
Generative Subspace Adversarial Active Learning for Outlier Detection in
Multiple Views of High-dimensional Data

Jose Cribeiro-Ramallo , Vadim Arzamasov , Federico Matteucci , Denis Wambold , Klemens
Böhm

Karlsruhe Institute of Technology
{jose.cribeiro, vadim.arzamasov, federico.matteucci, klemens.boehm}@kit.edu

denis.wambold@student.kit.edu

Abstract
Outlier detection in high-dimensional tabular data
is an important task in data mining, essential for
many downstream tasks and applications. Exist-
ing unsupervised outlier detection algorithms face
one or more problems, including inlier assump-
tion (IA), curse of dimensionality (CD), and mul-
tiple views (MV). To address these issues, we in-
troduce Generative Subspace Adversarial Active
Learning (GSAAL), a novel approach that uses a
Generative Adversarial Network with multiple ad-
versaries. These adversaries learn the marginal
class probability functions over different data sub-
spaces, while a single generator in the full space
models the entire distribution of the inlier class.
GSAAL is specifically designed to address the MV
limitation while also handling the IA and CD, being
the only method to do so. We provide a compre-
hensive mathematical formulation of MV, conver-
gence guarantees for the discriminators, and scal-
ability results for GSAAL. Our extensive experi-
ments demonstrate the effectiveness and scalability
of GSAAL, highlighting its superior performance
compared to other popular OD methods, especially
in MV scenarios.

1 Introduction
Outlier detection (OD), a fundamental and widely recognized
issue in data mining, involves the identification of anomalous
or deviating data points within a dataset. Outliers are typi-
cally defined as low-probability occurrences within a popula-
tion [Wang et al., 2019; Han et al., 2022]. In the absence of
access to the true probability distribution of the data points,
OD algorithms rely on the construction of a scoring function.
Points with higher scores are more likely to be outliers. As
we will elaborate, existing unsupervised OD algorithms are
susceptible to one or more of the following problems, in high-
dimensional tabular data scenarios in particular.

• The inlier assumption (IA): OD algorithms may make
assumptions about what constitutes an inlier, which can
be challenging to verify and validate [Liu et al., 2020].

• The curse of dimensionality (CD): As the dimensionality
of data increases, the challenge of identifying outliers

intensifies, often resulting in a diminished effectiveness
of certain OD algorithms [Bellman, 1957].

• Multiple Views (MV): This alludes to the fact that out-
liers often are only visible in certain ”views” of the
data and are hidden in the full space of original fea-
tures [Müller et al., 2012].

We now explain these problems one by one.
The inlier assumption poses a challenge to algorithms that

assume a standard profile of the inlier data. For example,
angle-based algorithms like ABOD [Kriegel et al., 2008]
assume that inliers have other inliers at all angles. Simi-
larly, neighbor-based algorithms like kNN [Ramaswamy et
al., 2000] assume that inliers have other neighboring data
nearby. These assumptions influence the scoring process,
which is determined by measuring the degree to which a sam-
ple diverges from this assumed norm. While these algorithms
can be effective under their specific assumptions, their perfor-
mance can degrade when these assumptions do not hold [Liu
et al., 2020]. Ideally, a method should be free of any reliance
on inlier assumptions for more robust applicability.

The curse of dimensionality [Bellman, 1957] refers to the
decrease in the relative proximity of data points as the num-
ber of dimensions increases. Simply put, as it increases, the
distinctiveness of each point’s location decreases, making dis-
tances between points less meaningful. This effect is particu-
larly problematic for OD algorithms that rely on distances or
on identifying neighbors to detect outliers, such as density-
(e.g., LOF [Breunig et al., 2000]), neighbor- (e.g., kNN [Ra-
maswamy et al., 2000]), and cluster-based (e.g., SVDD [Ag-
garwal, 2017, Chapter 2]) OD algorithms.

Multiple Views refers to the phenomenon that certain com-
plex correlations between features are only observable in
some feature subspaces [Müller et al., 2012]. As detailed
in [Aggarwal, 2017], this occurs when the dataset contains
additional irrelevant features, making some outliers only de-
tectable in certain subspaces. In scenarios where multiple
subspaces contain different interesting structures, this prob-
lem is exacerbated. It then becomes increasingly difficult to
explain the variability of a data point based solely on its be-
havior in a single subspace [Keller et al., 2013]. This problem
is different from the curse of dimensionality as it can occur
independently of the dimensionality of the dataset, and it can
be mitigated with more data points. We showcase all the pre-

ar
X

iv
:2

40
4.

14
45

1v
1

 [
cs

.L
G

]
 2

0
A

pr
 2

02
4

Figure 1: Scatterplots of the dataset from example 1.

sented issues of a detector in the following example:

Example 1 (Effect of MV, IA and CD). Consider the ran-
dom variables x1,x2 and x3, where x1 and x2 are highly
correlated and x3 is just Gaussian noise. Figure 1 contains
plots with different numbers of realizations for (x1,x2,x3).
We also plotted the classification boundaries from both a
locality-based method (green) and a cluster-based method
(red) in the subspace. If one fits the cluster-based detector
in the full space of the data, the outlier shown in the figure
(red cross) would not be detectable. However, the outlier is
always detectable in the subspace, as we can see. Once we
increase the number of samples over n = 1000, the method
detects the outlier in the full space (MV). On the contrary,
the locality-based method could not detect the outlier in any
tested scenario (MV + IA). If we increase the dimensionality
by adding more features consisting of noise, no method can
detect the outlier in the full space (MV + IA + CD).

We are interested in tackling outlier detection whenever a
population exhibits MV, like [Müller et al., 2012; Keller et
al., 2013; Kriegel et al., 2009] and as showcased in [Aggar-
wal, 2017]. Particularly, the goal of this paper is to propose
the first outlier detection method that explicitly addresses IA,
CD, and MV simultaneously.

As we will explain in the next section, we build on Gener-
ative Adversarial Active Learning (GAAL) [Zhu and Bento,
2017], a widely used approach for outlier detection [Liu et al.,
2020; Guo et al., 2021; Sinha et al., 2019]. It involves training
a Generative Adversarial Network (GAN) to mimic the dis-
tribution of outlier data, and it enhances the discriminator’s
performance through active learning [Settles, 2009], leverag-
ing the GAN’s data generation capability. GAAL methods
avoid IA [Liu et al., 2020] and use the multi-layered structure
of the GAN to overcome the curse of dimensionality [Poggio
et al., 2020]. However, they may miss important subspaces,
leading to the multiple views problem. Extending GAAL to
also address MV is not immediately obvious.

Challenges. Addressing the Multiple Views problem by
training a feature ensemble of GAN-based models is not triv-
ial. (1) The joint training of generators and discriminators
in GANs requires careful monitoring to determine the opti-
mal stopping point, a task that becomes daunting for large
ensembles. (2) The generation of difficult-to-detect points in

Type IA CD MV

Classical ✗ ✗ ✗
Subspace ✗ ✓ ✓
Generative w/ uniform distribution ✓ ✗ ✗
Generative w/ param. distribution ✗ ✓ ✗
Generative w/ subspace behavior ✗ ✓ ✓
GAAL ✓ ✓ ✗
GSAAL (Our method) ✓ ✓ ✓

Table 1: Families of OD methods with the limitations they address.

a subspace remains hard [Steinbuss and Böhm, 2017]. While
several authors have proposed multi-adversarial architectures
for GANs [Durugkar et al., 2016; Choi and Han, 2022], none
of them specifically address adversaries tailored to subspaces
composed of feature subsets. Furthermore, these methods
may not be suitable for GAAL since they do not have con-
vergence guarantees for detectors, as we will explain.

Contributions. (1) We propose GSAAL (Generative Sub-
space Adversarial Active Learning), a novel GAAL method
that uses multiple adversaries to learn the marginal class
probability functions in different data subspaces. Each ad-
versary focuses on a single subspace. Simultaneously, we
train a single generator in the full space to approximate the
entire distribution of the inlier class. (2) By giving the first
mathematical formulation of the “multiple views” issue, we
showed GSAAL’s ability to mitigate the MV problem. (3)
We formulate the novel optimization problem for GSAAL
and give convergence guarantees of each discriminator to
the marginal distribution of their respective subspace. Ad-
ditionally, we give complexity results for the scalability of
our method. (4) Through extensive experimentation, we cor-
roborated our claims regarding scalability and suitability for
MV. (5) We tested our method on the one-class classification
task (novelty detection) for outlier detection using 22 popular
benchmark datasets. GSAAL outperformed all popular OD
algorithms from different families and is orders of magnitude
faster in inference than its best competitor. (6) Our code for
the experiments and all examples is publicly available.1

Paper outline: Section 2 reviews related work, Section 3
contains the theoretical results for our method, Section 4 fea-
tures our experimental results, and Section 5 concludes and
addresses limitations.

