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Abstract: In recent years the conformal bootstrap has produced surprisingly tight bounds
on many non-perturbative CFTs. It is an open question whether such bounds are indeed
saturated by these CFTs. A toy version of this question appears in a recent application of the
conformal bootstrap to hyperbolic orbifolds, where one finds bounds on Laplace eigenvalues
that are exceptionally close to saturation by explicit orbifolds. In some instances, the
bounds agree with the actual values to 11 significant digits. In this work we show, under
reasonable assumptions about the convergence of numerics, that these bounds are not in
fact saturated. In doing so, we find formulas for the OPE coefficients of hyperbolic orbifolds,
using links between them and the Rankin-Cohen brackets of modular forms.
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1 Introduction

The conformal bootstrap has been used to great effect in recent years to explore the space
of conformal field theories (CFTs) [1, 2], and to constrain scaling dimensions of operators
in these theories. These techniques have also been adapted to constrain the spectra of the
Laplace-Beltrami and Dirac operators on hyperbolic orbifolds [3–7]. As well as being of
great interest in pure mathematics, this provides a useful toy model through which to test
bootstrap techniques.

In particular, it was found in [4] and [5] that the spectral gap,1 λ1 of the Laplacian for
any hyperbolic 2-orbifold (this includes hyperbolic surfaces) is bounded by

λ1 < 44.8883537. (1.1)

This is very close to being saturated by the [0; 2, 3, 7] orbifold,2 which has λ1 ≈ 44.8883537.
In [4] it was also shown that a structure constant, analogous to a OPE coefficient in a CFT,
can be bounded by

S12 ≳ 1.154096944322, (1.2)
1The smallest non-zero eigenvalue.
2The unique genus zero orbifold with conical singularities of order 2, 3, and 7.
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which is again almost saturated by the [0; 2, 3, 7] orbifold, which has

S
[0;2,3,7]
12 ≈ 1.154096944394. (1.3)

Other bounds have also been considered in [4, 5]. For example, the bound on λ1 of orbifolds
of genus 2 or higher is almost saturated by the Bolza surface.

Similar near-saturation of bounds plays a central role in the CFT context, where it has
been observed that various non-perturbative CFTs such as the 3D Ising CFT are very close
to saturating bootstrap bounds [8, 9]. Practically speaking, this gives rigorous and precise
determinations of scaling dimensions and of other parameters of such CFTs (especially in
the case of two-sided bounds). Conceptually, this offers a very tantalizing possibility that
CFTs as complex as the 3D Ising CFT might exactly saturate bootstrap bounds which
arise from relatively simple systems of crossing equations. Through extremal functional
methods [10], this would give a hope of obtaining an exact solution of such theories.

In fact, some free theories are known to exactly saturate bootstrap bounds [11, 12],
which gives evidence in support of this possibility. Similarly, bounds on sphere-packing
density [13] (which are equivalent to spinless modular bootstrap bounds [14]) are known
to be exactly saturated in certain cases [15, 16].3 However, interacting CFTs are expected
to have spectra which are much more complex that these examples, and the question of
whether they can exactly saturate the bootstrap bounds — “Does the Ising island shrink
to a point?” — remains wide open.

The situation with hyperbolic orbifolds such as [0; 2, 3, 7] or the Bolza surface appears
to be an interesting model in this context. On the one hand, the crossing equations are
closely related to those satisfied by CFTs [4] and the Laplace spectra of hyperbolic orbifolds
are expected to be much more complex than those of free theories. On the other hand,
investigating near-saturation of the bootstrap bounds is easier in this case, as geometric
methods are available with which to calculate data about these orbifolds.

In this paper, we show that under reasonable assumptions about the behavior of nu-
merics, the hyperbolic bootstrap bounds of the kind described above cannot be saturated
by actual orbifolds. This gives an explicit example where the bootstrap bounds, although
being extremely close to saturation – in the case of the OPE coefficient S12, to within 11
significant digits! – eventually fall short of determining the exact spectrum.

We give a brief summary of the overall argument in Section 1.1, and an outlook in
Section 4. The rest of the paper is devoted to the technical details of the derivation. In
Section 2 we introduce the general methods from [4], by which we bound the eigenvalues
and OPE coefficients, and we then introduce the quantities we will use to show that the
bounds are not saturated and derive methods to numerically calculate them. In Section 3,
we introduce the numerical results that show that the bootstrap bounds are indeed not
saturated. We also supply an appendix in which we provide explicit metrics for [0; k1, k2, k3]
orbifolds and for the Bolza surface.

3And in other cases have been rigorously proven not to be saturated [17].
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1.1 Summary

Any hyperbolic 2-orbifold X can be represented by X = Γ\H2, where H2 is the hyperbolic
upper half-plane and Γ is a discrete cocompact subgroup of PSL(2,R), which in turn is
the connected component of the isometry group of H2. The group Γ is isomorphic to the
fundamental group of X.

The key observation [18] by which we bound the eigenvalues of an orbifold, is that by
considering associativity of products in L2(Γ\PSL(2,R)), we can gain a series of equalities
involving the spectrum of the Laplacian, which we call the crossing equations:4

Fn
2n+l(0) +

∞∑
k=1

TkFn
2n+l(λk) =

{
S2n+l if l is even,

0 otherwise,
(1.4)

for all integer l ≥ 0, where λk are the non-zero eigenvalues of the Laplacian on the orbifold,
are polynomials, and S2n+l and Tk are non-negative constants called the OPE coefficients,
associated with the orbifold, and Fn

2n+l(λ) are a series of polynomials. We must choose n
depending on the class of orbifolds on which we wish to bound the spectral gap, and for
the most general bound (1.1), we set n = 6.

Moreover, with a linear combination of Λ + 1 of these equations, we can get (for the
general bound (1.1))

Λ∑
l=0
l even

(−αl)S2n+l + Pnα (0) +
∞∑
k=1

TkP
n
α (λk) = 0, (1.5)

where αl are any coefficients we choose and Pnα (λ) =
∑Λ

l=0 αlFn
2n+l(λ), which we will call a

functional.
To find a bound, we look for a value λ̃1 and a set of coefficients αl such that:

• Pnα (λ) ≥ 0 on
[
λ̃1,∞

)
;

• Pnα (0) > 0;

• for even l, αl < 0.

