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Abstract: We consider Maxwell theory on a non-spin manifold. Depending on the choice of
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non-anomalous theories by coupling them to a discrete gauge theory. We also construct
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one-form symmetries. Finally, by stacking the topological interfaces, we compose various

kinds of duality defects, which lead to non-invertible symmetries of non-spin Maxwell theories.
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1 Introduction

Maxwell theory in four dimensions serves as a testing ground for generalized symmetries. The

recent progress in the generalization of global symmetries reveals two important concepts:

higher-form symmetry [1, 2] and non-invertible symmetry [3–5]. The higher-form symmetry

generalizes ordinary symmetry such that its action is on higher-dimensional extended objects

and provides a powerful tool for elucidating the dynamics of strongly coupled theories [6].

On the other hand, the non-invertible symmetry is another generalization of global sym-

metry with fusion rules beyond the group-theoretical framework and plays a critical role in

constraining the renormalization group flow [5]. Despite its simple appearance, the Maxwell

theory encapsulates both two generalized symmetries. The theory has electric and magnetic

one-form symmetries, whose charged objects are Wilson and ’t Hooft lines. By combining

the gauging of the one-form symmetries with the electric-magnetic duality, it turns out to

possess non-invertible symmetries at specific values of the coupling constant. Their profiles

such as the fusion rule and the action on physical operators are extensively studied in [7–11]

(see also [12–64] for related developments).

The characterization of Maxwell theory is significantly influenced by the spacetime mani-

fold. On a spin manifold, the charge lattice of line operators uniquely defines Maxwell theory.

However, on a non-spin manifold, Maxwell theory has ambiguity even after specifying the

charge lattice, which stems from symmetry fractionalization [65–77]. In non-spin Maxwell

theories, the symmetry fractionalization dictates that some line operators have a half-integer

spin under the Lorentz group SO(4) and become fermionic. To define the theory without

ambiguity, we need to specify the symmetry fractionalization class, equivalently the choice of

statistics for the set of line operators [78–82]. This yields four options after giving the charge

lattice (see Fig. 1). In other words, we have four consistent non-spin Maxwell theories with

different symmetry fractionalizations. Among them, three are non-anomalous, and the other

has a pure gravitational anomaly and is called all-fermion electrodynamics [83–86].

In this paper, we establish the interrelationships between non-spin Maxwell theories by

gauging one-form symmetries. To capture their relations, we construct the maps between

the theories with different symmetry fractionalizations, called the symmetry fractionalization

maps [69]. Since a non-trivial fractionalization class is realized by turning on an appropriate

background field of one-form symmetries, we modify the background field by gauging a one-

form symmetry with a four-dimensional discrete gauge theory called BF theory. To see it

more concretely, suppose that T and T ′ are two Maxwell theories. Then, we map T to T ′ by

gauging the diagonal Z2 symmetry with the BF theory:

F : T 7−→ T ×e,m BF[C1, C2]

Z2

∼= T ′ , (1.1)

where e,m denote the coupling by electric and magnetic one-form symmetries, respectively.

Depending on the background gauge fields C1 and C2, we have three choices of BF theory.
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After gauging, the background gauge fields in the theory T are converted into the ones of

T ′, and we obtain the symmetry fractionalization map F : T 7→ T ′. See Fig. 3 for the

result of symmetry fractionalization maps between non-spin Maxwell theories. Note that we

restrict our attention to the three non-anomalous Maxwell theories to define the Z2 gauging

consistently.

To reveal the duality structure on a non-spin manifold, we construct topological inter-

faces in Maxwell theories. Specifically, we consider SL(2,Z) duality interfaces and gauging

interfaces. The SL(2,Z) duality is generated by the electric-magnetic duality and the period-

icity of theta parameter and ensures equivalence between the theories with different coupling

constants. On a non-spin manifold, Maxwell theories covariantly transform under SL(2,Z)

duality as in Fig. 2, so the interfaces typically connect the theories with different symmetry

fractionalizations. We explicitly write down the SL(2,Z) interface actions by imposing the

equations of motion at the interface and the continuity condition of the energy-momentum

tensor for their topological nature. Furthermore, we construct the gauging interfaces uti-

lizing half gauging construction [7]. Associated with each symmetry fractionalization map

F : T 7→ T ′, we show the action of the corresponding interface that glues T and T ′, and

check its invariance under infinitesimal deformation of the interface locus.

