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Abstract. Graph coloring is a problem with varied applications in industry and 
science such as scheduling, resource allocation, and circuit design. The purpose 
of this paper is to establish if a new gradient based iterative solver framework 
known as heat diffusion can solve the graph coloring problem. We propose a 
solution to the graph coloring problem using the heat diffusion framework. We 
compare the solutions against popular methods and establish the competitive-
ness of heat diffusion method for the graph coloring problem. 
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1 Introduction 

Combinatorial optimization finds applications in diverse fields such as supply chain 
[1], traffic flow optimization [2], molecular dynamic analysis [3], and financial risk 
analysis [4]. With the explosion in the machine learning research in recent decades, 
there has been marked interest in use of machine learning for solving combinatorial 
optimization problems [5]. Machine learning approaches for tackling combinatorial 
optimization can be broadly classified into three classes. First is supervised learning. 
Supervised learning is arguably the more popular among the three classes [6][7][8]. 
However, supervised learning requires training sets of solved instances. Getting large 
training sets would involve solving large number of problems, which is extremely 
resource intensive [9]. The second class of machine learning approaches is reinforce-
ment learning. Reinforcement learning has shown some very exciting results despite 
operating in discrete action spaces, mastering video games [10], and other games such 
as chess and go [11]. However, reinforcement learning approaches lack full differen-
tiability [18], hence making learning resource intensive. The third machine learning 
approach is unsupervised learning. The challenge to unsupervised learning is that it 
requires bespoke loss functions to guide learning. There have been several creative 
attempts at solving this problem [12]. A new approach for solving combinatorial op-
timizations was proposed in [13], where the unsupervised learning is framed as an 
iterative approximation solver. This approach has achieved high efficiency by propa-
gating information from the scope of search effectively using heat diffusion. 

 
This paper builds on [13] to solve the graph coloring problem [14], one of the most 

challenging problems in combinatorial optimization [15]. Graph coloring finds appli-
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cations in areas such as scheduling [16] and register allocation [17]. The details of the 
graph coloring problem are provided in section 2. The heat diffusion framework is 
detailed in section 3. Section 4 contains details of our experiments along with the 
results. We show that our method is competitive with popular methods. The paper is 
concluded in section 5. The codebase for reproducing all experiment results is availa-
ble at https://github.com/chaudhary-vivek/HeO_GCP. 

2 Graph Coloring Problem 

2.1 Problem definition 

Considering an undirected graph G = (V,E), where V = {1,2,3,……,n} is the set of 
vertices and E = {(i,j) : i, j ϵ V} is the set of edges. In the graph coloring problem, we 
assign an integer c(v) ϵ {1,2,3,…..q}  to each vertex v ϵ V , such that no two adjacent 
vertices are assigned the same integer, c(i) ≠c(j) ∀ (i,j) ϵ E, while using at most q inte-
gers [12].  

The integers can be thought of as colors, and our objective in graph coloring is to 
make sure no two adjacent vertices of a graph are assigned the same color, given a 
maximum number of colors q. The minimum value of q for a graph is known as the 
chromatic number of the graph. A graph is said to be q-colorable if q colors can be 
assigned to the vertices without any clashes. A clash is when two connected vertices 
are assigned the same color. 

2.2 Industry application 

Graph coloring can be useful in the industry in several ways. One common applica-
tion of graph coloring is in resource allocation using interval graphs [19]. The prob-
lem will start with resource requests.  

 

 

 

Fig. 1. Interval graph solution to resource allocation 

Step 0 shows 6 resource requests. On x axis, we see the time duration of each re-
source request. Request 1 has a time duration from 2 to 4. request 2 from 10 to 14, 



3 

request 3 from 2 to 8, request 4 from 10 to 20, request 5 from 6 to 17 and request 6 
from 18 to 24.  

Step 1 shows the resource request encoded as an interval graph. The six vertices 
represent the six requests. The labels of the vertices represent the time interval of each 
request. An edge between two vertices represents an overlap between the time interval 
of the two resource requests. 