2 Related Work
This section is a brief overview of popular unsupervised out-
lier detection methods related to our approach. We categorize
them based on their ability to address the specific limitations
outlined above. Table 1 is a comparative summary.

Classical Methods
Conventional outlier detection approaches, such as distance-
based strategies like LOF and KNN, angle-based techniques
like ABOD, and cluster-based methods like SVDD, rely on
specific assumptions on the behavior of inlier data. They use

1https://github.com/WamboDNS/GSAAL

a scoring function to measure deviations from this assumed
norm. These methods face the inlier assumption limitation
by definition. For example, local methods that assume iso-
lated outliers fail when several outlying samples fall together.
In addition, many classical methods, which rely on measuring
distances, are susceptible to the curse of dimensionality. Both
limitations impair the effectiveness and efficiency of these
methods [Liu et al., 2020].

Subspace Methods
Subspace-based methods [Kriegel et al., 2009] operate in
lower-dimensional subspaces formed by subsets of features.
They effectively counteract the curse of dimensionality by fo-
cusing on identifying so-called “subspace outliers” [Keller
et al., 2012]. These outliers, which are prevalent in high-
dimensional datasets with many correlated features, are of-
ten elusive to conventional non-subspace methods [Liu et al.,
2008; Müller et al., 2012]. However, existing subspace meth-
ods inherently operate on specific assumptions on the nature
of anomalies in each subspace they explore, and thus face the
inlier assumption limitation.

Generative Methods
A common strategy to mitigate the IA and CD limitations is to
reframe the task as a classification task using self-supervision.
A prevalent self-supervised technique, particularly for tabu-
lar data, is the generation of artificial outliers [El-Yaniv and
Nisenson, 2006; Liu et al., 2020]. This method involves dis-
tinguishing between actual training data and artificially gen-
erated data drawn from a predetermined “reference distribu-
tion”. [Hempstalk et al., 2008] showed that by approximating
the class probability of being a real sample, one approximates
the probability function of being an inlier. One then uses this
approximation as a scoring function [Liu et al., 2020]. How-
ever, it is not easy to find the right reference distribution, and a
poor choice can affect OD by much [Hempstalk et al., 2008].

A first approach to this challenge proposed the use of
naı̈ve reference distributions by uniformly generating data in
the space. This approach showed promising results in low-
dimensional spaces but failed in high dimensions due to the
curse of dimensionality [Hempstalk et al., 2008]. Other ap-
proaches, such as assuming parametric distributions for inlier
data [Aggarwal, 2017, Chapter 2] or directly generating in
susbpaces [Désir et al., 2013], can avoid CD when the para-
metric assumptions are met. Methods that generate in the sub-
spaces can model the subspace behavior, additionally tackling
the MV limitation. However, these last two approaches do not
address the IA limitation, as they make specific assumptions
about the behavior of the inlier data.

Generative Adversarial Active Learning
According to [Hempstalk et al., 2008], the closer the refer-
ence distribution is to the inlier distribution, the better the
final approximation to the inlier probability function will be.
Hence, recent developments in generative methods have fo-
cused on learning the reference distribution in conjunction
with the classifier. A key approach is the use of Genera-
tive Adversarial Networks (GANs), where the generator con-
verges to the inlier distribution [Goodfellow et al., 2014]. The

most common approaches for this are GAAL-based meth-
ods [Liu et al., 2020; Guo et al., 2021; Sinha et al., 2019].
These methods differentiate themselves from other GANs
for OD by training the detectors using active learning af-
ter normal convergence of the GAN [Schlegl et al., 2017;
Donahue et al., 2017]. The architecture of GAAL inherently
addresses the curse of dimensionality, as GANs can incorpo-
rate layers designed to manage high-dimensional data [Pog-
gio et al., 2020]. In practice, GAAL-based methods outper-
formed all their competitors in their original work. However,
they overlook the behavior of the data in subspaces and there-
fore may be susceptible to MV.

Our method, GSAAL, incorporates several subspace-
focused detectors into GAAL. These detectors approximate
the marginal inlier probability functions of their subspaces.
Thus, GSAAL effectively addresses MV while inheriting
GAAL’s ability to overcome IA and CD limitations.

3 Our Method: GSAAL
We first formalize the notion of data exhibiting multiple
views. We then use it to design our outlier detection method,
GSAAL, and give convergence guarantees. Finally, we derive
the runtime complexity of GSAAL. All the proofs and extra
derivations can be found in the technical appendix.

3.1 Multiple Views
Several authors [Aggarwal, 2017; Müller et al., 2012; Keller
et al., 2013; Kriegel et al., 2009; Liu et al., 2008] have ob-
served that at times the variability of the data can only be
explained from its behavior in some subspaces. Researchers
variably call this problem “the subspace problem” [Aggarwal,
2017; Kriegel et al., 2009] or “multiple views of the data”
[Keller et al., 2012; Müller et al., 2012]. Previous research
has largely focused on practical scenarios, leaving aside the
need for a formal definition. In response, we propose a unify-
ing definition of “multiple views” that provides a foundation
for developing methods to address this challenge effectively.

The problem “multiple views” of data (MV) arises from
two different effects. First, it involves the ability to under-
stand the behavior of a random vector x by examining lower-
dimensional subsets of its components (x1, . . . ,xd). Second,
it stems from the challenge of insufficient data to obtain an ef-
fective scoring function in the full space of x. As Example 1
shows, combining these two effects obscures the behavior of
the data in the full space. Hence, methods not considering
subspaces when building their scoring function may have is-
sues detecting outliers under MV. The next definition formal-
izes the first effect.

Definition 1 (myopic distribution). Consider a random vec-
tor x : Ω −→ Rd and Diagd×d({0, 1}), the set of diagonal
binary matrices without the identity. If there exists a random
matrix u : Ω −→ Diagd×d({0, 1}), such that

px(x) = pux(ux) for almost all x, (1)

we say that the distribution of x is myopic to the views of u.
Here, x and ux are realizations of x and ux, and px and pux
are the pdfs of x and ux.

It is clear that, under MV, using pux to build a scoring func-
tion instead of px mitigates the effects. This comes as the
subspaces selected by u are smaller in dimensionality. Hence
it should take fewer samples to approximate the pdf of ux.
The difficulty is that it is not yet clear how to approximate
pux. The following proposition elaborates on a way to do so.
It states that by averaging a collection of marginal distribu-
tions of x in the subspaces given by realizations of u, one can
approximate the distribution of pux.
Proposition 1. Let x and u be as before with px myopic to
the views of u. Consider a set of independent realizations of
u: {ui}ki=1. Then 1

k

∑
i puix(uix) is a sufficient statistic for

pux(ux).
MV appears when there is a lack of data, and its distri-

bution is myopic. To improve OD under MV, one can exploit
the distribution myopicity to model x in the subspaces, where
less data is sufficient. Proposition 1 gives us a way to do
so, by approximating pux. In this way, under myopicity, this
also approximates px, avoiding MV. Our method, GSAAL,
exploits these derivations, as we explain next.

3.2 GSAAL
GAAL methods tackle IA by being agnostic to outlier defini-
tion and mitigate CD through the use of multilayer neural net-
works [Liu et al., 2020; Li et al., 2017; Poggio et al., 2020].
GAAL methods have two steps:

1. Training of the GAN. Train the GAN consisting of one
generator G and one detector D using the usual min-
max optimization problem as in [Goodfellow et al.,
2014].

2. Training of the detector through active learning. After
convergence, G is fixed, and D continues to train. This
last step is an active learning procedure with [Zhu and
Bento, 2017]. Following [Hempstalk et al., 2008], D(x)
now approximates the pdf of the training data px.

After Step 2, the detector converges to px. However, our goal
is to approximate px by exploiting a supposed myopicity of
the distribution. We extend GAAL methods to also address
MV in what follows. The following theorem adapts the ob-
jective function of the GAN to the subspace case and gives
guarantees that the detectors converge to the marginal pdfs
used in Proposition 1:
Theorem 1. Consider x and u as in the previous definition,
with x a realization of x and {ui}i a set of realizations of
u. Consider a generator G : z ∈ Z 7−→ G(z) ∈ Rd and
{Di}, i = 1, . . . , k, a set of detectors such as Di : uix ∈
Si ⊂ Rd 7−→ Di(uix) ∈ [0, 1]. Z is an arbitrary noise space
where G randomly samples from. Consider the following op-
timization problem

min
G

max
Di, ∀i

∑
i

V (G,Di) =

min
G

max
Di, ∀i

∑
i

Euix logDi(uix) + Ez log (1−Di (uiG(z))) ,

(2)

where each addend V (G,Di) is the binary cross entropy in
each subspace. Under these conditions, the following holds:

i) Each detector in optimum is D∗
i (uix) =

1
2 ,∀x. Thus, in

optimum V (G,Di) = − log(4),∀i.
ii) Each individual Di converges to D∗

i (uix) = puix(uix)
after trained in Step 2 of a GAAL method.

iii) D∗(x) = 1
k

∑k
i=1D∗

i (uix) approximates pux(ux). If
px is myopic, D∗(x) also approximates px(x).

