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Abstract

We propose a constraint-based algorithm, which au-
tomatically determines causal relevance thresholds,
to infer causal networks from data. We call these
topological thresholds. We present two methods for
determining the threshold: the first seeks a set of
edges that leaves no disconnected nodes in the net-
work; the second seeks a causal large connected com-
ponent in the data.

We tested these methods both for discrete syn-
thetic and real data, and compared the results with
those obtained for the PC algorithm, which we took
as the benchmark. We show that this novel algo-
rithm is generally faster and more accurate than the
PC algorithm.

The algorithm for determining the thresholds re-
quires choosing a measure of causality. We tested
our methods for Fisher Correlations, commonly used
in PC algorithm (for instance in [1]), and further pro-
posed a discrete and asymmetric measure of causal-
ity, that we called Net Influence, which provided very
good results when inferring causal networks from
discrete data. This metric allows for inferring di-
rectionality of the edges in the process of applying
the thresholds, speeding up the inference of causal
DAGs.

∗filipe.barroso@ua.pt

1 Introduction

Understanding causality in complex systems allows
for the identification of root causes, prediction of
the effects of interventions, or the establishment of
causal laws to describe a system. These considera-
tions are relevant to areas such industry [2], telecom-
munications [3], medicine [4], environmental stud-
ies [5], earth system sciences [6] and meteorology [7].

A convenient way to encode causal relations be-
tween elements in a complex system is a causal net-
work, in which edges represent some causal relation-
ship between two events, and the absence of an edge
between variables indicates causal independence, or
d-separation [8–10]. For the purpose of this work,
multiple edges to a single node should be understood
as disjunct causal relations. However, more complex
descriptions, such as causal hypergraphs, can be used
to describe conjunction of causality [11].

Time ordering of events imposes a directionality
on the edges, and the impossibility of retrocausality
implies causal networks are acyclic. These two condi-
tions can be summarized mathematically by describ-
ing networks as Directed Acyclic Graphs (DAGs).
Bayesian networks represent the network factoriza-
tion of the joint probability function of the system
and are generally good approximations for causation.

Bayesian networks might be established through
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experimentation. However, due to practical, finan-
cial, or ethical constraints, we may be unable to freely
experiment with the system. Thus, causal networks
often need to be inferred from collected data alone.
Furthermore, a system may contain many variables,
implying a very large set of potential influences to
check. Manual construction of a causal network is
often also impractical, requiring automated methods
instead.

In man-made systems such as industrial production
[2] or telecommunications [3], we may have access
to large datasets of sample system states, i.e. the
states of all or some variables at a given time. This
opens up the possibility for automated inference of
the causal network based on data. Considering the
possible practical and time constraints, inferring a
network of causal relations solely from collected data
is a problem of special importance.

The relationship between graphs and probabilis-
tic dependencies was established in the 1980s [9].
Given a correct ordering of the nodes, the underly-
ing causal structure can be correctly recovered, but
it requires testing statistical independence between
any two nodes given all the possible separating sets
[10,12]. Such a task is computationally infeasible for
large networks. Furthermore, it might be impossi-
ble to calculate conditional measures with sufficient
precision given finite datasets, especially when the
number of dependencies is large. Therefore, practi-
cal algorithms try to reach a compromise between
correctness and computability [13–17].

The inference of a Bayesian network can be divided
into two main tasks: identifying the correct topol-
ogy of the network, and determining the influence
strengths. Here we focus on the first task. Once the
structure is decided, the second task becomes one of
calculating conditional probabilities from data.

There are two main approaches for learning net-
works: score-based methods and constraint-based
methods. Score-based methods assign a score to each
Bayesian structure according to a scoring function
and optimizes the score [18]. A example of a method
in this category is the Belief Learning Network [19]. A
derived method for continuous variables that avoids
the large combinatorial problem was recently pro-
posed by [13], where the authors propose a smooth

characterization of acyclicity and use continuous op-
timization.

On the other hand, constraint-based methods con-
struct the graph according to some measure of con-
ditional dependence. Some such methods start with
complete graphs and remove edges through the eval-
uation of conditional independence (CI). The most
well-known such method, the PC algorithm, deletes
edges recursively [20]. These methods, for large num-
ber of variables, are computationally impractical, so
they can only be applied approximately. Several im-
provements of the PC algorithm have been made,
such as parallelization [14] or strategical edge removal
order [15].

Other methods build up the graph step by step,
based on local evaluations of CI relative to a given
variable, followed by refinement of the graph. Exam-
ples include the grow-shrink algorithm [21] based on
χ2 conditional tests, further developed in [22], and
the entropy based method developed in [16]. Ref-
erence [23] computes pairwise CI in bulk, then uses
a threshold to grow an approximate network based
on pairwise independence measures, and then trims
spurious correlations by comparing measures of CI
against the threshold.

Yet other methods use a hybrid of constraint- and
score-based methods [24], and more recent works also
apply machine learning methods [17].

