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Abstract

We show, by introducing purely auxiliary gluinos and scalars, that the quan-
tum path integral for a class of 3D interacting non-supersymmetric gauge theories
localises. The theories in this class all admit a ‘Manin gauge theory’ formulation,
that we introduce; it is obtained by enhancing the gauge algebra of the theory to
a Dirac structure inside a Manin pair. This machinery allows us to do localisation
computations for every theory in this class at once, including for 3D Yang-Mills
theory, and for its Third Way deformation; the latter calculation casts the Third
Way path integral into an almost 1-loop exact form.

*Email: alex.s.arvanitakis@vub.be
†Email: dimitri.kanakaris.decavel@outlook.com

http://arxiv.org/abs/2404.14472v1


Contents

1 Introduction 1

2 Manin gauge theory 2

2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Yang-Mills as a Manin theory . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Freedman-Townsend theory in 3D . . . . . . . . . . . . . . . . . . . 5
2.1.3 The Third Way theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 ‘Imaginary’ Third Way . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Equivalences of Manin theories from “twists” of Lie quasi-bialgebras . . 8
2.3 Hamiltonian formulation; classification in the quasi-triangular case . . . 10

2.3.1 Example: theories of mCYBE type and their ‘duals’ . . . . . . . . . 14

3 Evanescent supersymmetry 15

3.1 Duistermaat-Heckman formula as evanescent localisation . . . . . . . . . 15
3.2 Chern-Simons as an evanescent SUSY gauge theory . . . . . . . . . . . . . 17
3.3 N = 2 evanescent-supersymmetric Manin gauge theory . . . . . . . . . . 18

3.3.1 SUSY on curved space; the round 3-sphere . . . . . . . . . . . . . . 20
3.3.2 Parity and Euclidean unitarity (reflection-positivity) . . . . . . . . 21

4 Localisation of Manin gauge theory 24

4.1 BRST gauge fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Localisation on S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Resolving the localisation locusM . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Third Way theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Yang-Mills theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Discussion 31

A Notation and conventions 32

A.1 Differential form conventions for possibly fermion-valued forms . . . . 33
A.1.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.2 Spinors and Gamma Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2.1 Gamma matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2.2 Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2.3 Charge conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.2.4 Fierz identity and more on spinor bilinears . . . . . . . . . . . . . . 37

A.3 Geometry of the round 3-sphere and spinor derivatives . . . . . . . . . . 38



1 Introduction

Our elders sometimes advise, “one idea per paper”. We will disappoint our elders, for
this paper contains two ideas:

1. Manin theory: a new formulation of three-dimensional Yang-Mills-esque gauge
theories, which encodes distinct models with gauge algebra g depending on how
g is chosen as aDirac structure inside a bigger Lie algebra d, called its double; and

2. Evanescent localisation: the addition of purely auxiliary degrees of freedom—
auxiliary gluinos and scalar fields for this paper — such that the path integral
that calculates certain expectation values (e.g. the partition function) reduces to
an equivalent integral over a smaller space, such that the theory with the auxil-
iary degrees of freedom is completely equivalent to the original theory.

What we do in this paper is combine ideas 1. and 2. to produce a localisation calcula-
tion for large classes of Manin gauge theories at once. The motivation for this is that
these theories are interacting, non-supersymmetric, non-topological gauge theo-

ries (i.e. they possess local degrees of freedom) which are not known to be integrable
or otherwise amenable to exact quantum calculations: for instance, this class of theo-
ries contains (a theory equivalent to) ordinary 3D N = 0 Yang-Mills theory.

Although themachinery of Dirac structures,Manin pairs, and Lie quasi-bialgebras,
that we will employ, might be obscure to some physicists, it has previously made nu-
merous appearances in string theory, including: in Poisson-Lie T-duality [1, 2], in 2D
integrable [3, 4] and topological [5–7] sigma models, in the realisation of symmetries
on string and brane worldvolumes [8, 9], and in the geometry of flux compactifica-
tions [10, 11], to give an incomplete list. It is therefore somewhat surprising that the
same ideas are fruitful in the non-stringy context of the current paper.

The localisation techniquewe employ is the usual supersymmetric localisation for
gauge theories, which was introduced by Pestun [12] for 4D super Yang-Mills theory
and was subsequently employed by Kapustin, Willett, and Yaakov [13] to calculate
expectation values of supersymmetric Wilson loops in various 3D N = 2 gauge the-
ories; we largely follow the latter. (We also benefitted from the treatment in refer-
ences [14,15].) TheN = 2 ‘supersymmetry’ we employ is realised via purely auxiliary
gluinos and scalar fields, and leads to evanescent localisation in the above sense. To
highlight this fact, and to distinguish between our ‘supersymmetry’ and conventional
supersymmetry, we will call the transformations we employ evanescent supersym-

metries. The key point in our argument is the construction of N = 2 evanescent-
supersymmetric Manin gauge theory which is amenable to supersymmetric localisa-
tion techniques.

It is worth pointing out early that while the evanescent supersymmetries them-
selves are just deformed versions of garden-variety supersymmetries, their algebra is
typically completely different, for the following reason: evanescent supersymmetries
arenecessarily vanishingon-shell (“trivial” in the terminology ofHenneauxandTeitel-
boim [16]), and their anticommutators are necessarily trivial (aswewill see); however,
spacetime translations are usually nonzero on-shell, hence evanescent SUSYs are not
expected to square to translations, and indeed they do not for N = 2 evanescent-SUSY
Manin theory. An exception to this trend is pure N = 2 Chern-Simons theory which is
in fact evanescent-supersymmetric in our sense, as we review.
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Moreover, we establish various basic facts about Manin theory in order to demon-
strate that the theorybothpasses basic consistency checks and canbe localised. Among
other results, we derive its hamiltonian formulation and demonstrate that energy is
bounded below (section 2.3), we show that the theory enjoys parity invariance and re-
flection positivity (in Euclidean signature, section 3.3.2), and we demonstrate that the
theory canbe supersymmetrisedon curvedcompact backgrounds (section 3.3.1).

Finally, just to assure the reader that we are not talking about the empty set, we
take care to display examples of theories which admit a Manin theory description
(section 2.1): these include Yang-Mills theory, a deformation thereof called the “Third
Way” theory introduced a while ago by Sevrin, Townsend, and the first author [17],
and a few others. (In fact the localisation results in this paper generalise and expand
the results derived for the Third Way theory in the second author’s Master’s thesis
[18].) We also point out that solutions to the modified classical Yang-Baxter equation,
or to a generalisation thereof we introduce in this paper (2.51), always give rise to
Manin theories.

2 Manin gauge theory

Our theory—whichwewill call “Manin theory” for brevity and to avoid self-aggrandisement1

— is defined by the following mass deformation of a Chern-Simons action:

S[A] =

∫

M3

η

[

k
(1

2
AdA+

1

3
A
3
)

+
1

2
g2A ⋆ MA

]

, (2.1)

The lagrangian is defined on any three-dimensionalmanifoldM3 with Hodge star ⋆. It
is completely specified by the following data:

• a dimensionless real constant k;

• a constant g2 with units of mass;

• a Manin pair (d, g, η), with the 1-form field A taking values in the Lie algebra d,
and where η is the invariant inner product for d, with g →֒ d being the gauge
algebra;

• and an operatorM : d → d obeying identities (2.3) below.

Aswewill see later, whenever the theory is equivalent to Yang-Mills, g2 is proportional
to the Yang-Mills coupling. We will also see that the operator M is often completely
specified by the Manin pair data. We now summarise what a Manin pair is and what
the identities to be satisfied byM are.

Lightning definition of Manin pairs, Lie quasibialgebras, and Dirac structures.

These notions essentially contain the same information but from different perspec-
tives.

• A Lie quasibialgebra is a real Lie algebra gwith commutation relations [Ta, Tb] =
fab

cTcwhich is additionally endowedwith objects f̃abc and h̃abc, such that (fabc, f̃abc, h̃abc)
define the structure constants of a (2 dim g)-dimensional Lie algebra d as follows:

[Ta, Tb] = fab
cTc , [T̃ a, T̃ b] = f̃abcT̃

c + h̃abcTc , [Ta, T̃
b] = f̃ bcaTc − fac

bT̃ c , (2.2)

1And also because “Dirac theory” and “Dirac gauge theory” are very much taken!
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where Ta and T̃ a collectively form a basis of d. The f̃abc and h̃abc are totally
antisymmetric in their upper indices and must obey identities amongst them-
selves implied by the Jacobi identity for d. With these structure constants for d

we find that the split-signature inner product with nonvanishing matrix entries
η(Ta, T̃

b) = δab is ad d-invariant (η([x,y],z) = η(x, [y,z]) for x,y,z ∈ d).

d is called the double of the Lie quasibialgebra g equipped with f̃, h̃ as above,
following Bangoura and Kosmann-Schwarzbach [19].

• A Manin pair is defined to be the triple (d, g, η) where (d, η) is a Lie algebra with
a split-signature invariant inner product η and a subalgebra g →֒ d where η van-
ishes: η|g = 0.

Upon choosing any complementary isotropic vector space g̃ to g in d, g acquires
the structureof a Lie quasibialgebra, with commutation relations as above. There-
fore there are multiple Lie quasibialgebras corresponding to each Manin pair.
We discuss the twist equivalences between such Lie quasibialgebras later.

Note that g̃ need not be a Lie algebra itself, i.e. we need not have h̃ = 0. (In this
last case, g is called a Lie bialgebra, and (d, g, g̃) form aManin triple.)

• In the above scenarios, g is a Dirac structure for the specific double d; this is a
maximal isotropic — i.e. lagrangian — subalgebra of d, and we will also refer to
g as ‘the lagrangian subalgebra’ of d in this context. (The notion of Dirac structure
was introduced in a more general context in [20].)

TheM operator. This is a linear mapM : d → d with

Mg = 0 ; (2.3a)

η(Mx,y) = η(x,My) ; (2.3b)

η(M [x,y],z) + η(My, [x,z]) = 0 , (2.3c)

where x,y,z ∈ d and x ∈ g. In the basis (Ta, T̃ a)with structure constants as in (2.2) one
can prove easily that

MTa = 0 , MT̃ a =MabTb , (2.4)

for a symmetric matrix Mab. Moreover we will assume M is nondegenerate in the
sense that the form η(M•, •) restricted to an isotropic complement, g̃, of g in d = g+ g̃

is nondegenerate; in terms ofMab this is the condition thatMab admits an inverse. We
will denote that inverse byMab.

In the basis (2.2) for d we may split A ≡ AaTa + ÃaT̃
a so the action reads

S =
1

2

∫ [

k
(

ÃadA
a +AadÃa + fbc

aÃaA
bAc + f̃ bcaA

aÃbÃc +
1

3
h̃abcÃaÃbÃc

)

+g2Ãa ⋆ M
abÃb

]

.

(2.5)

Although this form of the action depends on the choice of complement g̃ of g in d = g+g̃,
we emphasise that the action does not depend on g̃, as is manifest from (2.1) and (2.3).
In other words, the action only depends on the Manin pair, and not on the specific Lie
quasibialgebra whose data appears in (2.5).
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Gauge invariance. The action (2.1) (or equivalently (2.5)) is invariant (up to bound-
ary terms) under a subset of the gauge transformations of Chern-Simons theory with
gauge algebra d. In fact it is gauge invariant under gauge transformations valued in
the Lagrangian subalgebra g. Explicitly, those are

δA = dΛ + [A,Λ] , Λ ∈ C∞(M3)× g , (2.6)

where thebracket is given in (2.2). Theproof of gauge invariance is trivial and involves
checking the invariance of the mass term η(A ⋆ MA) using the identities (2.3). One
may similarly show gauge invariance under finite gauge transformations with gauge
parameter g :M3 → G, G being the Lie group with Lie algebra g.

In terms of the split A = A+Ã into g- and g̃-valued 1-forms as used to arrive at (2.5),
the commutation relations (2.2) show that A transforms as a gauge field for g while
Ã transforms as amatter field.

Remarks

1. Any admissible M (that obeys (2.3)) may be rescaled arbitrarily, which corre-
sponds to adjusting the coupling g2. Moreover, if g is a simple Lie algebra then
the form η(M•, •) andM are both determined (via Schur’s lemma) up to scale in
terms of the inverse of the Killing form for g. Explicitly, we have

Mab ∝ κab (2.7)

if κ denotes the Killing form on g.

2. The algebra g can be compact, however its double d is typically not compact be-
cause η has split signature. In particular d is never compact when d is simple. We
will see examples of both.

3. Onemight expect a quantisation condition for the dimensionless constant k since
it appears as a Chern-Simons level. Ignoring, even, the mass term that breaks
someof the gauge symmetry, there is usually noquantisation condition: η((g−1dg)3)
can be globally exact, where g : M3 → D is a finite gauge parameter, and D is a
Lie group with Lie algebra d. (It is indeed exact e.g. if the brackets (2.2) close on g̃

so it is a Lie algebra while at the same time D is diffeomorphic to G× G̃, G̃ being
a Lie group whose Lie algebra is g̃, see e.g. [21, section 3.2].)

