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Abstract

Predictive Maintenance applications are increasingly complex, with interactions
between many components. Black-box models are popular approaches based
on deep-learning techniques due to their predictive accuracy. This paper pro-
poses a neural-symbolic architecture that uses an online rule-learning algorithm
to explain when the black-box model predicts failures. The proposed system
solves two problems in parallel: i) anomaly detection and ii) explanation of
the anomaly. For the first problem, we use an unsupervised state-of-the-art au-
toencoder. For the second problem, we train a rule learning system that learns
a mapping from the input features to the autoencoder’s reconstruction error.
Both systems run online and in parallel. The autoencoder signals an alarm for
the examples with a reconstruction error that exceeds a threshold. The causes
of the signal alarm are hard for humans to understand because they result from
a non-linear combination of sensor data. The rule that triggers that exam-
ple describes the relationship between the input features and the autoencoder’s
reconstruction error. The rule explains the failure signal by indicating which
sensors contribute to the alarm and allowing the identification of the compo-
nent involved in the failure. The system can present global explanations for the
black box model and local explanations for why the black box model predicts
a failure. We evaluate the proposed system in a real-world case study of Metro
do Porto and provide explanations that illustrate its benefits.

Keywords: Explainable AI, Online Anomaly Detection, Predictive
Maintenance
2010 MSC: 00-01, 99-00

1. Introduction

Real-world predictive maintenance applications are increasingly complex,
with extensive interactions of many components. Data-driven predictive main-
tenance (PdM) solutions are a trendy technique in this domain, and especially
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the black-box models based on deep learning approaches show promising results
in fault detection accuracy and capability of modelling complex systems [1, 2].
However, the decisions these black-box models make are often difficult for hu-
man experts to understand and make the correct decisions. The complete repair
plan and maintenance actions that must be performed based on the detected
symptoms of damage and wear often require complex reasoning and planning
processes involving many actors and balancing different priorities. It is unreal-
istic to expect this complete solution to be created automatically – too much
context needs to be considered. Therefore, operators, technicians, and man-
agers require insights to understand what is happening, why, and how to react.
Today’s primarily black-box machine learning models do not provide these in-
sights, nor do they support experts in making maintenance decisions based on
detection deviations. The effectiveness of the PdM system depends much more
on the pertinence of the actions operators perform based on the triggered alarms
than on the accuracy of the warnings themselves.

Fault detection is one of the most critical components of predictive mainte-
nance. Nevertheless, predictive maintenance goes far behind predicting a failure,
and it is essential to understand the consequences and the collateral damages
of the failure. A critical issue in predictive maintenance applications is design-
ing the maintenance plan after a fault is detected or predicted. To elaborate
the recovery plan, it is essential to know the causes of the problem (root cause
analysis), which component is affected, and the expected remaining useful life
of the equipment. Explanations in predictive maintenance play a relevant role
in identifying the causes of failure, e.g., the component in failure. This is the
type of information required to define the repair plan.

The main contribution of this work is an online explanatory layer for deep-
learning-based anomaly detection systems in data-driven predictive mainte-
nance. We propose a two-layer architecture. The first layer uses an unsupervised
deep-learning model for detecting failures. The second layer learns interpretable
models (regression rules in the current implementation) that explain the outputs
of the detection layer model. Several works discuss the problem of explainability
of deep learning models, for example, [3, 4, 5, 6]. To our knowledge, none of
the works focuses on explaining deep-learning models for the rare cases: fail-
ures. That is the focus of this work. In the experimental section, we analyze a
real-world case study from public transport services, showing the relevance of
the explanations for predictive maintenance.

This paper is organized as follows. The following section briefly introduces
the data-driven predictive maintenance (PdM) problem and the importance of
obtaining explanations for detected faults. We also refer to existing works in
the field of Explainable AI. Section 3 introduces our two-layer architecture for
explainable PdM. Then, in Section 4, we present the case study: the Metro do
Porto problem. We conclude in Section 5, pointing out the generality of our
approach to other similar scenarios and further research directions.
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2. Background and Related Work

Maintenance is the process that deals with the health of equipment and sys-
tem components to ensure their normal functioning under any circumstances.
Over the years, and due to technological advances, different maintenance strate-
gies have been developed. Deep-learning techniques are quite popular, primarily
due to their performance in detecting anomalies and failures [7, 2].