Finally, we compose non-invertible duality defects in non-spin Maxwell theories by stack-

ing the topological interfaces together. We find composite operations from the SL(2,Z) duality

and the gauging of the one-form symmetries, under which a theory is self-dual at a specific

value of the coupling constant. This ensures the existence of symmetries in the theory because

we can construct a topological defect by fusing the topological interfaces associated with the

self-dual composite operation. We demonstrate the construction of topological defects at

some specific coupling constants. By piercing line operators into the topological defects, we

show that some of them act non-invertibly on line operators. At a certain value of the cou-

pling constant, we see that while Maxwell theory with trivial symmetry fractionalization has

a duality defect, the theories with non-trivial symmetry fractionalizations do not contain the

duality defect. This suggests the distinction of symmetries between the theories with different

symmetry fractionalizations.

The rest of this paper is organized as follows. In section 2, we review Maxwell theories

and BF theory on a non-spin manifold. We explain that the symmetry fractionalization can

be understood in terms of background gauge fields of the one-form symmetries. For later

convenience, we carefully discuss the coupling between Maxwell theories and BF theory at

the end of this section. In section 3, we explore the symmetry fractionalization maps on a

non-spin manifold. At the beginning of the section, we summarise the results and proceed

to their detailed constructions. Based on the fractionalization maps and SL(2,Z) duality, we

construct non-invertible defects in section 4. To this end, we first prepare the topological

interfaces associated with the duality and proceed to the gauging of one-form symmetries.

We conclude in section 5 with some discussions.
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2 Coupling to background fields

In this section, we consider coupling to background gauge fields on a non-spin manifold, with a

particular focus on Maxwell theory and a topological discrete gauge theory. In section 2.1, we

review Maxwell theory on a non-spin manifold and show the existence of freedom in the choice

of the statistical pattern of line operators. Section 2.2 describes a topological Zn gauge theory,

which is extensively used in the later section. We also discuss the coupling between Maxwell

theory and the Zn gauge theory. After the coupling, the theory has one-form symmetries,

and we activate the corresponding two-form background gauge fields using a Stiefel–Whitney

class of the tangent bundle.

2.1 Maxwell theory on non-spin manifold

This subsection reviews Maxwell theory on a non-spin manifold following [80, 81]. Maxwell

theory has a set of line objects associated with the electric and magnetic one-form symmetries,

such as Wilson, ’t Hooft, and dyonic operators. On a non-spin manifold, there is freedom

in the choice of the statistics of the line operators, which results in four consistent Maxwell

theories with the same coupling constant. We explain that the four Maxwell theories differ

in their choice of background gauge fields for the electric and magnetic one-form symmetries.

Finally, we describe SL(2,Z) duality transformations between the non-spin Maxwell theories.

2.1.1 Electric and magnetic one-form symmetry

We define Maxwell theory without charged matters by the Euclidean action

S =
1

2e2

∫

M

F ∧ ∗F +
i θ

8π2

∫

M

F ∧ F , (2.1)

where F = dA is the field strength, e is the coupling constant, and θ is the theta angle

parameter. The first term is a standard kinetic term, and the second is the topological theta

term. We will denote the complex coupling constant by

τ =
θ

2π
+

2πi

e2
, (2.2)

which takes values in the upper half plane H = {z ∈ C | Im(τ) > 0}. The equation of motion

sets d∗F = 0, and the Bianchi identity implies dF = 0.

