shows that the dimension of the vector space of n-ary (resp.

symmetric) biquadratic forms is
(

n+1

2

)2
(resp. 1

2

(

n+1

2

)2
+ 1

2

(

n+1

2

)

). We claim that the dimension of
the vector space of Hessian biquadratic forms is the same as that of quartic forms in n variables,
i.e.,

(

n+3

4

)

. This is because there is a linear bijection between these two vector spaces: from any
quartic form p, we can obtain a valid Hessian matrix Hp by differentiation; conversely, from any
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valid Hessian matrix Hp, we can produce the originating quartic form as1

p(x) =
1

12
xTHp(x)x. (2)

Lemma 2.2. Hessian biquadratic forms are symmetric.

Proof. Consider a Hessian biquadratic form yTHp(x)y, where Hp(x) is the Hessian matrix of a
quartic form p(x). Observe that if the quadratic form in the ij-th entry of Hp(x) is denoted by

xTSijx, then the kl-the entry Sij
kl of the symmetric matrix Sij is given by

Sij
kl =

1

2
∂xi

∂xj
∂xk

∂xl
p(x).

Since partial derivatives commute, we have Sij
kl = Skl

ij , and therefore

yTHp(x)y =
∑

ij

yiyjx
TSijx =

∑

ij

yiyj
∑

kl

xkxlS
ij
kl =

∑

ij

xixj
∑

kl

ykylS
ij
kl =

∑

ij

xixjy
TSijy = xTHp(y)x.

The symmetry of a biquadratic form in x and y is a rather strong condition that is not satisfied
e.g. by the Choi biquadratic form yTC(x)y in (1) (since, in particular, there is a 2y21x

2
2 term but

no term of the type y22x
2
1). When n = 3, the vector spaces of n-ary biquadratic forms, symmetric

biquadratic forms, and Hessian biquadratic forms respectively have dimensions 36, 21, and 15.
Since the symmetry requirement drops the dimension of the space of ternary biquadratic forms
significantly, and since sos polynomials are known to generally cover much larger volume in the set
of nonnegative polynomials in presence of symmetries (see, e.g., [11]), one may initially suspect (as
we did) that the equivalence between nonnegative and sos ternary Hessian biquadratic forms is an
artifact the symmetry property. Our next theorem shows that interestingly enough this is not the
case. This makes the result for Hessian biquadratic forms even more striking.

Theorem 2.3. There exist ternary symmetric biquadratic forms that are nonnegative but not a
sum of squares. In particular, the following biquadratic form has the desired properties:

b(x1, x2, x3, y1, y2, y3) = 12(x21y
2
1 + x22y

2
2 + x23y

2
3)

+31x1x2y1y2 − 10x1x3y1y3 − 5x2x3y2y3

+12(x22y
2
1 + y22x

2
1) + 6(x23y

2
1 + y23x

2
1) + 12(x22y

2
3 + y22x

2
3)

+4(x1x2y
2
1 + y1y2x

2
1) + 9(x1x3y

2
1 + y1y3x

2
1)− 10(x2x3y

2
1 + y2y3x

2
1)

+13(x1x3y
2
2 + y1y3x

2
2) + 13(x2x3y

2
2 + y2y3x

2
2) + 23(x1x2y

2
2 + y1y2x

2
2)

+5(x1x2y
2
3 + y1y2x

2
3) + 3(x1x3y

2
3 + y1y3x

2
3) + 7(x2x3y

2
3 + y2y3x

2
3)

+5(x1x2y2y3 + y1y2x2x3)− 11(x1x3y2y3 + y1y3x2x3) + 3(x1x3y1y2 + y1y3x1x2).
(3)

The proof of this theorem appears in the appendix.

1The identity p(x) = 1
d(d−1)

x
THp(x)x holds for any form p of degree d and can be derived from Euler’s identity

for homogeneous functions. This identity also shows that convex forms are nonnegative, and that sos-convex forms
are sos.
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3 Equivalence of convexity and sos-convexity for ternary quartics

Let us denote the set of convex (resp. sos-convex) ternary quartic forms by C3,4 (resp. ΣC3,4).
These sets are both closed convex cones and we have the obvious inclusion ΣC3,4 ⊆ C3,4. Our main
result is to show the reverse inclusion.