If such αl can be found, it follows that λ1 ≤ λ̃. Indeed, if all of the eigenvalues were in
{0} ∪ [λ̃1,∞), then the left hand side of (1.5) would be positive, giving us a contradiction,
and so we must have λ1 < λ̃1. For a given Λ, we then look for the smallest λ̃1 such that
αl can be found, which we shall denote by λ̃Λ1 . We have λ1 ≤ λ̃Λ1 and we cannot obtain
stronger bounds at the given value of Λ.

We are interested in the asymptotic behaviour of these bounds as Λ → ∞. It is clear
that λ̃Λ1 has a well-defined limit λ̃∞1 as it is descreasing and bounded below, but a priori the
behaviour of αl in this limit is less clear. We see numerically however, that when suitably
normalized, these coefficients also seem to converge to particular values α∞

l , which we call
the extremal functional.

4For details of how these equations are derived, the reader is referred to [4].
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Assuming the existence of an extremal functional, (1.5) must hold with αl = α∞
l and

Λ = ∞. If for some given orbifold λ1 = λ̃∞1 , then each of the terms in this version of
(1.5) is non-negative, and so they must all be zero. We can check if this is indeed the case.
Firstly, we can estimate the coefficients α∞

l from the numerics. Secondly, we can compute
the OPE coefficients such as Sp for a given orbifold from geometric methods. Doing this for
the general bound on λ1 (in which case the candidate orbifold is [0; 2, 3, 7] and n = 6), we
find that, indeed, αlS2n+l seems to be converging to 0 for 0 ≤ l ≤ 27. However, for l = 28

we find that the limit α∞
28S40 appears to be non-zero. We can hence see that the bound

cannot be saturated by this orbifold. By a more quantitative version of this argument, we
show in (3.11) that in fact

λ̃∞1 − λ
[0;2,3,7]
1 ≳ 1.7× 10−8. (1.6)

Moreover, it is known from [4] that this is the only orbifold that could saturate this bound,
and so the bound cannot be saturated for any orbifold.

We use similar techniques to show that the asymptotic bound on S12 is not saturated,
and we find that, denoting this bound by S̃∞

12 ,

S12 − S̃∞
12 ≳ 4.1× 10−11, (1.7)

which is comparable to the observed difference

S12 − S̃Λ=79
12 ≈ 7.2× 10−11. (1.8)

We also find that the asymptotic bound on λ1 for genus 2 surfaces is not saturated by the
Bolza surface and provide a similar bound on the difference λ1 − λ̃∞1 .

In order to quantify the non-saturation of these bounds, we derive methods to the
calculate OPE coefficients on specific orbifolds. For the coefficients Tk we use the numerical
bootstrap to find two-sided bounds on them. For the coefficients Sp, we relate them to the
Petersson norms of Rakin-Cohen brackets of modular forms. These norms are calculated
explicitly by finding models of the relevant orbifolds in terms of punctured spheres with
explicit metrics, which we do in the cases of the [0; 2, 3, 7] orbifold and the Bolza surface.

2 Numerical Bootstrap and OPE Coefficients

2.1 Setup and Bounds

We consider the hyperbolic orbifold X = Γ\H2 for some discrete cocompact subgroup
Γ < G ≡ PSL(2,R). We shall be interested in the spectrum of the Laplacian, or explicitly
in solutions to

−∆f ≡ −
∑
ij

1√
det g

∂i(
√

det g gij∂jf) = λf, (2.1)

where g is the unique Riemannian metric of constant Gaussian curvature −1 on X (hence-
forth referred to as the hyperbolic metric).
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The eigenvalues λ can be placed in non-decreasing order as

0 = λ0 < λ1 ≤ λ2 ≤ . . . (2.2)

and we are interested in finding bounds λ̃1 such that for any choice of Γ,

λ1 ≤ λ̃1. (2.3)

We define the signature of X to be [g; k1, k2, . . . , kr] if X is of genus g and has r orbifold
points of order k1 . . . kr. Let ℓn be the dimension of space of holomorphic sections of the nth

power of the canonical bundle over X, to which we will refer as the holomorphic differentials
of degree n. The Riemann-Roch formula ([19], Theorem 4.9) tells us that

ℓn = (2n− 1)(g − 1) +
r∑
i=1

⌊
n
ki − 1

ki

⌋
+ δn,1. (2.4)

Single-correlator bounds For any n such that ℓn ≥ 1, we have at least one holomor-
phic differential of degree n. A crossing equation for this holomorphic differential can be
formulated following [4, 5], which gives us the constraint that for any l ≥ 0,

Fn
2n+l(0) +

∞∑
k=1

TkFn
2n+l(λk) =

{
S2n+l if l is even,

0 otherwise,
(2.5)

where

Fn
p (λ) =

∑
a+b+c=p−2n

(−1)a(2n+ a)c(1− p)2b
c!(2− 2p)bb!(a!)2

a−1∏
k=0

(λ+ k + k2). (2.6)

The sum runs over all non-negative a, b, c that sum to p − 2n, and S2n+l, and Tk are
non-negative constants. The Tk are proportional to the squared overlap integral of the
holomorphic differential, its complex conjugate, and a Laplace eigenfunction [4]. The S2n+l
are proportional, as we show in Section 2.2, to the squared structure constants of the
Rankin-Cohen algebra [20] of holomorphic differentials on X.

Using the Riemann-Roch formula (2.4) it can be shown that one of {ℓ1, ℓ2, ℓ3, ℓ4, ℓ6} is
always non-zero [4]. By considering the bounds arising from each of these cases separately,
we find that n = 6 gives the weakest and thus the most general bound (1.1).

Considering a linear combination of the conditions (2.5) with coefficients αl, we obtain
(1.5). For a given, λ̃1, we search for a set of coefficients αl such that setting Pnα (λ) =∑Λ

l=0 αlFn
2n+l(λ), we have

Pnα (0) = 1;

Pnα (λ) ≥ 0, for all λ ≥ λ̃1; (2.7)

αl ≤ 0, for l even;

as this gives a contradiction if λ1 ≤ λ̃1, following the standard arguments outlined in the
introduction.
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This search can be performed numerically using the semidefinite program solver SDPB [21],
and the optimal bound λ̃1 can by found by performing a binary search. Applying this to
n = 6 with Λ = 77, we find that

λ̃Λ=77
1 ≈ 44.8883536337, (2.8)

which agrees with the Λ = 41 bound from [4] stated in (1.1).