Step 2 shows the interval graph with colorings applied. Each color represents a re-
source. No two connected vertices have the same color, which implies that no two 
overlapping resource requests are assigned the same color. 

In step 3, we decode the colored interval graph. Resource request 1 and 5 are as-
signed the same resource A (represented by orange) since they do not overlap, re-
source requests 2, 3, and 6 are assigned the same B (represented by magenta) since 
they do not overlap, resource request 4 is assigned resource C (represented by blue).  

Similarly, problems such as scheduling can also be framed as graph coloring prob-
lems [16] 

3 Heat Diffusion Framework 

3.1 Preliminaries 

The heat diffusion framework is a gradient based iterative solver. In the heat diffusion 
framework, each parameter is referred θ to as the location. Each location is associated 
with an initial temperature value h(θ). Instead of the solver having to look through a 
large space, the heat from all locations flows to the solver. This flow of heat allows 
the solver to find θ* where the maxima of the temperature h(θ*) lies. The details and 
proofs for this framework can be found in [13]. 

At any time τ and location θ, the temperature distribution is given by u(τ, θ). The 
gradient of the temperature is given by the following equation. 

 𝛻 𝑢(𝜏, 𝜃) ≈ ∑ 𝛻 𝑓 𝑒𝑟𝑓
 

√
 (1) 

erf(.) is the error function used to transform continuous θ to binary. M is the number 
of samples which is set to 1. f is the target function that needs to be minimized. By 
creating the right target function f, the heat diffusion framework can be applied to a 
variety of problems. To run the gradient based iterative solver, xt can be sample from 
a uniform distribution over [0,1]n . Gradient can be calculated using (1). Then θ can be 
updated by projecting it over a valid interval [0,1]n . This process can be repeated for 
T iterations. 

3.2 Target function for graph coloring. 

For graph coloring problem. Given an adjacency matrix A for the graph. The target 
function can be defined as follows: 
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 𝑓(𝑥) = 𝑠𝑢𝑚 𝐴 ∗  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ∗  𝑠𝑜𝑓𝑡𝑚𝑎𝑥  (2) 

Here, x is initialized as a matrix of dimensions (n,k).  Where n is the number of 
vertices in the graph and k is the chromatic number of the graph. The final value of x 
is decoded by taking the argmax over rows. The argmax indicates the color of the 
vertex. 

4 Experiments 

We obtained 33 graphs from [20]. The chromatic number for these graphs is known. 
We compare our methods against two other methods. First is greedy method. In the 
greedy method we parse the vertices of the graph with the largest-first strategy and 
greedily assign colors. If the chromatic number k of the graph is reached, then we 
assign a dummy color. Hence, by design, the graph cannot have more than k colors, 
with the exclusion of the dummy color. The details of implementation of greedy 
method can be found in [21]. The second method we compare our results against is 
TabuCol. TabuCol is a Tabu search based heuristic. The details for this method can be 
found in [22]. 

The performance of the methods was measured in terms of percentage of edges 
that are clashing. An edge is said to be clashing if it connects two vertices of the same 
color. Also, in case of the greedy method is said to be clashing if either of its vertices 
is assigned the dummy color. The dummy-colored vertices can be thought of as verti-
ces to which the greedy method could not assign a color.  

 

Fig. 2. Percent of edges that are clashing versus number of edges in the graph 

We see that the percent of edges that are clashing is the lowest for TabuCol, followed 
by heat diffusion and greedy across different number of edges. 
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Fig. 3.  Boxplot of percent of edges that are clashing with mean values 

In figure 3 we see that the mean of percent of edges that are clashing is the lowest for 
TabuCol, second lowest is heat diffusion, and the highest is greedy method. 

5 Conclusion 

In this paper we put forth a new method for solving graph coloring using heat diffu-
sion. By comparing the percent of clashes in the colored graph, we conclude that the 
heat diffusion method is competitive with popular methods. 
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