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ABSTRACT

The rapid advancements in generative AI and large language models (LLMs) have opened up new
avenues for producing synthetic data, particularly in the realm of structured tabular formats, such as
product reviews. Despite the potential benefits, concerns regarding privacy leakage have surfaced,
especially when personal information is utilized in the training datasets. In addition, there is an
absence of a comprehensive evaluation framework capable of quantitatively measuring the quality
of the generated synthetic data and their utility for downstream tasks. In response to this gap, we
introduce SynEval 1, an open-source evaluation framework designed to assess the fidelity, utility,
and privacy preservation of synthetically generated tabular data via a suite of diverse evaluation
metrics. We validate the efficacy of our proposed framework - SynEval - by applying it to synthetic
product review data generated by three state-of-the-art LLMs: ChatGPT, Claude, and Llama. Our
experimental findings illuminate the trade-offs between various evaluation metrics in the context of
synthetic data generation. Furthermore, SynEval stands as a critical instrument for researchers and
practitioners engaged with synthetic tabular data„ empowering them to judiciously determine the
suitability of the generated data for their specific applications, with an emphasis on upholding user
privacy.
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1 Introduction

The proliferation of high-quality data serves as the cornerstone propelling the current advancements in artificial intelli-
gence (AI). Nonetheless, real-world datasets frequently suffer from noise and imbalances, impeding the performance of
AI models trained on such data. For example, in the context of product reviews, there is often a lack of data representing
marginalized communities, such as disabled users. This data scarcity can lead to biased and inaccurate models that
fail to capture the diverse needs and experiences of all users. Also, collecting and labeling real data can be expensive,
time consuming, and error-prone. For instance, it is reported that, on average, data labeling can cost organizations $2.3
million per year and 16 weeks to perform supervised learning on a new project[1]. Furthermore, privacy regulations
make it even more difficult for companies to utilize their customers’ data even if such data is available at their premises.
For example, the fines imposed by GDPR in 2023 alone have already exceeded the total amount of fines from 2019 to
2021 [2], with a record-breaking $1.28 billion imposed for Meta’s failure in complying with GDPR during its data
transfer from EU to the U.S. for Facebook services [3].

As a result, rather than directly utilizing real data, generating synthetic data that can sufficiently represent the statistical
properties of real data while preserving individual user privacy is gaining extensive attention. Compared to real data,
synthetic data can be generated in large quantities much faster than the same amount of real data can be collected,
and can be more easily manipulated to allow more precise and controlled training and testing of AI models [4, 5].
According to Gartner, it is estimated that synthetic data will play a dominant role in AI models by 2030, and 89% of
tech executives believed that synthetic data is a key for companies to stay competitive [6].

1https://github.com/yefyuan/SynEval

ar
X

iv
:2

40
4.

14
44

5v
1 

 [
cs

.L
G

] 
 2

0 
A

pr
 2

02
4



Due to its numerous benefits, synthetic data generation has attracted interests from a wide range of companies, such as
Google, Microsoft, Amazon, Facebook, Nvidia [7, 8, 9]. For example, Google Cloud recently announced partnership
with Gretel for generating anonymized and safe synthetic data [10]. Microsoft has collaborated with Harvard to develop
synthetic data generation tools for responsive AI [11]. Amazon has developed in-house synthetic data tools for training
computer vision models (AWS, 2023). Facebook acquired a synthetic data generator startup AI.Reverie [12]. Nvidia is
creating a synthetic data generation engine for training AI networks [13]. Recent advancements in generative AI, such
as Generative Adversarial Networks (GANs) [14] and Large Language Models (LLMs) [15], have shown promising
results in generating realistic synthetic data.

However, existing evaluation frameworks for synthetic data often focus on one or two specific aspects. There is a lack
of a comprehensive evaluation framework that merges multiple perspectives and offers a holistic suite of metrics for the
assessment of synthetic data. This poses a significant challenge in the adoption and trustworthiness of synthetic data
generation techniques. Therefore, in this work, we propose SynEval, a comprehensive framework to rigorously evaluate
the effectiveness of synthetic data generation from these critical dimensions:

• Fidelity: This aspect focuses on the degree to which synthetic data replicates the statistical characteristics of
the original dataset.

• Utility: The utility of synthetic data is determined by its effectiveness in facilitating various downstream
machine learning tasks. This involves evaluating whether models trained on synthetic data perform comparably
to those trained on real data when tested on validation or real-world datasets.