2.1 Examples

Before studying the class of Manin theories as a whole, we demonstrate that most
known 3D N = 0 gauge theories belong in this class, and point out examples of Manin
pairs that give new 3D gauge theories.

Since one needs to specify not just the gauge algebra g but the Lie groupG in order
to fully determine a gauge theory, we will be denoting the Manin pairs (d, g) via their
corresponding Lie groups (D, G), where the gauge group G is a maximally isotropic
(with respect to η) subgroup of D.

4



2.1.1 Yang-Mills as a Manin theory

Here we take D = T ⋆G, the cotangent bundle of the gauge group. This is in fact a Lie
group; it is the semidirect product G⋉ g⋆ of G with its coadjoint representation. If Ta
denote generators of g and T̃ a those of g⋆ ≡ g̃, the Lie algebra d of D = T ⋆G takes the
form (2.2) with f̃ = h̃ = 0. Explicitly,

[Ta, Tb] = fab
cTc , [T̃ a, Tb] = fbc

aT̃ c , [T̃ a, T̃ b] = 0 , (2.8)

so that the action (after an integration by parts) reads

S =

∫ [

k
(

Ãa(dA
a + 1

2fbc
aAbAc)

)

+
1

2
g2Ãa ⋆M

abÃb

]

. (2.9)

ForG a compact simple group, aswe remarked above,Mabmust be proportional to the
inverse Killing form κab. We then recognise the above as the first-order formulation
of Yang-Mills theory. Indeed upon elimination of Ã we obtain

S = − k2

2g2

∫

MabF
a ⋆ F b (F ≡ dA+A2) , (2.10)

which is the Yang-Mills action with coupling proportional to g2/k2.

We observe here that k clearly need not obey a quantisation condition in this
case.

2.1.2 Freedman-Townsend theory in 3D

For the above example, since h̃ = 0we notice that g is in fact a Lie bialgebra. Therefore
we can swap the roles of g and its complement g⋆ ≡ g̃ and consider the Manin pair of
d = g ⋉ g⋆ and g⋆ (which we interpret as the abelian Lie algebra of dimension dim g).
To do this we need to replaceM by a new operator M̃ appropriate to this Manin pair;
in particular, due to (2.3), it must annihilate g⋆. Its nonvanishing matrix elements will
therefore be M̃Ta = M̃abT̃

b.

Therefore the action reads (after integration by parts)

S =

∫ [

k
(

Ãa(dA
a + 1

2fbc
aAbAc)

)

+
1

2
g2Aa ⋆ M̃abA

b

]

. (2.11)

We recognise this as the Freedman-Townsend gauge theory action, or rather a three-
dimensional version thereof [22, formula (2.9)] (at least when M̃ is proportional to the
Killing form).

The gauge transformations (2.6) indeed reproduce the ones of Freedman-Townsend
theory: we need to replace the gauge parameter Λ = ΛaTa that takes values in g with
a gauge parameter Λ̃ = Λ̃aT̃

a
that takes values in g⋆, which gives

δA = 0 , δÃ = dΛ̃ + [A, Λ̃] , (2.12)

where on the right-hand side of the last formulawe recognise the covariant derivative
with respect to A of Ã, seen as a matter field in the coadjoint representation.

5



2.1.3 The Third Way theory

We now select D = G × G (or, equally well, any D whose Lie algebra is a direct sum
g ⊕ g). This will give us the Third Way theory, introduced in [17]. (We refer to the
same reference for a more detailed discussion as well as to references [23, 24].) The
Third Way theory describes a sector of ABJM theory (see e.g. [25, 26]), which has a
G × G → (G × G)diag ∼= G broken gauge symmetry, where by (G × G)diag we denote
the diagonal subgroup. This is given a Manin pair structure as follows: We denote the
generators of the Lie algebra d = g⊕ g as T±a satisfying

[T±a , T
±
b ] = fab

cT±c η(T±a , T
±
b ) = ±κab (2.13)

[T±a , T
∓
b ] = 0 η(T±a , T

∓
b ) = 0 (2.14)

where κ an invariant form on g. With this, the diagonal subalgebra (g ⊕ g)diag ∼= g is
isotropic (maximally so, in fact, for dimension-counting reasons). The Manin pair is
thus given by (gdiag →֒ g⊕ g, η).

To write out the action explicitly we choose the antidiagonal subspace for g̃, as it
is also isotropic. Accordingly, gdiag and g̃ have respective bases

Ta = T+
a + T−a T̃ ak =

1

2
k−1κab

(
T+
b − T−b

)
(2.15)

satisfying relations

[Ta, Tb] = fab
cTc η(Ta, Tb) = 0 (2.16)

[T̃ ak , Tb] = fbc
aT̃ c η(T̃ ak , Tb) = k−1δab (2.17)

[T̃ ak , T̃
b
k ] =

1

4
k−2fabcTc η(T̃ ak , T̃

b
k ) = 0 (2.18)

where indices on the g-structure constants f are raised/lowered using κ.

The reason for introducing k into our basis is the observation that in the limit k →
∞, the algebra of G × G reduces to that of T ⋆G, which is mathematically analogous
to how Minkowski spacetime is the large radius limit of anti-de Sitter spacetime. This
limit is in agreement with the observation that the Third Way theory is a continuous
deformation of Yang-Mills theory, as taking D = T ⋆G corresponds to the first order
formulation of Yang-Mills theory we described in section 2.1.1.

We now define the mass matrixM by

MTa = 0 , MT+
a = +2kTa , (2.19)

MT̃ a = kκabTb , MT−a = −2kTa . (2.20)

Having specified the geometric data, we can now formulate the theory. To this endwe
expand the connection 1-form as

A = A+aT+
a +A−aT−a = AaTa + ÃaT̃

a
k (2.21)

where under gdiag ∼= g we see that A± and A are g-connections and Ã is an auxiliary

6



matter field in the adjoint g-representation. With this, action 2.1 becomes

S[A] = kSCS[A
+]− kSCS[A

−] + kg2
∫

κab(A
+ −A−)a ⋆ (A+ −A−)b

=

∫ [

ÃaF
a +

1

24k2
fabcÃaÃbÃc +

1

2
g2κabÃa ⋆ Ãb

]

.

(2.22)

whereF = dA+A2. We see that in the k → ∞ limit, this theory reduces to the first order
formulation of Yang-Mills theory with coupling g2, as formulated by action 2.9.

A more direct way to see this is by solving for Ã and back-substituting it into the
action [25]. Its field equations are given and recursively solved by

F +
1

4k2
Ã2 + g2 ⋆ MÃ = 0 (2.23)

⇒ Ãa = − 1

g2
⋆ Fa −

1

8k2g6
fabc ⋆ (⋆F

b⋆F c) +O(k−4) (2.24)

Back-substitution into the action now yields

S[A] =

∫ [

− 1

2g2
κabF

a ⋆ F b +
1

12k2g6
fabc⋆F

a⋆F b⋆F c +O(k−4)

]

(2.25)

which indeed expands the theory in powers of k−2 around Yang-Mills theory.

Although we will not be employing this fact in this paper, the Third Way theory
is also consistent when the Chern-Simons levels in (2.22) are unequal, which may be
achieved by adding Chern-Simons actions for either factor of G or for G × G with a
different bilinear form (which we call E much later in this paper).

2.1.4 ‘Imaginary’ Third Way

Nowwemove on to the complexifiedgauge groupD = GC. This grouphas a Lie algebra
gC = g ⊕ ig and is —as we will see— similar to the Third Way case in many ways. Its
algebra has generators {Ta} for g and {iTa} for ig satisfying

[Ta, Tb] = fab
cTc [Ta, iTb] = fab

ciTc [iTa, iTb] = −fabcTc (2.26)

Let us further introduce an invariant non-degenerate inner product η = κC − κC, the
imaginary part of the complexification of an invariant form over g. This is

η(Ta, Tb) = 0 η(Ta, iTb) = 2κab η(iTa, iTb) = 0 (2.27)

It is now clear that we obtain a Manin pair (g →֒ gC, η). Let us now derive the Manin
theory in close analogy to howwe treated the ThirdWay case. We define a basis

T̃ ak =
1

2
k−1κabiTb (2.28)

7



for ig, yielding

[Ta, Tb] = fab
cTc , η(Ta, Tb) = 0 , (2.29)

[T̃ ak , Tb] = fbc
aT̃ c , η(T̃ ak , Tb) = k−1δab , (2.30)

[T̃ a, T̃ b] = −1

4
k−2fabcTc , η(T̃ a, T̃ b) = 0 , (2.31)

which completely agreeswith theG×G case, up to theminus sign in equation 2.31!

Upon introducing a gauge field A = AaTa + ÃaT̃
a
k and defineM as

MTa = 0 (2.32)

MT̃ ak = kκabTn (2.33)

we arrive at the action

S[A] =

∫ [

ÃaF
a− 1

24k2
fabcÃaÃbÃc +

1

2
g2κabÃa ⋆ Ãb

]

. (2.34)

Much like the Third Way theory, this reduces to Yang-Mills theory with a coupling g2

in the k → ∞ limit.

2.2 Equivalences ofManin theories from“twists” of Lie quasi-bialgebras

We address the question: howmany Lie quasibialgebra structures give rise to the same

gauge theory? This is relevant whenever we need or want to specify the theory by
Lie quasibialgebra data instead of just the Manin pair/Dirac structure, which will be
relevant for the Hamiltonian formulation of the theory.

Bangoura and Kosmann-Schwarzbach describe a twist operation [19] which takes
a Lie quasibialgebra (g, f̃, h̃) to another Lie quasibialgebra (g, f̃ ′, h̃′) that fixes the un-
derlying Lie algebra g. This is given in terms of a skew matrix Rab acting as

f̃abc → f̃abc + 2Rd[afdc
b]

h̃abc → h̃abc + 3f̃ [abdR
c]d − 3R[a|e|Rb|d|fde

c]
(2.35)

The skew matrix R has a geometric interpretation: it parameterises deformations of
a fixed lagrangian complement g̃ onto a neighbouring one g̃′. Explicitly, a basis of g̃′ is
given as T̃ a′ = T̃ a +RabTb and isotropicity forces R to be skew.

Twists define an equivalence relation on Lie quasibialgebras. We will show that
equivalent Lie quasibialgebras yield equivalent field theories at the level of explicit ac-
tions (2.5).

One way to see that this twist operation leads to equivalent gauge theories is via
explicit calculation in the Hamiltonian formulation of the theory, that we will pur-
sue later. An alternative more elegant argument is via the AKSZ construction [27] for
Chern-Simons theory. To that end, and to prove that twists take the above form in our
conventions, we display an alternative “BRST-esque” formulation of Lie quasibialge-
bras.

8



A“BRST” versionof the “big bracket” constructionof [19]. Firstly recall theChevalley-
Eilenbergdifferential definingLie algebra cohomology: introduceanticommutingvari-
ables ca with abc g-valued indices. Then the CE differential may be written

Q ≡ 1

2
fbc

acbcc
∂

∂ca
(2.36)

and Q2 = 0 is equivalent to the Jacobi identities for fbca the g structure constants. If
the Lie algebra has an invariant nondegenerate symmetric bilinear form κ, then Q is
a hamiltonian vector field for the following Poisson structure

{ca, cb} = κab =⇒ Q = {1
2fbc

dκda, •} , (2.37)

and the Jacobian identitymay also be written in the style of the ‘classical master equa-
tion’ {1

2fbc
dκdac

acbcc, 12fbc
dκdac

acbcc} = 0.

We may define various kinds of (quasi-)bialgebra structures on g by introducing
alongside ca their duals c̃a alongwith thePoisson bracket {ca, c̃b} = δab , {c, c} = {c̃, c̃} = 0

and permutations thereof. (This Poisson bracket captures the inner product η.) In all
cases there is a Lie algebra structure on g+g⋆ compatible with the split signature sym-
metric bilinear formdefined by this Poisson bracket. A Lie quasibialgebra structure on
a Lie algebra gwith structure constants fbca is equivalently defined via the quantities
fab

c, f̃ bca, h̃
abc appearing in the hamiltonian function

Θ = 1
2fab

ccacbc̃c +
1
2 f̃

bc
ac̃bc̃cc

a + 1
3! h̃

abcc̃ac̃bc̃c ≡ f + f̃ + h̃ . (2.38)

(If we were to switch on a term c3 this would be a “proto-Lie bialgebra”.) These quan-
tities must satisfy, by definition

{Θ,Θ} = 0 , (2.39)

on top of the Lie algebra Jacobi identity for g ({f, f} = 0), and by counting powers of
c, c̃ we find the above condition is equivalent to

Qf f̃ = 0 , Qf̃ h̃ = 0 , {f̃, f̃}+ 2Qf h̃ = 0 (2.40)

where Qf ≡ {f, •} = {1
2fab

ccacb, •} is the vector field with hamiltonian f . A Lie bial-
gebra is the case h̃ = 0. The Lie algebra over g + g⋆ defined by Θ is the double d of g
constructed from the (quasi)-bialgebra structure.