The theory possesses the Euclidean spacetime symmetry SO(4) and does not require the

spacetime manifold M to admit a spin structure. In other words, we can define the theory

on a spacetime manifold such that the second Stiefel–Whitney class of the tangent bundle

does not vanish: w2(M) 6= 0. Throughout this paper, we assume that the spacetime manifold

is orientable: the first Stiefel–Whitney class w1(M) is trivial. Additionally, we suppose the

spacetime manifold is closed for a while. Note that the periodicity of Maxwell theory is

θ ∼ θ + 2π on a spin manifold, while the periodicity becomes θ ∼ θ + 4π in the case of a

non-spin manifold.
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Although Maxwell theory does not have any intrinsic zero-form continuous global sym-

metry,1 it has electric and magnetic one-form global symmetries U(1)e × U(1)m [2]. The

electric one-form symmetry acts as

A → A+ λe , (2.3)

where λe is a flat connection and its current is written as je = (2/e2) ∗F , which conserves

due to the equation of motion. The magnetic one-form symmetry acts on the dual gauge

field in the same manner and the conserved current is jm = F/2π guaranteed by the Bianchi

identity. The associated charged operators are Wilson lines and ’t Hooft lines. A Wilson line

with charge n along a curve γ is

W n = exp

(

in

∫

γ

A

)

. (2.4)

This reflects the worldline of an infinitely heavy particle with electric charge n. We conven-

tionally denote the fundamental Wilson line with n = 1 as W . Similarly, an ’t Hooft line Tm

is the worldline of an infinitely heavy monopole with magnetic charge m, and the fundamen-

tal ’t Hooft line is T for short. A general dyonic operator is the product of the fundamental

Wilson lines and the fundamental ’t Hooft lines: W nTm.

We can introduce the two-form background gauge fields Be and Bm associated with the

electric and magnetic one-form symmetry U(1)e ×U(1)m, respectively, by the action

S =
1

2e2

∫

M

|F −Be|2 +
i θ

8π2

∫

M

(F −Be)
2 +

i

2π

∫

M

(F −Be) ∧Bm . (2.5)

The gauge transformation is given by

A → A+ λe , Be → Be + dλe , Bm → Bm + dλm , (2.6)

where λe,m is an ordinary U(1) connection with a period
∫

Σ dλe,m ∈ 2πZ for a two-cycle Σ on

M. Note that the action (2.5) is not invariant under the gauge transformation, which implies

the existence of mixed ’t Hooft anomaly between electric and magnetic one-form symmetries.

Also, we can gauge only a finite abelian subgroup of the electric and magnetic one-form

symmetries

Z
e
k × Z

m
k′ ⊂ U(1)e ×U(1)m . (2.7)

In this case, the background gauge fields become flat: dBe = dBm = 0. For gcd(k, k′) 6= 1,

we again encounter the mixed ’t Hooft anomaly.

1Maxwell theory has the discrete charge-conjugation symmetry and for certain theta-angles, it also has

parity and time-reversal symmetries.
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2.1.2 Lorentz symmetry fractionalization

On a non-spin manifold, Maxwell theory has freedom in the choice of the statistics of line op-

erators. This is a notable example of symmetry fractionalization: the phenomenon in which

different quantum numbers arise between local operators and line operators under an ordinary

global symmetry (see [65–77] for recent progress). More concretely, while local operators are

in a genuine representation of a global symmetry, line operators are in a projective represen-

tation. In the case of the Maxwell theories on a non-spin manifold, the spacetime symmetry

group SO(4) is fractionalized and line operators are in a projective representation of SO(4),

equivalently, a genuine representation of Spin(4).

Let us focus on the symmetry fractionalization by the spacetime symmetry group SO(4)

(Lorentz symmetry fractionalization [69]). When caring about symmetry fractionalization,

the global structure of SO(4) takes importance. Consider the central extension of SO(4)

following the short exact sequence:

1 −→ Z2 −→ Spin(4) −→ SO(4) −→ 1 , (2.8)

where Spin(4) is the universal cover of SO(4) and Z2 is the fermion parity. The projective

representation is classified by the second group cohomology H2(SO(4),Z2).