Theorem 3.1. ΣC3,4 = C3,4.

The proof of this theorem is done in two steps. We first show that it suffices to consider convex
forms that have a specific set of zeroes (Lemma 3.4). We then show that all such convex forms are
sos-convex (Theorem 3.5). Throughout this section, we use the notation Hp to denote the Hessian
matrix of a form p, and hp(x,y) = yTHpy to denote the Hessian form of p. We recall that when
p is a quartic, hp is a biquadratic form and satisfies the symmetry relation hp(x,y) = hp(y,x); see
Lemma 2.2. Zeroes of hp are treated as points in RP

2 × RP
2; for evaluation, we may choose an

affine representative, which will usually be taken to lie in the bi-sphere S
2 × S

2.

3.1 Reduction

For a point u = (v1,v2) ∈ RP
2×RP

2, let Fu be the face of C3,4 consisting of all convex forms f for

which hf (u) = 0. Let ei denote the i-th standard basis vector, u1 = (e1, e2)
T , and u2 = (e3,d)

T

with d = [a, b, 1]T for some scalars a, b. Let La,b be the linear subpsace of ternary quartics consisting
of forms g such that Hg(e1) · e2 = Hg(e3) · d = 0. Let Ta,b be the face of C3,4 consisting of convex
ternary quartics g such that hg(u1) = hg(u2) = 0. Note that Ta,b = Fu1 ∩ Fu2 . In Theorem 3.5,
we will derive an explicit description of the face Ta,b, and using it we will show that all forms in
Ta,b are sos-convex. Our main task for now is to show that if a convex and non-sos-convex ternary
quartic exists, then there exists one in Ta,b. We start with some preparatory lemmas.

Lemma 3.2. The face Fu1
has dimension 10.

Proof. We first show that the dimension of Fu1
is at most 10. Let g be a convex ternary quartic

such that hg(e1, e2) = 0. Since the Hessian matrices Hg(e1) and Hg(e2) are positive semidefinite, it
follows that Hg(e1) · e2 = Hg(e2) · e1 = 0. These two conditions imply that g is missing monomials
x31x2, x

2
1x

2
2, x

2
1x2x3, x

3
2x1, x

2
2x1x3, which shows that Fu1

lies in a 10-dimensional subspace.
We now show that dimension of Fu1

is at least 10. Let

f = (x1 + x3)
4 + (x2 + x3)

4 + (2x1 + x3)
4 + (2x2 + x3)

4.

The Hessian form hf is equal to

12((x1 + x3)
2(y1 + y3)

2 + (x2 + x3)
2(y2 + y3)

2 + (2x1 + x3)
2(2y1 + y3)

2 + (2x2 + x3)
2(2y2 + y3)

2).

We see that f ∈ Fu1
and hf is strictly positive on S

2 × S
2 outside of u1. A straightforward

computation shows that the Hessian of hf at u1 is positive definite on the tangent space to S
2×S

2

at u1. Therefore, a perturbation argument shows that for any g in the span of the 10 degree-4
monomials that are different from x31x2, x

2
1x

2
2, x

2
1x2x3, x

3
2x1, x

2
2x1x3, we have f + εg ∈ Fu1

for all
sufficiently small ε. It follows that Fu1

is 10-dimensional.

Lemma 3.3. Whenever at least one of a or b is non-zero, the dimension of the vector space La,b

is 5 and the dimension of Ta,b is at most 5.
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Proof. We begin by establishing a slightly more general version of the argument in Lemma 3.2. For
a vector v ∈ R

3, let Dv denote the directional derivative in direction v: Dv(f) = 〈v,∇f〉. It will
be convenient to consider differential operators associated to polynomials: for a polynomial f, let
∂f denote the differential operator obtained by replacing xi with

∂
∂xi

.

Let g be a convex ternary quartic such that hg(u,v) = 0, with non-zero u,v in R
3, u 6= v.

Since the Hessian matrices Hg(u) and Hg(v) are positive semidefinite, it follows that Hg(u) · v =
Hg(v) · u = 0, i.e., u is in the kernel of the Hessian of g evaluated at v, and u is in the kernel of
the Hessian of g evaluated at u.