With finite datasets, it is never possible to estab-
lish probabilities exactly. Furthermore, it is counter-
productive to represent every dependency, no matter
how small, in the causal network. It is therefore nec-
essary to establish a significance threshold for condi-
tional dependence. Naturally, the correct threshold
depends on the system being studied, on the vari-
able types and on the structure of the data. As
noted by [25], previous works have tended to gloss
over this point, choosing the threshold in an ad-hoc
way [23,26].

In systems in which variables have a finite number
of discrete states, it may be advantageous to conduct
the analysis at the resolution of the variable state,
not the aggregate variable. If one later wishes to
use the obtained network to analyse and predict the
evolution of the system state, or infer root causes of
certain states, it makes sense to consider the state as
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the fundamental unit. The NI measure we define is
designed specifically to address this case.

In this paper, we demonstrate that constraint-
based algorithms can be freed from the fine-tuning
of thresholds. We show that computation of pair-
wise measures combined with a topological criterion
that seeks to connect nodes to the largest connected
component (LCC), suffices to determine an appropri-
ate threshold. We present two options: strictly con-
necting all nodes in one LCC, or finding the largest
component which includes most nodes while avoid-
ing weak connections whose addition could introduce
a large number of spurious correlations. This second
approach works by finding the knee point in the curve
of size of the largest network component vs ranked
edges.

We show that these thresholds can be efficiently
used as topological criteria for constraints, with their
application presenting very good results. We show
that for general networks, removing unconditional in-
dependence and CI to a single node outperforms the
PC algorithm, which we take as the benchmark, in
time and quality of inference.

In principle, our algorithm can be adapted to any
measure of CI. In fact, there is no uniformly valid CI
test [27, 28]. However, in this work we further intro-
duce a new probabilistic, and asymmetric, measure
of CI, that we dub "Net influence" (NI). It is a mod-
ified form of certainty factor [29]. We show that, at
least in conjunction with our algorithm, NI can be
used to infer the directionality of causal influences
for discrete data.

In the next section we describe our use-case and
define Net Influence. In section 3 we present our
innovative inference algorithm and do a complexity
analysis. In section 4 we demonstrate our algorithm
with some example real-world networks. In section
5 we generalize the study and show that our algo-
rithm achieves good results for a large set of synthet-
ically generated networks and data, with randomly
assigned influence. We conclude the paper in section
6 with a discussion on the impact and usefulness of
the proposed algorithm.

2 Inference of causal networks

Consider a complex system defined by a set of vari-
ables. For each variable we have a set of dataset
of measurements of their states. We wish to infer
the structure of the causal network, G(V,E), where
nodes V correspond to variables and (directed) edges
E represent causal influence. For clarity, we will refer
to the source of an edge as the parent node, and the
destination of the edge as the child node. We assume
that each line of data consists of a set of measure-
ments of the states of the variables at a particular
moment. Thus each line represents a realisation of
the state of the system. We do not explicitly con-
sider time series data, instead treating each line of
data as an independent, Markovian, record. Knowl-
edge of temporal ordering, which simplifies the prob-
lem of discovering the direction of the edges, is not
assumed, but the algorithm can be easily adapted to
include this additional information.

Heuristically, we expected that a significant part of
the system we wish to infer is part of a single con-
nected component. We defined significance thresh-
olds based on this property. The first option assumes
all variables are connected and we solely seek to find
the connections between then, thus looking for maxi-
mum threshold that infers a single connected compo-
nent. In certain cases, however, it may not lead to a
sensible representation of the system. For instance, if
there are nodes or small components which only very
weakly influence or are influenced by other nodes in
the system, their inclusion may force an artificially
low threshold, creating too dense a network, which is
computationally costly to analyse. Thus, we present
a second option which uses the size of the largest net-
work component as an indicator to determine the sig-
nificance threshold for the inferred network, looking
for the balance between size of the largest component
and number of edges included.

Let us consider a causal node, I ∈ V , as a statisti-
cal variable. If I is discrete, in a given measurement,
it can assume one of several node states, i ∈ I. We
consider the existence of a causal edge, J → I ∈ E,
when there is a direct and measurable influence of a
state j ∈ J on i ∈ I, given the state of other nodes
which may also possibly influence i. For continuous
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variables, this corresponds to a correlation between
the values of J and I, and the argument still ap-
plies. Statistical independence implies the absence of
a causal relation between two nodes.

In this work, we tested the inference method for
two measures of influence: a continuous measure,
Fisher transformed Pearson correlation, used by PC
algorithm for instance in [1], and a new, state-wise,
measure that we named Net Influence, defined below.

We used the measures to infer both the skeleton of
the network and its DAG. We note that, contrary to
the PC algorithm, which first identifies the skeleton
and only later decides the directions, we sought to
infer directionality the moment we apply the thresh-
old.