In a well-known PdM story, a train entered the workshop due to an alarm
in the compressed air unit. They replaced the wrong part in the workshop,
and the train was returned to operation. A few hours later, it was forced to
return to the workshop with the same problem. This persistent problem in
maintenance reinforces the need to explain fault alarms in an understandable
way for everyone.

The state-of-the-art machine learning literature identifies several existing
interpretable models [4]: decision trees, regression rules, linear models, some
Bayesian Networks, etc. These models are considered easily understandable
and interpretable for humans. In [4] the authors differentiate between global
and local explainability:

”A model may be completely interpretable, i.e., we can understand
the whole logic of a model and follow the entire reasoning leading
to all the different possible outcomes. In this case, we are speaking
about global interpretability. Instead, we indicate with local inter-
pretability the situation in which it is possible to understand only
the reasons for a specific decision: only the single prediction/decision
is interpretable.”

In our case, we use online regression rules to generate global and local models
of interpretability.

3. From Fault Detection to Anomaly Explanation

One approach in data-driven predictive maintenance (PdM) is to learn a
system’s normal operating condition so that any significant deviation from that
working condition can be spotted as a potential failure. One possibility is to
attain this by learning LSTM-AE on normal operation examples. The intuition
is that if we give an abnormal example of operation, the reconstruction error of
the LSTM-AE will be very high. Those examples are relevant from the PdM
perspective and are typically rare.

The purpose of online anomaly detection and explanation for fault prediction
is to identify and describe the occurrence of defects in the operational units of the
system that result in unwanted or unacceptable behaviour of the whole system.
As reported, a single on-the-road breakdown substantially outweighs the cost of
a single unneeded component replacement. This work implements an anomaly
detection framework based on deep learning as a reliable and robust technique
that issues an alert whenever a sequence of abnormal data is detected. However,
having the best experimental accuracy in the anomaly detection segment is no
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Figure 1: Global Architecture of the Online Anomaly Explanation System. The top panel
details the fault detection system, while the bottom details the explanation system. Both
systems run online and in parallel.

longer enough. Explaining the obtained outputs to users is necessary to increase
their confidence. To this end, in parallel with anomaly detection, the anomalies
are described based on rule learning algorithms.

Figure 1 presents the global architecture of the proposed online anomaly
explanation system. It is a neuro-symbolic system [8] where a rule learning
system learns a surrogate model of the LSTM-AE. It works online, receiving real-
time data from sensors installed in the machine (train, bus, complex equipment,
etc.) we want to monitor. It signals alarms when it receives data that does not
correspond to the machine’s normal behaviour. The system also explains which
features contributed more to the signal alarm.

The figure details the two layers of the system: the fault detection and
explanation layers. The main component in the detection layer is the LSTM-
AE network trained with examples from the normal behaviour of the machine we
want to monitor. Each new observation is propagated through the autoencoder
network. The reconstruction error is computed as the mean square difference
between the input and the output: re = 1/n ×

∑n
i=1(xi − ŷi)

2, where n is
the number of features, xi the input features, and ŷi the corresponding output.
When the reconstruction error, re, exceeds a threshold, we signal an alarm,
meaning that the input is not from the system’s normal behaviour. The second
layer, the explanation layer, receives as independent variables (X) the input
features of the LSTM-AE network, and the dependent variable (y = re) is the
corresponding reconstruction error. It learns an interpretable model, a mapping
y = f(X). Both layers run online and in parallel, which means that for each
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observation X, the model propagates the observation through the network and
recomputes the reconstruction error (y = re). The second layer updates its
model using ⟨X, y⟩. If y > threshold, the system signals an alarm with an
explanation of the rules that trigger, for example, X. The first layer is the
failure detection layer and is unsupervised. The second layer is supervised and
explains the failure regarding the input features.