The condition Hg(u) · v = 0 implies that at the point u, for any vector w, the directional
derivative DwDv(g) is equal to 0, i.e., we have (DwDv(g))(u) = 0. This is equivalent to the
equation DuDuDwDv(g) = DwDuDuDv(g) = 0 for any vector w ∈ R

3.
We therefore see that the conditions on the Hessian Hg of g are equivalent to g satisfying the

following linear conditions: DuDuDv(g) = 0 and DvDvDu(g) = 0. Using differential operators,
we can write the above conditions as

∂(ũ2ṽ)[g] = ∂(ṽ2ũ)[g] = 0,

where ũ = u1x1 + u2x2 + u3x3 and ṽ = v1x1 + v2x2 + v3x3 are the associated linear forms. We can
rephrase this in the following way: for any ternary quartic q which is a multiple of ũ2ṽ or ṽ2ũ, we
have ∂(q)[f ] = 0. In other words, the number of conditions imposed on g is equal to the number of
(linearly independent) quartics generated by ũ2ṽ and ṽ2ũ. We see that there are 5 conditions, since
both ũ2ṽ and ṽ2ũ generate ũ2ṽ2, and this is the only intersection between the ideals generated by
ũ2ṽ and ṽ2ũ in degree 4.

Consider zeroes at the two points u1 = (e1, e2)
T and u2 = (e3, [a, b, 1])

T . From the first zero
we get cubics x21x2 and x22x1, which generate the span of the following five degree 4 monomials:
x31x2, x

2
1x

2
2, x

2
1x2x3, x

3
2x1, x

2
2x1x3. Note that only x21x2x3 and x22x1x3 are divisible by x3.

From the second zero we get two distinct cubics: x23(ax1+bx2+x3) and (ax1+bx2+x3)
2x3. Any

quartic that these cubics generate has to be divisible by x3(ax1 + bx2 + x3). So the only possible
intersection with the quartics from the first zero comes as linear combination αx21x2x3+βx22x1x3 =
x1x2x3(αx1 + βx2). But this linear combination is not divisible by x3(ax1 + bx2 + x3). So we see
that two zeroes impose 10 linearly independent conditions, and therefore the dimension of La,b is
15− 10 = 5. Since Ta,b is contained in La,b, the dimension of Ta,b is at most 5.

Lemma 3.4 (Reduction Lemma). Suppose that ΣC3,4 6= C3,4. Then there exists a form p ∈ Ta,b

with both a and b non-zero, such that p /∈ ΣC3,4.

Proof. If ΣC3,4 6= C3,4 then there exists a form p on the boundary of C3,4 that is not in ΣC3,4. The
boundary of C3,4 consists of convex forms whose Hessian forms have a nontrivial zero in RP

2×RP
2.

Therefore, we may assume that hp(c,d) = 0 for some point (c,d) ∈ RP
2 × RP

2.
We first observe that c 6= d. Suppose not and hp(c, c) = 0. In view of (2), this implies that

p(c) = 0, and hence p is a convex ternary form with a nontrivial zero. By an observation of Reznick
[29, Prop. 4.1], it follows that p is a bivariate form defined on the orthogonal complement of c in
R
3. But then p is sos-convex [7, Thm. 5.4], which is a contradiction.
We can apply a nonsingular linear change of coordinates and move the zero of hp to u1. The

new form will still be convex but not sos-convex. Therefore, we may assume that hp has a zero at
u1. Recall that Fu1 is the face of C3,4 consisting of all forms f for which hf (u1) = 0. It follows that
there exists a form p̂ in the relative interior of Fu1 such that p̂ /∈ ΣC3,4. Note that this implies that
hp̂(x,y) has a single zero at u1, and moreover the Hessian of hp̂ is positive definite on the tangent
space to S

2 × S
2 at u1.

6



Let q = 1

12
x43, then we have hq(x,y) = x23y

2
3. We observe that the Hessian matrix of hq is

identically zero at the point u1. Therefore for small enough ε, we have that p̂ − εq is still convex.
Now let ε > 0 be such that p̄ = p̂− εq is on the relative boundary of Fu1 . We note that p̄ is convex
but not sos-convex. Since the Hessian matrix of hq is identically zero at the point u1, it follows
that the Hessian of hp̄ is positive definite on the tangent space to S

2× S
2 at u1. Therefore hp̄ must

acquire an additional zero at a point v = (c̄, d̄), c̄, d̄ ∈ S
2. Since p̄ is not sos-convex, we see that

c̄ 6= d̄. Furthermore, we must have c̄3, d̄3 6= 0. Otherwise, x23y
2
3 is zero at the point c̄, d̄ and thus

hp̄ has the same value at (c̄, d̄) as hp̂, while hp̂ had no zeroes outside of u1. In other words, c̄ and
d̄ are not in the span of [1, 0, 0]T , [0, 1, 0]T .