By twistwemean a canonical transformation generatedby a functionof the form

Ψ =
1

2
Rabc̃ac̃b . (2.41)

HereRab is necessarily antisymmetric. This transforms thehamiltonian function to

Θ → e{Ψ,•}Θ = Θ+ {Ψ,Θ}+ 1

2
{Ψ, {Ψ,Θ}} ; (2.42)

due to the form of Θ and Ψ it is easy to confirm that the series terminates as indi-
cated.

Since e{Ψ,•} is a canonical transformation it is trivial to check that {e{Ψ,•}Θ, e{Ψ,•}Θ} =

0 andalso that the term c2c̃ is invariant, so that e{Ψ,•}Θdefines anewLiequasi-bialgebra.
Explicit calculation leads to the formulas (2.35) for the twist.
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AnAKSZ-based argument for twist invariance. Letus pretend, in thefirst instance,
that the mass term involving Mab in the Manin theory action (2.5) is zero. Then we
are dealing with pure Chern-Simons theory, which admits an AKSZ sigma model con-
struction [27] via the space of supermapsMaps(T [1]M3, g[1] ⊕ g⋆[1])2. The target g[1] ⊕
g⋆[1] is the purely fermionic supermanifold with coordinates ca, c̃a that we were using
above.

The fields of the AKSZ sigmamodel are, as usual, the component fields of the super-
fields ca(σ,dσ) and c̃a(σ,dσ) with σ coordinates on M3 and dσ their differentials. The
1-form component fields may be identified as the 1-forms Aa, Ãa appearing in (2.5).
Canonical transformations on the AKSZ target g[1]⊕ g⋆[1] lift to canonical transforma-
tions for the graded symplectic structure onMaps(· · · ), namely (the inverse of) the BV
antibracket. Therefore, the lift of the canonical transformation e{Ψ,•} displayed above
is necessarily an equivalence of BV theories.

On the fields of the AKSZ sigma model this transformation acts by

ca(σ,dσ) → ca(σ,dσ) +Rbac̃b(σ,dσ) , c̃b(σ,dσ) → c̃b(σ,dσ) (2.43)

so in particular it acts as Aa → Aa + RbaÃb and Ã → Ã on the original gauge fields
appearing in the action (2.5).

The introduction of the mass term breaks the master equation obtained via the
AKSZ construction, which is anyway expected. However, assuming that the master
equation for the BV formulation of the Manin theory can be written down using the
fields ofMaps(· · · ), we observe that upon switching off all of the ghosts and antifields,
the canonical transformation leaves the mass term invariant, since the latter only de-
pends on Ã which does not transform.

The moral here is that the twisting of Lie quasi-bialgebras may be undone by the
field redefinitions Aa → Aa +RbaÃb and Ã→ Ã applied to the action (2.5).

2.3 Hamiltonian formulation; classification in thequasi-triangular case

We now construct the Hamiltonian action for the theory. This goes through identical
steps to the calculation of the Hamiltonian for the Third Way theory [17]. As such we
will be brief. There are two outcomes of this analysis: first, that (in Lorentzian signa-
ture) the Hamiltonian is bounded below; second, that for the class of quasi-triangular
Lie quasibialgebras—which includes the perhaps more familiar quasi-triangular Lie
bialgebras, defined via a Yang-Baxter equation — Manin theories may be completely
classified.

Since the time derivatives appear as in Chern-Simons theory, the off-shell phase
space is, a priori, unaffected by the mass term in the action (2.1). Therefore we em-
ploy the usual split A ≡ A0dt+ α, where we assume spacetime is (locally) of the form
M3 = R × Σ, R being “time” t, and Σ being 2-dimensional “space”. In pure Chern-
Simons theory, A0 become lagrange multipliers enforcing the vanishing of the Gauss
law constraint χ:

χ ≡ dΣα + α2 . (2.44)

2For the Lie bialgebra case see [21] for more details, to which we also refer for QP-manifold conven-
tions.
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(Above dΣ is the de Rham differential along Σ and α is a d-valued 1-form on Σ for each
value of t.)

For Manin theory, the difference arises from the mass term. What happens is that
half of the A0 is no longer a lagrange multiplier: assuming g(dt,dt) ≡ gtt 6= 0, we have
α ⋆ dt = dt ⋆ α = 0 whence

1
2η(A ⋆MA) = 1

2η(A
0MA

0(dt ⋆ dt) + α ⋆ Mα) . (2.45)

With the same assumption, dt⋆dt is everywhere nonvanishing and proportional to the
volume form onM3. GivenMA0 =MÃ0 (due to (2.3)) we see we may integrate out Ã0,
replacing it with part of the Gauss law constraint for pure Chern-Simons theory:

χa ≡ dΣα
a +

1

2
fbc

aαbαc + f̃ cabα
bα̃c +

1

2
α̃bα̃ch̃

bca . (χ ≡ χaTa + χ̃aT̃
a .) (2.46)

Note that we have split d-valued objects into g and g̃ parts in the usual way (χ ≡ χaTa+

χ̃aT̃
a ,α = αaTa+ α̃aT̃

a ,A0 ≡ A0aTa+Ã
0
aT̃

a .) Towrite the Hamiltonian we need to trade
χa (a 2-form onΣ) for a scalar χ̌a, which to be concretewe define by χa ≡ χ̌a⋆dt (where
⋆ remains the 3-dimensional Hodge star).

After eliminating Ã0 we obtain the Hamiltonian action, equivalent to (2.1):

S =

∫

M3

dt
(
η(−1

2αα̇) +A0aχ̃a
)
+ 1

2

(
α̃aµα̃bνM

abgµν − gttχ̌aχ̌bMab

)
volg , (2.47)

with volg ≡ ⋆1 being the volume form associated to the metric g on M3 = R × Σ

and
χ̃a = dΣα̃a +

1
2 f̃

bc
aα̃bα̃c − αbα̃cfba

c (2.48)

coming from the Gauss law constraint χ for Chern-Simons theory. It is trivial to check
that χ̃a generates the gauge transformations (2.6) and thus the proof of gauge invari-
ance in that subsection shows that the Hamiltonian along with these constraints form
a first-class constrained hamiltonian system.

Boundedness of the Hamiltonian. We read off the Hamiltonian function as

H ≡ 1

2

(

α̃aµα̃bνM
abgµν − gttχ̌aχ̌bMab

)

. (2.49)

This is non-negative when

1. the matricesMab and Mab are positive-definite, which may always be arranged
when g is a compact Lie algebra, and

2. M3 is a Lorentzian-signature spacetime, we have chosen coordinates where gµν
is block-diagonal between time and space3, and t is a timelike coordinate.

Then the second term is a sum of positive squares. Moreover since α̃a0 = 0 by defini-
tion, the first term is also a sum of squares by block-diagonality.

Classification of Manin theories in the quasi-triangular case. Quasi-triangular
Lie quasibialgebras are defined by Bangoura and Kosmann-Schwarzbach [19, Defini-
tion 1.7], in terms of a skew matrix Rab, an ad g-invariant symmetric form sab, and the

3This is indeed a choice of gauge for the background metric, as may be seen via a lapse function/shift
vector parameterisation of g, ADM-style.
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3-form h̃abc, that solve a classical Yang-Baxter-type equation. In our conventions we
may derive the equation via the “BRST” approach of the previous subsection: assum-
ing f̃ is coboundary4 ,

f̃abc = 2Rd[afdc
b] , ⇐⇒ f̃ = −Qf (12Rabc̃ac̃b)

︸ ︷︷ ︸

≡R

(2.50)

for some skew matrix Rab, we have a Lie quasibialgebra if and only if Qf ({R,QfR} +
2h̃) = 0. A triangular one is defined to be such that {R,QfR} + 2h̃ = 0; for a quasi-

triangularone the right-hand side is allowed, bydefinition, to beproportional to fdeasbdsecc̃ac̃bc̃c,
which is annihilated by Qf when sab is ad g-invariant.

To write down a concrete and index-free expression for the aforesaid equation we
invoke some nondegenerate inner product κab on g to define operators R : g → g from
the skew matrix Rab and s : g → g from the symmetric matrix sab via R(Ta) ≡ Ra

bTb
and via s(Ta) = sa

bTb respectively; then this data must solve

[Rx,Ry]−R([Rx, y] + [x,Ry]) + [sx, sy] = h̃(x, y) , ∀x, y ∈ g . (2.51)

(We also defined h̃(x, y) = h̃ab
cxaybTc.) When h̃ = 0 and sab = cκab for some number c,

we recognise the usualmodified Classical Yang-Baxter Equation (mCYBE), solutions of
which define Lie bialgebras5. For this reasonwe shall call equation (2.51) the amended
mCYBE, or amCYBE.

We will show that the Manin theory depends, in this case, only on s and g via the
3-form constructed above, or, equivalently, via the map

x, y → [sx, sy] . (2.52)

For this, it is convenient to write d-valued objects not in terms of the basis spanned by
Ta and T̃ a but in terms of Ta and T̃a = κabT̃

b, so that the double d is a sum of two copies
of g as a vector space, and η(Ta, T̃b) = κab are the nonvanishing matrix elements up to
permutations. We will also rewrite α̃ (valued in g̃) as the g-valued form

Π ≡ ΠaTa = α̃bκ
baTa . (2.53)

In this notation the phase space action is (up to a temporal integration by parts)

S =

∫

R×Σ
dt
(

α̇aκabΠ
b +A0a

(
dΣΠa +

1
2 f̃

bc
aΠbΠc − αbΠcfba

c
)

︸ ︷︷ ︸

=χ̃a

)

+ volgH

χa = dΣα
a +

[α,α]a

2
+ αbΠcf̃

ca
b +

1

2
h̃abcΠbΠc .

(2.54)

We now recognise Π as the conjugate momentum corresponding to α.

So far this is completely general. Assuming that g is quasi-triangular, we may sim-
plify by removing all mentions of f̃ via a canonical transformation:

α→ α−R(Π) ,Π → Π. (2.55)
4These are called exact in [19].
5For an exposition of these in a physics context we refer to a work by Vicedo [4].
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Claim. Under said transformation,

χ̃bκ
baTa → dΣΠ+ [α,Π] ,

χaTa → dα+ 1
2 [α,α] −R(dΣΠ+ [α,Π]) +

1

2
[sΠ, sΠ] ,

(2.56)

where all of the brackets are now ones in g and not d.

Proof. Rewrite
χ̃ = χ̃aT̃

a (2.57)

as the following closely related g-valued 2-form

χ̃κ ≡ χ̃aκ
abTb (2.58)

which immediately gives (using the fact f̃ is coboundary)

χ̃κ = dΣΠ+[α,Π]+ 1
2 f̃

bc
dΠbΠcκ

adTa = dΣΠ+[α,Π]+ 1
2 [Π,Π]R = dΣΠ+[α+R(Π),Π] . (2.59)

which goes to dΣΠ+ [α,Π] under the canonical transformation.

It remains to calculate χ. This contains the following annoying term which we
write in terms of R and the original bracket [, ] on g again:

αbΠcf̃
ca
bTa = [α,RΠ]−R[α,Π] . (2.60)

This now makes the calculation for χ straightforward:

χ→ (dΣα+ α2)−R(dΣα+ [α,Π]) +R[RΠ,Π]− 1
2 [RΠ, RΠ] +

1
2 h̃(Π,Π) . (2.61)

The Claim then follows from the amCYBE (2.51).

Note that we may now remove the term involving R from the action because it
is proportional to the constraint enforced by A0a. (E.g. by redefining this multiplier.)
Having done this, the phase space action becomes

S =

∫

R×Σ
dt κ

(
α̇Π+A0(dΣΠ+ [α,Π])

)
+ volgH . (2.62)

where the Hamiltonian H takes the original form (2.49) except for the expression for
χ:

H = 1
2

(
ΠiaΠjbM

abgij − g00χ̌aχ̌bMab

)
, χ = dΣα+ 1

2 [α,α] +
1
2 [sΠ, sΠ] , (2.63)

and where, again, χ̌a is the scalar dual to the 2-form χa along Σ (χa = χ̌a⋆dt).

This is the classification result. We note that the same result could be obtained
more abstractly via twists: it is proven in [19, Proposition 1.8] that anyquasi-triangular
Lie quasibialgebra is equivalent to onewith f̃ = 0 and h̃ equalling the degree 3 cocycle
fde

asbdsecc̃ac̃bc̃c that contributes to the amCYBE (2.51).
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2.3.1 Example: theories of mCYBE type and their ‘duals’

In this case by definition h̃ = 0 and sab = cκab, κ being the inverse of a nondegenerate
inner product on g, so that the amCYBE (2.51) becomes the usual mCYBE:

[Rx,Ry]−R([Rx, y] + [x,Ry]) + c2[x, y] = 0 . (2.64)

Solutions of the mCYBE for a real Lie algebra g fall into three cases depending on
the sign of c2. This sign determines the structure of the double d of g as follows:







c2 > 0 : d ∼= g⊕ g , “factorisable bialgebra”

c2 = 0 : d ∼= g⋉ g⋆ , “triangular bialgebra”

c2 < 0 : d ∼= gC , “imaginary bialgebra”

(2.65)

The terminologyhere is not entirely standard; in particularwedonot followVicedo [4]
where a compact proof of the classification may be found. The associatedManin pairs
(g →֒ d) and Manin theories are

• factorisable case: g embeds as the diagonal subalgebra in the direct sum d = g⊕g

where the summands commute. The associated Manin theory is the Third Way
theory described in Sec. 2.1.3.