Using Theorem 1 we can extend the GAAL methods to the
subspace case:

1. Training the GAN. Train a GAN with one generator G
and multiple detectors {Di} with Equation (2) as the
objective function. The training of each detector stops
when the loss reaches its value with the optimum in
Statement (i).

2. Training of the k detectors by active learning. Train
each Di as in Step 2 of a regular GAAL method us-
ing G. By Statement (ii) of the Theorem, each Di

will approximate puix. By Statement (iii), D(x) =
1
k

∑k
i=1Di(uix) will approximate px under the myopic-

ity of the data.
We call this generalization of GAAL Generative Subspace
Adversarial Active Learning (GSAAL). The appendix con-
tains the pseudo-code for GSAAL.

3.3 Complexity
In this section, we focus on studying the theoretical complex-
ity of GSAAL. We study both its usability for training and,
more importantly, for inference.
Theorem 2. Consider our GSAAL method with generator G
and detectors {Di}ki=1, each with four fully connected hidden
layers,

√
n nodes in the detectors and d in the generator. Let

D be the training data for GSAAL, with n data points and d
features. Then the following holds:
i) Time complexity of training isO(ED ·n·(k·n+d2)). ED

is an unknown complexity variable depicting the unique
epochs to convergence for the network in dataset D.

ii) Time complexity of single sample inference is inO(k·n),
with k the number of detectors used.

The linear inference times make GSAAL particularly ap-
pealing in situations where the model can be trained once for
each dataset, like one-class classification. We build on this
particular strength in the following section.

4 Experiments
This section presents experiments with GSAAL. We will out-
line the experimental setting, and examine the handling of
“multiple views” in GSAAL and other OD methods. We then
evaluate GSAAL’s performance against various OD methods
and investigate its sensitivity to the number of detectors and
its scalability. We also added additional experiments with
other competitors outside of our related work in the appendix
of the article. Our experiments used an RTX 3090 GPU
and an AMD EPYC 7443p CPU running Python in Ubuntu
22.04.3 LTS. Deep neural network methods were trained on
the GPU and inferred on the CPU; shallow methods used only
the CPU.

Dataset Category Dataset Category

20news Text MNIST Image
Annthyroid Health MVTec Text
Arrhythmia Cardiology Optdigits Image
Cardiot.. Cardiology Satellite Astronomy
CIFAR10 Image Satimage-2 Astronomy
F-MNIST Image SpamBase Document
Fault Industrial Speech Linguistics
InternetAds Image SVHN Image
Ionosphere Weather Waveform Elect. Eng.
Landsat Astronomy WPBC Oncology
Letter Image Hepatitis Health

Table 2: Real-world datasets used in the experiments

4.1 Experimental Setting
This section has three parts: First, we describe the synthetic
and real data for the outlier detection experiments. Then, we
describe the configuration of GSAAL. Finally, we present our
competitors.

Datasets
Synthetic. We constructed synthetic datasets, each contain-
ing two correlated features, x1 and x2, along with 58 inde-
pendent features xj , j = 3, . . . , 60 consisting of Gaussian
noise. This approach simulates datasets that exhibit the MV
property by integrating irrelevant features into a pair of highly
correlated variables. We detail the methodology and all dif-
ferent correlation patterns, in the technical appendix.

Real. We selected 22 real-world tabular datasets for our ex-
periments from [Han et al., 2022]. The selection criteria in-
cluded datasets with less than 10,000 data points, more than
10 outliers, and more than 15 features, focusing on high-
dimensional data while keeping the runtime (of competing
OD methods) tractable. Table 2 contains the summary of the
datasets. For datasets with multiple versions, we chose the
first in alphanumeric order. Details about each dataset are
available in the original source [Han et al., 2022].

Network Settings
Structure. Unless stated otherwise, GSAAL uses the fol-
lowing network architecture. It consists of four fully con-
nected layers with ReLu activation functions used in the gen-
erator and the detectors. Each layer in k = 2

√
d detectors has√

n nodes, where n and d are the number of data points and
features in the training set, respectively. This configuration
ensures linear inference time. The generator has d nodes in
each layer, a standard in GAAL approaches, which ensures
polynomial training times. We assumed u to be distributed
uniformly across all subspaces. Therefore, we obtained each
subspace for the detectors by drawing uniformly from the set
of all subspaces.

Training. Like other GAAL methods [Liu et al., 2020;
Zhu and Bento, 2017], we train the generator G together with
all the detectors Di until the loss of G stabilizes. Then we
train each detector Di until convergence with G fixed. To au-
tomate this process, we introduce an early stopping criterion:

Type Competitors

Classical kNN, LOF, ABOD, SVDD
Subspace Isolation Forest, SOD
Gen., uniform dist. Not included (see the text)
Gen., parametric dist. GMM
Gen., subspace behavior Not included (see the text)
GAAL MO-GAAL

Table 3: Competitors in our experiments

Training stops when a detector’s loss approaches the theo-
retical optimum (− log(4)), see statement (ii) of Theorem 1.
For consistency across experiments, training parameters re-
main fixed unless otherwise noted. Specifically, the learning
rates of the detectors and the generator are 0.01 and 0.001,
respectively. We use minibatch gradient descent [Goodfellow
et al., 2016] optimization, with a batch size of 500.

Competitors
We selected popular and accessible methods from each cate-
gory, as summarized in Table 3, guided by related work. We
excluded generative methods with uniform distributions be-
cause they prove ineffective for large datasets [Hempstalk et
al., 2008]. We could not include a representative for gener-
ative methods with subspace behavior due to operational is-
sues with the most relevant method in this class, [Désir et al.,
2013], caused by its outdated repository.

We used the pyod [Zhao et al., 2019] library to access all
competitors except MO-GAAL. We used MO-GAAL from
its original source and implemented our method GSAAL in
keras [Chollet and others, 2015].

4.2 Effect of Multiple Views on Outlier Detection
To demonstrate the effectiveness of GSAAL under MV, we
use synthetic datasets. Visualizing the outlier scoring func-
tion in a 60-dimensional space is challenging, so we project
it into the x1-x2 subspace. A method adept at handling MV
should have a boundary that accurately reflects the x1 and x2

dependency structure. The procedure is as follows:

1. Generate a synthetic dataset Dsynth as described in sec-
tion 4.1 and train the OD model.

2. Using this model, compute the scores for the points
(x1, x2, 0, . . . , 0) and visualize the level curves on the
x1-x2 plane.

Figure 2 shows results for selected datasets and competi-
tors, which are detailed in the Appendix. It shows the level
curves and decision boundaries (dashed lines) of the methods.
Notably, our model effectively detects correlations in the right
subspace. For example, in the banana dataset, GSAAL ac-
curately creates a banana-shaped boundary and outperforms
other methods in distinguishing outliers from inliers in this
subspace.

4.3 One-class Classification
This section evaluates GSAAL on a one-class classification
task [Seliya et al., 2021]. First, we study the effectiveness

(a) ABOD (b) kNN (c) IForest (d) GSAAL

Figure 2: Projected classification boundaries for datasets banana,
spiral, and star.

of GSAAL on real data. Then, we explore the impact of pa-
rameter variations on the model’s performance. Finally, we
investigate the scalability of GSAAL in practical scenarios.

Real-world Performance
We perform the outlier detection experiments on real datasets.
Specifically, we take on the task of one-class classification,
where the goal is to detect outliers by training only on a col-
lection of inliers [Han et al., 2022]. To evaluate the perfor-
mance of OD methods, we use AUC as it is resilient to test
data imbalance, a common issue in OD tasks . The procedure
is as follows:

1. Split the dataset D into a training set Dtrain containing
80% of the inliers from D, and a test set Dtest containing
the remaining inliers and all outliers.

2. Train an outlier detection model with Dtrain and evaluate
its performance on Dtest with ROC AUC.

To save space, we moved the detailed AUC results to the
appendix; Figure 3 summarizes them. It shows that GSAAL
achieves the lowest median rank. Although other subspace
methods tend to perform better with irrelevant attributes [Liu
et al., 2008; Kriegel et al., 2009], they did not outperform
classical OD methods on average in our experiments. No-
tably, ABOD, the second best method in our experiments,
performed poorly in the MV tests (Section 4.2).