Multi-correlator bounds For any genus g orbifold, (2.4) gives that ℓ1 = g. This gives
us g holomorphic differentials of degree 1 with which we can form a system of crossing
equations which give us the constraint [4] that for p ≥ 2n,

Sp = F1
p (0) +

∞∑
k=1

(
Qk −

1

ℓ1
Tk

)
F1
p (λk) =

∞∑
k=1

TkF1
p (λk) if p is even; (2.9)

Ap = F1
p (0) +

∞∑
k=1

(
Qk −

1

ℓ1
Tk

)
F1
p (λk) = −

∞∑
k=1

TkF1
p (λk) if p is odd; (2.10)

where Sp, Ap, Tk, and Qk are non-negative coefficients, which we shall call once again call the
OPE coefficients. The Tk and Qk are proportional to squared overlap integral of the holo-
morphic differentials, their complex conjugates, and a Laplace eigenfunction, which have
been symmetrized and antisymmetrized respectively. Sp and Ap are similarly proportional
to squared symmetrized and anti-symmetrized structure constants of the Rankin-Cohen
algebra.

As before, we consider a linear combination of these conditions,

−
Λ∑
l=0
l even

αlS2+l −
Λ∑

m=1
l odd

βmA2+m + P 1
γ (0) + P 1

δ (0) +

∞∑
k=1

Qk(P
1
γ (λk) + P 1

δ (λk))

+
∞∑
k=1

(
Tk

(
P 1
α(λk)− P 1

β (λk)−
(
ℓ1 + 1

ℓ1

)
P 1
γ (λk) +

(
ℓ1 − 1

ℓ1

)
P 1
δ (λk)

))
= 0, (2.11)

where αl and γl are only non-zero for even l, and βm and δm are only non-zero for odd m.
Given a potential λ̃1, we once again use a combination of binary search and semidefinite

programming to look for values of these coefficients such that every term in the crossing
equations is positive. Applying this process for g = 2, Λ = 59, we obtain a bound that is
almost saturated by the Bolza surface,

λ̃Λ=59, g=2
1 ≈ 3.8388976481487. (2.12)

OPE bounds We can use a similar approach to bound a particular OPE coefficient, by
isolating the term containing it in the crossing equation. For example in the case of the
single-correlator bound from (2.5) we can bound S2n, by writing (1.5) as

α0S2n − Pnα (0) =

Λ∑
l=2
l even

(−αl)S2n+l +
∞∑
k=1

TkP
n
α (λk). (2.13)

– 6 –



If we find a functional such that

α0 = 1;

αl ≤ 0, for even l ≥ 2; (2.14)

Pnα (λ) ≥ 0, for λ ≥ 0;

that maximizes Pnα (0), then we find that S2n ≥ Pnα (0). A similar argument can be used to
construct bounds for Tk.

Denoting this lower bound by S̃Λ
2n and applying this with n = 6, Λ = 79 gives us

S̃Λ=79
12 ≈ 1.1540969443224 (2.15)

which agrees with the Λ = 37 bound from [4] stated in (1.2).
We can also use this to bound eigenvalues and OPE coefficients on concrete orbifolds by

noting that we only actually need Pnα (λ) to be non-negative at each λk. Hence, if we have
some information about the spectrum, then we can often obtain tight two-sided bounds on
these quantities. Additionally, we may be able to use the Riemann-Roch formula to show
that certain OPE coefficients are zero, allowing us to relax the negativity constraints on the
corresponding Ap and Sp. We will later use this idea to effectively compute T1 on concrete
orbifolds, which is necessary to quantify the non-saturation of the bootstrap bounds, (1.1),
(1.2) and (2.12).

2.2 Definitions of the OPE coefficients

In this section we give the precise definition of the OPE coefficients Ap and Sp which will
be required in what follows. This section is essentially a review of the relevant parts of [4].

With G = PSL(2,R), let Γ < G be the subgroup such that Γ\H2 is isometric to the 2-
orbifold X. We recall that we can use the Iwasawa decomposition to paramaterize elements
of G as

g(x, y, θ) = ±

(
1 x

0 1

)(√
y 0

0 1√
y

)(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
, (2.16)

where x ∈ (−∞,∞), y ∈ (0,∞), θ ∈ R/2πZ, and ± is needed because we are working with
PSL(2,R) and not SL(2,R).

The Haar measure on G is given by

dµ(g(x, y, θ)) =
1

2πvol(Γ\H2)

dx dy dθ

y2
. (2.17)

This measure is both left-invariant and right-invariant, and we shall normalize it by setting
µ(Γ\G) = 1. L2(Γ\G) is then defined to be the space of functions F : Γ\G → C such
that

∫
Γ\G |F (g)|2 dµ(g) < ∞. This is a Hilbert space with the inner product given by:5

(F1, F2) =
∫
Γ\G F1(g)

∗ F2(g) dµ(g), and an induced norm given by ∥F∥ =
√
(F, F ). We

5We follow the standard convention from the physics literature, and define this inner product to be linear
in the second argument.
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shall often lift F to a function from G to C, and by abuse of notation, we shall also call
this function F .

We can introduce a basis for the complexified Lie algebra of G, gC, which acts on
L2(Γ\G), as

(L−1F )(x, y, θ) = e−iθ[y(∂x − i∂y) + ∂θ]F (x, y, θ),

(L0F )(x, y, θ) = i∂θF (x, y, θ), (2.18)

(L1F )(x, y, θ) = −eiθ[y(∂x + i∂y) + ∂θ]F (x, y, θ),

and which obeys the commutation relations [Lm, Ln] = (m− n)Lm+n.
We can decompose L2(Γ\G) into eigenspaces of L0,

L2(Γ\G) =
⊕
n∈Z

Vn, (2.19)

where L0 = n on Vn. We parameterize elements of Vn as

F (x, y, θ) = y|n|e−inθfn(x, y). (2.20)

Moreover, if we switch to complex coordinates, z = x+iy, z = x−iy, and let hn(z, z) =
fn(x, y), we can see that invariance of the functions F under Γ requires that

hn (γ · z, γ · z) =

{
(c+ dz)2nhn(z, z) if n ≥ 0

(c+ dz)−2nhn(z, z) if n < 0
, ∀ γ =

(
a b

c d

)
∈ Γ, (2.21)

where γ · z = az+b
cz+d .