• triangular case: g is as indicated in the semidirect product g⋉ g⋆, and the associ-
ated Manin theory is Yang-Mills theory (see Sec. 2.1.1).

• imaginary case: g embeds as the indicated real form of the complexification gC.
The Manin theory is described in Sec. 2.1.4.

‘Duals’ tomCYBE type theories. Solutions to themCYBE (2.64) defineLie bialgebras,
not just Lie quasibialgebras. This means that g̃ ∼= g⋆ is a Lie algebra. If we use κab to
identify g ∼= g̃ we find a second Lie algebra structure on g given by

[x, y]R ≡ [Rx, y] + [x,Ry] . (2.66)

(This is the coboundary equation (2.50) up to index gymnastics.)

In these cases we therefore have a Manin triple structure (d, g, g̃) instead of just
a Manin pair. In particular (g̃ →֒ d) is a Manin pair — in some sense dual to the
original pair (g →֒ d) — and thus every solution to the mCYBE gives rise to a pair

of Manin theories. We have already seen an example of a ‘dual’ Manin theory: for
R = 0 we have a triangular solution to the mCYBE where g̃ is abelian; this gives rise
to the Freedman-Townsend theory of Sec. 2.1.2. We emphasise however that these
‘duals’ are not unique.

As an example of this phenomenon, we exhibit a different triangular structure. In
general, triangular bialgebra structures on a Lie algebra g correspond to subalgebras
with an invariant nondegenerate 2-form on them; in that case such g are called quasi-
Frobenius6. Triangular structures are classified explicitly for sl(3,C) in the Chari-
Pressley book [28, Example 3.1.8]. Of those, example (v)(a) descends to the compact
real form g = su(3). The subalgebra in question is that of diagonal matrices in su(3).

6See again Vicedo [4, section 2.3] for a quick proof.
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This is the 2-dimensional abelian subalgebra spanned by

H1 = idiag(1,−1, 0) , H2 = i
√
3/3diag(1, 1,−2) (2.67)

where κ(x, y) = Tr(xy). If we pick ω(H1,H2) = −ω(H2,H1) = 1 for the 2-form, we
calculate the corresponding R as

R(non-diagonal) = 0 , R(H1) = 2H2 , R(H2) = −2H1 . (2.68)

It is easy to verify this solves the mCYBE (2.64) (with c2 = 0). This example furnishes
a ‘dual’ to g = su(2) Yang-Mills in its Manin theory formulation which has nonabelian
gauge algebra g̃ as given by (2.66).

It is tempting to conjecture that these ‘dual’ Manin theories are honestly dual to
each other in the physical sense. We leave this question for the future.

3 Evanescent supersymmetry

Generalities. Saywe are studying a theorywith actionS, which admits a supersymmetric(-
esque) generalisation to a theory SSUSY. (Parenthetical to be explained shortly.) We
will say SSUSY has evanescent supersymmetry when SSUSY and S are equivalent ac-
tions, in the sense that integrating out fields from SSUSY yields S. (One way to for-
malise this is that S and SSUSY define homotopy-equivalent L∞-algebras in the sense
of [29,30].)

An immediate corollary of this definition is that SSUSY describes exactly the same
number of on-shell degrees of freedomas S does; in otherwords, SSUSY does not assign
superpartners to the degrees of freedom described by S. The point of an evanescent-
supersymmetric formulation is that it lends itself well to exact quantum calculations
via localisation arguments.

We will see that for Manin gauge theory the symmetry transformations are par-
tially deformed relative to conventional N = 2 SUSY in 3D; in particular, the algebra
is deformed by terms proportional to the Manin mass operator M . This is the “price
to pay” for introducing SUSY in a theory without introducing superpartners to the
on-shell degrees of freedom, and is why we expect in general the evanescent super-
symmetry transformations to be “supersymmetry-esque”.

3.1 Duistermaat-Heckman formula as evanescent localisation

Before moving to discuss path integrals, we first take a look at the familiar example
of the Duistermaat-Heckman formula and interpret it from the viewpoint of evanes-
cent supersymmetry. This subsection closely follows Pestun and Zabzine’s exposi-
tion [31].

We consider a compact symplectic manifold (M, ω) of dimension 2ℓ and on this
manifold a Morse function H ∈ C∞(M) (which we think of as an ‘action’) such that
the orbits generated by a Hamiltonian vector fieldK (characterised by ιKω = dH) are
compact (a circle or a point). We then consider the ‘partition function’ given by the
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oscillatory integral ZH which by the Duistermaat-Heckman formula is given by

ZH =

∫

M

ωℓ

ℓ!
eiH = (2πi)ℓ

∑

dH(x0)=0

eiH(x0)

√
det ∂µKν

∣
∣
∣
∣
x=x0

. (3.1)

Now, what we want to do in the context of evanescent supersymmetry is to view this
as a partition function where we have integrated out auxiliary fermionic degrees of
freedom. We reintroduce these simply by viewing it through the lens of integration
on supermanifolds:

ZH =

∫

M

[
d2ℓx

]
Pf ω eiH = (−i)ℓ

∫

ΠTM

[
d2ℓx

∣
∣d2ℓψ

]
eiS(x,ψ) (3.2)

where we integrate over the parity-reversed tangent bundle ΠTM with coordinates
(xµ, ψµ) (ψµ being the oddfibre coordinates) a ‘supersymmetrised’ action givenby

S(x, ψ) = H(x) +
1

2
ωµν(x)ψ

µψν . (3.3)

It is supersymmetric in the sense that it is left invariant by the odd vector field

Q = ψµ
∂

∂xµ
−Kµ ∂

∂ψµ
(3.4)

i.e. Qxµ = ψµ and Qψµ = −Kµ. We take Q to act as an odd left-derivative.

The localisation procedure can then be reformulated as follows: We pick an ar-
bitrary metric gµν of which Kµ is a Killing vector (this is always possible since the
orbits ofK are assumed compact) and note that we can deform the partition function
as

ZH(t) =

∫

ΠTM

[
d2ℓx

∣
∣d2ℓψ

]
eiS+itSloc (3.5)

by a Q-exact localisation term Sloc given by

Sloc = QFloc = KµKµ − ∂µKνψ
µψν , Floc = gµνK

µψν . (3.6)

without changing it. Indeed, one finds that

∂

∂t
ZH(t) =

∫

ΠTM

[
d2ℓx

∣
∣d2ℓψ

]
iSloce

iS+itSloc =

∫

ΠTM

[
d2ℓx

∣
∣d2ℓψ

]
Q

{

iFloce
iS+itSloc

}

= 0

(3.7)
where we used the fact that

∫

ΠTM[d2ℓx|d2ℓψ]Q(•) = 07. Taking the limit t→ ∞we then
find that the integral localises to

Sloc|bos = 0 ⇔ K = 0 ⇔ dH = 0 (3.8)

which is to say, the same locus aswhat the Duistermaat-Heckman formula states.

In the usual fashion of localisation argumentswe then introduce coordinates around
saddle points x0 of H as

xµ = xµ0 +
yµ√
t
, ψµ =

χµ√
t

⇒
[
d2ℓx

∣
∣d2ℓψ

]
=
[
d2ℓy

∣
∣d2ℓχ

]
. (3.9)

7There exist pure supergeometric proofs of this invariance of themeasure under oddvector fields [32].
Here it is easily seenby rewritingQ in terms of the deRhamderivative and contraction-with-K operators.

16



With this we can expand

S(x, ψ) + tSloc(x, ψ) = H(x0) +
1

2
(y, χ)

[
HessSloc(x0, 0)

]
(y, χ)⊤ +O(t−1/2) (3.10)

where by Hess we denote the Hessian matrix of a given function. With this we find
that the partition function is given by

ZH = (2πi)ℓ
∑

Sloc|bos(x0)=0

eiS√
BerHessSloc

∣
∣
∣
∣
(x,ψ)=(x0,0)

(3.11)

Upon evaluating the Hessian one finds that this reduces to the Duistermaat-Heckman
formula. This just formulates it in a way which is more easily related to localisation
in supersymmetric quantum field theory. To relate it to the Duistermaat-Heckman
formula given in equation 3.1 we expand

(y, χ)
[
HessSloc(x0, 0)

]
(y, χ)⊤ = Bµνy

µyν + Fµνχ
µχν (3.12)

and by invariance of 3.12 under the linearised supersymmetry

Qlin = ψµ
∂

∂yµ
+ ∂µK

ν(x0)y
µ ∂

∂χν
(3.13)

(with ∂µ = ∂/∂xµ) we find that

Bµν = Fµρ∂νK
ρ(x0) (3.14)

yielding

BerHessSloc(x0) =
detBµν
detFµν

= det ∂µK
ν(x0). (3.15)

Using this we arrive at the original Duistermaat-Heckman formula 3.1.

We revisited thiswell-known result in order to, on the one hand, remind the reader
of some basics of localisation, and on the other hand as a prototype of evanescent
supersymmetry. We started with a purely bosonic theory which we rewrote using
auxiliary fermionic degrees of freedom: indeed in (3.3) the ψµ may be integrated out
sinceωµν is invertible. This in turn allowed us tomake us of themethods of localisation
to solve these integrals. This is exactly what we will do in the context of the quantum
field theory: starting off with a partition function which only includes bosonic field
content, by adding auxiliary degrees of freedomwe allow ourselves to use themethod
of localisation through evanescent supersymmetry.

3.2 Chern-Simons as an evanescent SUSY gauge theory

SupersymmmetricChern-Simons theorywas originallywrittendown in [33]. Wewrite
down the action for N = 2 Euclidean supersymmetry on flat space M3 = R3 and ar-
bitrary gauge algebra g with invariant inner product κ. The fields are A, σ,D, λ, λ̂, of
which A is a g-valued 1-form and σ,D are g-valued scalars, and λ, λ̂ are g-valued com-
plex 2-component anticommuting spinor fields. The action reads, in Cartesian coordi-
nates,

SN=2
CS [A, σ, λ, λ̂,D] =

∫

κ
(1

2
AdA+

1

3
A3 + ⋆(λλ̂− σD)

)

(3.16)

andwe are using Northwest-Southeast conventions for the spinors so λλ̂ = λαλ̂α.
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This lagrangian is supersymmetric under the usualN = 2 Euclidean supersymme-
try transformations, where ζ and ζ̂ are 2-component complex bosonic spinors:

δAµ = −ζγµλ̂+ λγµζ̂ (3.17a)

δσ = −iζλ̂+ iλζ̂ (3.17b)

δλ = iζ
(

D + /F − i /Dσ
)

(3.17c)

δλ̂ = i
(

D + /F + i /Dσ
)

ζ̂ (3.17d)

δD = Dµ

(

ζγµλ̂+ λγµζ̂
)

+ i
[

σ, ζλ̂+ λζ̂
]

(3.17e)

with D the covariant derivative w.r.t. G. Since the supersymmetry multiplet is given
in Wess-Zumino gauge, the algebra closes on translations along with compensating
gauge transformations: for any field ϕ,

{δζ , δ̂ζ̂}ϕ = 2iLKϕ− 2iδ
gauge
Λ ϕ , Kµ ≡ ζγµζ̂ , Λ ≡ KνAν + iζζ̂σ , (3.18)

and the anticommutators of twohattedor twounhatted supersymmetries vanish:

{δζ , δζ′} = {δ̂ζ̂ , δ̂ζ̂′} = 0 . (3.19)

We display the full algebra in appendix.

We emphasise two points that will be relevant for supersymmetric Manin the-
ory:

1. We have δ2ζ = δ̂2
ζ̂
= 0. This enables supersymmetric localisation.

2. ThisN = 2 theory is equivalent toN = 2 Chern-Simons theory: σ,D, λ, and λ̂may
be integrated out, leaving only SCS[A]. Therefore the supersymmetry is evanes-
cent. Note, however, that this theory is an exceptional case where evanescent
supersymmetry is identical to conventional supersymmetry! The reason is that
the field equation is F = 0, which makes δλ and δλ̂ vanish on-shell.

3. An important corollary of this last point is that the anticommutators of super-
symmetry transformations must vanish on-shell, up to gauge transformations,
so that the corresponding bosonic symmetries are trivial on A. This is indeed
the case: for example, anticommutators on A involve its field strength F which
vanishes on-shell.

Irrespective of the fact the symmetry is trivial in the above sense, this supersymmetry
yieldedwell-known exact results for certain observables via supersymmetric localisa-
tion [13], and moreover the equivalence betweenN = 2 and N = 0 Chern-Simons the-
ory has been confirmed exactly, at least for supersymmetric observables [15].