2.1 Net Influence

Let I be a node whose parents are J and the set of
nodes U . Let i be a state of I, j a state of J , and u a
set consisting of one state from each node of U . We
introduce a quantity used to measure the influence
of j ∈ J on i ∈ I in the presence of the set of other
influences u ∈ U as

W (i | j;u) = P (i | j, u)− P (i | j̄, u)

=
P (i, j | u)− P (i | u)P (j | u)

P (j | u)P (j̄ | u)
(1)

in which j̄ indicates the absence of state j. We call
this measure Net Influence (NI).

Net influence takes values in [−1, 1] and yakes a
null value when i and j are independent given u.
The extreme values are obtained when i is fully de-
termined by j or by its inverse, respectively.

Since P (i | u) =
∑

j′∈J P (j′ | u)P (i | j′, u),
Equation (1) can be written as

W (i | j;u) =
∑
j′∈J

P (j′ | u)
P (j̄ | u)

[
P (i | j, u)−P (i | j′, u)

]
,

(2)
with the sum running over all states of J . Defining
di|u (j, j

′) = P (i | j, u) − P (i | j′, u) as the influence
distance between states j, j′ ∈ J on i in the presence

Figure 1: An illustration of the influence of state
j1 ∈ J on state i1 ∈ I, as measured by Net Influence
W (i1 | j1). Net Influence is the difference between
the probability of state i1 in the presence of j1 from
the probability of i1 under any other state of J , and
can be decomposed as a weighted mean of the differ-
ences of the P (i1 | jk).

of u, allows us to rewrite Equation (2) as

W (i | j;u) =
∑

j′∈J P (j′ | u) di|u (j, j′)
1− P (j | u)

=

∑
j′∈J\{j} P (j′ | u) di|u (j, j′)∑

j′∈J\{j} P (j′ | u)
.

(3)

Thus, the net influence W (i | j;u) can be inter-
preted as the weighted mean of the influence dis-
tances on state i ∈ I from the node J , in the presence
of u (see Figure 1). In the simpler case where J has
only two states, j, j̄, W (i | j;u) = di|u (j, j̄).

3 Inference algorithm
Evaluating all combinations of statistical dependen-
cies should, in theoretically perfect conditions, yield
the correct skeleton [10, 12]. In practice, computa-
tional feasibility demands inventive algorithms to re-
duce the number of evaluations of CI. Furthermore,
statistical fluctuations make it impossible to perfectly
distinguish real and false edges, therefore a signifi-
cance threshold is needed.
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The number of computations of CI can be reduced
by evaluating them sequentially. In a given nth step,
CI can be evaluated for all edges conditioned to n
of their common neighbours (whenever they exist),
removing the edge when one of the conditioning set
leaves the pair of variables below the threshold for
statistical independence. The zeroth step evaluates
the unconditioned independence of all pairs of nodes.

Our method for inferring the causal network be-
hind data consists of two stages: an automatic de-
termination of the threshold based on provided data,
and the removal of statistically weak edges starting
from the complete graph, that is, the imposition of
constraints on the possible causal connections based
on the determined threshold.

The threshold is determined using the statisti-
cal (unconditioned) dependencies between pairs of
nodes, as these quantities can be viewed as the lead-
ing order of the CIs evaluations. Crucially, since the
values of CI needed to determine the threshold are
the ones used for pruning the graph in zeroth order,
our method of determining the threshold avoids in-
troducing a large number of additional computations.

We find that completing the second stage to the ze-
roth and first order CI evaluations yields very good
results, saving computational time. However, in prin-
ciple the method can easily be expanded to higher
order.

3.1 First stage

A threshold is needed in order to keep only the rele-
vant causal relations and cut out nonzero CIs arising
solely from statistical fluctuations. Previous works
used a manually chosen threshold at the equivalent
step [23, 25, 26]. However different systems with dif-
ferent levels of noise, types of variables and so on,
will naturally require different thresholds.

We start this stage by obtaining an estimate of the
influence, or statistical dependence, by considering
only interactions between pairs of variables (i.e. not
conditioned on other variable states). If a variable
is discretised in states a measure of influence ωij can
be computed between each pair of states of different
nodes and the maximum value for a pair of nodes
is considered its maximum potential influence, which

we designate the weight ΩIJ of the edge, serving as
the CI measure. In principle a number of different
CI measures could be used to estimate the influence
between nodes. Here we focus on Net Influence, de-
scribed above, and compare the results with the non-
discrete Fisher correlation.

Only edges whose measure ΩIJ is above the thresh-
old should be included in the network. It is reason-
able to assume that the majority (or even the total-
ity) of variables form part of a single causal system.
We present two methods to automatically choose the
threshold based on topology of the leading order of
CIs inferred from the provided data that connects all
(or nearly all) of the variables. We call these topo-
logical thresholds.

3.1.1 Connected method

The first method to determine the threshold is called
the Connected Method. In this method, the thresh-
old is chosen such that all variables have at least one
link to the largest (and only) connected component.
This method reflects the cases when the user knows
that all variables have a causal role in the system and
wants to figure out their relations.