• Privacy: Privacy protection is paramount to ensure that the synthetic data does not reveal sensitive information
about individuals in the original dataset. Privacy can be assessed through techniques like re-identification risk
analysis and other privacy-preserving metrics.

The development of robust evaluation metrics and frameworks like SynEval is critical for the advancement of synthetic
data generation methods. Without such tools, it is challenging to gauge the quality and safety of synthetic data, which
can hinder its adoption in sensitive domains such as ecommerce, healthcare, and finance.

The major contributions of this work are as follows:

• We propose a multi-faceted evaluation framework that integrates data fidelity, utility, and privacy evaluation
with a comprehensive set of evaluation metrics to provide a holistic assessment of synthetically generated data.

• We demonstrate the effectiveness of the proposed framework by applying it to synthetic product review data
generated by three prominent LLMs: ChatGPT, Claude, and Llama.

• We provide insights and recommendations based on the evaluation results, highlighting the strengths and
limitations of each large language model in generating high-quality, useful, and privacy-preserving synthetic
tabular data.

By addressing the research gap and providing a comprehensive evaluation framework, the proposed work contributes to
the advancement of synthetic data generation techniques and promotes the responsible and trustworthy use of synthetic
data in various applications. The proposed framework serves as a valuable tool for researchers and practitioners to
assess the effectiveness of synthetic tabular data generated by LLMs and make informed decisions regarding their
deployment in real-world scenarios.

2 Related Work

2.1 Synthetic Data Generation

Synthetic data generation has gained significant attention in recent years to address privacy concerns, data scarcity,
and data imbalance issues. Various approaches have been proposed for generating synthetic data, including statistical
models [16], generative adversarial networks (GANs) [17], variational autoencoders (VAEs) [18], and more recently,
LLMs [19]. Statistical models, such as Bayesian networks [20] and copulas [21], have been used to generate synthetic
data by learning the underlying probability distributions of the real data. These models often require domain knowledge
and explicit modeling of the data dependencies, which can be challenging for complex datasets. GANs have emerged as
a popular approach for generating realistic synthetic data by training a generator network to produce samples that are
indistinguishable from real data. GANs have been successfully applied to various domains, including image generation
[22], text generation [23], and tabular data generation [24]. However, training GANs can be challenging, and ensuring
the stability and convergence of the training process remains an active area of research [25]. VAEs, on the other hand,
learn a latent representation of the data and generate synthetic samples by sampling from the learned latent space.
VAEs have been used to generate synthetic tabular data and have shown promising results in preserving the statistical
properties of the real data. However, the generated samples may lack diversity and realism [18].
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Figure 1: Framework Overview

Recently, LLMs, such as GPT-3 [26], Claude [27], and Llama [28] have demonstrated remarkable capabilities in
generating coherent and realistic text. These models have been pre-trained on vast amounts of diverse text data and can
be fine-tuned for specific tasks, including synthetic data generation [29].

2.2 Quantitative Evaluation Metrics

With diverse approaches for generating synthetic data, it is essential to quantitatively evaluate the quality of generated
synthetic data, which can help compare different generation approaches and ensure diverse, balanced, and privacy-
preserving data for downstream tasks. To this end, various evaluation metrics have been proposed.

Statistical similarity metrics, such as Jensen-Shannon divergence [30], and maximum mean discrepancy [31], have
been introduced to quantify the statistical differences between synthetic data and real data. These measures capture the
overall statistical properties of the data but may not account for the specific characteristics of individual features or
feature correlations. To evaluate the utility of synthetic data for downstream machine learning tasks, typical machine
learning performance metrics, such as accuracy, precision, recall, and F1-score, are often used by existing literature [32].
By training machine learning models on synthetic data and evaluating their performance on real data, researchers can
assess the extent to which the synthetic data retains the inference capability of the real data. However, these metrics may
not capture the nuances and biases presented in the synthetic data. Privacy evaluation frameworks, such as differential
privacy(DP) [33], k-anonymity [34], and l-diversity [35], have been proposed to assess the privacy risks associated with
synthetic data. However, these techniques often assume a specific level of attacker knowledge and are inadequate to
evaluate general privacy risks. Differential privacy has emerged as a strong mathematical framework that provides
quantitative privacy guarantees by adding carefully calibrated noise to the data or query results. Nevertheless, evaluating
whether the synthetically generated data satisfies DP requirements is challenging due to the high computational overhead.
Therefore, in the proposed SynEval framework, we evaluate the privacy of synthetic data by checking its robustness
against privacy attacks, specifically the Membership Inference Attacks (MIA) [36].