We assume that high extreme values of the reconstruction error (re) are
a potential indicator of failures. This architecture allows two explanations: i)
Global level, the set of rules learned that explains the conditions to observe high
predicted values, and ii) Local level, which rules triggered for a particular input.

An essential characteristic of this problem is that failures are rare events. An
LSTM-AE trained with normal operating conditions is expected to struggle to
reconstruct the input when it receives an abnormal operating condition. Thus,
the reconstructed error is expected to be higher for such cases.

We aim to obtain explanations focused on cases with high and extreme re-
construction errors, which can indicate a potential failure. This particularity of
having a non-uniform preference across the target variable domain and focusing
on scarcely represented values configures an imbalanced learning problem [9]. As
reported in many related studies in the area [10], standard machine learning ap-
proaches and evaluation metrics hinder performance in rare cases, which might
be of utmost importance. Thus, they are not suitable for addressing predic-
tive tasks from imbalanced domains. From the learning perspective, two main
approaches for tackling this type of task exist at the data level and algorithm
level. This work resorted to data-level approaches applied to the rule learn-
ing algorithm and used a specific error metric to cope with imbalanced domain
learning. In the following subsections, we first describe the online anomaly de-
tection and then explain the online rule learning algorithm, the applied sampling
techniques, and the used evaluation metric to properly assess the effectiveness
of our approach in an imbalanced data streams regression scenario [11].

3.1. Fault detection based on LSTM-AE

We use the system’s normal behaviour data in the fault detection framework
to train an initial LSTM-AE network offline to capture the time series’ temporal
characteristics. In the initialization phase, we define the threshold for signal
alarms. We apply a boxplot, a standard method to detect univariate outliers,
to the reconstruction error. The threshold is defined as Q3 + 3 × IQR. After
the initialization phase, the trained network is used online.

The APU activity is controlled by the compressor (COMP). It has two dis-
tinct states: charging the pneumatic circuit (COMP has value 0) or consuming
air (COMP has value 1). A compressor cycle is a full sequence of charging the
pneumatic circuit and consuming air, starting from the timestamp when the
COMP signal changes to 0 and ending at the timestamp preceding the follow-
ing change of the COMP signal to 0. The compressor cycle defines the window
for the LSTM-AE.

The overview of the deep LSTM-AE model, which consists of two modules,
LSTM encoders and LSTM decoders, is illustrated in Figure 2. LSTM encoders
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Figure 2: Schema of deep LSTM-AE for anomaly detection

are generally used to receive the input sequences, extract and compress features
from inputs through nonlinear transformation, and then pass the high-level
features of the data as the latent vectors on the hidden state of the last time
step of the LSTM decoder. The repeat vector layer is applied to repeat the
context vector received from the encoder and feed it to the decoder as an input.
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The LSTM decoder creates the reconstructed data at the sliding time window
i by applying the hidden decoding state at the sliding time window i and the
predicted time series at the sliding time window (i − 1). A time-distributed
dense layer is employed in the output of the LSTM decoder to maintain one-
to-one relationships between input and output and generate specific output for
each time window [12].

The reconstruction error, computed as the divergence between the input
features and the reconstructed one, is applied to update the model parameters
and compute the anomaly score for each sliding window. The root mean square
of the reconstruction error RMSre for the training dataset is used to estimate a
threshold value (thrre) through a boxplot analysis to label data. The boxplot
is a consistent method to display the distribution of the dataset, which can
be used to ignore extreme observations. The boxplot analysis of RMSE of
training data was previously proposed in [13] for obtaining the threshold value.
If the RMSre of a time window i is larger than the threshold (i − 1), then the
window i is considered an anomalous observation. Otherwise, it is regarded
as normal behaviour. Normal data is used to retrain the LSTM-AE model
and to update the threshold thrre. Adaptive threshold estimation can follow
the new data distribution in that time window. Finally, the output of the
labelling step is inputted into a post-processing phase to decrease the false
alarm rates [13]. To this end, a low-pass filter removes the network output’s
sudden variations and unwanted components. A single-time window alarm is
insufficient to demonstrate a persistent failure. Only a sequence of abnormal
sliding windows is an indication of failure.