We define for n ≥ 0

Wn = {y|n|e−inθhn(x+ iy) ∈ Vn | hn holomorphic}. (2.22)

The above discussion implies that hn is a holomorphic modular form of weight 2n of level
Γ, and so Wn is isomorphic to the space of holomorphic modular forms of weight 2n of
level Γ, M2n(Γ). Expliticly calculating the inner product of these functions in L2(Γ\G) for
n ≥ 0, we find that,

⟨yne−inθgn(x+ iy), yne−inθhn(x+ iy)⟩L2(Γ\G)

=
1

vol(Γ\H2)

∫
Γ\H2

gn(x+ iy)hn(x+ iy)y2n−2 dy dx (2.23)

= ⟨gn, hn⟩M2n(Γ),

which is the Petersson inner product of modular forms. We shall denote its associated norm
by ∥hn∥M2n(Γ) =

√
⟨hn, hn⟩M2n(Γ).

As the differentials hn(z, z)dzn are invariant under the action of Γ, they consitute the
space of holomorphic differentials of degree n on X, and so ℓn is the dimension of M2n(Γ).
We shall henceforth assume that {hn,a(z)}ℓna=1 is an orthonormal basis for M2n(Γ) with
respect to the Petersson inner product (2.24).
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Decomposing L2(Γ\G) into irreducible representations of G, we find that the functions
in Wn correspond to lowest-weight vectors in discrete series representations. By analogy
with the representation theory of the conformal algebra, we can then define what we shall
call coherent states, which are analogues of primary operators in a CFT. Given one of the
basis elements hn,a, we define the associated holomorphic discrete series coherent state by

On,a(w)(x, y, θ) = exp(wL−1)
(
yne−inθhn,a(x+ iy)

)
, (2.24)

where w ∈ C, |w| < 1.
We also define an anti-holomorphic coherent state6 by

Õn,a(w)(x, y, θ) = w−2n exp(−w−1L−1)
(
yneinθhn,a(x+ iy)

)
, (2.25)

where w ∈ C, |w| > 1.
Extending the analogy with CFTs, we can define correlators of k functions Fi ∈ Γ\G

as

⟨F1F2 . . . Fk⟩ =
∫
dµ(g)F1(g)F2(g) . . . Fk(g), (2.26)

and similarly to CFT two-point functions, it can be seen that〈
On1,a1(w1)Õn2,a2(w2)

〉
=
δn1,n2δa1,a2
(w1 − w2)2

. (2.27)

By projecting a product of these coherent states On,a1(w1)On,a2(w2) onto the irreducible
representations of G in L2(Γ\G), we can introduce the so-called operator product expansion
(OPE) between these coherent states, which in [4] was found to be

On,a1(w1)On,a2(w2) =
∞∑

p=2n

ℓp∑
a=1

∞∑
m=0

(p)m
(2p)mm!

fa1,a2p,a (w1 − w2)
p+m−2nLm−1Op,a(w2), (2.28)

where fa1,a2p,a are coefficients depending on the choice of Γ, and (p)m denotes the Pochhammer
symbol (p)m =

∏m−1
k=0 (p+ k).

The crossing equations (1.4) and (2.11) are derived by considering the correlator

⟨On,a1(w1)On,a2(w2) Õn,a3(w3) Õn,a4(w4)⟩, (2.29)

expanding it into a sum of “conformal blocks” using OPEs between different pairs of fields,
and imposing equality between these expansions.7

Normally, the crossing equations would involve the individual OPE coefficients such as
fa1,a2p,a . However, since for a fixed n all the ℓn coherent states On,a transform in the same

6This state is still meromorphic in w, but we call it an anti-holomorphic coherent state as it depends on
the anti-holomorphic modular form hn,a(x+ iy).

7Specifically, we use an OPE between On,a1(w1)On,a2(w2) and between Õn,a3(w3) Õn,a4(w4) on one side
of the equation, and on the other side between On,a1(w1) Õn,a3(w3) and between On,a2(w2) Õn,a4(w4). This
requires expressions for other OPEs which are given in [4].

– 9 –



representation, there is an enhacement of symmetry in the bootstrap bounds. This allows
a reduction (equivalent from the point of view of the bootstrap bounds) of the full system
of crossing equations to the simple systems (1.4) and (2.11) we described in Section 2.1.

To obtain (1.4), we consider the case where a1 = a2 = a3 = a4 in (2.29), and the OPE
coefficients Sp are given by

Sp =

ℓp∑
a=1

|fa1,a1p,a |2. (2.30)

For (2.11), the OPE coefficients Ap and Sp are related to fa1,a2p,a through

Sp =

ℓp∑
a=1

ℓn∑
a1=1

ℓn∑
a2=1

1

ℓn(ℓn + 1)
|f (a1,a2)p,a |2, (2.31)

and

Ap =

ℓp∑
a=1

ℓn∑
a1=1

ℓn∑
a2=1

1

ℓn(ℓn − 1)
|f [a1,a2]p,a |2. (2.32)

Here, the symmetric and anti-symmetric parts of fa1,a1p,a are defined as

f (a1,a2)p,a =
1

2

(
fa1,a2p,a + fa2,a1p,a

)
, (2.33)

f [a1,a2]p,a =
1

2

(
fa1,a2p,a − fa2,a1p,a

)
. (2.34)

2.3 OPE coefficients from Rankin-Cohen brackets

In this section we relate the OPE coefficients Sp and Ap to the structure constants of a
Rankin-Cohen algebra. In Section 2.4, we shall then show how this can be used to calculate
these OPE coefficients on specific orbifolds, such as the [0; 2, 3, 7] orbifold and the Bolza
surface, using the metrics given in Appendix A.

We shall introduce the notation

Ôa1,a2
p (w) =

ℓp∑
a=1

fa1,a2p,a Op,a(w) (2.35)

and

ĥa1,a2p (z) =

ℓp∑
a=1

fa1,a2p,a hp,a(z) (2.36)

in the discussion that follows. This notation is helpful, as by orthonormality of our basis of
modular forms with respect to (2.24), we can write the OPE coefficient (2.30) that appears
in our single correlator crossing equation (1.4) as

Sp =
∥∥∥ĥa1,a1p

∥∥∥2
M2n(Γ)

=
∥∥∥Ôa1,a1

p (w)
∥∥∥2
L2(Γ\G)

. (2.37)
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Similarly for the multi-correlator bound (2.11), we can write the OPE coefficients as

Sp =

ℓn∑
a1=1

ℓn∑
a2=1

1

ℓn(ℓn + 1)

∥∥∥ĥ(a1,a2)p

∥∥∥2
M2n(Γ)

=

ℓn∑
a1=1

ℓn∑
a2=1

1

ℓn(ℓn + 1)

∥∥∥Ô(a1,a2)
p (w)

∥∥∥2
L2(Γ\G)

,

(2.38)

and

Ap =

ℓn∑
a1=1

ℓn∑
a2=1

1

ℓn(ℓn − 1)

∥∥∥ĥ[a1,a2]p

∥∥∥2
M2n(Γ)

=

ℓn∑
a1=1

ℓn∑
a2=1

1

ℓn(ℓn − 1)

∥∥∥Ô [a1,a2]
p (w)

∥∥∥2
L2(Γ\G)

(2.39)

In order to calculate the OPE coefficients, we shall hence look for formulas for Ôa1,a2
p (w)

and ĥa1,a2p .
The starting point for our explicit formulas, is to rewrite (2.28) in terms of Ôp,

On,a1(w1)On,a2(w2) =
∞∑

p=2n

∞∑
m=0

(p)m
(2p)mm!