For statistical comparisons, we use the Conover-Iman post
hoc test for pairwise comparisons between multiple popula-
tions [Conover and Iman, 1979]. It is superior to the Nemenyi
test due to its improved type I error boundings [Conover,
1999]. Conover-Iman test requires a preliminary positive re-
sult from a multiple population comparison test, for which we
employ the Kruskal-Wallis test [Kruskal, 1952].

Table 4 shows the test results. In each cell, ‘+’ indi-
cates that the method in the row has a significantly lower
median rank than the method in the column, while ‘−’ in-

GSAAL LOF
IForest

ABOD SOD kNN
SVDD

MO-GAAL
GMM

1
2
3
4
5
6
7
8
9

R
an

ks

Figure 3: Boxplots of each method’s rank in the real-world datasets.

(a) (b)

Figure 4: Performance of the detector with different values of k.

dicates a significantly higher median rank. One symbol in-
dicates p-values ≤ 0.15 and two symbols indicate p-values
≤ 0.05. A blank indicates no significant difference. The ta-
ble shows that GSAAL is superior to most of its competitors.
Our method does not significantly outperform the classical
methods ABOD and kNN. However, these methods struggle
to detect structures in subspaces, showing their inadequacy in
dealing with the MV limitation, see Section 4.2.

Overall, the results support GSAAL’s superiority in outlier
detection tasks involving multiple views. Additionally, they
establish our method as the leading GAAL option for One-
class classification

Parameter Sensibility
We now explore the effect of the number of detectors in
GSAAL, k, by repeating the previous experiments with vary-
ing k. Figure 4a plots the median AUC for different k values,
showing a stabilization at larger k. Next, Figure 4b compares
the results with a fixed k = 30 and the default value k = 2

√
d

used in the previous experiments; there is no large difference
in either the AUC or the ranks. We also found that the results
in Table 4 remain almost the same if one sets k = 30. So
we recommend fixing k = 30, which makes GSAAL very
suitable for high-dimensional data, as we will show next.

Scalability
In section 3.3, we derived that the inference time of GSAAL
scales linearly with the number of training points if the num-
ber of detectors k is fixed, while it does not depend on the
number of features d. This is in contrast to other methods, in
particular LOF, KNN, and ABOD, which have quadratic run-
times in d [Breunig et al., 2000; Kriegel et al., 2008]. We now
validate this experimentally. The procedure is as follows:

Method ABOD GSAAL GMM IForest KNN LOF MO GAAL SVDD SOD
ABOD = ++ ++ ++ ++ ++

GSAAL = ++ ++ + ++ ++ ++
GMM – – – – = ++ – – – – ++ ++
IForest – – – – – – = – – ++ ++
KNN ++ ++ = ++ ++
LOF – ++ = ++ + ++

MO GAAL – – – – – – – – – – = ++
SVDD – – – – – – – = ++
SOD – – – – – – – – – – – – – – – – =

Table 4: Results of the Connover-Iman test for pairwise comparisons of the rankings.

(a) (b)

Figure 5: Plots of different performance metrics for scalability

1. Generate datasets Dtrain and Dtest consisting of random
points. |Dtest| = 106.

2. Train an OD method using Dtrain and record the infer-
ence time over Dtest.

Following the result of the sensitivity study, we fixed k = 30.
Figure 5a plots the inference time of a single data point as
a function of the number of features when |Dtrain| = 500.
Figure 5b plots the inference time as a function of the num-
ber of points in Dtrain, for a fixed number of 100 features.
Both figures confirm our complexity derivations and show
that GSAAL is particularly well-suited for large datasets.

5 Limitations & Conclusions
We now briefly discuss future research directions and ac-
knowledge the limitations of our study. We then summarize
the main findings.

5.1 Limitations and Future Work
In section 4 we randomly selected subspaces for training the
detectors in GSAAL, i.e. we took a uniform distribution of
u. This was already sufficient to demonstrate the highly com-
petitive performance of our method. However, GSAAL can
work with any subspace search strategy to obtain the distri-
bution of u, for example, the methods exploiting multiple
views [Keller et al., 2013; Keller et al., 2012]. We have not
included them in this paper due to the lack of an official im-
plementation. In the future, we plan to benchmark various
subspace search methods in GSAAL to see if there is one that
consistently improves OD performance.

Next, GSAAL is limited to tabular data, since the “multiple
views” problem has only been observed for this data type.

The mathematical formulation of MV in section 3 does not
exclude structured data. The difficulty lies in identifying good
search strategies for u for non-tabular data, which remains an
open question [Gupta et al., 2017]. However, depending on
the type of structured data, extending GSAAL to work with it
is not immediate. Therefore, building a method that exploits
the theoretical derivations of GSAAL for structured data is
future work.

5.2 Conclusions
Unsupervised outlier detection (OD) methods rely on a scor-
ing function to distinguish inliers from outliers, since the true
probability function that generated the dataset is usually un-
available in practice. However, they face one or more of the
following problems — Inlier Assumption (IA), Curse of Di-
mensionality (CD), or Multiple Views (MV). In this article,
we have proposed the first mathematical formulation of MV,
which allows for a better understanding of how to solve this
occurrence. Using this formulation, we developed GSAAL,
which is the first OD approach that solves MV, CD, and IA.
In short, GSAAL is a generative adversarial network with
a generator and multiple detectors fitted in the subspaces to
find outliers not visible in the full space. In our experiments
on 26 different datasets, we demonstrated the usefulness of
GSAAL, in particular, its ability to deal with MV and its su-
perior performance on OD tasks with real datasets. In addi-
tion, we have shown that GSAAL can scale up to deal with
high-dimensional data, which is not the case for our most
competent competitors. These results confirm GSAAL’s abil-
ity to deal with data exhibiting MV and its usability in any
practical scenario involving large datasets.

6 Aknowledgments
This work was supported by the Ministry of Science, Re-
search and the Arts Baden Württemberg, project Algorithm
Engineering for the Scalability Challenge (AESC).

A Theoretical Appendix
A.1 Previous Remarks
Before starting to prove our main results, it is important to
add a remark about our notation in this article. Whenever we
denote ux, we mean the operation resulting in the following
vector: u(ω)x(ω). Thus, ux is a random vector following its
own distribution pux. However, it is important to remark that

ux, and therefore, also uix, does not state the usual matrix-
vector multiplication. What we mean by ux is the operation
U ×M x, where U stands for the range-complete version of
u and ×M the usual matrix multiplication. This means that
whenever we write ux we are considering the projection of x
into the subspace of the features selected in u. This means
that uix is the random vector composed of the features se-
lected by ui, and therefore, puix(uix) denotes subsequent
marginal pdf of x. We do not state this in the main text as
it functionally does not change anything of our derivations,
and simply works as a notation. The only important remarks
stemming from this fact are the following:

1. px(uix) = px(πui(x)), where πui denotes the projec-
tion of a point x into the subspace of ui. Therefore, we
can write px(uix) = puix(uix).

2. The operator as stated before is not distributive. This
is trivial, as given u a random matrix as in definition 1,
(1d−u)x is defined properly, as 1d−u ∈ Diag({0, 1}).
However, x−ux denotes the vector subtraction between
two vectors with different dimensionality.

While not important to understand the following proofs and
the derivations from the main text, understanding this is cru-
cial for anyone seeking to work with these definitions.

A.2 Proofs
We will reformulate all of the statements for completition be-
fore introducing each proof.
Proposition 2. Let x and u be as before with px myopic to
the views of u. Consider a set of independent realizations of
u: {ui}ki=1, a realization of x, x, and a realization of ux, ux.
Then 1

k

∑
i puix(uix) is a sufficient statistic for pux(ux).

Proof. Consider x and u as in the statement. Further con-
sider the variable w = 1d − u, being 1d the d × d identity
matrix. Then, as u has its image in Diag({0, 1})d×d, it is
clear that x = ux + wx. Therefore, we can define px as
the joint pdf of ux and wx. Now, recalling the definition of
marginal distribution:

pux(ux) = Ewx(pux|wx(ux|wx)).
Since w is defined in a discrete space:

Ewx(pux|wx(ux|wx)) =
∑
i

pwx(wix)pux|wix(ux|wix)

We can approximate this by the sample mean, with a sample
of size k:

Ewx(pux|wx(ux|wx)) =
1

k

k∑
i=1

pux|wix(ux|wix) + oP(1).

Now, as w is perfectly represented by u, and vice versa,
sampling wi is equivalent to sampling ui. We will prove
that, pux|wix(ux|wix) = puix(uix). After that, the rest of
the proof comes clearly by substituting and recalling that the
sample mean is a sufficient estimator of the expected value.
First, recall the definition of conditional probability:

p(ux|wix) =
px(ux ∩ wix)

pwix(wix)
.