In order to apply this method, we find the maxi-
mum value of measure of influence for which removal
of all edges below this threshold still leaves all nodes
in the network connected. The threshold is the solu-
tion to the following equations:

Gε = {(I, J) | ΩIJ > ε}
ε = max(ε′ | LCC(Gε′) ∋ I ∀ I)

(4)

where Gε is the graph generated when using thresh-
old value ε, and LCC indicates the largest connected
component of the graph. This search can be quickly
concluded through algorithms such as Binary Search.
When inferring a DAG, (I, J) denotes a directed
edge, whereas for inferring a skeleton, (I, J) denotes
an undirected edge.

The application of this threshold in the second
stage oftentimes yields a graph that includes the
strongest causal influences in the system, being more
accurate for tree-like causal systems. Sometimes,
however, some variables might be only weakly con-
nected with the main component of the network. Re-
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quiring the inclusion of these nodes forces the thresh-
old to be much lower, resulting in large numbers of
excess edges that are hard and time-consuming to
remove in higher steps.

Figure 2: Number of nodes in the largest component
of the network, as a function of number of edges re-
moved, for the ALARM network (analysed below).
The Connected method finds the point before a node
drops from the LCC (orange marker). The Knee
method finds the point of greatest curvature (red
marker).

3.1.2 Knee method

The problem that sometimes plagues the Connected
method can be solved by looking instead at the
number of nodes in the largest connected compo-
nent (LCC) as the weaker edges are removed and
finding the point of maximum curvature, or ‘knee’.
Thus, the Knee method might drop some nodes from
the inferred network, but we are able to present a
cleaner causal network representing the relations in
the LCC. Note that, in many instances, we expect
the knee point to coincide with the point the LCC
ceases to contain all nodes, reproducing the Con-
nected method. In order to determine the knee point
we used the algorithm developed in [30]. The dis-
advantage of using the Knee method is that it may
remove edges that should be included, that is, it cre-

ates more false negatives. As it does not use Binary
Search, oftentimes this method might be slower than
the Connected method. See Figure 2 for a graphical
comparison of Knee and Connected methods.

3.2 Second stage

Spurious correlations are statistically independent
when conditioned on a certain, possibly empty, sep-
arating set. Removing these correlations is a mat-
ter of computing CI and comparing them with the
relevance threshold. This is called constraining the
graph. Crucially, the thresholds identified solely
through the computation of unconditional indepen-
dence measures serve as the relevance criteria for any
CI test.

Although ideally we would try to identify all spuri-
ous correlations by computing conditioned indepen-
dence for any separating set, for large networks this
is computationally infeasible, even in the case when
the zeroth step performs well in identifying the causal
links. Instead, we apply an iterative method of, in
any nth step, evaluating CIs conditioned to the ex-
isting n parent nodes and edges evaluated as con-
ditionally independent. This method is dominated
by the zeroth step, whose computations were already
obtained when determining the threshold. The first
step, for instance, identifies edges whose nodes have
at least one common parent and evaluates indepen-
dence conditioned to each of those parents.

This approach greatly reduces the number of con-
ditioned measures which need to be computed. Fur-
thermore, considering that our calculations for NI
are made state-by-state, the probabilities of combi-
nations of the states of more than three variables may
require much more data to identify accurately.

Note that edges wrongly removed - due to a too
high threshold - are not recovered in following steps.

Our algorithm is summarised in the pseudocode Al-
gorithm 1 and is publicly available through a Python
implementation on GitHub.1

In the case that the threshold is determined as
the value above which the network ceases to be con-
nected, the function Threshold can simply take the

1In https://github.com/F-Barroso/Inference
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Algorithm 1 Algorithm
# Find threshold
for variable I, J do

for states i ∈ I, j ∈ J do
ωij ← |W (i | j) |;

end for
ΩIJ ← max (ωij);

end for
ε← Threshold (Sort (ΩIJ));

# Zeroth Order Constraint
for variable I, J do

if ΩIJ > ε then append (I → J) to DAG;
end if

end for

# First Order Constraint
for node I ∈ DAG with in-degree > 1 do

survives ← True;
for nodes J,K ∈ parents(I) do

for states i ∈ I, j ∈ J, k ∈ K do
ωijk ← |W (i | j, k) |;
if ωijk > ε then survives ← False;

break;
end if

end for
if not survives then remove (I → J) from

DAG;
end if

end for
end for

form of a binary search. When the knee method is
applied, the Threshold function simply represents the
application of the method to find the point of greatest
inflection.

3.3 Computational complexity

The determination of the threshold requires CI com-
putations between all pairs nodes, which grows as
O(n2), with n being the number of nodes in the net-
work. Note even though discrete measures, such as
NI, require computing CI between states of different
nodes, as the number of states per node is finite, those
cycles do not grow with network and can thus be dis-
regarded for complexity computations. These are the
computations that dominate the determination of the
threshold and the zeroth order constraint.

The first order constraint evaluates triads in the
network. This phase grows as O(t), with t represent-
ing the number of triads in the network after the first
step. If no threshold was established, this is bounded
by O(n3). This corresponds to a highly dense net-
work, in which the mean degree is of the order of the
number of nodes. However, for the use cases con-
sidered, the number of parents for each node is not
dependent on the size of the network. In fact, as
long as the first and second moments of the degree
distribution of the original network are bounded, the
number of triads to test in the second step will not
grow with the network size.