(w1 − w2)
p+m−2nLm−1Ôp(w2). (2.40)

Expanding this equation around the point w1 = w2, we can invert it to obtain expressions
for the coherent states Ôa1,a2

p (w). For example, by expanding to second order in w1 − w2,
we can find that

Ôa1,a2
2n (w2) = On,a1(w2)On,a2(w2), (2.41)

Ôa1,a2
2n+1(w2) =

∂

∂w1
On,a1(w1)On,a2(w2)

∣∣∣∣∣
w1=w2

− 1

2
L−1Ô

a1,a2
2n (w2) (2.42)

Ôa1,a2
2n+2(w2) =

1

2

∂2

∂w2
1

On,a1(w1)On,a2(w2)

∣∣∣∣∣
w1=w2

− 1

2
L−1Ô

a1,a2
2n+1(w2) (2.43)

− (2n+ 1)

4(4n+ 1)
L2
−1Ô

a1,a2
2n (w2).

This is analogous to the way we can create new primary operators from an OPE in mean
field theory.

Considering the way that these identities look in terms of hn,a, we in fact find that
we have a bilinear differential operator of degree 2k from M2n(Γ)×M2n(Γ) to M4n+2k(Γ).
The unique such map (up to a multiplicative constant) is the Rankin-Cohen bracket [4, 20],
which is defined by

[h1, h2]k(z) =
∑
r+s=k

(−1)r
(
2n+ k − 1

s

)(
2n+ k − 1

r

)
h
(r)
1 (z)h

(s)
2 (z). (2.44)

In fact, we can prove by induction that the two constructions are related by

ĥa1,a22n+k(z) =
2k

(4n+ k − 1)k
[hn,a1 , hn,a2 ]k(z). (2.45)
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Noting that the Rankin-Cohen bracket is symmetric for k even, and anti-symmetric for
k odd, we can find that ĥ[a1,a2]2n+k (z) = 0 if k is even, and ĥ(a1,a2)2n+k (z) = 0 if k is odd. We will
show an explicit way to compute ĥa1,a2p for the [0; 2, 3, 7] orbifold and the Bolza surface in
the next section and in Appendix A.

2.4 Rankin-Cohen Algebra on Punctured Spheres

We now have explicit formulas for the OPE coefficients in terms of modular forms, but
unfortunately for a generic Γ, constructing such modular forms is difficult. We shall hence
find an alternate framework for calculating the OPE coefficients.

Noting that modular forms are just holomorphic differentials onX = Γ\H2, we can look
for an alternate description of X, where these holomorphic differentials can be more easily
constructed. We shall call this alternative description X̃. For any [0; k1, k2, k3] orbifold, we
can take X̃ to be a three-punctured sphere with the hyperbolic metric given in (A.5). For
the [0; 2, 3, 7] orbifold this is applicable directly. The Bolza surface is the eightfold cover of
the [0; 4; 4; 4] orbifold, and so we can use the covering map to lift (A.5) to a metric on the
Bolza surface. This construction of X̃ for the Bolza surface is detailed in Appendix A.2.

The holomorphic differentials will have simple expressions in local coordinates on X̃

(as we shall discuss in Appendix A), and this approach gives us explicit expressions for
both the hyperbolic metric. The last ingredient that we require is the expression for the
Rankin-Cohen bracket, which in local coordinates on X̃ will be different from (2.44). To
derive it we will use the biholomorphic isometry between X̃ and X, which we can lift to a
multi-valued function τ : X̃ → H2.

A modular form of weight 2n, hn,a gives us a holomorphic differential hn,a(τ)dτn on
X. We can then use τ to write the corresponding differential on X̃, by

h̃n,a(z)dz
n = hn,a(τ(z))dτ(z)

n. (2.46)

We shall introduce the notation Rn for the space of holomorphic differentials of degree
n on X̃. For f̃(z)dzm ∈ Rm, g̃(z)dzn ∈ Rn, the differential corresponding to the Rankin-
Cohen bracket is given by

[f̃(z)dzm, g̃(z)dzn]D,k(z) =
∑
r+s=k

(−1)r
(
2m+ k − 1

s

)(
2n+ k − 1

r

)
(Drf̃(z)dzm)(Ds(g̃(z)dzn),

(2.47)

where

Df̃(z)dzm = f ′(τ(z))τ ′(z)dτ(z)m+1. (2.48)

As we will see later, the holomorphic differentials on X̃ become simple rational functions
in z coordinate. In particular, f̃(z), g̃(z), as well as the sum in the right-hand side of (2.47)
have simple rational expressions. On the other hand, the map τ that enters into this sum
has a much more complicated expression, similar in flavour to the metric (A.5). This means
that there are some subtle cancellations that must happen in (2.47).
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This is manifest in the following equivalent form of (2.47),8

[f̃(z)dzm, g̃(z)dzn]D,k(z) =
∑
r+s=k

(−1)r
(
2m+ k − 1

s

)(
2n+ k − 1

r

)
fr(z)gs(z)dz

m+n+k,

(2.49)

where fr and gr are defined inductively by f0(z) = f̃(z), g0(z) = g̃(z) and

fr+1(z) = f ′r(z) +
r(1− 2m− r)

2
{τ(z), z}fr−1(z), (2.50)

gs+1(z) = g′s(z) +
s(1− 2m− s)

2
{τ(z), z}gs−1(z). (2.51)

The only dependence on τ in this formula is in the Schwarzian derivative of τ ,

{τ(z), z} =
τ ′′′(z)

τ ′(z)
− 3

2

(
τ ′′(z)

τ ′(z)

)2

. (2.52)

While τ(z) is relatively complicated, it is well-known that {τ(z), z} is a single-valued9

holomorphic function of z, with the only singularities being poles at the orbifold points.
Furthermore, the leading coefficients at these poles can be expressed in terms of the angle
deficits. Using this, the whole function {τ(z), z} can be fully determined in the case of
three singularities. We give explicit formulas for it in the cases of the [0; 2, 3, 7] orbifold and
the Bolza surface in Appendix A.