Now, by considering that ui = 1d − wi, we have that
p(ux ∩ wix) = 0, ∀u ̸= ui. Therefore, by the law of to-
tal probabilities and the definition of conditional probability:

p(ux|wix) =
pwix(wix)p(uix|wix)

pwix(wix)
.

Thus:

pux|wix(ux|wix) = puix|wix(uix|wix)

Then, since:

puix|wix(uix|wix) =
px(uix ∩ wix)

pwix(wix)
,

by myopicity, independence of {ui}i, and considering that
sampling from u is the same as sampling from w, it trivially
follows that:

puix|wix(uix|wix) = puix(uix).

We can retrieve the equality in the statement by consdering u
to be uniformly distributed —as we do in section 4.

Theorem 3. Consider x and u as in the previous definition,
with x a realization of x and {ui}i a set of realizations of
u. Consider a generator G : z ∈ Z 7−→ G(z) ∈ Rd and
{Di}, i = 1, . . . , k, a set of detectors such as Di : uix ∈
Si ⊂ Rd 7−→ Di(uix) ∈ [0, 1]. Z is an arbitrary noise space
where G randomly samples from. Consider the following ob-
jective function

min
G

max
Di, ∀i

∑
i

V (G,Di) =

min
G

max
Di, ∀i

∑
i

Euix logDi(uix) + Ez log (1−Di (uiG(z)))

(3)

Under these conditions, the following holds:

i) Each detector’s loss in optimum is V (G,D∗
i) =

1
2 .

ii) Each individual Di converges to D∗
i (uix) = puix(uix)

after trained in Step 2 of a GAAL method.

iii) D∗(x) = 1
k

∑k
i=1D∗

i (uix) approximates pux(ux). If
px is myopic, D∗(x) also approximates px(x).

Proof. This proof will follow mainly the results in [Goodfel-
low et al., 2014], adapted for our case. We will first derivative
two general results that we are going to use to immediately
prove (i), (ii) and (iii). First, consider the objective function∑

i

V (G,Di) =
∑
i

Euix∼puix
log(Di(uix))+

Ez∼pz(1− log(Di(uiG(z)))),

where z is the random vector used by G to sample from the
noise space Z. We will write Ex,Ez and Euix instead of
Ex∼px ,Ez∼pz and Euix∼puix

as an abuse of notation.
The problem is, then, to optimize:

min
G

max
Di, ∀i

∑
i

V (G,Di). (4)

Fixing G and maximizing for all Di, each detector individu-
ally maximizes V (G,Di). Let us try to obtain the optimal of
each Di with a fixed G. First, we write:

V (G,Di) =

∫
uix

puix(uix) logDi(uix)duix+∫
z

pz(z) log(1−Di(uiG(z)))dz.

As G uses z to sample from its sample distribution pG(x),
we can rewrite the second addent, like in [Goodfellow et al.,
2014], as:

V (G,Di) =

∫
uix

puix(uix) logDi(uix)duix+∫
uix

pG(uix) log(1−Di(uix))duix.

Aggregating both integrals, we have a function of the type
f(y) = a log(y) + b log(1 − y), with a, b ∈ R − {0}. It
is a known fact in calculus that f(y) obtains its optimum in
y = a

a+b . As f(y) ∈ R+, V (G,Di) obtains its optimum for
a given G in:

D∗
i (uix) =

puix(uix)

puix(uix) + pG(uix)
. (5)

Let us now consider the following function

C(G) =
∑
i

max
Di, ∀i

V (G,Di)

=
∑
i

Euix log
puix(uix)

puix(uix) + pG(uix)
+

Euix∼pG log
pG(uix)

puix(uix) + pG(uix)
.

(6)

This is known in Game Theory as the cost function of player
“G” in the null-sum game defined by the minmax optimiza-
tion problem. [Goodfellow et al., 2014] refers to it as the
virtual training criterion of the GAN. The adversarial game
defined by (4) reaches an equilibrium (and thus, the minmax
problem an optimum) whenever C(G) is minimized. We will
study the value of G in such equilibrium and use it, together
with (5), to prove the statements.

Rewriting C(G) it is clear that:

C(G) =
∑
i

KL

(
puix(uix)∥

puix(uix) + pG(uix)

2

)
+KL

(
pG(uix)∥

puix(uix) + pG(uix)

2

)
.

This expression corresponds to that of a sum of multiple bi-
nary cross entropies between a population coming from puix

and from pG projected by ui. Therefore, as we know, we can
rewrite:

C(G) =
∑
i

2JSD(puix(uix)∥pG(uix)),

with JSD the Jensen-Shannon divergence. Since
JSD(s∥r) ∈ [0, log(2)), it is clear that C(G) obtains
its minimum only whenever

pG(uix) = puix(uix),∀∀x2; (7)

and for all i ∈ {1, . . . , k}.
Knowing G and Di in the optimum for all i, we can prove

the statements above:
(i) As pG(uix) = puix(uix) for almost all x, in the opti-
mum of (4), it is immediate that:

Di(uix) =
1

2
,

i.e., the detectors cannot differentiate between the real train-
ing data and the synthetic data of the generator. If one em-
ploys the numerically stable version of each V (G,Di) (equiv-
alent as the numerically stable version of the binary cross en-
tropy [Chollet and others, 2015]), it is trivial to see that

V stable(G,Di) = log(2).

(ii) After optimizing (4), training each Di individually
with G fixed, is the equivalent of building a two-class clas-
sifier distinguishing between the artificial class generated
by pG(uix) = puix(uix) and the real data coming from
puix(uix). By [Hempstalk et al., 2008], the resulting two-
class classifier would be such as:

Di(uix) = puix(uix).

(iii) By proposition 2 and statement (ii), 1
k

∑
i D

∗
i (uix) is

a sufficient estimator for puix(uix). By myopicity, it is also
of px(x).

Theorem 4. Giving our GSAAL method with generator G
and detectors {Di}ki=1, each with four fully connected hid-
den layers,

√
n nodes in the detectors and d in the generator,

we obtain that:
i) The training time complexity is bounded withO(ED ·n ·

(k · n + d2)), for a dataset D with n training samples
and d features. ED is an unknown complexity variable
depicting the unique epochs to convergence for the net-
work in dataset D.

ii) The single sample inference time complexity is bounded
with O(k · n), with k the number of detectors used.

Proof. An evaluation of a neural network is composed of two
steps, the backpropagation, and the fowardpass steps. While
training the network requires both, inference requires only a
fowardpass. Therefore, we will first prove (ii) and will build
upon it to prove (i).
(ii). GSAAL consists of a generator and k detectors. Sin-
gle point inference consists of a single fowardpass of all the
detectors. We will first prove the general complexity of a
fowardpass of a general fully connected 4 layer network and
will use it to derive all the other complexities. Let us consider
three weight matrices Wji, Whj and Wlh each between two
layers, with j, i, h and l being the number of nodes in each.

2For almost all x

Therefore, Wji denotes a matrix with j rows and i columns,
and so on. Now, let us consider xi1 the datapoint after pass-
ing the input layer. Lastly, without any loss of generality,
consider f to be the activation function for all layers. This
way, the forward pass of a single detector can be written as:

cl1 = f (Wlhf (Whjf (Wjixi1))) .

We will study the complexity in the first layer and use it to
derive the complexity of the others. Aj1 = Wjixi1 is a sim-
ple matrix-vector multiplication that we know to be O(j · i)
atmost. Then, as f is an activation function, f(Aj1) is equiv-
alent to writing fj1 ⊙ Aj1, with ⊙ being the element-wise
multiplication. Thus, f (Wjixi1) is:

O(j · i+ j) = O(j · (i+ 1)) = O(j · i).
Doing this for all layers, we obtain:

O(l · h+ k · j + j · i). (8)

As all layers have
√
n nodes,

O(3n) = O(n).
As we have k detectors, the complexity for a fowardpass of all
detectors, and thus, for a single sample inference of GSAAL
is:

O(k · n).
(i). A backpropagation step has the same complexity as an
inference step on all training samples. As we have n training
samples, this then becomes

O(k · n2)

for the detectors. As the training consists of multiple epochs,
we will write

O(ED · k · n2),

with ED being the number of epochs needed for convergence
for the training data set D. As the training consists of both
backpropagation and fowardpass steps on all training sam-
ples, the total training time complexity for all detectors is:

O(ED · k · n2 + k · n2) = O(ED · k · n2).

As we also need to consider the generator, we will use equa-
tion 8 to derive both steps on the generator. As the generator
is also a fully connected 4-layer network, with all layers hav-
ing d nodes, the complexity for a single fowardpass is:

O(d2).
As during training one generates n samples during each
fowardpass:

O(n · d2).
Now, on each backpropagation pass the network calculates
the backpropagation error for each generated sample, thus,

O(n · d2)
is also the time complexity for the backpropagation step of
the generator. Considering all ED epochs and both back-
propagation and fowardpass steps of the generator and all the
detectors, the time complexity of GSAAL’s training is:

O(ED · k · n2 + ED · n · d2) = O(ED · n · (k · n+ d2))

Figure 6: Difference in statistical distance between two populations.