3.3 N = 2 evanescent-supersymmetric Manin gauge theory

Without further ado we display the action for N = 2 evanescent-supersymmetric
Manin theory:

SN=2 =

1

2

∫

M3

η

(

k
(

AdA+ 2
3A

3
)

+ g2A ⋆MA

)

+ k

∫

M3

⋆η

(

λλ̂ − σD

)

+
1

2

∫

M3

η
(

g2σ ⋆Mσ

) (3.20)
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This action may be seen as a mass deformation of the N = 2 Chern-Simons theory
described above, where now the fields A,σ,D, λ, λ̂ take values in d.

One may convince oneself that the supersymmetry δCS of N = 2 Chern-Simons
theory may be deformed into an invariance of the SUSY Manin theory action SN=2:
indeed δCSSN=2 =

∫
η(A⋆MδCSA+σ⋆MδCSσ)which is linear in λ, λ̂ so it may be cancelled

using a new variation δ′ satisfyingMδ′λ =Mδ′λ̂ = 0. In fact, if δ′ annihilates all bosons,
it is determined uniquely this way. The complete transformations (on flat Euclidean
space, with supersymmetry parameters ζ, ζ̂ as before) are

δAµ = −ζγµλ̂ + λγµζ̂ , (3.21a)

δσ = −iζ λ̂ + iλζ̂ , (3.21b)

δλ = iζ
(

D+ /F− i /Dσ+
g2

k
M(i/A − σ)

)

, (3.21c)

δλ̂ = i
(

D+ /F+ i /Dσ+
g2

k
M(i/A − σ)

)

ζ̂ , (3.21d)

δD = Dµ

(

ζγµλ̂ + λγµζ̂
)

+ i
[

σ, ζ λ̂ + λζ̂
]

. (3.21e)

SinceM2 = 0 the new terms relative to the Chern-Simons SUSY are indeed annihilated
byM .

Much like in N = 2 Chern-Simons theory, the SUSY here is indeed evanescent:
σ,D, λ, λ̂ may all be integrated out at the same time, leaving only the original Manin
theory action.

Algebra. The anticommutators of the above transformations are

{δζ , δ̂ζ̂}Aµ = 2iKν
(

Fνµ+
g2

k
ǫνµρMA

ρ
)

+ 2ζζ̂Dµσ , (3.22a)

{δζ , δ̂ζ̂}σ = 2iKνDνσ , (3.22b)

{δζ , δ̂ζ̂}λ = 2
(
iKνDν − ζζ̂ ad σ

)
λ+

g2

k
2Mλ(ζC ⊗ ζ̂C) , (3.22c)

{δζ , δ̂ζ̂}λ̂ = 2
(
iKνDν − ζζ̂ ad σ

)
λ̂−g

2

k
2(ζC ⊗ ζ̂C)M λ̂ , (3.22d)

{δζ , δ̂ζ̂}D = 2
(
iKνDν − ζζ̂ ad σ

)(

D−g
2

k
Mσ

)

−g
2

k
2
(
ζζ̂Dν + iKν ad σ

)
MA

ν , (3.22e)

(δζ)
2 = (δζ̂)

2 = 0 . (3.22f)

where ζ, η and ζ̂ , η̂ are pairs of constant bosonic spinors of the same R-charge.

For M = 0 we recognise the usual N = 2 SUSY algebra given in (3.18): the M = 0

terms are organised into infinitesimal translations by Kµ ≡ ζ̂γµζ and gauge transfor-
mations with parameterKνAν + iζζ̂σ, which is valued in d. The latter compensate for
the gauge choice (Wess-Zumino gauge). Ignoring these gauge transformationswe thus
see that the supersymmetries square to translations, as expected.

What happens whenM 6= 0? Recall that the gauge symmetry under d is explicitly
broken to the subalgebra g →֒ d. Therefore the gauge parameterKνAν + iζζ̂σ includes
not just g-valued gauge transformations, which should be ignored as before, but also g̃-
valued transformationswhich are no longer gauge symmetries, but trivial symmetries
(on-shell vanishing). The newM -dependent contributions to the algebra also ensure
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that these anticommutators vanish on-shell, which is required for consistency. The
price to pay is that the transformations (3.21) no longer square to translations, and the
complete algebra of anticommutators has not been determined yet.

Remarks.

1. The supersymmetric action (3.20) provides a supersymmetrisation for all 3D gauge
theories that admit a Manin theory formulation. This includes Yang-Mills theory
as shown in section 2.1. We emphasise that the action (3.20) — which enjoys
evanescent N = 2 supersymmetry — is inequivalent to the usual N = 2 super
Yang-Mills action; this is another reason why it is convenient to have the ad-
jective ‘evanescent’ to distinguish the two situations. (In fact one could likely
introduce an evanescent supersymmetry on top of conventional N = 2 super-
symmetry! We choose not to, though.)

2. For the Third Way (see section 2.1.3) the action and supersymmetry transforma-
tions were originally found in the second author’sMaster’s thesis [18] (theywere
not derived from Manin theory).

3.3.1 SUSY on curved space; the round 3-sphere

For the purposes of localisation we will generalise the evanescent supersymmetry
transformations (3.21) to curved space. (The action remains (3.20).) For this, we will
no longer assume that the supersymmetry parameters ζ, ζ̂ are constant.

We will in fact assume that ζ, ζ̂ are conformal Killing spinors8, i.e.

∃ζ ′ : ∇µζ = ζ ′γµ

∃ζ̂ ′ : ∇µζ̂ = γµζ̂
′

⇒
3ζ ′ = ζ

←

/∇

3ζ̂ ′ = /∇ζ̂
⇔

ζ
(←

/∇γµ + 3γµ
←

/∇
)

= 0

(
γµ /∇+ 3 /∇γµ

)
ζ̂ = 0

(3.23)

If ζ, ζ̂ are conformal Killing, the transformations below are invariances of the action
(3.20) and satisfy (δζ)

2 = (δζ̂)
2 = 0; the coefficients of the extra terms relative to (3.21)

are fixed uniquely by these requirements:

δAµ = −ζγµλ̂ + λγµζ̂ (3.24a)

δσ = −iζ λ̂ + iλζ̂ (3.24b)

δλ = iζ

(

D+ /F− i /Dσ − 2i

3

←

/∇σ +
g2

k
M(i/A − σ)

)

(3.24c)

δλ̂ = i

(

D+ /F+ i /Dσ +
2i

3
σ /∇+

g2

k
M(i/A − σ)

)

ζ̂ (3.24d)

δD = Dµ

(
ζγµλ̂ + λγµζ̂

)
+ i
[
σ, ζ λ̂ + λζ̂

]
− 2

3
ζ
←

/∇λ̂ − 2

3
λ /∇ζ̂ (3.24e)

These transformations are similar to those of reference [34], except in the presence of
the M terms in the variations of the fermions. (Also our conventions do not exactly
match theirs.)

8Their spinor bilinears are indeed conformal Killing vectors: ∇(aKb) = ∇(aζγb)ζ̂ + ζγ(a∇b)ζ̂ =
(

ζ′ζ̂ +

ζζ̂′
)

ηab .
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SupersymmetricWilson loops. AWilson loop in the representationR iswritten

W = TrR P exp

∮

γ
dτ
[

− ẋµAµ + i|ẋ|σ
]

(3.25)

where the factor of i ensures that the supersymmetry preservation conditions

ζ
(
ẋµγµ + |ẋ|

)
= 0 , &

(
ẋµγµ + |ẋ|

)
ζ̂ = 0 (3.26)

are such that they admit non-zero solutions for at least one of ζ, ζ̂ . (We address reality
issues later.) Note that the metric gµν makes its appearance via the curved gamma
matrix and via |ẋ| ≡

√
gµν ẋµẋν . These conditions are identical to those for undeformed

N = 2 supersymmetry, owing to how the transformations for A and σ are not affected
by the deformation involvingM .

Fixing a specific spinor ζ with conjugate ζ† leads to the usual solution of the super-
symmetry conditions, with the loop defined by the spinor bilinear K:

ẋ = −K , Kµ ≡ ζγµζ† . (3.27)

The corresponding Wilson loop is invariant under δζ .

TheroundS3. For the round3-sphereof radius ℓ, the covariant derivatives of spinors
take the form (see appendix A.3)

∇ζ = dζ − i

2ℓ
ζγ , ∇ζ̂ = dζ̂ +

i

2ℓ
γζ̂ (3.28)

Constant spinors are therefore conformal Killing; in fact, they are Killing spinors. and
the spinor bilinear K is a Killing vector. In that case the transformations (3.24) spe-
cialise to

δAµ = −ζγµλ̂ + λγµζ̂ (3.29a)

δσ = −iζ λ̂ + iλζ̂ (3.29b)

δλ = iζ

[

(D − σ/ℓ) + /F− i /Dσ +
g2

k
M(i/A − σ)

]

(3.29c)

δλ̂ = i

[

(D − σ/ℓ) + /F+ i /Dσ +
g2

k
M(i/A − σ)

]

ζ̂ (3.29d)

δD = Dµ

(
ζγµλ̂ + λγµζ̂

)
+ i
[
σ, ζ λ̂ + λζ̂

]
+ i(ζ λ̂ − λζ̂)/ℓ . (3.29e)

3.3.2 Parity and Euclidean unitarity (reflection-positivity)

Parity/reflection invariance. Chern-Simons theories genericallybreakparity invari-
ance. However, we have already seen that Manin theory can give rise to familiar
parity-invariant gauge theories, like Yang-Mills. There is away to seeparity-invariance
a priori, however. This is essentially the same as the parity-preservation mechanism
of the Third Way theory [17]: we augment the action of a space(time) orientation-
reversing diffeomorphism with a transformation of colour indices.
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Specifically: given a parity involution J : d → d which by definition satisfies

J2 = 1 , η(Jx, Jy) = −η(x,y) , and J [x,y] = [Jx, Jy] , (3.30)

we may combine it with some orientation-reversing diffeomorphism r : M3 → M3

with r2 = 1 to obtain a parity transformation P

A → PA ≡ Jr⋆A (3.31)

(with r⋆ the pullback by r) which preserves the sign of the Chern-Simons action:
∫

M3

η(AdA) → −
∫

M3

η(JA dJA) =

∫

M3

η(A dA) ,

∫

M3

η(A3) =
1

2

∫

M3

η(A, [A,A]) → −1

2

∫

M3

η(JA, [JA, JA]) = +

∫

M3

η(A3) .

(3.32)

(We note here that J also maps solutions of the Chern-Simons field equations to them-
selves, since F → r⋆(dJA+ 1

2 [JA, JA]) = r⋆JF.)

A parity involution exists for all Manin pairs coming from Lie quasi-bialgebras of
coboundary type (2.50). This involution is given by

JTa = Ta , JT̃ a = −T̃ a + 2RabTb . (3.33)

It can be verified via direct calculation using the explicit expressions for the brack-
ets in d (2.2) that this J satisfies all conditions (3.30). Moreover it is trivial to check
that

JM = −MJ =M (3.34)

for this J so that the bosonic Manin theory action (2.1) is parity even under the trans-
formation (3.31) for any orientation reversing isometry r ofM3.

The supersymmetricManin theorydefinedby the action (3.20) isalsoparity-invariant.
For this we specialise to Euclidean space M3 = R3 with the flat metric in Cartesian
coordinates for the purposes of illustration. Under the reflection e.g. r(x1, x2, x3) =

(x1, x2,−x3), the transformations of all fields are defined as

PA = r⋆JA , Pσ = −r⋆Jσ , PD = r⋆JD ,

Pλ = −Jλγ3 , P λ̂ = Jγ3λ̂ .
(3.35)

Thesemaybedetermineduniquelybydemanding that the SUSY transformations (3.21)
are such that

Pδζ• = δPζP• (3.36)

for all fields, where ζ and ζ̂ transform analogously to λ and λ̂. (The transformation
of the spinors may be motivated as follows: given a vector V in R3 and a unit vector
u defining a reflection along u’s perpendicular plane, the transformation of V may
be written via /V as /V → −/u/V /u. Therefore expressions like λγµζ̂ transform as vec-
tors under e.g. reflections about the 12-plane when the spinors transform as stated
above.)

Finally, we remark that it appears to be impossible to arrange that theManin action
is odd under parity (instead of even) at least for simple gauge algebras, because of the
difficulty of constructing a suitable involution on d.
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Euclidean unitarity: reflection positivity. Wewill consider unitarity at the level of
the path integral. The brief discussion by Witten [35, section 2] for reality conditions
in complex Chern-Simons theory is relevant to us.

In both Lorentzian and Euclidean signatures unitarity entails probabilities, parti-
tion functions, . . . , calculated in the quantum theory are non-negative. For Lorentzian
signature the requirement is that the integrand eiS of the path integral lies in U(1),
which implies the Lorentzian action S must be real.