3.2. The Adaptive Model Rules Algorithm

Decision rules are one of the most expressive and interpretable models for
machine learning [4]. The Adaptive Model Rules (AMRules) [14] was the first
stream rule learning algorithm for regression problems 1. In AMRules, the
antecedent of a rule is a conjunction of conditions on the attribute values. The
consequent can be a constant (the mean of the target variable) or a linear
combination of the attributes.

The set of rules learned by AMRules can be ordered or unordered. They
employ different prediction strategies to achieve ’optimal’ prediction. In the case
of ordered rules, only the first rule that covers an example is used to predict the
target value. In the case of unordered rules, all rules covering the example are
used for prediction, and the final prediction is decided by aggregating predictions
using the mean.

Each rule in AMRules implements three prediction strategies: i) the mean
of the target attribute computed from the examples covered by the rule; ii) a
linear combination of the independent attributes; iii) an adaptive strategy that
chooses between the first two strategies, the one with the lower mean absolute

1Nowadays, there are other streaming regression algorithms; a good survey is [15]. One of
the reasons why we use AMRules is that the code is publicly available in RIVER [16]
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error (MAE) in the previous examples. In this case, the MAE is computed
following a fading factor strategy. We use the implementation of AMRules
available in [16].

The standard AMRules algorithm learns rules to minimize the mean squared
error loss function. In the predictive maintenance context, the relevant cases
are failures, rare events characterized by large values of the reconstruction error.
We aim to apply AMRules to predict the reconstruction error obtained from the
original set of features as the target value. The most critical cases that constitute
potential failures have high and extreme target values. Even though they are
rare, we want our model to focus on them. The following section explains two
sampling strategies to learn from rare events.

3.3. Online Sampling Strategies for Extreme Values Cases

Few approaches to learning from imbalanced data streams discuss the task
of regression. In this work, we use the approach described in [11], which
resorts to Chebyshev’s inequality as a heuristic to disclose the type of incoming
cases (i.e., frequent or rare). It guarantees that ”nearly all” values are close
to the mean in any probability distribution. More precisely, no more than 1

t2

of the distribution’s values can be more than t times standard deviations away
from the mean. This property substantiates the fact that extreme values are
rare. Although conservative, the inequality can be applied to entirely arbitrary
distributions (unknown except for mean and standard deviation).

Let Y be a random variable with finite expected value y and finite non-zero
standard deviation σ. Then, Chebyshev’s inequality states that for any real
number t > 0, we have:

Pr(|y − y| ≥ tσ) ≤ 1

t2
(1)

Only the case t > 1 is helpful in the above inequality. In cases t < 1, the
right-hand side is greater than one, and thus, the statement will be always true
as the probability of any event cannot be greater than one. Another “always
true” case of inequality is when t = 1. In this case, the inequality changes to a
statement saying that the probability of something is less than or equal to one,
which is “always true”.

For t = |y−y|
σ and t > 1, we define frequency score of observation ⟨x, y⟩ as:

P (| y − y |≥ t) =
1(

|y−y|
σ

)2 (2)

The above definition states that the probability of observing y far from its
mean is small and decreases as we get farther away from the mean.

In an imbalanced data stream regression scenario, considering the mean of
target values of the examples in the data stream (y), examples with rare extreme
target values are more likely to occur far from the mean. In contrast, examples
with frequent target values are closer to the mean. So, given the mean and
standard deviation of a random variable, Chebyshev’s inequality can indicate
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the degree of the rarity of an observation. Its low and high values imply that
the observation is probably a frequent or a rare case, respectively.

Having been equipped with the heuristic to discover if an example is rare
or frequent, the next step is to use such knowledge in training a regression
model. In [11], authors proposed ChebyUS and ChebyOS, respectively, under-
sampling and over-sampling methods. However, the most effective method in
the predictive maintenance scenario is over-sampling. We aim to provide the
learning algorithm with more abnormal examples, i.e. those with high extreme
reconstruction error, as they might describe potential failures.