For any v = (c,d) such that c and d are not in the span of [1, 0, 0]T , [0, 1, 0]T , we claim that
the face Fc,d of C3,4 consisting of convex ternary quartics with zeroes at u1 and v is at most
5-dimensional. Apply an invertible linear change of coordinates that fixes [1, 0, 0]T , [0, 1, 0]T and
maps c̄ to [0, 0, 1]T . Since d is not in the span of e1 and e2 and c 6= d, the point d will be taken
to (a non-zero multiple of) [a, b, 1]T for some a, b ∈ R and a, b not both zero. We apply Lemma 3.3
to see that the dimension of Fc,d is at most 5.

Note that there is an open ball B of forms around p̂ that are convex and not sos-convex. We can
push any form in B to the boundary of Fu1

by subtracting an appropriate multiple of q. It follows
that we cover an open neighborhood B′ of p̄ in the boundary of Fu1 by convex ternary quartics
that acquire a second zero at some (not necessarily same) point v = (c̄, d̄), with c̄ 6= d̄ and c3, d3
not equal to 0. It remains to show that there exists a point in B′ for which the additional zero
v = (c̄, d̄) is such that the four points [1, 0, 0]T , [0, 1, 0]T , c and d are in general linear position in
R
3. If this is the case, then an invertible linear change of coordinates can map c to [0, 0, 1]T and d

to [a, b, 1]T with both a, b non-zero.
By Lemma 3.2, the face Fu1

is 10-dimensional, and therefore its boundary is 9-dimensional. We
now derive a contradiction to all forms in B′ acquiring a zero v = (c,d), where [1, 0, 0]T , [0, 1, 0]T ,
c and d are not in general linear position via a dimension counting argument. As we saw above,
the face Tc,d is at most 5-dimensional. The pairs (c,d) ∈ S

2 × S
2 such that [1, 0, 0]T , [0, 1, 0]T ,

c and d are not in general linear position form a 3-dimensional family. Therefore, all together such
faces Tc,d cover at most an 8-dimensional subset of the boundary of Fu1 , and hence they cannot
cover all of B′.

3.2 Cone Description

We now derive an explicit desciption of the face Ta,b with both a and b non-zero. Let

q1 = x41, q2 = x42, q3 = (x1 − ax3)
4, q4 = (x2 − bx3)

4, q5 = x23(bx1 − ax2)
2.

We have the following:

Theorem 3.5. The face Ta,b consists of all forms α1q1 + · · ·+ α5q5 such that α1, . . . , α4 ≥ 0 and

− 4a2b2

b4

α1
+ a4

α2
+ b4

α3
+ a4

α4

≤ α5 ≤ 0.

Furthermore, all forms in Ta,b are sos-convex.

In view of Lemma 3.4, we note that a proof of Theorem 3.5 would complete the proof of
Theorem 3.1. We start by proving the latter claim of Theorem 3.5. Let Sa,b be the cone of all
forms p = α1q1 + · · · + α5q5 such that α1, . . . , α4 ≥ 0 and

− 4a2b2

b4

α1
+ a4

α2
+ b4

α3
+ a4

α4

≤ α5 ≤ 0. (4)
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Lemma 3.6. Suppose that p ∈ Sa,b. Then p is sos-convex.

Proof. Let p = α1q1 + · · · + α5q5 ∈ Sa,b. First we observe that if for some i ∈ {1, . . . , 4}, αi = 0,
then condition (4) implies that α5 = 0 and then p is a sum of fourth powers of linear forms and
hence sos-convex. Therefore we may restrict ourselves to the case of strictly positive α1, . . . , α4.
We establish that p is sos-convex by showing that hp(x,y) is a sum of squares.