This means that, in such cases, the complexity of
the first order constraint is O(n). Thus, the zeroth
order dominates the computation time of the algo-
rithm. The exception would be the case of an outlier
weak link in the original network, which would force
a low threshold and result in the inclusion of a large
number of false positives in the first step. This re-
sults in O(n2) operations being required in the sec-
ond step. In such cases, the knee method returns the
requirement in the second step to O(n).

The performance of the second step is thus depen-
dent on the adequate choice of a threshold. Methods
to reduce the number of false positives, such as the
application of the knee method, greatly increase the
efficiency of the second step.
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4 Results for real-world net-
works

We carried out network inference using our algorithm
with the NI measure, for both the Connected and
Knee thresholding methods (for brevity we will refer
to these as NIConnected and NIKnee). We also re-
peated the tests using the Fisher z-transformation of
the Pearson correlation coefficient (see [1]) as the CI
measure. This measure is appropriate for continuous
data, and is the same measure used in the PC Al-
gorithm we used as a benchmark for our results [31]
(FisherConnected and FisherKnee, respectively). We
present the results of inferring both the skeleton as
well as the causal network with directions.

These networks highlight challenges when applying
the algorithms of causal inference, explaining some
of those outlined in the synthetic data presented in
Section 5.

The quality of results can be characterized in terms
of the false positive rate (FPR) and false negative
rate (FNR). The FPR is the number of excess edges
added by the algorithm which are not present in the
original network, normalized by the total number of
non-edges in the original network. The FNR is the
number of missing edges, that is, edges in the orig-
inal network which were not identified by the algo-
rithm, normalized by the number of edges in the
original network. A measure which combines false
positives and false negatives (along with true posi-
tives and negatives) is the Matthew’s correlation co-
efficient (MCC) [32].

4.1 ASIA network

ASIA is a small network, commonly used to test
Bayesian learning algorithms, proposed by S. L. Lau-
ritzend [33], represented in Figure 3.

Our methods were inferior to the benchmark PC
algorithm when inferring both the skeleton and the
DAG for the ASIA network, though still present-
ing reasonable results in most cases, including being
faster in all but one case. The results are summarized
in Table 1.

The NI measures performed better than Fisher

when inferring both the skeleton and DAG. However,
they failed to predict the edge Asia to Tuberculosis,
a very weak edge that other methods often also fail
to predict [34]. Incidentally, node Asia is left dis-
connected from the network when the sole spurious
correlation that linked in zeroth order is identified
and removed. The algorithm is working as intended,
as it correctly removed a spurious correlation. More
complex versions of the algorithm that include causal
recovery could potentially reinclude dropped edges,
but this comes with computational cost.

asia

tub

smoke

lung

either

xray

dysp

bronc

Figure 3: ASIA network. Despite naming
the network, the connection from node Asia,
Asia→Turberculosis, is not easy to predict.

The NI measures also showed some success in pre-
dicting the DAG, though still falling short of the
PC algorithm which solely mistook the direction of
Smoke to Lung Cancer and added a non-causal bidi-
rectional edge in Asia-Tuberculosis.

The Fisher measures performed satisfactorily when
finding the skeleton, but revealed a fundamental flaw
when inferring the DAG: the metric is too sharp,
assigning values corresponding to maximum correla-
tion to all except the weakest correlations, which, for
small networks with a large number of strong corre-
lations, prevents the choice of an adequate threshold.
This situation highlights the fact that causal mea-
sures with greater discrimination are better suited
for our algorithms.

We present the values of normalized computation
time, but we note that, given the small size of the
network, these correspond to few seconds in all cases
(in our machine, PC takes around 1.5s for Skeleton
and 4.5s for DAG).
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Skeleton Time/PC FPR FNR MCC
PC 1.000 0.050 0.000 0.919

NIConnected 0.516 0.100 0.125 0.750
NIKnee 0.308 0.000 0.375 0.737

FisherConnected 0.741 0.100 0.250 0.650
FisherKnee 0.741 0.083 0.250 0.667

DAG Time/PC FPR FNR MCC
PC 1.000 0.054 0.125 0.748

NIConnected 2.071 0.161 0.125 0.546
NIKnee 0.841 0.071 0.500 0.429

FisherConnected 0.179 0.107 0.750 0.143
FisherKnee 0.228 0.107 0.750 0.143

Table 1: Values of computation time, normalized by the time for PC algorithm, and values of the FPR,
FNR, and MCC for the inferred DAG and skeleton of the ASIA network. In bold we highlight the best
results.

4.2 ALARM network

Another widely used network for Bayesian learning,
representing a medical diagnostic, is the ALARM
network [35].

We obtained very good results for inference using
NIKnee, inferring more accurately the skeleton than
PC algorithm and inferring the DAG with equivalent
results, as measured by the MCC (see 2), in both
cases with significant speedups over the benchmark.