Existing evaluation frameworks often focus on specific aspects of synthetic data quality and may not provide a
comprehensive assessment of the generated data. Moreover, evaluating synthetic tabular data generated by LLMs
presents unique challenges due to the complex nature of the data, which often comprises a combination of discrete
categorical variables and free-form text fields, along with intricate relationships and dependencies between these
elements that must be preserved to ensure the utility and integrity of the data, while also maintaining semantic
consistency, coherence, and the protection of sensitive information to mitigate privacy risks. Therefore, a comprehensive
evaluation framework that integrates multiple perspectives and is tailored to the characteristics of synthetic tabular data
generated by LLMs is needed.

3 Proposed Scheme

Figure 1 presents an overview of the proposed framework, which comprises three evaluations: fidelity, utility, and
privacy. The fidelity evaluation employs metrics such as structure preservation, data integrity, and column shape
calculations for non-text tabular data. Additionally, it includes metrics for review text, such as sentiment distribution,
top keywords and sentiment-related words, and average length. The utility evaluation is determined by calculating
the accuracy of downstream sentiment classification. Lastly, the privacy evaluation is based on the success rate of
membership inference attacks.
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3.1 Fidelity Evaluation

Data fidelity evaluation is a crucial component of the proposed framework, as it assesses the degree to which the
synthetic tabular data resembles the real data. Ensuring high fidelity is essential for building trust in the generated
synthetic data and enabling its effective use in various applications, such as model training, testing, and decision-making.

In particular, the proposed framework emphasizes the importance of comprehensive data fidelity evaluation, considering
multiple aspects of data similarity and quality. Different from existing literature, the proposed data fidelity evaluation
includes not only simple statistical comparisons but also an in-depth analysis of the relationships, dependencies, and
contextual information present in the data.

First, for non-text tabular data, we introduce the Structure Preserving Score (SPS) to evaluate whether the synthetic
data retains the same column names and order as the real data. This assessment involves identifying all column names
in the real (r) and synthetic (s) datasets and calculating the overlap between these columns to derive a fidelity score.

SPS =
|r ∩ s|
|r ∪ s|

[37] (1)

Next, we introduce Integrity Score (IS) to assess the integrity of the non-text tabular data. Specifically, the computation
of IS depends on whether the data is continuous or discrete. The overall IS is the average IS of continuous and discrete
data. For continuous data, such as timestamps, we assess whether synthetic columns adhere to the minimum and
maximum values defined by the corresponding real columns. For discrete data, such as ratings and verified purchases,
the proposed approach checks if synthetic columns maintain the same category values as those in the real data. It is
crucial that the synthetic data does not introduce new category values absent from the real dataset. The metric first
recognizes set of unique categories from a real column (Cr), then it calculates the percentage of synthetic data (s) that
are found in the set compared to all synthetic data points in this column.

IS =
|s, s ∈ Cr|

|s|
[37] (2)

The third evaluation criterion for non-text tabular data assesses whether the synthetic data accurately capture the
distribution shape of each column. Column shape refers to its overall distribution pattern. To evaluate this, we employ
different methods depending on the data type. For continuous numerical values, such as helpful vote, we utilize the
Kolmogorov-Smirnov [38] statistic to measure the similarity in marginal distributions between the synthetic and real
columns. For discrete data, such as verified purchases, we apply the Total Variation Distance (TVD) [37] to compare
the synthetic and real columns. The overall column shapes score is then calculated as the average across all columns.

To rigorously evaluate the fidelity of textual review data, we have developed a text analysis tool. This tool begins
by assessing the sentiment distribution of each review, categorizing them as positive, neutral, or negative. We then
compare the distribution of these sentiment categories between the real and synthetic data to identify and analyze
dominant sentiments, ensuring that the synthetic data accurately reflects the emotional tone of the real reviews.

Furthermore, we conduct a detailed lexical analysis by extracting the top three keywords and sentiment-related
words from the real dataset and synthetic data. This step involves not only identifying these pivotal words but also
quantifying their frequency to establish a benchmark for comparison. We then evaluate how well these keywords and
sentiment indicators are replicated in the synthetic data, which provides insight into the synthetic model’s ability to
capture and reproduce the key thematic elements of the real text.