We will use an explicit set of squares in our decomposition. For this we need a basis of the
linear subspace of bilinear forms in x and y with zeroes at u1 and u2. Let

s1 = x1y1, s2 = x2y2, s3 = (x1 − ax3)(y1 − ay3), s4 = (x2 − bx3)(y2 − by3), s5 = x3(by1 − ay2).
(5)

The forms si were chosen so that for i ∈ {1, . . . , 4} we have hqi(x,y) = s2i . Let s = (s1, s2, s3, s4, s5)
T

and let c = a
b
. Consider the matrix:

M =













12α1 + 2α5c
−2 −2α5 −2α5c

−2 2α5 2α5c
−2α5 12α2 + 2α5c

2 2α5 −2α5c
2 −2α5c

−2α5c
−2 2α5 12α3 + 2α5c

−2 −2α5 −2α5c
−1

2α5 −2α5c
2 −2α5 12α4 + 2α5c

2 2α5c
2α5c −2α5c −2α5c

−1 2α5c −4α5













. (6)

The matrix M is the Gram matrix of hp(x,y) with respect to the basis s = (s1, s2, s3, s4, s5)
T .

This means that hp(x,y) = sTMs. To show that p is sos-convex, it suffices to show that M is a
positive semidefinite matrix for all αi allowed in Sa,b.

We note that with αi > 0 for i ∈ {1, . . . , 4} and α5 = 0, the matrix M is diagonal with four
positive entries and therefore it is positive semidefinite, with a single zero eigenvalue. Now we look
at what happens if α5 is allowed to be negative.

A direct computation shows that

detM = −
20736α1α2α3α4α5

(

4a2b2 + α5

(

b4

α1
+ a4

α2
+ b4

α3
+ a4

α4

))

a2b2
.

Therefore, we see that for − 4a2b2

b4

α1
+

a4

α2
+

b4

α3
+

a4

α4

≤ α5 ≤ 0, the determinant of M is nonnegative and

strictly positive for α5 strictly between these bounds. It follows that M is positive semidefinite
with α5 = − 4a2b2

b4

α1
+

a4

α2
+

b4

α3
+

a4

α4

since it started with 4 positive eigenvalues at α5 = 0 and the product

of the eigenvalues is positive as α5 moves from 0 to − 4a2b2

b4

α1
+

a4

α2
+

b4

α3
+

a4

α4

.

Now we show that if p ∈ Sa,b and α5 is at its lower bound, then hp(x,y) has an additional zero
different from u1 and u2.

Lemma 3.7. Let p ∈ Sa,b with α1, . . . , α4 > 0 and α5 = − 4a2b2

b4

α1
+

a4

α2
+

b4

α3
+

a4

α4

. Then hp(x,y) has an

additional zero with x1, x2, y1, y2 6= 0.

Proof. When α5 = − 4a2b2

b4

α1
+

a4

α2
+

b4

α3
+

a4

α4

the matrix M from (6) is singular and the nullspace of M is

spanned by the vector

v =

(

2ab3

α1

,−2a3b

α2

,−2ab3

α3

,
2a3b

α4

,
b4

α1

+
a4

α2

+
b4

α3

+
a4

α4

)T

.
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We would like to show that hp(x,y) = sTMs has a nontrivial zero. Therefore we need to show
that the system of equations:

s1 = v1, s2 = v2, s3 = v3, s4 = v4, s5 = v5,

where si are defined in (5), has a real solution in x and y. Note that since a, b, αi 6= 0, it follows
that this solution must have x1, x2, y1, y2 6= 0.

Using the fact that y3(ax2−bx1) = s5+ab
(

s3−s1
a2

− s4−s2
b2

)

and equations s1 = v1, s2 = v2, s5 =
v5, we can express y1, y2, y3 and x3 in terms of x1 and x2 and substitute these into the equation
s3 = v3. After simplification, we get a quadratic equation in x1 and x2:

−2a3bα1α3α4(a
4α1α2α3 + a4α1α3α4 − b4α1α2α4 − b4α2α3α4)x

2
1

+(2α2
4b

8α3α
2
2α1 + 2α2

1a
8α4α

2
3α2 − 6a4α2b

4α2
3α

2
4α1 − 2α4b

4α2
3α

2
2α1a

4 − 2α2
1a

4α2
4α3α2b

4

+2α2
1a

4α2
2α3b

4α4 + α2
4b

8α2
3α

2
2 + α2

1a
8α2

4α
2
3 + α2

1a
8α2

2α
2
3 + α2

1α
2
2b

8α2
4)x1x2

+2ab3α2α3α4(a
4α1α2α3 + a4α1α3α4 − b4α1α2α4 − b4α2α3α4)x

2
2 = 0.