The results for NIConnected, on the other hand,
illustrate a shortcoming of the topological threshold
that requires connectivity. With this method, two
of the variables yield pairwise CIs so low that many
false positives are included in the network in zeroth
order. These are hard to remove evaluating only CI
to a single node, in first order, decreasing the quality
of the results and greatly increasing computational
time.

NIKnee solves the problem by identifying a thresh-
old that removes those variables from the largest con-
nected component. See Figure 2, illustrating the
functioning of the Knee method for this network. The
effect of including the two weakly connected nodes is
visible in the plot of nodes included against edges
included in zeroth constraining order. The inferred
network from the NIKnee method presents much bet-
ter MCC results - see Table 2 - yielding the network

in Figure 4.

VENTLUNG

MINVOL

VENTALV

EXPCO2

MINVOLSET

VENTMACH

DISCONNECT

VENTTUBE

PRESS

PVSAT

SAO2

HREKG

HRSAT

ERRCAUTER

HRBP

ERRLOWOUTPUT

ARTCO2
KINKEDTUBE

STROKEVOLUME

CO

LVFAILURE

HISTORY

LVEDVOLUME

CVP

PCWP

HYPOVOLEMIA

ANAPHYLAXIS

TPR

INTUBATION

SHUNT

CATECHOL

BP

HR

PULMEMBOLUS

PAP

INSUFFANESTH

FIO2

Figure 4: Inferred skeleton of ALARM network us-
ing NIKnee. The labels were not displayed in order
to avoid cluttering the image. Black lines represent
edges correctly predicted, lines in green edges in ex-
cess (false positives) and lines in red missing edges
(false negatives). Note that two nodes were left dis-
connected.

Once again, the Fisher metrics are too aggressive
to yield a topological threshold when inferring DAGs.
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This problem is exacerbated by the fact that these
measures are symmetric, therefore when there is an
edge that passes the threshold also, the opposite di-
rection will also be included, inflating the FPR. These
problem do not occur or are not as evident when in-
ferring the skeleton, thus the measures still present
good results in very short computational times.

5 Results for synthetic networks

In this section, we present a more general study of
network inference, analysing larger and denser net-
works by testing our algorithm for synthetic networks
of varying size, and compared the results with those
obtained using the PC algorithm, both for skeleton
and DAG inference.

We evaluated the performance for two network
topologies with discrete data. The first method (1.)
generated networks adding nodes recursively from a
chosen sink, selecting in- and out-degrees from a nar-
row statistical distribution, similar to a Poisson. This
minimizes correlations between temporal order of the
node and node degree, as well as between node in- and
out-degrees. By construction, networks generated by
this method have a single sink, thus representing the
causal past of a single effect. However, the causal
identification method works just as well with multi-
ple sinks.

The second method (2.) generated networks from
random triangular adjacency matrices. This ap-
proach was used for example in [1]. Although to-
tal node degrees are distributed narrowly around the
mean value, this approach does result in anticorre-
lations between node in- and out-degrees, as well as
correlations of both with node order.

For these two methods, 1. and 2., once the net-
work is generated, between 2-4 states are randomly
attributed to each node. Then, we generate random
conditioned probabilities according to the Markov de-
composition of the DAG, and finally generate data ac-
cording to these probabilities. These methods yield
discrete data from which we seek to infer the original
network.

Results for FPR, FNR, and MCC for a range of
network sizes with mean degree close to 3, generated

by method 2., are shown in Figures 5, 6, and 7. In-
ference was performed from 104 lines of data. Com-
putational time are compared with those for the PC
algorithm in 8. We observe that for discrete data,
both algorithms, Connected and Knee, provide very
good results.

Both PC and our algorithm, independent of mea-
sure or threshold used, present FPRs that decrease
with the number of nodes. This behaviour is wit-
nessed both when inferring DAGs or the skeletons,
for either method, by virtue of the large number of
true negatives which dominate the normalization fac-
tor for large networks. It shows that both algorithms
are generally very good at excluding connections be-
tween clearly independent variables. NIConnected
performs slightly worse than the other methods re-
garding FPR for networks generated by method 2.
(see an example in Figure 5), while the PC algorithm
performs slightly worse then the remaining methods
when inferring skeletons.

0 20 40 60 80 100 120 200
Number of nodes

0.00

0.05

0.10

0.15

0.20

0.25

FP
R 
sc
or
e

PC
FisherConnected
FisherKnee
NIConnected
NIKnee

Figure 5: Variation of FPR score for inferred DAG
with network size, for networks generated with mean
degree close to 3 and by method 2. Bars represent
the range of results (and not uncertainty in the mean
value). Each point corresponds to a mean of 30 rep-
etitions, except for nodes 120 and 200 which were
computed with 22 and 9 repetitions, respectively.