We now finally have all the necessary ingredients to compute the OPE coefficients Ap
and Sp on the [0; 2, 3, 7] orbifold and the Bolza surface. We give the remaining technical
details in Appendix A.

3 Results

In this section we shall finally show that the nearly-saturated bounds, (1.1), (1.2) and (2.12)
are not in fact saturated.

3.1 Non-saturation of S̃∞
12 by the [0; 2, 3, 7] Orbifold

As we noted in the introduction, we know that for n = 6, the best lower bound we obtain
on S12 is

S̃Λ=79
12 ≈ 1.1540969443224, (3.1)

which is almost saturated by the [0; 2, 3, 7] orbifold, which we can calculate by (A.10),

S12 ≈ 1.1540969443945. (3.2)

We are hence interested in the question of whether the bound S̃∞
12 = limΛ→∞ S̃Λ

12 is exactly
saturated by this orbifold. The first piece of evidence that the bound may not be saturated

8This follows from Proposition 2 of [20], with F = dz.
9The single-valuedness of this follows from the general property that the Schwarzian derivative is invari-

ant under Möbius transformations.
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Figure 1
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10-5

(a) Plot of the difference between S12 on
the [0; 2, 3, 7] orbifold, and the bounds S̃Λ

12.

20 40 60 80

10-7

10-6

10-5

10-4

(b) Plot showing the convergence of −α4, −α10, and
−α28 to non-zero values when bounding S12.

can be seen from Fig. 1a, where we can see that while the difference S12− S̃Λ
12 is very small,

it appears to be converging to a non-zero value. We shall however assume that the bound
is indeed saturated, seeking a contradiction.

We note that in this limit the coefficients αl appear to be converging to an extremal
functional α∞

l = limΛ→∞ αΛ
l . If the bound S̃∞

12 is saturated by the value of S12 for [0; 2, 3, 7],
then every term α∞

l S2n+l in (1.5) evaluated on α∞
l must equal zero (other than α∞

0 S12),
as they must be non-negative because of (2.14).

We illustrate the convergence of the coefficients αl in Figure 1b for α4, α10, and α28.
From the figure we can see that these coefficients appear to have essentially converged to
their limiting values α∞

l , and furthermore that the limiting values α∞
4 , α∞

10 and α∞
28 are

non-zero. We will assume from now on that the extremal functional α∞
l for this bound

exists, is unique, and that our numerics correctly approximate its values.
For the bound to be saturated, the non-vanishing of α∞

4 , α∞
10 and α∞

28 implies that the
corresponding OPE coefficients S16, S22 and S40 must vanish on [0; 2, 3, 7]. The vanishing
of S16 and S22 can be seen simply from the Riemann-Roch theorem (2.4) which states that
ℓ16 = ℓ22 = 0, and so there is no holomorphic differential to appear with these coefficients.
On the other hand, ℓ40 = 1, and it is possible for S40 to be non-zero. Using (A.10), we
calculate that in fact,

S40 ≈ 7.0278× 10−4. (3.3)

This leads to a contradiction and hence shows that the bound S̃∞
12 cannot be saturated by

[0; 2, 3, 7].
Looking at the crossing equation (2.13) and the constraints (2.14), we can see that

S12 − P 6
α∞(0) ≥ −α∞

28S40. (3.4)

Since the bound is given by S̃∞
12 = P 6

α∞(0), we find that

S12 − S̃∞
12 ≥ −α∞

28S40, (3.5)
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Figure 2
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(a) Plot showing the convergence of α̂28 to a non-
zero value with the single-correlator bound on λ1
on with n = 6.
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(b) Plot of ∆Λ with the single-correlator
bound on λ1 on with n = 6.

which gives a lower bound on how far from saturation the bound we found is.
Using the value of α∞

28 and S40 obtained above, we find the result (1.7)

S12 − S̃∞
12 ≳ 4.1× 10−11. (3.6)

Since the value of S12 on the [0; 2, 3, 7] orbifold can be calculated (1.8), we have

S12 − S̃Λ=79
12 ≈ 7.2× 10−11, (3.7)

which implies that the bound S̃∞
12 cannot be much closer to saturation than the Λ = 79

result.

3.2 Non-saturation of λ̃∞1 by the [0; 2, 3, 7] Orbifold

The bound λ̃Λ=77
1 is almost saturated by the [0; 2, 3, 7] orbifold. In order for the αl to

converge to an extremal functional, we need a different normalization to the normalization
given in (2.7). Namely, we can consider the functional given by α̂l = αl

α1

10, and we do then
see that α̂l seems to converge to α̂∞

l .
Once again to show non-saturation we look for a term in (1.5) that coverges to a non-

zero value, and once again, we find that α∞
28 appears to be non-zero and we know from the

previous section that S40 on [0; 2, 3, 7] is non-zero. Figure 2a illustrates the convergence of
α̂28 explicitly. This already shows that this bound cannot be saturated either. In the rest
of this section we quantify how close to saturation it can be.

We know that any valid P 6
α̂ can only be negative in the region (∞, 0)∪ (0, λ̃1). In [4], it

was found using finite element methods that λ2 ≈ 142.5551 on the [0; 2, 3, 7] orbifold, and
so we can see that the only term in (1.5) for this orbifold that can be negative is P 6

α̂(λ1) (as
λ̃Λ1 < 46 for all Λ ≥ 1). Hence, the crossing equation together with the positivity conditions
from (2.7) implies that

α̂28S40 > T1P
6
α̂(λ1). (3.8)

10As this is just rescaling (1.5), and αl > 0, this functional still gives us a valid bound.
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Figure 3
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(a) Plot showing the convergence of β̂19 to a
non-zero value with the multi-correlator bound
on λ1 on genus-2 surfaces.
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(b) Plot of ∆Λ with the multi-correlator bound
on λ1 on genus-2 surfaces.