Additionally, we measure the average length of the reviews in both the real and synthetic data. This metric is crucial
as it helps determine whether the synthetic data can maintain the same level of detail as the real reviews, which is
important for applications where text length may influence the perceived quality or informativeness of the content.

Through these multifaceted analytical approaches, we ensure a comprehensive evaluation of the synthetic textual data,
gauging its fidelity not only in mimicking the overt sentiments expressed in the reviews but also in preserving the
underlying thematic and stylistic nuances that characterize the real dataset.

3.2 Utility Evaluation

The utility evaluation component of the proposed framework plays a crucial role in assessing the usefulness of the
generated synthetic tabular data for downstream machine learning tasks. It is essential to ensure that the synthetic data
retains the predictive power and informativeness of the real data, enabling the development of accurate and reliable
machine learning models. To evaluate the utility of the synthetic tabular data, we propose adopting a framework named
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TSTR (Train-Synthetic-Test-Real), which offers a robust measure of synthetic data quality by assessing how well
machine learning models trained on synthetic data perform on previously unseen real data.

In the context of product reviews, a common machine learning task is sentiment classification, which involves predicting
the sentiment (positive, negative, or neutral) of a given review based on its text content. We begin by extracting
(review, rating) pairs from both the original and synthetic datasets to train sentiment classification models using logistic
regression. The models are then validated on a separate set of untouched real data to ensure robustness and prevent
overfitting. Accuracy is determined by how closely the predicted ratings align with the actual ratings from the review
texts, incorporating a tolerance threshold to account for minor variations. Additionally, we calculate the Mean Absolute
Error (MAE) across all test instances to quantify the average prediction error, providing a clear metric of the models’
performance in real-world scenarios.

By comparing models trained on synthetic data to those trained on real data, we assess whether synthetic data preserves
the utility of its real counterparts. This utility evaluation offers an in-depth analysis of the synthetic tabular data’s
effectiveness, extending beyond basic statistical comparisons. It directly gauges the performance of synthetic data in
real-world machine learning applications, providing valuable insights into its quality and utility.

3.3 Privacy Evaluation

In the privacy evaluation of the proposed work, we employ Membership Inference Attacks (MIA) [39] to assess whether
synthetic datasets can reliably mimic the privacy attributes of real datasets, hence protecting the anonymity of the
underlying data sources. This approach not only tests the robustness of the privacy-preserving measures but also
quantifies the risk of sensitive information leakage through synthetic data.

We initiate the process by loading and preprocessing both real and synthetic datasets, which include data labeled as
from ’members’ (real dataset) and ’non-members’ (synthetic dataset). For each dataset, categorical features such as
product IDs, parent product IDs, and user IDs are encoded using label encoding. The datasets processed include real
member data, real non-member data, and synthetic data generated by different language models. For the features’
transformation, we implement a column transformer that processes different types of data.

Using the prepared datasets, we construct a combined dataset of real members and a randomly selected half of all
synthetic datasets. This combined dataset serves as our training set. The test set comprises real non-member data
combined with the remaining half of the synthetic data.

A Random Forest Classifier is trained on this mixed dataset within a pipeline that includes the preliminary feature
transformation. We assess the classifier’s performance by calculating successful rate of predictions. Higher successful
rate in distinguishing members from non-members suggest greater potential for privacy leakage, indicating that the
synthetic data may be too closely replicating identifiable patterns present in the real data.

This comprehensive scheme for privacy evaluation using MIA models thus plays a crucial role in our assessment of the
security and applicability of synthetic datasets generated by state-of-the-art language models, guiding us in making
informed decisions about their deployment in sensitive or privacy-conscious environments.

4 Experiments

4.1 Synthetic Data Generation Scenario

In this work, our primary focus is on the generation of synthetic tabular data with text reviews. Tabular data encompasses
a structured format that is pivotal in numerous analytical scenarios across various domains. The ability to accurately
and efficiently generate synthetic tabular data not only aids in enhancing data privacy but also facilitates the testing and
development of new analytical models where real data may be sparse or sensitive.

We specifically concentrate on online review data for several reasons. First, such data is abundant and rich in diverse
types of information, making it an ideal candidate for robust synthetic data generation experiments. Online reviews, as
seen on platforms like Amazon, not only influence consumer behavior but also provide a wealth of information that can
be mined for insights into user satisfaction and product quality.