We note that the coefficients of x21 is almost the negative of the coefficient of x22. With positive
αi it follows that the discriminant of this equation is positive and therefore it always has a real
solution.

We now finish the proof of Theorem 3.5.

Proof of the first claim in Theorem 3.5. First we claim that Ta,b is contained in the linear span of
q1, . . . , q5. Observe that these polynomials are linearly independent ternary quartics, and further-
more they are all contained in the vector space La,b. By Lemma 3.3, we know that dimLa,b = 5
and therefore q1, . . . , q5 are a basis of La,b. The claim now follows.

Let p = α1q1 + . . . + α5q5 and suppose that p ∈ Ta,b. We now show that α1, . . . , α4 ≥ 0 and
α5 ≤ 0. Let v = ([0, b, 1], [a, 0, 1])T . Then hqi(v) = 0 for i ∈ {1, . . . , 4} while hq5(v) = −4a2b2.
Since hp is a nonnegative biquadratic form it follows that α5 ≤ 0.

Similarly, we can find a common zero v for any four hqi with the 5-th hqj not equal to zero

at v, which determines the sign of αj . For example, let v = ([0, (2 +
√
3)b, 1)], [a, 0, 1])T . Then

hqi(v) = 0 for i 6= 4 and hq4(v) = (48 + 24
√
3)b4 and therefore α4 ≥ 0.

Finally, we claim that if any αi = 0 for i ∈ {1, . . . , 4}, then α5 = 0. For example, suppose that
α1 = 0. We already know that α5 ≤ 0. We need to exhibit a point v for which hq5(v) > 0 and
hq2(v) = hq3(v) = hq4(v) = 0, as this will imply that α5 ≥ 0 and we will be done. This occurs for
v = ([a, b, 1], [1, 0, 1])T . It is easy to construct similar examples for i = 2, 3, 4 as well.

Therefore we may restrict ourselves to the case of strictly positive α1, . . . , α4. Let p̄ = α1q1 +
. . . + α4q4. We know that p̄ is convex and since α5 ≤ 0, we just need to know the lowest value of
α5 so that p = p̄+ α5q5 is convex.

We note that

hp̄(x,y) = 12(α1x
2
1y

2
1 + α2x

2
2y

2
2 + α3(x1 − ax3)

2(y1 − ay3)
2 + α4(x2 − bx3)

2(y2 − by3)
2).

Therefore hp̄(x,y) has zeroes only at the points where either x1 = 0 or y1 = 0. Now, for

α5 = − 4a2b2

b4

α1
+

a4

α2
+

b4

α3
+

a4

α4

, we know that p = p̄ + α5q5 is sos-convex by Lemma 3.6. However, by

Lemma 3.7, the biquadratic form hp(x,y) has a zero at a point where hp̄(x,y) is strictly positive.

It follows that − 4a2b2

b4

α1
+

a4

α2
+

b4

α3
+

a4

α4

is the smallest α5 can be for p = p̄+ α5q5 to be convex.
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We end by a few remarks around Theorem 3.1. In [15], Choi, Lam, and Reznick show that a
nonnegative quartic form in 4 variables that has more than 11 nontrivial zeroes, or a nonnegative
sextic form in 3 variables that has more than 10 nontrivial zeroes, must be a sum of squares. The
bound for the first claim was improved to 10 in [9]. The next corollary is of the same spirit, but in
relation to convex forms.

Corollary 3.8. Let p be a convex form in 4 variables of degree 4, or a convex form in 3 variables
(of any degree). If p vanishes at a nonzero point, then p is sos-convex (and sos).

Proof. By [29, Prop. 4.1], a convex form that vanishes at a nonzero point can be written, after
a nonsingular linear change of coordinates, as a convex form in one fewer variable. The claim for
convex forms in 4 variables of degree 4 then follows from our Theorem 3.1. Similarly, the claim
for convex forms in 3 variables follows from the fact that bivariate convex forms are sos-convex [7,
Thm. 5.4].