A.3 Multiple Views (extension)
In this section we extend the derivations in section 3.1 by
providing an example of a myopic distribution:
Example 2 (Myopic distribution). Consider a x like in ex-
ample 1. Here, it is clear that x1,x2⊥x3. Consider, then, u
such that:

u : {1} −→ {diag(1, 1, 0)}.
To test whether px is myopic, we employed a simple test uti-
lizing a statistical distance (MMD with the identity kernel)
between px and pux. This way, if ˆMMD(px∥pux) = 0, it
would be clear that the equality holds. As a control measure,
we also calculated the same distance for a different popula-
tion x′, where x3 = x2

1. We have plotted the results in image
6, where Population 1 refers to x and Population 2 to x′. As
we can see, we do obtain a positive result in the test of my-
opicity for x and a negative one for x′.

A.4 GSAAL (extension)
We now extend the results from section 3.2 by providing the
pseudocode for the training of our method. It is important
to consider that, while theorem 3 formulates the optimiza-
tion problem in terms of the neural networks G and {Di}i,
in practice this will not be the case. Instead, we will con-
sider the optimization in terms of their weights, ΘG and ΘDi

.
Therefore, in practice, the convergence into an equilibrium
will be limited by the capacity of the networks themselves
[Goodfellow et al., 2016]. We considered the optimization to
follow minibatch-stochastic gradient descent [Goodfellow et
al., 2016]. To consider any other minibatch-gradient method
it will suffice to perform the necessary transformations to the
gradients.

The pseudocode is located in Algorithm 1. As it is the
training for the method, it takes both the parameters for the
method and the training. In this case, epochs refers to the to-
tal number of epochs we will train in total, while stop epoch
marks the epoch where we start step 2 of the GAAL train-
ing. Lines 1-3 initialize both the detectors in their sub-
spaces and the generator with random weight matrices ΘDi

and ΘG . Lines 4-13 correspond to the normal GAN training
loop across multiple epochs, which we referred to as step 1
of a GAAL method in the main text, if epoch < stop epoch.
Here we proceed with training each detector and the gener-
ator using their gradients. Lines 8-10 update each detector
by ascending its stochastic gradient, while line 11 updates

Algorithm 1 GSAAL training

Require: Data set D, Number of Discriminators κ, u,
epochs, stop epoch

1: Initialize Generator G {#d is the dimensionality of D}
2: {ui}κi=1 ← DRAWFROMu(κ)
3: Initialize Discriminators {Di}κi=1 with unique subspaces
{ui}κi=1

4: for epoch ∈ {1, ..., epochs} do
5: for batch ∈ {1, ..., batches} do
6: noise← Random noise z(1), ..., z(m) from Z
7: data← Draw current batch x(1), ..., x(m)

8: for j ∈ {1...k} do
9: Update Dj by ascending the stochastic gradi-

ent: ∇ΘDj

1
m

∑m
i=1 log(Dj(ujx

(i))) + log(1 −
Dj(ujG(z(i))))

10: end for
11: if epoch < stop epoch then
12: Update G by descending the stochastic gradient:

∇ΘG

1
k

∑k
j=1

1
m

∑m
i=1 log(1−Dj(G(z(i))))

13: end if
14: end for
15: end for

the generator by descending its stochastic gradient. After the
normal GAN training, we start the active learning loop [Liu
et al., 2020] once epoch ≥ stop epoch. The only difference
with the regular GAN training is that G remains fixed, i.e., we
do not descend using its gradient. This allows us to addition-
ally train the detectors and, in case of equilibrium of step 1,
converge to the desired marginal distributions as derived in
theorem 3.

B Experimental Appendix
In this section, we will include a supplementary experiment
testing the IA condition for competition, and an extension of
both experimental studies featured in the main text. All of the
code for the extra experiment, as well as for all experiments
in the main text, can be found in our remote repository3.

B.1 Effects of Inlier Assumptions on Outlier
Detection

GAAL methodologies are capable of dealing with the inlier
assumption by learning the correct inlier distribution px with-
out any assumption [Liu et al., 2020]. While this should
also extend to our methodology, we will study experimen-
tally whether this condition holds in practice. To do so, as
one cannot identify beforehand whether a method is going to
fail due to IA, we will generate synthetic datasets. This will
allow us to generate outliers that we know to follow from a
specific IA, ensuring that failure comes from the anomalies
themselves. We will include all of the code in the code repos-
itory. To generate the synthetic datasets we follow:

1. Generate D, a population of 2000 inliers following some
distribution F in R20.

3https://github.com/WamboDNS/GSAAL

(a) (b) (c)

Figure 7: 2D-example of the different types of anomalies we gener-
ate using the method summarized in table 5.

2. Select an outlier detection method M with some as-
sumption about the normality of the data and fit it using
D. We will call such M as the reference model for the
generation.

3. Generate 400 outliers by sampling on R20 uniformly and
keeping only those points o such that M(o) = 1 (i.e.,
they are detected as outliers). We will write OD to refer
to such a collection of points.

4. Repeat step 3 10 times, to obtain OD
1 , . . . , OD

10.

5. Sample out 20% of the points in D. The remainder
80% will be stored in Dtrain, and the other 20% in
Dtest

1 , . . . , Dtest
10 together with each OD

i .

These steps were repeated 4 times with different F , to cre-
ate 4 different training sets and 40 different testing sets, cor-
responding to a total of 40 different datasets employed per
model M selected in step 2. As we used 3 different reference
models, we have a total of 120 different datasets employed
in this experiment alone. In particular, the models used for
this are collected in table 5. The table contains the name of
the outlier type, the description of the IA taken to generate
them, and a brief description of how the outliers should look.
Column M contains the method employed to generate each,
these being LOF , ABOD, and the same inlier distribution
as D, but with multiple shifted means µi and with a signifi-
cantly lower amount of points n. A visualization of how these
outliers would look with 2 features is located in figure 7.

To study how different methods behave when detecting
these outliers, we have performed the same experiments as in
section 4.3, but with these synthetic datasets. Figure 8 gathers
all the AUCs of a method in 3 boxplots, one for each outlier
type in each training set. Additionally, we grouped all based
on the IA and assigned a similar color for all of them. We
have done this for the classical OD methods LOF, ABOD, and
kNN, besides our method GSAAL. We cropped the image be-
low 0.45 in the y axis as we are not interested in results below
a random classifier. As we can see, classical methods seem to
correctly detect outliers for an outlier type that verifies its IA.
However, whenever we introduce outliers behaving outside
of their IA, the performance hit is significant. Notoriously, it
appears that none of them had trouble detecting the Local and
Angle outlier type. regardless of their IA. This can be easily
explained by those outliers types being similar, as we can see
in figure 7. On the other hand, GSAAL manages to have a
significant detection rate regardless of the outlier type.

Outlier Type Assumption Description Outlier Description M

Local Assumes that all inliers are
located close to other inliers

As a result, outliers are
far away from inliers LOF

Angle Assumes that all inliers
have other inliers in all angles from their position

As a result, outliers are
not surrounded by other points ABOD

Cluster Assumes that all inliers
form large clusters of data

As a result, outliers are
gathered in small clusters Fn,µ+εi

Table 5: Different outliers generated for the experiments.

Figure 8: AUCs of the different methods in the IA experiments. From left to right: Local (blue), Angle (orange) and Cluster (green).

B.2 Effects of Multiple Views on Outlier Detection
(extension)

In this section, we will include a brief description of the gen-
eration process for the datasets used in section 4.2. We will
also perform the same experiment as in section 4.2 for all
methods showcased in the main text and additional datasets.
The datasets were generated by the following formulas:

• Banana. Given θ ∈ [0, π] we have x = sin(θ) +
U(0, 0.1) and y = sin(θ)3 + U(0, 0.1).

• Spiral. Given θ ∈ [0, 4π] and r ∈ (0, 1), we have x =
r cos(θ) + U(0, 0.1) and y = r sin(θ).

• Star. Given θ ∈ [0, 2π] and r ∈
{r ∈ R|r = sin(5θ); r ≥ 0, 1, 0.4} , we have
x = r cos(θ) +U(0, 0.1) and y = r sin(θ) +U(0, 0.1).

• Circle. Given θ ∈ [0, 2π], we have x = cos(θ) +
U(0, 0.1) and y = sin(θ) + U(0, 0.1).

• L. Given x1 = N(0, 0.1), x2 = U(0, 5), y1 =
U(−5, 0), and y2 = N(0, 0.1); we have x =
concat(x1, x2) and y = concat(y1, y2).