We use the Amazon product review dataset [40], which contains millions of product reviews from various categories,
such as electronics, books, and clothing, as the source dataset. User review data includes various data fields, which are
structured below.

• Rating: Numerical rating of the product, ranging from 1.0 to 5.0, indicating the overall customer satisfaction.
• Title: Brief title of the user review, summarizing the user’s opinion.
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• Text: Detailed text body of the user review, providing in-depth feedback and commentary on the product.
• Images: Visual content uploaded by users post-purchase, showcasing the product from a consumer’s perspec-

tive.
• ASIN: The Amazon Standard Identification Number, a unique code assigned to each product listed on Amazon.
• Parent ASIN: The identifier for the parent product, under which variations (such as size, color, etc.) are listed.
• User ID: Identifier for the user who posted the review, ensuring traceability and authenticity.
• Timestamp: The exact time when the review was posted, expressed in Unix time format.
• Helpful Vote: Count of the number of times other users found the review helpful.
• Verified Purchase: A boolean indicator showing whether the product was purchased through Amazon,

confirming the authenticity of the review.

Such user review data, which includes both non-text tabular data and text-based comment data, can well represent the
complexity of the generated synthetic data.

To generate synthetic review data, we select 50 samples from a dataset of software product reviews to train LLMs
through prompting techniques. Each model is tasked with producing 300 synthetic entries. Claude demonstrates
the most efficient data generation process, smoothly producing approximately 25 entries at a time without the need
for re-prompting. In contrast, ChatGPT requires frequent reintroduction of the real data to maintain consistency in
generating software related product reviews. Llama necessitates detailed prompting to accurately specify numeric
data ranges and text formats; lacking precise instructions, it tends to shift focus to unrelated topics or generate data in
incorrect formats.

A uniqueness verification is conducted to ensure the originality of each synthetic entry. Out of the requested 300 entries,
Claude manages to produce 300 unique items. ChatGPT produces 292 unique entries. Llama, however, only produces
115, with the remainder being duplicates. These duplicates are removed prior to further evaluation to maintain the
integrity of our data analysis.

4.2 Models to evaluate

In the experiment, we evaluate three advanced large language models (LLMs) to understand their performances in
generating synthetic data. The models selected are Claude 3 Opus, ChatGPT 3.5, and Llama 2 13B, representing a mix
of proprietary and open-source technologies, each with unique operational and accessibility characteristics.

Claude 3 Opus is a proprietary model developed by Anthropic. It is notable for its advanced natural language
understanding and generation capabilities. This model operates on a subscription basis, requiring a monthly payment
for access. The decision to include Claude in this work stems from its representation of cutting-edge, commercially
available closed-source LLMs. Evaluating Claude allows us to assess the performance of pay-to-access models in
synthetic data generation, providing insights into the value offered by such commercially structured tools.

ChatGPT 3.5, developed by OpenAI, is another proprietary model but is offered free of charge. It has gained significant
attention for its robust performance in a variety of natural language processing tasks. The inclusion of ChatGPT
3.5 enables us to compare a no-cost proprietary model against its paid counterparts, offering a perspective on how
accessibility influences the quality and utility of synthetic data generation, especially in academic and low-resource
settings.

Llama 2 13B, an open-source model developed by Meta, stands out due to its accessibility and the transparency of its
development process. As an open-source LLM, Llama allows researchers complete access to tweak its parameters and
training methods. Including Llama in our evaluation provides a comprehensive view of how open-source models stack
up against proprietary models in generating synthetic data, which is crucial for understanding the broader ecosystem of
data generation technologies.

By examining these three models, we aim to uncover the nuances of synthetic data generation across different model
architectures. This comparative analysis helps us delineate the performance differentials and potentially identify the
optimal configurations and settings for each type of model in the domain of synthetic data generation.

4.3 Evaluation Results

4.3.1 Fidelity

Table 1 presents the fidelity evaluation of the non-text tabular data within our synthetic datasets. All three models
achieve a 100% score in structure preservation, demonstrating their ability to maintain the column names in the synthetic

6



datasets relative to the real data. In terms of data integrity, Claude scores the highest. ChatGPT and Llama receive
lower scores due to their propensity to generate duplicate titles. Claude and ChatGPT exhibit higher scores for column
shape, attributed to their capabilities of preserving the distribution shape of most columns. Their scores are affected by
the predominance of zero values in the ’helpful vote’ category, which deviates from the real data. Llama scores the
lowest, not only displaying zeros in all ’helpful vote’ fields but also inaccurately representing most ’verified purchase’
values as false, contrary to the real data, which predominantly features verified purchases.