Together with the results in [7], Theorem 3.1 characterizes all dimensions and degrees for which
one can have convex forms that are not sos-convex. As mentioned earlier, these turns out to be the
same dimensions and degrees for which there are nonnegative forms that are not sums of squares [21],
though for very different reasons. An interesting remaining question is to characterize dimensions
and degrees for which one can have convex forms that are not sums of squares. Existence of such
forms was shown in [8] (see also [10, Chapter 4]) by Blekherman when the degree is 4 or larger and
the dimension is large enough. El Khadir has shown that such a quartic form does not exist in
dimension 4 [19], and Saunderson has constructed an explicit example in dimension 272 [30].
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A Proofs for Section 2 (Symmetric biquadratic forms and Hessian

biquadratic forms)

In this appendix, we present the proof of Theorem 2.3.

Proof. For the convenience of the reader, let us recall the biquadratic form in (3):

b(x1, x2, x3, y1, y2, y3) = 12(x21y
2
1 + x22y

2
2 + x23y

2
3)

+31x1x2y1y2 − 10x1x3y1y3 − 5x2x3y2y3

+12(x22y
2
1 + y22x

2
1) + 6(x23y

2
1 + y23x

2
1) + 12(x22y

2
3 + y22x

2
3)

+4(x1x2y
2
1 + y1y2x

2
1) + 9(x1x3y

2
1 + y1y3x

2
1)− 10(x2x3y

2
1 + y2y3x

2
1)

+13(x1x3y
2
2 + y1y3x

2
2) + 13(x2x3y

2
2 + y2y3x

2
2) + 23(x1x2y

2
2 + y1y2x

2
2)

+5(x1x2y
2
3 + y1y2x

2
3) + 3(x1x3y

2
3 + y1y3x

2
3) + 7(x2x3y

2
3 + y2y3x

2
3)

+5(x1x2y2y3 + y1y2x2x3)− 11(x1x3y2y3 + y1y3x2x3) + 3(x1x3y1y2 + y1y3x1x2).

The fact that b(x,y) = b(y,x) can readily be seen from the order in which we have written the
monomials. To prove that b(x,y) is nonnegative, we show that

b(x,y)(x21 + x22) (7)

is sos. This, together with nonnegativity of (x21 +x22) and continuity of b(x,y), implies that b(x,y)
is nonnegative. A rational sum of squares certificate for (7), which we have obtained from the
software package SOSTOOLS [PPP05], is as follows:

b(x,y)(x21 + x22) =
1

384
zTQz,

where z is the vector of monomials

z = [x2x3y3, x2x3y2, x2x3y1, x
2
2y3, x

2
2y2, x

2
2y1, x1x3y3,

x1x3y2, x1x3y1, x1x2y3, x1x2y2, x1x2y1, x
2
1y3, x

2
1y2, x

2
1y1]

T ,
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and Q is the positive definite matrix given by

Q =















































































































4608 1344 576 1344 −504 −264 0 −900 −264 1392 −612 −303 972 −612 576

1344 4608 960 −456 2496 2340 900 0 864 264 3072 1572 396 672 240

576 960 2304 −1848 −1380 −1920 264 −864 0 −483 −1440 1200 −888 240 −1164

1344 −456 −1848 4608 2496 2496 −816 −1548 −1047 960 840 24 1896 −1944 1452

−504 2496 −1380 2496 4608 4416 −216 −576 312 120 4416 1356 1380 −284 1620

−264 2340 −1920 2496 4416 4608 −87 132 528 552 4596 768 1512 −24 1892

0 900 264 −816 −216 −87 4608 1344 576 372 −2400 −1980 576 −1572 −2400

−900 0 −864 −1548 −576 132 1344 4608 960 1656 1824 −828 −540 2496 −84

−264 864 0 −1047 312 528 576 960 2304 180 1308 −756 480 660 1728

1392 264 −483 960 120 552 372 1656 180 3120 1140 1260 960 876 1152

−612 3072 −1440 840 4416 4596 −2400 1824 1308 1140 9784 3588 84 4416 3660

−303 1572 1200 24 1356 768 −1980 −828 −756 1260 3588 5432 −576 2292 768

972 396 −888 1896 1380 1512 576 −540 480 960 84 −576 2304 −1920 1728

−612 672 240 −1944 −284 −24 −1572 2496 660 876 4416 2292 −1920 4608 768

576 240 −1164 1452 1620 1892 −2400 −84 1728 1152 3660 768 1728 768 4608















































































































.