3.3.1. ChebyOS: Chebyshev-based Over-Sampling

One method to balance a data stream is to over-sample rare cases of the
incoming imbalanced data stream. Since those rare cases in data streams can
be discovered by Chebyshev’s probability, they can be easily over-sampled by
replication.

For each example, a t value can be calculated by Equation 3 which yields
the result in [0 +∞).

t =
|y − y|

σ
(3)

While the t value is small for examples near the mean, it would be larger
for ones farther from the mean and has its largest value for examples located in
the farthest distance to the mean (i.e., extreme values). In their proposal [11],
authors limit the function in Equation 3 to produce only natural numbers as
follows:

K =

⌈
|y − y|

σ

⌉
(4)

K is expected to have greater numbers for rare cases. In this over-sampling
method, the K value is computed for each incoming example, meaning that the
example is presented exactly K times to the learning algorithm. Examples not
as far from the mean as the standard deviation are probably frequent cases.
They contribute only once in the learner’s training process while the others
contribute more times 2.

3.4. Evaluation

As stated, errors over rare cases in imbalanced domains are more costly, as
they are the most relevant ones from the domain perspective. In this setting, the
relevant cases are the ones for which the reconstruction error is abnormally high,
meaning that the autoencoder has struggled to reproduce the input. These are
potential indicators of failure. With this aim, we use the relevance function ϕ :
Y → [0, 1] introduced in [17] as a weight function to each example’s target in the
Root Mean Square Error (RMSE). We use the proposed automatic method [17,

2The implementations of ChebyOS and ChebyUS used are available in River [16].
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9] based on a boxplot to obtain the relevance function that specifies values in
the tail(s) of the distribution of the target variable as regions of interest.

This case study focuses on high-extreme values, representing potential fail-
ures. Thus, the interpolation will be made on the three control points: mini-
mum and median values with a minimum relevance of 0 and the upper adjacent
value of the boxplot with a maximum relevance of 1. The interpolation function
guarantees a smooth increasing function within the [0, 1] domain, being constant
outside the range of target values supplied.

As an evaluation metric, we have used both the standard RMSE and the
RMSEϕ - ϕ() weighted version of this function where the prediction error for
each example is multiplied by the relevance value assigned to that example, as
follows:

RMSEϕ =

√√√√ 1

n

n∑
i=1

ϕ(yi)× (yi − ŷi)2, (5)

where yi, ŷi and ϕ(yi) refer to the true value, the predicted value and the
relevance value for i-th example in the data set, respectively. We used sliding
windows of length 1000 to compute the boxplot needed to calculate the relevance
function. Therefore, we report RMSEϕ values computed for each window of
instances.

Figure 3 depicts the summary of values associated with a numeric variable
according to its distribution. In particular, we have the relevance function ϕ()
derived automatically from the boxplot and the computed K value used in the
over-sampling approach (ChebyOs).

Figure 3: A) Box plot for the target variable - reconstruction error; B) Relevance ϕ(.) of the
target values; C) K-value used in the over-sampling approach.
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4. The Metro do Porto Case Study

This case study includes a single dataset [18] collected from a single APU
installed on a train, see Figure 4. The dataset comprehends signals from eight
analogue and eight digital sensors for six months, from January to June 2022,
as described in Table 1. The detailed description of the data collection process
appears in [19].

Figure 4: The Air Production Unit system with the position of the main sensors [19].

Table 1: Onboard analog and digital sensors from APU train [20, 19].

Nr. Module Description

Analog

1 Compressor TP2 - Compressor Pressure
2 Air Control Panel TP3 - Pneumatic panel Pressure
3 Air Control Panel H1 - Pressure above 10.2 Bar
4 Air Dryer DV - Air Dryer Tower Pressure
5 Air Control Panel Reservoirs - Pressure
6 Compressor Oil Temperature
7 Air Control Panel Flow meter
8 Compressor Motor Current

Digital

9 Electronic Control Unit COMP - Compressor on/off
10 Electronic Control Unit DV electric - Compressor outlet valve
11 Electronic Control Unit Towers - Active tower number
12 Electronic Control Unit MPG - Pressure below 8.2 Bar
13 Electronic Control Unit LPS - Pressure is lower than 7 bars
14 Electronic Control Unit Towers Pressure
15 Compressor Oil Level - Level below min
16 Air Control Panel Caudal impulses

Each sensor data was recorded with a 1 Hz sampling rate while the com-
pressor was running on the train. The dataset contains two types of failures,
one related to air leaks and another regarding oil leaks, and we received the
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maintenance reports confirming these failures [19]. We now report the fea-
tures extracted from the onboard sensor data and the outcomes of our proposed
methodology.