Since for the functionals we obtain, P 6
α̂ is monotone increasing on the interval [λ1, λ̃1],

we can invert this to find

λ1 ≤ (P 6
α̂)

−1

(
α̂28S40
T1

)
. (3.9)

Defining ∆Λ = λ̃Λ1 − (P 6
α̂)

−1
(
α̂28S40
T1

)
, this becomes

λ̃Λ1 − λ1 ≥ ∆Λ. (3.10)

We calculate the value of T1 on the [0; 2, 3, 7] orbifold by numerically bootstrapping it
with similar methods Section 2.1. We observe numerically that ∆Λ strongly seems to be
converging to a non-zero value, as is shown in Figure 2b, and so on the [0; 2, 3, 7] orbifold,

λ̃∞1 − λ1 ≥ ∆∞ ≈ 1.7× 10−8. (3.11)

We do not know λ1 on the [0; 2, 3, 7] orbifold with enough precision to evaluate the difference
with the λ̃Λ=77

1 bound given in (2.8).

3.3 Non-saturation of λ̃∞1 by the Bolza Surface

The bound on λ1 for genus two surfaces (2.12) is almost saturated by λ1 on the Bolza
surface, and if we rescale the functional such that β̂1 = 1, then we observe convergence to
an extremal functional. We further know that on the Bolza surface, λ1 is the only eigenvalue
in (0, λ̃1], as in [22], they find that λ2 ≈ 5.353. By analysing the crossing equation (2.11)
with n = 1, ℓn = 2, along with the conditions for the functional to produce a valid bound,
we can see that

λ1 ≤

F
−1
(
α̂qS2+q

T1

)
if q is even,

F−1
(
β̂qA2+q

T1

)
if q is odd,

(3.12)
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where

F (λ) = P 1
α̂(λ)− P 1

β̂
(λ)− 3

2
P 1
γ̂ (λ) +

1

2
Pn
δ̂
(λ), (3.13)

and so we look for either a term α̂∞
q S2n+q or β̂∞q A2n+q that is non-zero.

Once again looking at the coefficients, we see that β̂∞19 is non-zero from Figure 3a and
on the Bolza surface, by (A.21),

A21 ≈ 1.8525× 10−9, (3.14)

which is also non-zero on the Bolza surface. Therefore, the Bolza surface does not saturate
λ̃∞1 . Similarly to the last section, as F is once again monotone increasing on the interval
[λ1, λ̃1], we shall set ∆Λ = λ̃Λ1 − F−1

(
β̂19A21

T1

)
, so that

λ̃Λ1 − λ1 ≥ ∆Λ. (3.15)

Once again applying the numerical bootstrap to find the value of T1, we calculate ∆Λ on
this surface, which strongly seems to be converging to a non-zero value, as is shown in
Figure 3b, and so on the Bolza surface,

λ̃∞1 − λ1 ≥ ∆∞ ≈ 5.59683× 10−6, (3.16)

giving us a bound on the non-saturation. In [23], the value of λ1 on the Bolza surface was
found to high precision with finite element methods as

λ1 = 3.8388872588421995 . . . , (3.17)

and so comparing this to the bound (2.12), which has Λ = 59, we can see that this is
approximately 1.0389× 10−5 away from being saturated, and so λ̃∞1 cannot be much closer
to saturation than λ̃Λ=59

1 .

4 Conclusions

We have shown, by examining the functionals obtained from the bootstrap, that the bounds
on λ1, (1.1) and (2.12) are not saturated by the [0; 2, 3, 7] orbifold or the Bolza surface
respectively, under reasonable assumptions about the convergence of the numerics. This
was because of the fundamental obstruction that there are terms in the crossing equations
(1.5) and (2.11), which are converging to non-zero values. To show this obstruction, we
related the OPE coefficients to Rankin-Cohen brackets, and found ways to calculate the
Petersson norms of these Rankin-Cohen brackets numerically on the [0; 2, 3, 7] orbifold and
on the Bolza surface.

It is worth noting that although these bounds coming from simple systems of correla-
tors are not saturated by either of these orbifolds, that does not mean that they cannot be
improved by considering more sophisticated setups. For example, we only consider correla-
tors of lowest-weight modular forms of level Γ, but there are obviously more sophisticated
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systems of correlators that could be formed using higher-weight modular forms, which might
give tighter bounds.

There are other applications of the bootstrap to spectral geometry, for example the
spectrum of the Dirac operator on hyperbolic spin 2-orbifolds [7], and the spectrum of the
Laplacian on closed Einstein manifolds [18], and closed hyperbolic 3-manifolds [6]. Based
upon our results, we would expect that near-saturated bounds in these cases may also not
actually be saturated, and the techniques we have used here could possibly be adapted
to show non-saturation of these bounds as well. It is would also be interesting to better
understand the mechanism behind why these bounds are so close to saturation without
actually being saturated.

Better understanding this behaviour could also be useful from the point of view of
near-saturated bootstrap bounds in CFTs. For example, we know that we have bootstrap
bounds coming from a simple system of correlators that are almost saturated by the 3D
critical Ising model, and an open question is whether these bounds are saturated by the 3D
Ising model in the limit of an infinite number of derivatives acting on our crossing equations.
Similarly to the methods we have used here, if we could show that there is a term in the
crossing equations that is converging to a non-zero value, then that would show that the
bounds are not saturated.
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A Uniformization Map and Metric for the [0; 2, 3, 7] Orbifold and the
Bolza Surface

A.1 [0; 2, 3, 7] Orbifold

We recall from Section 2.4, that we have an biholomorphic isometry between a [0; k1, k2, k3]

orbifold X, and the three-punctured sphere X̃ with a specific metric that we will derive.
This map can be lifted to a multi-valued holomorphic map τ , from X̃ to H2. We call τ the
uniformization map.

We shall parameterize X̃ as C \ {0, 1} ≃ CP 1 \ {0, 1,∞}, and shall place the orbifold
point of order k1 at z1 = 0; the orbifold point of order k2 at z2 = 1; and the orbifold point
of order k3 at z3 = ∞.

Away from the singularities, τ must be holomorphic, and in the neighbourhood of a
singularity zi, τ(z) = ci + (z − zi)

1/ki + . . . for some constant ci. Similarly, from the
singularity at ∞, we get that at large z, τ(z−1) = c + z−1/ki + . . . for another constant
c. Using (2.52) we can translate these constraints into conditions on the singularities of
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{τ(z), z}. Recalling that {τ(z), z} is single-valued as the Schwartzian derivative is invariant
under Möbius transformations, one can then show that, with ηi = ki−1

2ki
,

{τ(z), z} =
2η1(1− η1)

z2
+

2η2(1− η2)

(z − 1)2
(A.1)

+ (η1(1− η1) + η2(1− η2)− η3(1− η3))

(
1

z
− 1

z − 1

)
. (A.2)

This is the starting point for deriving the hyperbolic metric for X̃. We omit this derivation
and only quote the final result. For details, see [4, 24, 25].