The main differences are registered for FNR (see
Figure 6). NIConnected and then NIKnee perform
generally better, both for skeleton and DAG infer-
ence, with the trend being clearer for larger net-
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Skeleton Time/PC FPR FNR MCC
PC 1.000 0.081 0.065 0.625

NIConnected 1.100 0.410 0.022 0.290
NIKnee 0.389 0.016 0.174 0.794

FisherConnected 0.248 0.134 0.022 0.543
FisherKnee 0.106 0.066 0.304 0.508

DAG Time/PC FPR FNR MCC
PC 1.000 0.043 0.174 0.555

NIConnected 0.551 0.338 0.022 0.241
NIKnee 0.244 0.036 0.239 0.547

FisherConnected 0.177 0.161 0.022 0.376
FisherKnee 0.035 0.064 0.674 0.181

Table 2: Values of time, normalized by the time for PC algorithm, FPR, FNR, and MCC for the inferred
ALARM network. In our machine, PC registered times of 462s for Skeleton and 1136s for DAG. In bold we
highlight the best results.

works. Fisher measures have similar performances,
with around 0.1 higher FNRs than NI measures. The
PC algorithm presents FNR generally slightly worse
than NIKnee, when inferring skeletons of networks
generated by method 1. and 2., respectively. We
performed the same tests for less dense, thus more
tree-like, networks - we chose a mean degree close to
1.3. In this case, the gap is even clearer. PC performs
significantly worse than all the other measures when
inferring DAGs, for either method (over 0.1 higher
than the Fisher measures).

These two metrics combine to an MCC for all four
variations of our algorithm that are significantly bet-
ter than PC’s for larger networks. NIKnee performs
generally the best closely followed by NIConnected
in networks generated by 1. or the Fisher metrics in
networks generated by 2. However, a notable excep-
tion are the MCC scores of NIConnected, which are
as low as PC for networks generated by 2. with low
degree. We show in Figure 7 the results of MCC for
inferred DAG with the remaining methods presenting
similar behavior, except when otherwise stated.

In terms of time, our algorithm outperformed PC
algorithm by approximately an order of magnitude,
whether using Fisher or NI measure (see Figure 8).
The Fisher measures are generally faster than NI
measures for larger networks, as they do not require
cycles over the combination of states. The Connected

metrics are generally faster than the Knee metrics, by
virtue of using binary search, which cannot be applied
to the latter, to find the location of the threshold.

When analysing the number of removed spurious
correlations in each step when inferring DAGs of size
60, mean degree 3, generated by method 2., we found
out in the zeroth step, a mean of 92% of the spurious
edges are removed (or alternatively, return a network
with 8% of spurious edges) for the Connected meth-
ods, while the Knee methods remove a mean of 94%
of spurious edges (that is, return a network with 6%
spurious edges). On top of this, 97 − 98% of the re-
maining spurious correlations are removed in the first
step by the Fisher measures, while the NI measures
remove 99% of the remaining spurious edges. These
values correspond to means of 101 networks. Further-
more, we note that the zeroth step contributes to 95%
of the FPR. Regarding wrongly removed edges in the
first step, in around half the tries, the Fisher metrics
wrongly removed 1 or 2 directed edges, in some cases
removing as much as 8 − 9 edges. NI measures per-
formed much better in this regard, wrongly removing
edges in only 6% of the runs, never more than a single
one. Therefore, we consider the sequential approach
validated.

A question of special importance is the amount of
data needed for functionality of the algorithm. We
analysed and compared the behaviour of the algo-
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Figure 6: Top: Variation of FNR score for inferred
DAG with network size, for mean degree close to 3
and networks generated by method 2. The number
repetitions is as above. Bottom: Variation of FNR
score for inferred Skeleton in the same conditions.
Each point corresponds to, respectively, in increasing
order, means of 54, 41, 40, 39, 24, 20, and 5 repeti-
tions.

rithms for networks of 60 nodes, mean degree close to
3 with varying amount of data. The MCC scores for
all measures, both when inferring the DAG or skele-
ton, decrease with smaller data samples. We observe
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Figure 7: Variation of MCC score for inferred DAG
with network size, for mean degree close to 3, for
networks generated by method 2. The number of
repetitions is the same as in Figure 5.
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Figure 8: Variation of computation time for inferred
DAG with network size, for networks generated by
method 2. The number of repetitions is the same as
in Figure 5.

that NI measures still perform generally better than
PC algorithm, even for small amounts of data, with
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the difference becoming more pronounced with more
data (see Figure 9 for an example inferring the DAG).
We start observing convergence in the quality results
for sample sizes of around 104, which is the sample
size used in the previous subsection, for method 1.,
to 105, for method 2.
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Figure 9: Variation of the MCC score for inferred
Skeleton with the amount of data for networks gen-
erated by method 1. Each point corresponds to a
mean of 56 repetitions.

Although the PC (and FisherConnected) algorithm
are generally very fast for data samples until size 103,
we notice that the algorithm scale very badly with
sample size, becoming as high as two orders of mag-
nitude slower than our proposed algorithms for 105

lines of data (see Figure 10 for an example inferring
the DAG), when convergence starts to be observed.