4.1. Feature Construction

In this use case, we extract the following features:

1. the number of ones in one cycle of working time compressor (T run+T idle)
for all digital sensors;

2. the bins for TP2, TP3, H1, Flowmeter, Motor Current;

3. the min and max of oil temperature, DV pressure, and reservoirs;

4. the run and idle time of the compressor.

The bin construction is separated into two moments i) the fill of the tanks
where we construct two bins, B1 and B2, and ii) the bins B3 until B7, which
occurs during the emptying of the tanks. All the feature construction and failure
detection processes used in this case study are described in detail in [21].

4.2. Experimental setup

The components used to create the processing pipelines are available in
River. In all the cases, we selected the same hyperparameters for AMRules
to provide a fair comparison. The interval between split attempts, nmin, was
set to 100. The split confidence parameter, δ, was set to 0.05, and the selected
prediction strategy was the target mean. We relied on the Truncated Extended
Binary Search Tree (TE-BST)[22] as a feature splitter algorithm. The concept-
drift detector used is DDM [23]. All the remaining hyper-parameters were kept
at their default values, as defined in River. 3

4.3. Error Measurement

Table 2 shows the RMSE and RMSEϕ results measured while training the
different regressors. The threshold tϕ = 0.8 was selected to the relevance of
RMSEϕ, as previously reported in [24]. In other words, we are interested in the
predictive performance of values whose relevance is higher than 0.8. We used
sliding windows of size 1000 to compute the metrics.

Table 2 also depicts the impacts of applying the oversampling strategy on
the amount of memory consumed by the model and the processing time. We
get a negligible difference in the run time and a decrease in the amount of used
memory.

As expected, the standard AMRules algorithm yielded the smallest RMSE
values compared with the AMRules with the ChebyOS sampling strategy. RMSE
privileges models that produce outputs close to the mean value of the target,
which is often the desideratum for regression. However, in imbalanced regres-
sion tasks, the extremes of the target variable distribution are the focus. In

3All the used scripts will also be made public, with instructions to reproduce our experi-
ments after acceptance.
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Table 2: All the measured performance metrics, considering both AMRules and AM-
Rules+ChebyOS. We measure the memory usage and running time relative to the original
AMRules. In the case of the number of generated rules, we indicate around parenthesis the
percentage of rules whose outputs are higher than thrre.

Metric AMRules AMRules+ChebyOS

RMSE 0.9597 0.9641
RMSEϕ = 0.8 3.0869 3.0986
Relative time 1.0 1.0488
Relative memory 1.0 0.6783
#Rules (thrre = 2.57) 4 (0.0%) 6 (33.0%)

our case, the highest values of reconstruction error are indications of potential
failures in the train.

4.4. Explanations

Explainable Artificial Intelligence (XAI) is becoming a game changer in all
domains. It is specifically designed to address AI systems’ transparency and
trust issues. This is especially relevant when signalling critical alarms. At the
same time, the system signals an alarm; it must be able to explain why the
alarm. The explanation must be expressed in a way that is understandable to
users.

Our systems generate local explanations for specific failures. The intended
audience of these explanations is the workers at the workshop involved in repair-
ing the train. The global explanations provide information about the sensors
and components more prone to failures. This is information relevant for man-
agers and engineers.

4.4.1. Global Explanations

Global Explanations refer to the set of rules learned after processing the
dataset. The ruleset is expected to evolve due to the incremental nature of
AMRules. We indicate the number of rules each regressor generates in Table 2.
We also show the percentage of rules whose outputs exceed the reconstruction
error threshold (thrre).