We define

r =
Γ(2(1− η1))

2Γ(1 + η1 − η2 − η3)Γ(η1 + η2 − η3)Γ(η1 − η2 + η3)Γ(η1 + η2 + η3 − 1)

Γ(2η1)2Γ(2− η1 − η2 − η3)Γ(1− η1 + η2 − η3)Γ(1− η1 − η2 + η3)Γ(−η1 + η2 + η3)
,

(A.3)

and

w̃1(z) = zη1(1− z)η22F1(η1 + η2 − η3, η1 + η2 + η3 − 1; 2η1; z),

w̃2(z) = (1− z)1−η1zη22F1(1− η1 + η2 − η3,−η1 + η2 + η3; 2(1− η1); z), (A.4)

and the hyperbolic metric is then given by

ds2 = e2ϕk1k2k3 (z,z)dz dz =
4r(1− 2η1)

2

(rw̃1(z)w̃1(z)− w̃2(z)w̃2(z))2
dz dz. (A.5)

The Petersson inner product (2.24) can then be transformed onto X̃, as

⟨hn,a1(τ), hn,a2(τ)⟩M2n(Γ)
=

1

vol(X̃)

∫
C
dz dz e(2−2n)ϕk1k2k3 (z,z) h̃n,a1(z) h̃n,a2(z), (A.6)

where h̃n,a(z) is the holomorphic differential corresponding to hn,a(τ) according to (2.46).
We shall write its induced norm as ∥ĥn,a(z) dzn∥.

To apply this to our single correlator bootstrap with n = 6, we need to find a holomor-
phic differential of degree 6 on X̃. As z is not a valid local coordinate at the orbifold points,
we can have poles in z here. For more details see [4]. The Riemann-Roch theorem (2.4) tells
us that there is only one such differential on the [0; 2, 3, 7] orbifold (up to a multiplicative
constant). This is given by

f6(z)dz
6 =

dz6

(z − 1)4z3
. (A.7)

We can hence define a holomorphic differential of unit norm,

h̃6(z)dz
6 =

f(z)dz6

∥f(z)dz6∥
. (A.8)

We can then see that the holomorphic differentials corresponding to (2.45), are given
by

ĥ12+k(z)dz
12+k =

2k

(23 + k)k
[h̃6(z)dz

6, h̃6(z)dz
6]D,k, (A.9)

– 19 –



where the Rankin-Cohen bracket is given in (2.49). We can finally use (2.37), to see that
the OPE coefficients in (1.4) for the [0; 2, 3, 7] orbifold are given by

S2n+k = ∥ĥ12+k(z)dz12+k∥2. (A.10)

As we have an explicit metric, this norm can be calculated by simply performing the nu-
merical integration in (A.6), or by the techniques outlined in Appendix D.2 of [4].

A.2 Bolza Surface

The Bolza surface is defined as the one-point completion of the algebraic curve defined
by [26]:

{(x, y) ∈ C2 : y2 = x5 − x}. (A.11)

It is a closed genus-2 Riemann surface, and it can be viewed as the double cover of the
sphere CP 1 with six branch points. We shall use x ∈ C as the coordinate on the CP 1, so
that

y = ±
√
x5 − x. (A.12)

We can then see that for a generic x, we have two values of y, and so the choice of square
root determines which copy of the sphere we are on, however for x = 0, 1, i,−1,−i,∞, these
two values of y are equal, and so these are the branch points.

Identifying the two copies of CP 1, we get an orbifold at a particularly symmetric point
in the [0; 2, 2, 2, 2, 2, 2] moduli space. We can find a map ψ from this orbifold onto the
[0; 4, 4, 4] orbifold by

ψ(x) =

(
x2 + 1

x2 − 1

)2

, (A.13)

which maps the singularities to 0, 1,∞.
We have the hyperbolic metric ϕ444 on this orbifold, and so we can pull this metric

back onto the six-punctured spheres representing the Bolza orbifold as

dxdxe2ϕBolza(x,x) = dψ(x)dψ(x)e2ϕ444(ψ(x),ψ(x)). (A.14)

By similar logic to before, noting that we have six orbifold points of order 2 on each
sphere, and considering the constraints this places on the uniformization map along with
the constraint that x 7→ ix, y 7→

√
iy is a symmetry of this surface, we find that

{τ(x), x} =
3

8

(
1

x2
+

1

(x− 1)2
+

1

(x− i)2
+

1

(x+ 1)2
+

1

(x+ i)2

+
−1

x− 1
+

i

x− i
+

1

x+ 1
+

−i
x+ i

)
. (A.15)

This allows us to calculate the Rankin-Cohen brackets on the Bolza surface with (2.49).
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On the Bolza surface, the Petersson norm (2.24) of holomorphic differentials can be
written as

⟨hn,a1(τ), hn,a2(τ)⟩M2n(Γ)
(A.16)

=
1

volX

(∫
C
dx dx e(2−2n)ϕBolza(x,x) h̃n,a1

(
x,
√
x5 − x

)
h̃n,a2

(
x,
√
x5 − x

)
+

∫
C
dx dx e(2−2n)ϕBolza(x,x) h̃n,a1

(
x,−

√
x5 − x

)
h̃n,a2

(
x,−

√
x5 − x

))
. (A.17)

We shall once again write its induced norm as ∥ĥn,a(x, y)dxn∥.
As ℓ1 = 2 by (2.4), we have a basis for holomorphic differentials of degree 1 on this

surface by

f̃1,1(x, y)dx =
dx

y
, (A.18)

and

f̃1,2(x, y)dx =
x dx

y
. (A.19)

From these, we use the Gram-Schmidt process to make an orthonormal basis h̃1,1(x, y)dx,
h̃1,2(x, y)dx. If we then once again define the holomorphic differentials corresponding to
(2.45),

ĥa1,a22+k (x, y)dx2+k =
2k

(3 + k)k
[h̃1,a1(x, y)dx, h̃1,a2(x, y)dx]D,k, (A.20)

then according to (2.39), for k odd,

A2+k =
1

2

2∑
a1=1

2∑
a2=1

∥∥∥ĥ[a1,a2]2+k (x, y)dx2+k
∥∥∥2

=
∥∥∥ĥ1,22+k(x, y)dx

2+k
∥∥∥2 , (A.21)

which we can once again calculate by numerical integration.
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