We are more interested in Euclidean unitarity. The requirement is the following:
whenever we reverse spacetime orientation, the integrand should be complex conju-
gated. When this is the case, we may formally see that e.g. the partition function on
R3 is non-negative via a cutting and gluing argument9. To see this, cut R3 along the
2-plane D defined by x3 = 0, so R3 = R3

+ ∪D R3
−. Then if we define the wavefunction-

als Ψ± on each half-space R3
± defined by the boundary conditions φ|D = π of all fields

φ ,

Ψ±(π) ≡
∫

φ|D=π
Dφ exp(−SR3

±
) , (3.37)

(SR3
±
being the action integrated over the respective half-space) we may express the

partition function as their overlapby integratingover all possible boundaryvalues:

Z =

∫

Dφ e−SR3 =

∫

Dφ e−SR
3
+e
−S

R
3
− =

∫

Dπ Ψ+(π)Ψ−(π) . (3.38)

Since the reflection that sends x3 → −x3 maps R3
− → R3

+, if SR3
−
goes to S∗

R3
+
— the

complex conjugate of SR3
+
—we see the right-hand side is, insofar as the path integral

over π is defined, non-negative. (This argument may be viewed as inserting 1 in the
matrix element Z = 〈0|0〉.)

The reality condition on fields and a subtlety involving Wilson loops. As estab-
lishedpreviously, the supersymmetricManin action (3.20) is reflection-invariant. There-
fore the simplest reality condition is one where the action is real. Let us discuss the
real case. The obvious choice is to take A,σ,D to be real d-valued fields, and to assume
the constants k and g2 are real. However, there arises a reality issuewithWilson loops,
which to our knowledge has not been discussed before. Given the transformations
(3.21), SUSY Wilson loops take the form (3.25) whose integrand is −ẋµAµ + i|ẋ|σ with
|ẋ| =

√
gµν ẋµẋν . If σ is real-valued, the integrand takes values in the complexification

of the Lie algebra d. This may be cured if we assume that σ is pure imaginary, instead;
reflection positivity then demands that D is also pure imaginary. We then have two
possible reality conditions: one where σ,D are both d⊗ iR-valued, and one where they
are both d-valued. (A must be d-valued in both cases.) Unfortunately the boundary
conditionwhere σ is imaginary-valued is incompatiblewith the localisation argument
given later (it breaks the calculation leading to (4.10)). We thus employ the reality

condition where A,σ and D are all d-valued.

We were not able to find any other unitary branches, since we have not found a
prescription for reflection such that the action is odd. This is in contrast to GC Chern-
Simons theory, where there is a second unitary branch, which in our conventions
would entail pure imaginary k [35]; this branch is not compatible with the Manin
mass term.

9For more on cutting and gluing for non-topological QFTs we refer to work by Dedushenko [36].
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Finally, we point out that while the parity involution J of (3.33) exists for cobound-
ary Lie quasi-bialgebras, it may also exist under more general circumstances. For
example, when g̃ may (and is chosen to) be such that (g̃ →֒ d, η) is another Manin
pair, the Lie quasibialgebra structure on g̃ need not be coboundary, but the involution
J of (3.33) that is defined relative to its ‘dual’ Lie quasibialgebra g still works. An ex-
plicit example is given by the Lie quasibialgebra defining Freedman-Townsend theory
(sec. 2.1.2).

4 Localisation of Manin gauge theory

4.1 BRST gauge fixing

Manin theory is gauge invariant under G-valued gauge transformations — the Lie
group integrating g. Therefore the whole gang of ghosts, antighosts, and friends will
be valued in g (as opposed to the bigger algebra d):

c = caTa , c̄ = c̄aTa , b = baTa . (4.1)

The BRST transformations δBRST take the standard form, keeping into account that this
is a right differential like the supersymmetry is:

δBRSTAµ = −Dµc , δBRSTc = −c2 , (4.2a)

δBRSTσ = [c,σ] , δBRSTc̄ = ib , (4.2b)

δBRSTλ = −{c, λ} , δBRSTb = 0 , (4.2c)

δBRSTλ̂ = −{c, λ̂} , (4.2d)

δBRSTD = [c,D] . (4.2e)

The BRST differential δBRST anticommutes with the supersymmetries10 δζ and δ̂ζ (as-
suming δBRST annihilates the ghost sector); it is also nilpotent: δ2BRST = 0.

For the gauge-fixing actionwe need to pick a g̃ complementary to g in d. In the basis
adapted to this split (used already in (2.2)) the gauge-fixing action for Lorentz gauge
reads (where ∇ is the Levi-Civita derivative and DA ≡ d + [A, •] = D − [Ã, •])

SBRST[A, b, c, c̄] = −δBRST
∫

⋆κab∇µAaµc̄
b = −

∫

⋆κab

(

iba∇µAbµ + ∂µc̄
aDµcb

)

= −
∫

⋆κab

(

iba∇µAbµ + ∂µc̄
aDµ

Ac
b−f̃ cbdÃµc ∂µc̄acd

)

.

(4.3)

The difference with conventional (formulations of) gauge theory lies only in the last
term that depends on f̃ . We may select g̃ such that f̃ = 0whenever g is of coboundary
type as a Lie quasibialgebra, see (2.50) and discussion in that section. In particular
we may choose this for the Manin formulations of Yang-Mills theory and Third Way
theory. Since coboundary-type quasibialgebras are the ones for which we have es-
tablished reflection-positivity (see (3.33)), we will henceforth specialise to f̃abc =

0.

In this situation we see explicitly, given the split d = g+ g̃, that the field A splits into

10This requires a short calculation analogous to the one for conventionalN = 2 supersymmetry. A key
point in the present case is the identity M [x,y] = [x,My] valid for all y ∈ d and all x ∈ g whenever M

satisfies (2.3).
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a gauge field A for g and a matter field Ã:

δBRSTAµ = −∂µc− [Aµ, c] , δBRSTÃ = −[Ã, c] . (4.4)

4.2 Localisation on S3

We will localise the gauge-fixed theory with respect to the (right-)differential

Q ≡ δBRST + δζ (4.5)

for δζ the supersymmetry transformation given in (3.29) for the round 3-sphere with
ζ̂ = 0 and ζ some fixed constant nonzero spinor. The action of the gauge-fixed theory
ought to be Q-invariant, which motivates changing the gauge fixing action from its
conventional form SBRST above to

QVg.f. ≡ Q
(

−
∫

⋆κab∇µAaµc̄
b
)

= SBRST + δζ

(

−
∫

⋆κab∇µAaµc̄
b
)

, (4.6)

so that the e.g. partition function is the integral

Z =

∫

DADλDλ̂DσDDDcDc̄Db exp(SN=2 +QVg.f.) (4.7)

for SN=2 the evanescent supersymmetricManin theory action (3.20). Localisationwill,
of course, work for the correlation functions of any collection ofQ-closed observables;
in particular, for any observables which are SUSY- and BRST-invariant.

We will assume there are no supersymmetry or BRST anomalies, so that we may
integrate by parts in the path integral with respect to Q. We may then freely subtract
from the action the following Q-exact term

QΨ ≡ Q

∫

⋆EAB(λA(δζλB)†) (4.8)

where E : d× d → R is some positive semidefinite and ad g invariant symmetric form;
such E always exist by an averaging argument as long as G is compact. If f̃ = 0 we
may verify directly, for example, that E(Ta, Tb) = κab , E(T̃ a, T̃ b) = κab works.

Since Q is a right differential, we have

QΨ =

∫

⋆E
[

(δζλ)(δζλ)
† + λδζ(δζλ)

†
]

(4.9)

which evaluates to

QΨ = (ζζ†)

∫

⋆E
[∥
∥
∥ ⋆ F−Dσ +

g2

k
MA

∥
∥
∥

2
+
(

D−
(1

ℓ
+
g2

k
M
)
σ

)2

+2λ
(

− i /D + ad σ +
g2

k
M +

1

2ℓ

)

λ̂

]

(4.10)

This is positive-definite: the first term is the norm squared of the vector field ⋆F−Dσ+

MAwith respect to the 3-sphere metric, while the second term is manifestly a square.
(Here we have employed the reality condition on fields that establishes reflection pos-
itivity, namely that the fields all be real-valued.)
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We then modify the action to

SN=2 +QVg.f. − t2QΨ (4.11)

inside the path integral, in standard localisation argument fashion; in the limit t→ ∞
the only configurations which contribute to the path integralmust solve the equations

⋆F−Dσ +
g2

k
MA = 0 , (4.12a)

D−
(1

ℓ
+
g2

k
M
)

σ = 0 . (4.12b)

We have thus shown that all Manin theories localise onto (4.12) subject only to the
assumptions that

• the group G integrating the gauge algebra g is compact; and

• the differential Q is an invariance of the path integral measure (i.e. there are no
supersymmetry or BRST anomalies).

The 1-loop determinant. It is straightforward to write down an expression for the
fluctuationdeterminantsaround the localisation locus. We expand thefields {A,σ,D, λ, λ̂}
onto ‘moduli’ {Ā, σ̄, . . . } and fluctuations {A′,σ′, . . . } as follows:

A = Ā+ t−1A′ , (4.13)

σ = σ̄ + t−1σ′ , (4.14)
...

where t is the same constant appearing in the total action (4.11) (which includes gauge-
fixing and localisation terms). The bosonic moduli are constrained to satisfy the local-
isation conditions (4.12) and the fermionic ones λ, λ̂ are set to zero: therefore

D̄ =

(
1

ℓ
+
g2

k
M

)

σ̄ , λ̄ =
¯̂
λ = 0 . (4.15)

We do nothing to the gauge sector fields {c, c̄, b}; in particular c̄ remains the antighost.
We should also think of c, c̄ as ‘fluctuation’ fields.

We perform the path integral
∫
Db before taking the limit t → ∞, as we should.

Then the term ib∇ · A from SBRST inside the gauge-fixing term Vg.f. in the total action
(4.11) enforces the gauge∇·Ā+t−1∇·A′ = 0 for any value of t; thus both themodulus Ā
and fluctuation A′ are gauge-fixed.11 The total action (4.11) has a smooth limit t → ∞
which is the sum

S̄N=2 + S1-loop (4.16)

where S̄N=2 is (3.20) evaluated on the moduli and S1-loop is calculated easily via t-

11This procedure is thus slightly different from that of e.g. Kapustin et al. [13]. Our approach has the
advantage that the localising functional is positive-definite, whereas including a gauge-fixing term in Ψ
would produce a contribution ib∇ · Ā.
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power-counting to be

S1-loop = −
∫

⋆κ(∇µc̄D
µ
Ā
c)

−(ζζ†)

∫

⋆E
(∥
∥
∥ ⋆ D̄A

′ − D̄σ′ + [σ̄,A′] +
g2

k
MA

′
∥
∥
∥

2
+
(

D
′ −
(1

ℓ
+
g2

k
M
)
σ′
)2

+2λ′
(

− i /̄D + ad σ̄ +
g2

k
M +

1

2ℓ

)

λ̂′
)

. (4.17)

Barred quantities are evaluated with the moduli fields, so e.g. DĀ ≡ d + [Ā, •], D̄ ≡
d + [Ā, •], and (ζζ†) is an arbitrary positive normalisation constant that may be set to
1 by rescaling the spinor.

The localised expression for the partition function Z is, therefore,

Z =

∫

M
DĀDσ̄ δ(∇ · Ā)Z1-loop exp(S̄N=2) (4.18)

for M the locus of solutions to the localisation equation (4.12a), where Z1-loop is the
1-loop determinant

Z1-loop =

∫

DA
′Dσ′DD

′Dλ′Dλ̂′DcDc̄ δ(∇ · A′) expS1-loop . (4.19)

The same argument works to localise any Q-invariant observable, e.g. a SUSY Wilson
loop.

Wewill not attempt to evaluate Z1-loop in this work, but we havemore to say about
the integral over the moduli spaceM.

4.3 Resolving the localisation locusM

Henceforth we remove the bars over the moduli fields Ā, σ̄, . . . since we no longer
discuss the fluctuation fields A′,σ′ in the 1-loop determinant.

The integration over the field D is eliminated due to (4.12b) in all cases. However
at this stage the localisation is more complicated than for Chern-Simons theory: the
presence of theMA term in (4.12a) would appear to suggest, a priori, that the integra-
tion over σ is infinite-dimensional. This would be problematic insofar as it means that
we have replaced the infinite-dimensional integral — over A, for the N = 0 theory —
with an equivalent, yet even more infinite-dimensional integral.

That may well be the case for arbitrary Manin pairs. Nevertheless, we may try to
integrate out σ in favour of a finite-dimensional zeromode integral in specific cases
of physical interest, including the Third Way theory and Yang-Mills theory. We treat
each case separately.

4.3.1 Third Way theory

This is the case of the Manin pair whose double d is the (commuting) direct sum of Lie
algebras d = g⊕g, with themaximally isotropic subalgebra g embeddedas the diagonal
as summarised in section 2.1.3. The key feature of this Manin pair is that the double d

integrates to a compact Lie group D, which is (a cover of) G×G. (Since the scalar field
D has already been integrated out there is no notational clash.) Therefore the form E
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employed above may be chosen to be invariant not just under the G subgroup of D—
which would be the diagonal G for D = G ×G— but also under the full group D; we
commit to such a choice of E in this subsection.