We considered N(0, 0.1) to denote a random normal realiza-
tion with µ = 0 and σ2 = 0.1, and U(a, b) to denote a uni-
form realization in the [a, b] interval.

Figure 9 contains all images from the MV experiment. We
do not have any new insight beyond the ones exposed in the
main article. Note that we have included all methods but
SOD. The reason was that SOD failed to execute for datasets
Star, Spiral, and Circle.

B.3 One-class Classification (extension)
As we noted in Section 4, we obtained our benchmark
datasets from [Han et al., 2022], a benchmark study for One-
class classification methods in tabular data. Some of the
datasets featured in the study, and also in our experiments,
were obtained from embedding image or text data using a pre-
trained NN (ResNet [He et al., 2015] and BERT [Devlin et
al., 2019], respectively). We refrain the interested reader into
[Han et al., 2022] for additional information. Additionally,
we found discrepancies between the versions of the datasets
in the study of [Campos et al., 2016] and [Han et al., 2022].
We utilized the version of those datasets featured in [Campos
et al., 2016] for our experiments due to popularity. This af-
fected the datasets Arrhythmia, Annthyroid, Cardiotocogra-
phy, InternetAds, Ionosphere, SpamBase, Waveform, WPBC
and Hepatitis.

Table 6 contains all of the AUCs from our experiments. We
have included extra methods that, although popular and read-
ily available, were either too similar to other methods in our
related work that were more popular (Deep SVDD and INNE)
or too far away from our related work (AnoGAN) to be in-
cluded in the main text. Nevertheless, due to their popularity
and inclusion in the libraries used to perform the experiments,
we include their results in the appendix for further compari-
son. Particularly, for INNE we utilized their implementation
and default hyperparameters from pyod for the experiments.
For DeepSVDD [Ruff et al., 2018] and AnoGAN [Schlegl
et al., 2017], as there are no official guides on how to fit
the models, we tried different training parameter combina-
tions and took the highest obtained AUC. We used their im-

(a) Banana

(b) Spiral

(c) Star

(d) Circle

(e) L

Figure 9: Projected classification boundaries for the datasets in section 4.2 and the extra datasets.

plementation in their official code repository. Whenever a
method failed to execute in a particular dataset we denoted it
as FA. As it is standard in these studies [Campos et al., 2016;
Liu et al., 2020], we did not use those datasets subsequent
statistical tests.

References
[Aggarwal, 2017] Charu C. Aggarwal. Outlier Analysis.

Springer International Publishing, Cham, 2017.
[Bellman, 1957] Richard Bellman. Dynamic programming.

Princeton, New Jersey: Princeton University Press. XXV,
342 p. (1957)., 1957.

[Breunig et al., 2000] Markus M. Breunig, Hans-Peter
Kriegel, Raymond T. Ng, and Jörg Sander. LOF: identify-
ing density-based local outliers. In SIGMOD Conference,
pages 93–104. ACM, 2000.

[Campos et al., 2016] Guilherme O. Campos, Arthur Zimek,
Jörg Sander, Ricardo J. G. B. Campello, Barbora Mi-
cenková, Erich Schubert, Ira Assent, and Michael E.
Houle. On the evaluation of unsupervised outlier detec-
tion: measures, datasets, and an empirical study. Data
Mining and Knowledge Discovery, 30(4):891–927, Jul
2016.

[Choi and Han, 2022] Jinyoung Choi and Bohyung Han.
Mcl-gan: Generative adversarial networks with multiple
specialized discriminators. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, vol-
ume 35, pages 29597–29609. Curran Associates, Inc.,
2022.

[Chollet and others, 2015] François Chollet et al. Keras.
https://keras.io, 2015.

[Conover and Iman, 1979] W Conover and R Iman.
Multiple-comparisons procedures. informal report. Tech-
nical report, Los Alamos National Laboratory (LANL),
February 1979.

[Conover, 1999] W. J. (William Jay) Conover. Practical non-
parametric statistics / W.J. Conover. Wiley series in proba-
bility and statistics. Applied probability and statistics sec-
tion. Wiley, New York ;, third edition. edition, 1999.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understand-
ing. In North American Chapter of the Association for
Computational Linguistics, 2019.

[Donahue et al., 2017] Jeff Donahue, Philipp Krähenbühl,
and Trevor Darrell. Adversarial feature learning. In Inter-
national Conference on Learning Representations, 2017.

[Durugkar et al., 2016] Ishan Durugkar, Ian M. Gemp, and
Sridhar Mahadevan. Generative multi-adversarial net-
works. ArXiv, abs/1611.01673, 2016.

[Désir et al., 2013] Chesner Désir, Simon Bernard, Caroline
Petitjean, and Laurent Heutte. One class random forests.
Pattern Recognition, 46(12):3490–3506, 2013.

[El-Yaniv and Nisenson, 2006] Ran El-Yaniv and Mordechai
Nisenson. Optimal single-class classification strategies. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances
in Neural Information Processing Systems, volume 19.
MIT Press, 2006.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, vol-
ume 27. Curran Associates, Inc., 2014.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio,
and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[Guo et al., 2021] Jifeng Guo, Zhiqi Pang, Miaoyuan Bai,
Peijiao Xie, and Yu Chen. Dual generative adversarial ac-
tive learning. Applied Intelligence, 51(8):5953–5964, Aug
2021.

[Gupta et al., 2017] Nikhil Gupta, Dhivya Eswaran, Neil
Shah, Leman Akoglu, and Christos Faloutsos. Lookout
on time-evolving graphs: Succinctly explaining anomalies
from any detector, 2017.

[Han et al., 2022] Songqiao Han, Xiyang Hu, Hailiang
Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly
detection benchmark. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages
32142–32159. Curran Associates, Inc., 2022.

[He et al., 2015] Kaiming He, X. Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2015.

[Hempstalk et al., 2008] Kathryn Hempstalk, Eibe Frank,
and Ian H. Witten. One-class classification by combining
density and class probability estimation. In Walter Daele-
mans, Bart Goethals, and Katharina Morik, editors, Ma-
chine Learning and Knowledge Discovery in Databases,
pages 505–519, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[Keller et al., 2012] Fabian Keller, Emmanuel Muller, and
Klemens Bohm. Hics: High contrast subspaces for
density-based outlier ranking. In 2012 IEEE 28th Inter-
national Conference on Data Engineering, pages 1037–
1048, 2012.

[Keller et al., 2013] Fabian Keller, Emmanuel Müller, An-
dreas Wixler, and Klemens Böhm. Flexible and adaptive
subspace search for outlier analysis. In Proceedings of
the 22nd ACM International Conference on Information
& Knowledge Management, CIKM ’13, page 1381–1390,
New York, NY, USA, 2013. Association for Computing
Machinery.

[Kriegel et al., 2008] Hans-Peter Kriegel, Matthias Schu-
bert, and Arthur Zimek. Angle-based outlier detection in
high-dimensional data. In KDD, pages 444–452. ACM,
2008.