Let us now prove that b is not sos. If we denote the cone of sos ternary biquadratic forms by ΣB,3

and its dual cone by Σ∗
B,3

, our proof will simply proceed by presenting a dual functional ξ ∈ Σ∗
B,3

that takes a negative value on the polynomial b. Let us fix the following ordering for monomials of
ternary biquadratic forms:

{x23y23, x23y2y3, x23y22 , x23y1y3, x23y1y2, x23y21, x2x3y23, x2x3y2y3, x2x3y22 , x2x3y1y3, x2x3y1y2, x2x3y21,

x22y
2
3, x

2
2y2y3, x

2
2y

2
2, x

2
2y1y3, x

2
2y1y2, x

2
2y

2
1, x1x3y

2
3, x1x3y2y3, x1x3y

2
2, x1x3y1y3, x1x3y1y2, x1x3y

2
1,

x1x2y
2
3 , x1x2y2y3, x1x2y

2
2, x1x2y1y3, x1x2y1y2, x1x2y

2
1, x

2
1y

2
3, x

2
1y2y3, x

2
1y

2
2, x

2
1y1y3, x

2
1y1y2, x

2
1y

2
1}.
(8)

With this ordering, the vector of coefficients ~b of the biquadratic form b in (3) is given by

~b = [12, 7, 12, 3, 5, 6, 7,−5, 13,−11, 5,−10, 12, 13, 12, 13, 23,
12, 3,−11, 13,−10, 3, 9, 5, 5, 23, 3, 31, 4, 6,−10, 12, 9, 4, 12]T .

Using the same ordering, we can represent our dual functional ξ with the vector

c = [37,−18, 18,−23,−1, 66,−18, 12,−15, 1,−1, 35, 18,−15, 96,−5,−37,
64,−23, 1,−5, 34,−7,−48,−1,−1,−37,−7,−15, 0, 66, 35, 64,−48, 0, 61]T .

We have
〈ξ, b〉 = cT ~b = −37 < 0.

On the other hand, we claim that ξ ∈ Σ∗
B,3; i.e., for any form w ∈ ΣB,3, we should have

〈ξ, w〉 = cT ~w ≥ 0, (9)

where ~w here denotes the coefficients of w listed according to the ordering in (8). Indeed, if w is
sos, then it can be written in the form

w(x) = z̃T Q̃z̃ = Tr Q̃ · z̃z̃T ,
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for some symmetric positive semidefinite matrix Q̃, and a vector of monomials

z̃ = [x1y1, x1y2, x1y3, x2y1, x2y2, x2y3, x3y1, x3y2, x3y3]
T .

It is not difficult to see that
cT ~w = Tr Q̃ · (z̃z̃T )|c, (10)

where by (z̃z̃T )|c we mean a matrix where each monomial in z̃z̃T is replaced with the corresponding
element of the vector c. This yields the matrix

(z̃z̃T )|c =





























61 0 −48 0 −15 −7 −48 −7 34
0 64 35 −15 −37 −1 −7 −5 1

−48 35 66 −7 −1 −1 34 1 −23
0 −15 −7 64 −37 −5 35 −1 1

−15 −37 −1 −37 96 −15 −1 −15 12
−7 −1 −1 −5 −15 18 1 12 −18

−48 −7 34 35 −1 1 66 −1 −23
−7 −5 1 −1 −15 12 −1 18 −18
34 1 −23 1 12 −18 −23 −18 37





























,

which can easily be checked to be positive definite. Therefore, equation (10) along with the fact
that Q is positive semidefinite implies that (9) holds. This completes the proof.2

References for the Appendix

[PPP05] S. Prajna, A. Papachristodoulou, and P. A. Parrilo. SOS-
TOOLS: Sum of squares optimization toolbox for MATLAB, 2002-
05. Available from http://www.cds.caltech.edu/sostools and
http://www.mit.edu/~parrilo/sostools.

2For verification purposes, we have made the content of this proof available in electronic form at
http://aaa.princeton.edu/software. In particular, whenever we state that a matrix is positive definite, this
claim is certified by a rational LDLT factorization.
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