Hitting the localisation equation (4.12a) with ⋆D⋆ leads to

⋆D⋆Dσ =
g2

k
⋆DM⋆A , (4.20)

where again D = d+ adA. We will solve this for σ in terms of A up to zeromodes, and
establish that the space of zeromodes is finite-dimensional. (This is nontrivial because
A is not a flat connection.) The key to this is establishing that

∆A ≡ ⋆D⋆D : C∞(M3)⊗ d → C∞(M3)⊗ d

is both elliptic and selfadjoint; then one may use standard theorems (e.g. Theorem
4.12 of [37]) to get a handle on the space of zeromodes and the existence of Green’s
functions.

Ellipticity is in fact trivial: the principal symbol of ∆A is independent of A, and for
A = 0 this operator reduces to the Laplacian. For self-adjointness we invoke E : d → d

as above and define an L2 inner product

〈σ, τ〉 ≡
∫

S3

E(σ, ⋆τ) (4.21)

such that an operator O is selfadjoint if and only if

〈Oσ, τ〉 = 〈σ,Oτ〉 . (4.22)

If D satisfies a standard integration by parts identity inside the integral, then ∆A is
selfadjoint by a small calculation. That identity is indeed satisfied whenever E is ad d-
invariant, which is true by construction of E .

Since∆A is elliptic and selfadjoint, Theorem 4.12 of [37] implies a Hodge decompo-
sition:

1. there exists a projectorΠH ontoH = ker∆A (“harmonic scalars”) and an operator
G (“Green’s function”) such that

G∆A +ΠH = ∆AG+ΠH = 1 (4.23)

with 1 being the identity on C∞(M3)⊗ d.

2. H and im(G∆A) are orthogonal with respect to the L2 inner product;

3. the dimension of H is finite.

For usH is the space of σ zeromodes andNA ≡ im(G∆A) is the space of non-zeromodes.
To solve (4.20) using the Green’s functionwe thus need to confirm that the source term
g2

k ⋆DM⋆A actually lies in NA. Indeed it is trivial to check that it is orthogonal to any
zeromode σ0: ∫

S3

E(⋆DM⋆A, ⋆σ0) =

∫

S3

E(σ0,DM⋆A) = 0 (4.24)

where the last equality uses integration by parts and the implication ∆Aσ0 = 0 ⇐⇒
Dσ0 = 0.
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Therefore we have established that solutions σ to (4.20) take the form σ = σ0 + σ′

where σ0 lies in a finite-dimensional space of zeromodes and the non-zero mode σ′ is
uniquelydetermined in terms ofA,M , and theGreen’s functionG (which also depends
on A) as

σ′ =
g2

k
G⋆D⋆MA . (4.25)

(σ′ herenot to be confusedwith thefluctuationfield from theprevious subsection.)

The space of zeromodes and the localised path integral. The zeromodes σ0 at
fixed A,

Dσ0 = dσ0 + [A,σ0] = 0 , (4.26)

form the space of d-valued infinitesimal gauge transformations that leave A invari-
ant. This is the tangent space to the stabiliser of A, namely the group of finite gauge
transformations leaving A invariant,

SA ≡
{
g : S3 → D | A = −dgg−1 + gAg

−1
}
, (4.27)

where D = G×G indicates the group integrating d.

Although D gauge transformations are not a symmetry of Manin theory — indeed
we have been emphasising that A is the data of a gauge field for G along with a mat-
ter field — we may use gauge theory results to study the zeromodes for this specific
Manin theory12, which are conveniently collected for us in reference [38]. It is known
in particular that SA may be identified with the centraliser of the holonomy group
of A, which is a subgroup of D. Therefore the dimension of the space of zeromodes
NA, which is the dimension dimSA, is bounded above by 2 dimG and depends on the
specific A.

We return to the localisation equation (4.12a), ⋆F−Dσ+ g2

k MA = 0. Since it is only
the nonzero modes of σ that appear therein, we may eliminate σ in favour of A using
the Green’s function G and rewrite (4.12a) as

⋆F+
g2

k
MA = JA (4.28)

for a source term JA ≡ Dσ = (g2/k)DG⋆D⋆MA that depends on A nonlinearly (viaMA,
D and G).

Upon using the above results, the localised path integral (4.18) for the partition
function Z becomes

Z =

∫

MThird Way

DA δ(∇ ·A)
∫

NA

dσ0Z1-loop exp(S̄N=2) (4.29)

This is an integral over the a priori infinite-dimensional moduli space MThird Way of
solutionsA to equation (4.28), alongwith an integral over the finite-dimensional space
of zeromodes σ0 ∈ NA associated to each such solution. Note that MThird Way is non-
empty: it includes e.g. A = 0 which trivially solves (4.28).

12Note that when D is simply-connected, since S3 is 3-dimensional all principal bundles atop S3 with
fibre D are trivial, so there are no subtleties in identifying Awith a D-connection for the purposes of the
argument in this paragraph. D may be arranged to be simply-connected if e.g. we take D = G × G for
simply connected G.
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Therefore the path integral of the Third Way theory localises to the classical equa-
tions of motion with a source JA generated by self-interactions, alongside a finite inte-
gral over zeromodes σ0.

4.3.2 Yang-Mills theory

As explained in section 2.1.1, this is the case where the double d is the semidirect sum
of g and its coadjoint representation: d = g ⋉ g⋆. We expand everything in the basis
{Ta, T̃ a} of (2.8) exhibiting this semidirect sum structure immediately:

Dσ = DAσ +DAσ̃ + [Ã, σ] , F = F +DAÃ , (4.30)

with F ≡ dA+A2, andDA ≡ d+ [A, •] the covariant derivative, where the bracket is in
d. Since [T, T̃ ] ∝ T̃ and the bracket restricted to g closes, all quantities with tildes lie in
g̃ ≡ g⋆. The localisation equation (4.12a) splits into two components, each valued in g

and g̃ respectively:

g2

k
MÃ = DAσ − ⋆F , (4.31)

⋆DAÃ = DAσ̃ + [Ã, σ] . (4.32)

These two equations are respectively the Ã equation of motion of the first-order Yang-
Mills action (2.9) sourced by DAσ, and the A equation of motion of the same sourced
by DAσ̃ + [Ã, σ].

SinceMÃ =MabÃbTa withMab nondegenerate (see discussion around (2.3)), (4.31)
may be solved for Ã. If we also simplify the notation usingMab to identify the coadjoint
representation g⋆ = g̃with g everywhere, (4.32) becomes

⋆DA⋆F = 2⋆[F, σ]−
(g2

k
DAσ̃ + [DAσ, σ]

)

(4.33)

which is the second-order Yang-Mills equation ofmotion with sources. Note that these
are not the equations of motion one obtains from SN=2 (3.20) with Ã backsubstituted
in, because in that case SN=2 takes the form

k2

g2

∫

κ
(1

2
DAσ ⋆ DAσ − 1

2
F ⋆ F

)

−
(g2

2
+
k

ℓ

) ∫

κ
(1

2
σ̃ ⋆ σ̃

)

+ (fermions) (4.34)

We can solve equation (4.33) for the nonzero modes of σ̃ using a propagator, as
was done in the previous subsection. Thus we split σ̃ = σ̃0 + σ̃′(A, σ) with σ̃0 satisfying
DAσ̃0 = 0. The upshot is the following formula for the Yang-Mills partition function
(4.7):

Z =

∫

M
DADσ δ(∇ · A)

∫

NA,σ

dσ̃0 Z1-loop exp S̄N=2 , (4.35)

where now MYang-Mills is the moduli space of solutions to (4.33), while Z1-loop is the
usual localisation-induced 1-loop determinant.

In contrast to the ThirdWay case, and, perhaps, predictably, we have not replaced
the usual N = 0 path integral with something that is obviously simpler: we have inte-
grals over A and σ, both of which are a priori infinite-dimensional even though these
fields are related via (4.33). We note however that this result does imply that the path
integral is 1-loop exact for abelianG: using a Hodge decomposition, formula (4.33) im-
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plies immediately that both F and σ̃ are harmonic, so the integral has localised onto
dF = d⋆F = 0; the other fields contribute normalisation factors.

5 Discussion

For the convenience of the reader we recapitulate the main results of this paper as
well as the specific technical conditions invoked:

1. For any Manin gauge theory where the gauge algebra g is associated to a com-
pact gauge group G, and assuming that there are no BRST or supersymmetry
anomalies, expectationvalues ofQ-invariant observables (see (4.5)) on the round
3-sphere S3 localise onto (4.12). The resulting path integral takes the form (4.18)
(for the partition function)where the integralmeasure acquires the 1-loop deter-
minant factor (4.19). (These results were obtained when the Lie quasibialgebra
associated to the Manin pair has f̃ = 0, which may be arranged to be the case for
the large class of Lie quasibialgebras of coboundary type (2.50); however, this
restriction can be lifted.)

2. We proved the Hamiltonian (2.49) is positive-definite in Lorentzian signature (in
nice enough coordinate systems).

3. We also showed that Manin gauge theories whose Lie quasibialgebras are of
coboundary type — including the case f̃ = 0 — are all parity-invariant and
reflection-positive.

4. For the Manin theory formulations of Yang-Mills and ThirdWay theories (which
fulfil all assumptions used above) we further analysed the localisation locus,
yielding the path integrals (4.35) and (4.29) respectively.

One should in principle check carefully for anomalies in the realisation of evanes-
cent supersymmetry in Manin theory, since it differs by terms depending on the mass
matrixM from conventional 3D N = 2 supersymmetry. In fact such anomalies could
also afflict conventional localisation calculations, as has been pointed out multiple
times in the literature (see e.g. [39] and references therein). Although it is reassuring
that R-symmetry anomalies are forbidden on dimensionality grounds, the current ab-
sence of a superspace formulation, as well as the fact that the complete algebra of
evanescent supersymmetries is unknown, signals, perhaps, a need to revisit and gen-
eralise the literature on supersymmetry anomalies.

It isworth discussing our results on localised partition functions for Yang-Mills and
ThirdWay theories. Even though the ThirdWay theory is a deformation of Yang-Mills
theory, the localised path integrals look qualitatively different. In the Yang-Mills case,
the locus (4.33) looks like a nonlinear duality relation between the gauge connection
A and the scalar field σ that appear in the localised path integral, while in the Third
Way case the localised path integral is over the original fields A, Ã, constained by the
ThirdWay equations ofmotionwith a nonlocal self-interaction term (4.28) (alongwith
a finite-dimensional path integral, which we ignore).

In other words, the Third Way theory is unreasonably close to being 1-loop exact!
Clearly, more work ought to be done to extract explicit results from Third Way path
integrals of the form (4.29), including a calculation of the 1-loop determinant therein.
We hope our work paves a new viable path forward for non-perturbative calculations
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in gauge theory.
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A Notation and conventions

Some notation:

• ζα, ζ̂α for the two bosonic spinors for each SUSY, with this index placement by

default. We may also use η, η̂ for the same.

• Spinor bilinears are alwayswritten ζζ̂ and ζγµζ̂ , both ofwhich obeyNorthWest/SouthEast
conventions for the spinor indices. If we need to switch the roles, we will write

C , so for example ζζ̂ = −ζ̂CζC when both are bosonic.

• µνρ · · · as curvedM3 indices

• mnpqr · · · as flatM3 indices

• γµν = 1
2γ

[µγν], similarly for γmn

• Mα
β is the indexplacement for any 2×2matrixM acting on spinors. This includes

(ζ ⊗ ǫ̂)α
β = ζαǫ̂

β .

• For g generators, writeTa , a = 1, 2, · · · dim g, and commutation relations [Ta, Tb] =
fab

cTc. The structure constants fabc are real in our convention, so that Ta are all
represented by antihermitian matrices for compact g.

• In the context of a Manin pair (d, g, η), we let the set {Ta, T̃ b} generate d and im-
pose η(Ta, T̃ b) = δab as the only nonvanishing η matrix element up to symmetry,
where {Ta} have the same commutation relations in d as they do in g.

For g̃, write T̃ a , a = 1, 2, · · · dim g, and commutation relations [T̃ a, T̃ b] = f̃abcT̃
c+

h̃abcTc (gabc vanishes when g̃ is a Lie algebra).

We have d = g⊕ g̃ as vector spaces (not as Lie algebras) in the Manin pair/triple
case.

• P is the projector onto g in the situation just above; P̃ = (1 − P ) is the projector
onto g̃.

• For a generic basis of d we may use TA for the generators. Similarly, the matrix
coefficients of η are η(TA,TB) = ηAB .

• We write x, x̃,x for elements of g, g̃, d.
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• We write A for a g gauge field, A for a d gauge field, Ã for a g̃ gauge field or else
for the components of A valued in g̃ in the Manin pair case.

• Derivatives — such are the exterior derivative d — act from the left: d(ab) =

dab+(−1)aadb. Variations, however, act from the right. (This is to accordwith [13]
and to eliminate some minus signs when obtaining equations of motion and the
like.)