We present below a subset of rules obtained for the Train dataset when using
ChebyOS+AMRules.

Rules 0-9 relate to an air leak after the pneumatic control panel. Rules 5
and 7 relate to failure of the compressor control system, i.e., the escape valves
installed on the APU are opened when the compressor is trying to fill the tanks.

Rule 0: B5_MC > 8.0 and B7_H1 > -2.0 Then 2.30

Rule 1: B3_TP2 <= 5.0 and MA1_Oil <= 0.9

and MA2_Oil > -0.1 and B3_TP2 > 2.2 Then 1.58

Rule 2: B5_MC > 7.9 and MA1_Oil <= -2.1000 Then 2.25

Rule 3: B3_MC > 2.9 Then 2.67

Rule 4: B4_MC > -0.3 and B7_TP2 <= -0.1 Then 1.9
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Rule 5: B2_H1 > 0.7 Then 2.65

Rule 6: B4_MC <= 0.6 and B6_H1 > -2.0 and dig3 > -1.9

and B3_TP2 <= -1.1 Then 2.73

Rule 7: B1_H1 > 1.5 Then 1.5

Rule 8: B5_MC <= 7.6 and B7_H1 > -1.6 and B6_TP2 <= -0.4

Then 1.8

Rule 9: B1_TP2 > -1.3 and B3_TP2 > -1.1 Then 1.80

Rules 10 and 11 are related to an oil leak on the compressor’s motor. Larger
sensor values Oil Temperature less oil in the system. The output of the rules
indicates the severity of the failure.

Rule 10: Max_Oil > 0.9 and Med_DV > -3.2 Then 2.64

Rule 11: MA1_Oil <= 1.2 and B4_TP2 <= 0.9 Then 1.75

4.4.2. Local Explanations

Local explanations refer to the rules that are triggered by an example. When,
for a specific example, the reconstruction error of the LSTM-AE exceeds a
threshold, the system outputs the rule or rules that were triggered by that
example. This section presents illustrative examples of two air leak failures and
one explanation of oil leak failure.

Example 1: Air leak failure.

Sample 2001 re=3.83 2/28/2022 15:16

Rule 0: B3_TP2 <= 5.0 and MA1_Oil <= 0.9

Final prediction: 1.63

This failure is related to an air leak in the train clients (breaks, suspension,
oil, and sand subsystem). A collateral rule fired was the oil temperature due to
the compressor engine’s constant working load.

Example 2: Air leak failure.

Sample 9167 re=2.82 3/22/2022 11:48

Rule 7: B1_H1 > 1.5

Final prediction: 1.52

This failure is related to a failure in the APU’s control system caused by a
malfunction of a pneumatic control valve. The system opens the escape valves
(H1) when the compressor tries to fill the tanks.

Example 3: Oil leak failure.

Sample 9049 re=2.744 5/30/2022 12:17

Rule 11: MA1_Oil <= 1.2 and B4_TP2 <= 0.9

Final prediction: 1.61

This was a severe failure due to an oil leak. The train driver did not receive any
alarm to return to maintenance, and the motor was seized.
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Figure 5: Rules versus Shapley values for the air leak failure.

4.4.3. Comparison with Shapley Values

Two popular general proposed methods for explainable AI are SHAP val-
ues [25] (SHapley Additive exPlanations) and LIME [26] (Local Interpretable
Model-Agnostic Explanations). They have gained popularity for explaining the
decision-making process of machine learning models. These frameworks offer
instance-level explanations, enabling the analysis of feature contributions for
individual predictions. Figure 5 presents the Shapley diagram, referring to the
air leak failure. The rule that triggered is If B1 H1 > 1.5 Then re = 1.52,
with a clear indication of the location of the fault in Valve H1 located at the
Compressor module. While Shapley diagrams always include the (positive or
negative) relevance of several features, rules are based on a few literals, which
increases interpretability. Shapley diagrams provide detailed information on
each feature’s contribution, which might not be advantageous. In the 3 failures
studied in this paper, the cause of the alarm was correctly identified by the
rules.