Finally, we present in Figures 11, 12 the behaviour
of all metrics with time and MCC, respectively, with
variations mean degree for networks of size 60 gen-
erated by method 2., for inferred DAG. Results for
method 1., and inferred skeleton are similar. The
time is approximately does not vary with increase in
mean degree, highlighting the fact that the zeroth
step dominates the complexity of the algorithm.

The variation of MCC with mean degree is ap-
proximately the same for all measures, indicating
that there our proposed algorithm are superior to the
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Figure 10: Variation of computation time, in sec-
onds, for inferred Skeleton with the sample size, for
networks generated by method 1. Each point corre-
sponds to a mean of 56 repetitions.
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Figure 11: Variation of time, in seconds, for inferred
DAG with the mean degree, for networks generated
by method 1., with a total of 56 data samples. The
dashed lines correspond to linear regressions, though
it is not a good model for PC’s behaviour.

benchmark for any density of the theoretical network.
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This is of particular importance, as the density of the
causal network behind the data is hard to estimate a
priori, complicating the choice of an adequate algo-
rithm if it were only superior in a set densities.
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Figure 12: Variation of MCC for inferred DAG with
the mean degree, for networks generated by method
1., with a total of 56 data samples. The dashed lines
correspond to linear regressions.

6 Discussion and Conclusions
In this article, we have proposed a novel constraint-
based algorithm for inferring causal networks, which
establishes automatic topological thresholds com-
puted from the data. We have proposed two alter-
natives: one that seeks to connect all nodes in a sin-
gle component, and another which seeks the optimal
compromise between number of nodes in the largest
connected component and edges added to the net-
work with values above the threshold. The later is
computed finding the knee of the described curve.

We also introduced a novel conditional dependence
measure, Net Influence, similar to the certainty fac-
tor, which allows for the calculation of state-by-state
influence. We have shown it generally performs very
well with our algorithm, both when inferring the
skeleton and the directed causal network (DAG).

Our algorithm (especially using the NI metric) can
be used to directly infer directionality of the edges,
whereas in algorithms such as PC it is done as a sec-
ond step after inferring the skeleton. This speeds
up the process. Furthermore, the asymmetry in NI
captures information that is not utilized by other al-
gorithms.

We compared our algorithm for discrete data with
a benchmark, PC algorithm, evaluating the quality
of results and running time. We tested our algo-
rithm for both proposed topological thresholds, using
our NI metric and, for comparison, the Fisher cor-
relation. When testing on two real networks we ob-
tained mixed results. PC algorithm generally outper-
formed our methods in a very small network, ASIA.
For a larger network, ALARM, our algorithm out-
performed PC for the knee threshold, but failed to
produce acceptable results for the connected thresh-
old. This is due to the presence of a very weakly con-
nected node, which forces the threshold to be very
low, resulting in a large FPR. The knee algorithm
avoids this problem.

These results were then generalized for even larger
networks, randomly generated and fitted with syn-
thetic data. Our method outperformed, both in qual-
ity and time, the PC algorithm, with the difference
being clearer for larger networks. This trend is gen-
erally independent of the mean degree of the origi-
nal network so our method is capable of presenting
reliable and very fast results compared to the bench-
mark. Convergence of the quality results starts to
be observed for around 104 lines of data, though the
trend of our algorithm outperforming PC is observed
even for lower data magnitudes.

One might expect that the topological threshold
method we have described, based on the connectivity
of the inferred network, could be biased towards less
dense networks. We did find a decrease in the qual-
ity of results with increasing network density, how-
ever this decline was also observed in the reference
PC algorithm, such that our algorithm maintained
its advantage.

We observed similar results for the four tested vari-
ations of our algorithm, using two different metrics
combined with two different threshold determination
algorithms. The results for our NI measure were
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slightly superior to those using the Fisher measure.
In general, the Knee method obtained lower false pos-
itive rates, while the more conservative Connected
method resulted in lower false negative rates. The
Knee method does have a higher computational cost,
but on the other hand, the Connected method does
not adapt to cases in which very weak connections
are present, resulting in poorer performances. Unless
one is sure that all variables must be connected to
a single causal network component, then, we suggest
that the more consistent and generally best perform-
ing NIKnee method should be used by default.

We have shown that the conditional independence
testing can be carried out in increasing order of com-
plexity, testing first unconditioned interactions (ze-
roth order) then conditioned on one other variable
(first order) and so on. We found that only up to
first order conditioning was sufficient to produce ex-
cellent results, while keeping the computation time
low. This is the most important tradeoff we found in
increasing the algorithm speed. These speed advan-
tages only increase with system size. Our algorithm
was generally at least ten times faster than the stan-
dard PC algorithm across a range of cases.

Our simple method can be easily implemented and
applied to very large datasets. The use of state-wise
comparisons, rather than correlations or mutual in-
formation across all the states of a variable, reflects
the structure of many Bayesian networks, and facil-
itates the use of the inferred network to analyse the
evolution of the system, or to infer which state may
be the root cause of a given outcome.
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