• We write D ≡ d + [A, •] for the covariant derivative associated to A, and DA ≡
d + [A, •] for the covariant derivative associated to A.

• WewriteA,σ, λ, λ̂,D for theN = 2 d-valuedmultiplet, andA, σ, λ, λ̂,D for theN = 2

g-valued multiplet. The σ,D are bosonic scalars and λ, λ̂ are fermionic spinors
(resp. for the doublestruck versions).

• M for the linear map M : d → d defining the Manin pair mass term which has
Mg = 0; M̃ for the “dual one” with M̃ g̃ = 0. The nonvanishing components ofM
in the basis {Ta, T̃ a} areMab.

A.1 Differential formconventions forpossibly fermion-valued forms

Here we assume any signature of the metric along with any Grassmann parity of the
forms: namely, given we define the components of a p-form by

α ≡ 1

p!
dxµ1 · · · dxµpαµ1···µp (A.1)

we may allow αµ1···µp to be grassmann-odd. This implies that the components depend
on the ordering, above.Weassume this ordering is the canoncal ordering. Further-
more we may define another set of coefficients ᾱµ1···µp via

α ≡ 1

p!
ᾱµ1···µpdx

µ1 · · · dxµp , (A.2)

which for consistency satisfy (where F (α) is the fermion number which is 1 when
αµ1···µp is fermionic)

ᾱµ1···µp = (−1)pF (α)αµ1···µp . (A.3)

We may then define a C∞-bilinear form 〈•, •〉p mapping into (possibly fermionic-
valued) scalars

〈α, β〉p ≡
1

p!
ᾱµ1···µpβ

µ1···µp (A.4)

where the index gymnastics are via any metric. If we declare

T (α) ≡ F (α) + pα (A.5)

to be the total degree of a possibly fermionic p-form α, we then calculate

〈α, β〉p = (−1)T (α)T (β)+p〈β, α〉p (A.6)

whence this form is graded-(anti)symmetric depending on the value of p. Wemay then
define the Hodge star ⋆p (where we retain the subscript p for clarity for now) via

α⋆pβ ≡ (−1)dF (β)〈α, β〉p⋆01 (A.7)
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which entails

α⋆pβ = (−1)T (α)T (β)+d(T (α)+T (β))+pβ⋆pα = (−1)(T (α)+d)(T (β)+d)+p+dβ⋆pα . (A.8)

Note that the definition of the star above is consistent in the sense that it is well-
defined as a map of p-forms β to d − p-forms ⋆β (if implicitly so). To determine this
map explicitly we parameterise

⋆pβ ≡ dxν1 · · · dxνd−p

(d− p)!
(⋆p)

µ1···µp
ν1···νd−p

1

p!
βµ1···µp (A.9)

for tensors (⋆p)µ1···µpν1···νd−p
to be determined.

Then we calculate α⋆pβ for which it is convenient to use ᾱµν··· immediately. We
get

α⋆pβ =
1

p!
ᾱµ1···µpdx

µ1 · · · dxµp dx
ν1 · · · dxνd−p

(d− p)!
(⋆p)

ρ1···ρp
ν1···νd−p

1

p!
βρ1···ρp (A.10)

=
1

p!
ᾱµ1···µp(dx)

dεµ1µ2···µpν1···νd−p
1

(d− p)!
(⋆p)

ρ1···ρp
ν1···νd−p

1

p!
βρ1···ρp (A.11)

= (−1)dF (β) 1

p!
ᾱµ1···µp

1

(d− p)!

1

p!
βρ1···ρp(dx)

dεµ1µ2···µpν1···νd−p(⋆p)
ρ1···ρp

ν1···νd−p
(A.12)

Since (where the epsilons are the SL-invariant tensor densities whose values are
±1)

εµ1···µpν1···νd−pερ1···ρpν1···νd−p
= p!(d− p)!δν1[ρ1 · · · δ

νp
ρp]

(A.13)

and by definition

⋆01 =
1

d!
dxµ1 · · · dxµd⋆0µ1···µd = dx1dx2 · · · dxd

︸ ︷︷ ︸

(dx)d

(⋆0)12···d , (A.14)

if we enforce α⋆pβ = (−1)dF (β)〈α, β〉p⋆01 we obtain

(⋆p)
ρ1···ρp

ν1···νd−p
= (⋆0)σ1···σpν1···νd−p

gρ1σ1 · · · gρpσp (A.15)

or, more compactly

⋆pβ ≡ dxν1 · · · dxνd−p

(d− p)!
(⋆0)σ1···σpν1···νd−p

1

p!
βσ1···σp (A.16)

where the indices on β are raised with the metric g.

For the square of the Hodge star we need the identity

det g−1 =
1

d!
εµ1···µdεν1···νdg

µ1ν1 · · · gµdνd (A.17)

whence the index-raised ⋆0 has

⋆0
µ1···µd = det g−1((⋆0)12···d)ε

µ1···µd (A.18)

and then the last formula for the Hodge star yields

(⋆d−p⋆pβ)µ1···µp = det g−1((⋆0)12···d)
2(−1)p(d−p)βµ1···µp (A.19)
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Thus
(⋆0)12···d ≡

√

|det g| =⇒ ⋆2 = (−1)p(d−p) sign det g (A.20)

which is exactly the same formula as for bosonic-valued forms.

In summary,

⋆pβ ≡ dxν1 · · · dxνd−p

(d− p)!

√

|det g|εσ1···σpν1···νd−p

1

p!
βσ1···σp (A.21)

α⋆pβ ≡ (−1)dF (β)〈α, β〉p⋆1 (A.22)

〈α, β〉p ≡
1

p!
ᾱµ1···µpβ

µ1···µp (A.23)

with the following signs under permutations (of p-forms)

α⋆pβ = (−1)(T (α)+d)(T (β)+d)+pβ⋆pα , (A.24)

〈α, β〉p = (−1)T (α)T (β)+p〈β, α〉p . (A.25)

A.1.1 Integration

We define the integral of a d-form α in a local coordinate patch of some d-fold as the
map α→

∫
α

∫

α =

∫

dx1dx2 · · · dxd ε
µ1µ2···µd

d!
αµ1µ2···µd (A.26)

where the components of the form are defined via (A.1). (The domain of the integral
has been omitted.) The ordering in that formula is important in the case where the
components are fermionic-valued (F (α) = 1). This expression is manifestly invariant
under orientation-preserving diffeomorphisms (since ε is).

If δ is a right graded differential, as in the main text, then

δα =
1

d!
dxµ1 · · · dxµdδαµ1µ2···µd (A.27)

and thus there are no funny signs in δ
∫
α =

∫
δα. However, (now for a p-form)

(δα)µ1···µp = (−1)pδδᾱµ1···µp = (−1)p(δ+F (α))δαµ1···µp , (A.28)

where δ in the exponent is the total parity of δ.

Moreover since

(cα)µ1 ···µd = (−1)dF (c)c αµ1···µd , (αc)µ1 ···µd = αµ1···µdc (A.29)

(the signs are reversed for thebarred components), whenever c is constantwehave
∫

cα = (−1)dF (c)c

∫

α (A.30)

but ∫

αc =
(∫

α
)

c . (A.31)
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Put briefly, we may pull things out of integrals from the right.

Finally for the variation of terms like α⋆β where α, β are p-forms, we calculate
α ⋆ β = (−1)dF (α)⋆1 〈α, β〉 whence via (A.28) (for δ a right derivative again)

δ(α⋆β) = α⋆δβ + (−1)dF (α)+F (β)δ⋆1 (p!)−1δᾱµ1···µpβ
µ1···µp (A.32)

which gives
δ(α⋆β) = α⋆δβ + (−1)(p+d+F (β))δδα⋆β , (A.33)

or equivalently (in terms of the total degree)

δ(α⋆β) = α⋆δβ + (−1)T (⋆β)δδα⋆β , . (A.34)

A.2 Spinors and GammaMatrices

A.2.1 Gammamatrices

In this part of the appendix we list our conventions regarding the gamma matrices
γm = (γmα

β), as well as some useful identities. We choose the represent the gamma
matrices simply by the Pauli matrices,

γ1 =

(

0 1

1 0

)

γ2 =

(

0 −i
i 0

)

γ3 =

(

1 0

0 −1

)

, (A.35)

though, for most of our discussion the specific representation isn’t relevant. However,
we will assume they are Hermitian, i.e. (γm)† = γm. It follows that they satisfy the
algebra

γmγn = δmn1+ iεmnℓγℓ. (A.36)

with 1 = (δα
β) denoting the 2× 2 unit matrix in spinor space.

A.2.2 Spinors

Spinors will either be vectors ζ̂ = (ζ̂α) or their conjugates ζ = (ζα) of the fundamental
representation of SU(2). As such, under local Lorentz transformations these trans-
form as

δλζ̂ = +
1

4
λmnγmnζ̂ = +

i

4
εmnℓλ

mnγℓζ̂ (A.37a)

δλζ = −1

4
λmnζγmn = − i

4
εmnℓλ

mnζγℓ (A.37b)

since Lorentz generators are represented as ρ(Mmn) = 1
2γmn. One should note that

Hermitian conjugation maps between vectors and their conjugates. Therefore, we
write

ζ† = (ζ†α) = ((ζα)∗) (A.38a)

ζ̂† = (ζ̂
†α
) = ((ζ̂α)

∗) (A.38b)

not to be confused with the antisymmetric Northwest-Southeast contraction by the
charge conjugation matrix in the following:
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A.2.3 Charge conjugation

Now, to move on to charge conjugation: we define the charge conjugation matrix C to
be

C = (εαβ) =

(

0 1

−1 0

)

= −iγ2 ⇒ C−1 = (−εαβ) = −C = Ct (A.39)

We use εαβ and εαβ to raise and lower spinorial indices in the Northwest-Southeast
convention, i.e.

ζ̂C = (Cζ̂)t = (εαβ ζ̂β) =: (ζ̂α) (A.40a)

ζC = C−1ζt = (ζβεβα) =: (ζα) (A.40b)

t denoting the transpose, as per the column/row vector interpretation. Following this
convention it further also follows that

δα
β = εα

β = −εβα (A.41a)

γmαβ = γmβα (A.41b)

γmαβ = γmβα (A.41c)

This affects spinor bilinears in the following way:

ζζ̂ = −ζ̂CζC ζγmζ̂ = ζ̂Cγ
mζC (A.42)

for bosonic spinors, with a straightforward fermionic generalisation.

A.2.4 Fierz identity and more on spinor bilinears

Finally, let us comment on the Fierz identity. The Fierz identity reads

M =
1

2
1TrM +

1

2
γmTr(γmM) (A.43)

for some spinor space matrix M = (Mα
β). Particularly, for spinor bilinears ζ̂ ⊗ ζ =

(ζ̂αζ
β) this reads

ζ̂ ⊗ ζ =
1

2
(ζζ̂)1+

1

2
/K Km ≡ ζγmζ̂ . (A.44)

again assuming ζ̂ , ζ bosonic. This leads to useful identities such as

ζ̂ ⊗ ζ − ζC ⊗ ζ̂C = (ζζ̂)1 (A.45a)

ζ̂ ⊗ ζ + ζC ⊗ ζ̂C = /K (A.45b)

Furthermore, noting that

γmζ̂ ⊗ ζ =
1

2
Km

1+
1

2
(ζζ̂)γm +

i

2
εmnℓKnγℓ (A.46a)

ζ̂ ⊗ ζγm =
1

2
Km

1+
1

2
(ζζ̂)γm − i

2
εmnℓKnγℓ (A.46b)

37



we arrive at even more identities

γmζ̂ ⊗ ζ + ζC ⊗ ζ̂Cγ
m = Km

1 (A.47a)

ζ̂ ⊗ ζγm + γmζC ⊗ ζ̂C = Km
1 (A.47b)

...

and so on, by taking the appropriate linear combinations. The reason for listing these
identities is that they make for very efficient tools in computing things such as the
algebra {δζ , δ̂ζ̂}, or verifying the nilpotence of evanescent supersymmetry δ2 = δ̂2 =

0.

A.3 Geometry of the round 3-sphere and spinor derivatives

We normalise the su(2) algebra of left-invariant vector fields on S3 as

[Xm,Xn] = −2

ℓ
εmn

pXp (A.48)

where ℓ is the 3-sphere radius, ε123 = 1 is totally antisymmetric, and flat abc . . . indices
are lowered with δmn. The dual basis of dreibeins em then solves the Maurer-Cartan
equation dem − εmnpenep/ℓ = 0, whence the torsion-free spin connection is

ωmn =
1

ℓ
εmnpep . (A.49)

This enters into the expression for the spinorial derivatives

∇ζ ≡ dζ − ζ
1

4
ωmnγmn , ∇ζ̂ ≡ dζ̂ +

1

4
ωmnγmnζ̂ (A.50)

which are covariant under δζ = −ζ 14λmnγmn, and leads to the formulas (3.28) used in
the main text. For more details we refer to e.g. [15, section 6.3.1].
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