When providing explanations, we must consider the interlocutor. Local ex-
planations are useful for the maintenance workers at the maintenance workshop
to design the repair plan when a failure occurs. Global explanations are useless
for interpreting a specific failure but are useful for engineers to understand the
critical components of an APU.

4.5. Discussion

The proposed neuro-symbolic architecture explores the best of two worlds:
the neural world with high-performance detecting anomalies and the symbolic
world that provides interpretable human knowledge. The rule model and the
neural model are tightly integrated. The rule set is an interpretable model of
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the behaviour of the LSTM-AE black-box model. When the LSTM-AE signals
an alarm for a given input, the rule that triggers that particular input informs
about which inputs are relevant for the high value of the reconstruction error.
The rule makes sense of the alarm: knowing the relevant sensors for the
alarm, we know from Table 1 which component has a problem. This is the main
contribution of this work: understanding and giving meaning to the alarms
of black-box models.

In this case study, the rules identified the sensors responsible for the alarm
provided by LSTM-AE. The sensor determines the subsystem with problems,
which is relevant for the maintenance team at the workshop. This way, rules ex-
press actionable knowledge and intelligence in a complex environment, directly
transforming data into decisions and enabling decision-making actions.

Failures are rare events. With the adoption of Chebyshev sampling, we were
able to capture two different failure types. In the first example, we identified the
air leak using the H1 and Towers sensors, and in the second example, we cap-
tured the oil leak using the Oil Level sensor. None of the failures was captured
using AMRules alone.

Finally, to assess the effectiveness of the alarms produced by our model
and respective explanations, the engineering and maintenance team carefully
analyzed them against the maintenance reports generated by the failures. Our
model detected all the failures described in the maintenance reports that led to
removing the train from operation. Along with that, the model also reported a
significant set of unexpected abnormal APU behaviours that didn’t lead to the
removal of the train but were indicators of the health condition of the APU.
The engineering and maintenance teams agreed that this model allows them
to understand specific APU operation behaviours not described by the APU
constructor. Moreover, according to them, the model also allowed the conclusion
that the equipment often had unexpected and ”non-normal” behaviour.

5. Conclusions

Maintenance scheduling and management methodology have become impor-
tant topics in the industry with the Internet of Things, manufacturing tech-
nology, and mass production. In these contexts, there is an urgent need to
understand and trust models and their results [3].

One common approach in data-driven predictive maintenance (PdM) is learn-
ing the normal operating condition. Any significant deviation from that working
condition could be a potential failure. One of the methods to attain this is by
learning LSTM-AE from normal examples of operation. The intuition is that
if we give an abnormal example of operation, the reconstruction error of the
LSTM-AE will be very high. Those examples are relevant from the PdM per-
spective and are typically rare. This configures an imbalanced data stream
regression problem where only very few studies exist.

In this paper, we propose an online system able to learn in parallel an LSTM-
AE trained to identify anomalies and a regression rules algorithm that models
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the large values of the reconstruction error of LSTM-AE. The proposed neuro-
symbolic model generates local and global explanations that play different roles
from the maintenance point of view. Local explanations should be used for the
repair plan in the presence of a failure signal. Local explanations makes sense of
a failure signal. Global explanations provide information for asset management
by identifying critical points in the equipment. The main contribution is that the
rule learner algorithm is wrapped in a sampling schema, allowing for selecting
relevant examples. That is the main reason why the proposed framework works.
We applied this methodology in a Predictive Maintenance scenario with data
from Metro do Porto. Results showed that we could learn rules for the high
values of the reconstruction error. These are the cases of interest.

The methodology we present is general enough to be applied to other on-
line imbalanced streaming scenarios that use black-box models to predict peaks
or bursts in events. We plan to explore different scenarios outside PdM ap-
plications for this methodology. Finally, interpretability and explainability are
human-computer-interface problems. While decision rules have a high degree
of understandability for computer-science people, we will need to translate the
rules into a natural language to enlarge the scope of people that understand the
messages. That is left for future work.
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