https://keras.io
http://www.deeplearningbook.org

D
at

as
et

G
SA

A
L

L
O

F
IF

or
es

t
A

B
O

D
SO

D
K

N
N

SV
D

D
M

O
-G

A
A

L
G

M
M

D
ee

pS
V

D
D

A
no

G
A

N
IN

N
E

an
nt

hy
ro

id
0,

76
81

0,
67

53
0,

70
94

0,
70

08
0,

52
43

0,
62

91
0,

46
11

0,
50

47
0,

69
32

0,
87

2
0,

40
38

0,
50

81
A

rr
hy

th
m

ia
0,

75
32

0,
72

77
0,

76
95

0,
74

22
0,

65
14

0,
73

34
0,

74
42

0,
69

01
0,

72
96

0,
74

85
0,

61
33

0,
74

71
C

ar
di

ot
oc

og
ra

ph
y

0,
87

27
0,

80
38

0,
77

72
0,

79
56

0,
35

24
0,

77
33

0,
83

51
0,

79
12

0,
74

13
0,

87
4

0,
32

48
0,

80
24

C
IF

A
R

10
0,

78
62

0,
73

33
0,

68
53

0,
76

22
0,

66
07

0,
74

93
0,

70
74

0,
62

56
0,

74
62

0,
61

58
0,

37
05

0,
73

06
Fa

sh
io

nM
N

IS
T

0,
80

01
0,

89
95

0,
82

98
0,

90
09

0,
71

36
0,

91
79

0,
81

30
0,

79
30

0,
90

72
0,

69
81

0,
71

37
0,

89
53

fa
ul

t
0,

67
26

0,
64

36
0,

65
18

0,
80

19
0,

56
70

0,
78

49
0,

56
51

0,
68

21
0,

68
56

0,
49

72
0,

40
74

0,
60

26
In

te
rn

et
A

ds
0,

78
09

0,
85

65
0,

47
39

0,
86

00
0,

36
63

0,
80

90
0,

70
63

0,
76

03
0,

91
13

0,
84

11
0,

51
65

0,
76

43
Io

no
sp

he
re

0,
95

93
0,

95
91

0,
93

77
0,

94
83

0,
82

50
0,

98
25

0,
83

79
0,

97
27

0,
96

44
0,

96
7

0,
84

06
0,

95
96

la
nd

sa
t

0,
52

17
0,

75
98

0,
59

27
0,

76
27

0,
48

21
0,

77
26

0,
47

92
0,

44
32

0,
49

98
0,

69
0,

48
35

0,
66

72
le

tte
r

0,
66

25
0,

88
88

0,
64

93
FA

0,
71

82
0,

90
66

0,
93

34
0,

48
28

0,
84

35
0,

67
6

0,
52

57
0,

72
24

m
ni

st
0,

76
38

0,
94

84
0,

86
47

0,
91

89
0,

48
58

0,
93

18
FA

0,
61

51
0,

92
10

0,
76

04
0,

25
02

0,
89

80
op

td
ig

its
0,

89
35

0,
99

91
0,

86
25

0,
98

46
0,

42
60

0,
99

83
0,

99
99

0,
81

05
0,

82
21

0,
90

86
0,

62
03

0,
90

12
sa

te
lli

te
0,

86
30

0,
84

56
0,

78
34

FA
0,

47
45

0,
87

53
0,

87
40

FA
0,

79
57

0,
77

98
0,

30
99

0,
83

09
sa

tim
ag

e-
2

0,
98

36
0,

99
66

0,
99

10
0,

99
77

0,
67

45
0,

99
92

0,
98

26
0,

63
17

0,
99

67
0,

97
55

0,
39

68
0,

99
84

Sp
am

B
as

e
0,

87
17

0,
71

32
0,

83
74

0,
77

30
0,

37
74

0,
70

36
0,

63
02

0,
73

77
0,

80
34

0,
78

07
0,

48
26

0,
66

53
sp

ee
ch

0,
60

29
0,

50
75

0,
50

30
0,

87
41

0,
43

64
0,

48
53

0,
46

40
0,

51
38

0,
52

17
0,

60
76

0,
48

21
0,

48
00

SV
H

N
0,

68
59

0,
71

92
0,

58
34

0,
69

89
0,

57
81

0,
67

88
0,

61
50

0,
70

55
0,

66
84

0,
58

94
0,

46
21

0,
64

88
W

av
ef

or
m

0,
80

92
0,

75
30

0,
69

02
0,

71
15

0,
58

14
0,

76
23

0,
55

14
0,

60
49

0,
57

91
0,

72
14

0,
70

18
0,

75
62

W
PB

C
0,

63
26

0,
56

95
0,

56
81

0,
61

56
0,

53
33

0,
58

30
0,

56
81

0,
59

72
0,

56
60

0,
49

07
0,

41
21

0,
57

38
H

ep
at

iti
s

0,
69

82
0,

50
30

0,
65

68
0,

52
07

0,
29

59
0,

56
80

0,
40

24
FA

0,
75

74
0,

82
84

0,
37

87
0,

53
25

M
V

Te
c-

A
D

0,
98

06
0,

96
79

0,
97

55
0,

96
89

0,
96

62
0,

97
03

0,
96

45
0,

64
12

0,
97

76
0,

74
22

0,
51

79
0,

97
20

20
ne

w
sg

ro
up

s
0,

55
35

0,
78

54
0,

66
75

FA
0,

71
09

0,
72

60
0,

63
29

0,
53

13
0,

81
03

0,
60

63
0,

48
33

0,
70

74

Ta
bl

e
6:

A
U

C
of

al
lt

he
m

et
ho

ds
te

st
ed

in
se

ct
io

n
4.

3
an

d
ex

tr
a

m
et

ho
ds

.

[Kriegel et al., 2009] Hans-Peter Kriegel, Peer Kröger, Erich
Schubert, and Arthur Zimek. Outlier detection in axis-
parallel subspaces of high dimensional data. In Thanaruk
Theeramunkong, Boonserm Kijsirikul, Nick Cercone, and
Tu-Bao Ho, editors, Advances in Knowledge Discovery
and Data Mining, pages 831–838, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[Kruskal, 1952] William H. Kruskal. A nonparametric test
for the several sample problem. The Annals of Mathemat-
ical Statistics, 23(4):525–540, 1952.

[Li et al., 2017] Chun-Liang Li, Wei-Cheng Chang,
Yu Cheng, Yiming Yang, and Barnabas Poczos. Mmd
gan: Towards deeper understanding of moment matching
network. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[Liu et al., 2008] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua
Zhou. Isolation forest. In 2008 Eighth IEEE International
Conference on Data Mining, pages 413–422, 2008.

[Liu et al., 2020] Yezheng Liu, Zhe Li, Chong Zhou,
Yuanchun Jiang, Jianshan Sun, Meng Wang, and Xiang-
nan He. Generative adversarial active learning for unsu-
pervised outlier detection. IEEE Transactions on Knowl-
edge and Data Engineering, 32(8):1517–1528, 2020.

[Müller et al., 2012] Emmanuel Müller, Ira Assent, Patricia
Iglesias, Yvonne Mülle, and Klemens Böhm. Outlier rank-
ing via subspace analysis in multiple views of the data. In
2012 IEEE 12th International Conference on Data Min-
ing, pages 529–538, 2012.

[Poggio et al., 2020] Tomaso Poggio, Andrzej Banburski,
and Qianli Liao. Theoretical issues in deep net-
works. Proceedings of the National Academy of Sciences,
117(48):30039–30045, 2020.

[Ramaswamy et al., 2000] Sridhar Ramaswamy, Rajeev
Rastogi, and Kyuseok Shim. Efficient algorithms for
mining outliers from large data sets. In Proceedings
of the 2000 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’00, page 427–438,
New York, NY, USA, 2000. Association for Computing
Machinery.

[Ruff et al., 2018] Lukas Ruff, Robert Vandermeulen, Nico
Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep
one-class classification. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pages 4393–4402.
PMLR, 10–15 Jul 2018.

[Schlegl et al., 2017] Thomas Schlegl, Philipp Seeböck, Se-
bastian M. Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. Unsupervised anomaly detection with generative
adversarial networks to guide marker discovery. In Marc
Niethammer, Martin Styner, Stephen Aylward, Hongtu
Zhu, Ipek Oguz, Pew-Thian Yap, and Dinggang Shen, ed-

itors, Information Processing in Medical Imaging, pages
146–157, Cham, 2017. Springer International Publishing.

[Seliya et al., 2021] Naeem Seliya, Azadeh Abdollah Zadeh,
and Taghi M. Khoshgoftaar. A literature review on one-
class classification and its potential applications in big
data. Journal of Big Data, 8(1):122, Sep 2021.

[Settles, 2009] Burr Settles. Active learning literature sur-
vey. 2009.

[Sinha et al., 2019] Samarth Sinha, Sayna Ebrahimi, and
Trevor Darrell. Variational adversarial active learning. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5972–5981, 2019.

[Steinbuss and Böhm, 2017] Georg Steinbuss and Klemens
Böhm. Hiding outliers in high-dimensional data spaces.
International Journal of Data Science and Analytics,
4(3):173–189, Nov 2017.

[Wang et al., 2019] Hongzhi Wang, Mohamed Jaward Bah,
and Mohamed Hammad. Progress in outlier detection
techniques: A survey. IEEE Access, 7:107964–108000,
2019.

[Zhao et al., 2019] Yue Zhao, Zain Nasrullah, and Zheng Li.
Pyod: A python toolbox for scalable outlier detection.
Journal of Machine Learning Research, 20(96):1–7, 2019.

[Zhu and Bento, 2017] Jia-Jie Zhu and José Bento. Gen-
erative adversarial active learning. arXiv preprint
arXiv:1702.07956, 2017.

	Introduction
	Related Work
	Classical Methods
	Subspace Methods
	Generative Methods
	Generative Adversarial Active Learning

	Our Method: GSAAL
	Multiple Views
	GSAAL
	Complexity

	Experiments
	Experimental Setting
	Datasets
	Network Settings
	Competitors

	Effect of Multiple Views on Outlier Detection
	One-class Classification
	Real-world Performance
	Parameter Sensibility
	Scalability

	Limitations & Conclusions
	Limitations and Future Work
	Conclusions

	Aknowledgments
	Theoretical Appendix
	Previous Remarks
	Proofs
	Multiple Views (extension)
	GSAAL (extension)

	Experimental Appendix
	Effects of Inlier Assumptions on Outlier Detection
	Effects of Multiple Views on Outlier Detection (extension)
	One-class Classification (extension)