Metric Claude ChatGPT Llama
Structure Preserving Score 100% 100% 100%
Data Integrity Score 98.4% 93.9% 87.59%
Column Shapes Score 80.92% 80.97% 62.29%

Table 1: Fidelity Evaluation Results on Non-Text Tabular Data

Table 2 presents the text analysis results comparing three synthetic data sets against real data. All models successfully
capture the predominant sentiment found within the review data. Claude not only aligns closely with the top three
keywords and sentiment-related words of the real data but also closely mirrors the original reviews’ writing style.
Although the other two models produce somewhat similar keywords, the significant distinction lies in the average
length of the reviews. Claude maintains an average review length most akin to that of the real data, while the other
models generate significantly shorter reviews on average. Notably, ChatGPT initially produces lengthy reviews but the
length decreases over time. Llama, on the other hand, struggles to generate extended content without losing coherence.
Overall, Claude excels in preserving the underlying thematic and stylistic nuances characteristic of the real dataset.

Metric Claude ChatGPT Llama Real
Sentiment Distribution Positive (82%) Positive (78.42%) Positive (75.86%) Positive (82%)
Top 3 Keywords app, features, like game, highly, app product, highly, app app, game, like
Top 3 Sentiment Words great, more, easy reliable, addictive,

flashlight
great, more, much good, sure, easy

Average length (words) 40.48 16.55 18.69 59.26

Table 2: Text Analysis Results

4.3.2 Utility

Table 3 displays the utility evaluation results for synthetic data. While the sentiment classification model trained on real
data achieves the highest accuracy, the models trained on synthetic data also exhibit comparable accuracy and similar
Mean Absolute Error (MAE) values. This suggests that, despite varying levels of fidelity, all models effectively capture
the relationship between review text data and user-provided ratings. Given that the training involved no more than 300
data samples, we anticipate that accuracy could further improve with the inclusion of more training data. Additionally,
with an expanded dataset, the utility performance of each synthetic data might show greater divergence.

Data Type MAE Accuracy
Claude Synthetic 1.2929 67.68%
ChatGPT Synthetic 1.2041 67.35%
Llama Synthetic 1.4151 62.26%
Real Data 1.3019 67.92%

Table 3: Utility Evaluation Results

4.3.3 Privacy

Table 4 presents the privacy evaluation results, showcasing the accuracy of the trained Membership Inference Attack
(MIA) models [39]. All three models demonstrate very high successful rates, which in the context of MIA, suggests a
higher probability of information leakage. This high successful rate is likely due to the fact that categorical features such
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as product IDs, parent product IDs, and user IDs are largely duplicated within each synthetic dataset. This duplication
enables the models to re-identify data successfully.

These results imply that without additional fine-tuning, LLMs struggle to maintain the security and uniqueness of data
in complex synthetic data generation tasks. Nonetheless, it is also conceivable that with more comprehensive datasets
for training, these models could enhance their data generation capabilities, reducing the risk of privacy breaches.

MIA Model Successful Rate
Trained by Claude Synthetic 91%
Trained by ChatGPT Synthetic 90%
Trained by Llama Synthetic 83%

Table 4: Privacy Evaluation Results

5 Conclusion and Future Work

In this paper, we propose a comprehensive evaluation framework for quantitatively assessing the fidelity, utility, and
privacy of synthetic tabular data generated by LLMs. We demonstrated the effectiveness of the proposed framework by
applying it to synthetic product review data generated by three state-of-the-art LLMs: ChatGPT, Claude, and Llama.
This framework can contribute to the growing field of synthetic data evaluation. As LLMs continue to advance and
generate increasingly realistic synthetic data, the proposed framework can serve as a foundation for future research and
help ensure the responsible and effective use of synthetic data in real-world applications.

The proposed work also opens up opportunities for future research. First, while this study focuses on product review
data, the evaluation framework can be extended to other domains and data types to assess. Second, the privacy evaluation
component can be enhanced by incorporating additional privacy attacks and metrics to provide a more comprehensive
assessment of privacy risks. Third, the trade-off between privacy and utility can be further explored by developing
advanced privacy-preserving techniques that maintain high data utility while ensuring strong privacy guarantees.
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