The projective representation of SO(4) appears in fermionic line operators. On a non-spin

manifold M, we are not allowed to have a chargeless fermion. However, a charged fermion

can exist on M because it only requires the SpinC structure and any oriented four-manifold

admits the SpinC structure [87]. This gives the spin/charge relation and can be understood

as the Lorentz symmetry fractionalization.

Consider Maxwell theory and take a subgroup G(1) = Z
e
2 × Z

m
2 ⊂ U(1)e × U(1)m of the

electric and magnetic one-form symmetries. To realize symmetry fractionalization, we turn on

the two-form background field Be and Bm for G(1) = Z
e
2 × Z

m
2 using the background field for

the spacetime symmetry group SO(4) [68, 79, 84, 86]. We consider four options to introduce

the background fields

(Be, Bm) = (0, 0) , (0, πw2(M)) , (πw2(M), 0) , (πw2(M), πw2(M)) . (2.9)

Activating the two-form background in this way does not change the spectrum and correlation

functions but the statistics of Wilson and ’t Hooft lines.

Each choice attaches a different statistical pattern to the set of line operators. For exam-

ple, in the case of (Be, Bm) = (πw2(M), 0), the fundamental Wilson line becomes fermionic.

To see this, we have the gauge-invariant Wilson line along a one-cycle γ

W = ei
∫
γ
A · exp

(

iπ

∫

Σ
w2(M)

)

, (2.10)

where Σ is a two-dimensional open surface such that ∂Σ = γ. The surface term reduces

to an SPT phase for the SO(2) rotation symmetry. Thus, the SO(2) rotation acts as a
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projective representation, and 2π-rotation yields (−1), which implies that the Wilson line is

fermionic [68].

Alternatively, we can understand this in another way since the choice of the background

fields (Be, Bm) = (πw2(M), 0) gives the symmetry

SpinC(4) =
U(1)× Spin(4)

Z2
. (2.11)

Here, the elements −1 ∈ U(1) and (−1)F ∈ Spin(4) are identified under the Z2 quotient.

Thus, for a Wilson line with an odd charge, the fermion parity acts as −1, which suggests

that such a Wilson line is fermionic [88]. We call it a fermionic Wilson line Wf . The other

type of Wilson line is bosonic Wb. The same terminology will be applied to the ’t Hooft lines.

The statistics of the fundamental Wilson and ’t Hooft operators can completely determine

those of the general dyonic operators. Consider the statistics of the dyonic operator W nTm.

Such an operator can be understood as a bound state of n fundamental Wilson lines and m

fundamental ’t Hooft lines. The quantum number of the bound state comes from those of the

fundamental line operators and an additional contribution by the electromagnetic field [89–

91]. The statistics label σd ∈ Z2 of the dyonic operator is given by

σd = nσW +mσT + nm mod 2 , (2.12)

where σW ∈ Z2 and σT ∈ Z2 are the statistics labels of the fundamental Wilson and ’t Hooft

lines, respectively. The last term represents the angular momentum of the electromagnetic

field. For example, when the fundamental Wilson and ’t Hooft lines are bosonic, the dyonic

operator W 1
bT

1
b has the statistics σd = 0 + 0 + 1 = 1 (fermionic).

We can classify the non-spin Maxwell theory by a pair of statistics of the fundamental

Wilson and the fundamental ’t Hooft line. As a whole, depending on the choices of background

gauge fields, we have four Maxwell theories with different statistics of line operators. We show

the statistical pattern of line operators in each theory in Fig. 1. In the present paper, we call

each theory with complex coupling τ as WbTb(τ), WbTf(τ), WfTb(τ), WfTf(τ), respectively.

In the rest of section 2.1.2, we list the four types of non-spin Maxwell theory.

(a) WbTb(τ) Without turning on background fields, the fundamental Wilson and ’t Hooft

lines are bosonic, namely, in a genuine representation of SO(4). On the other hand, the dyonic

operator W 1
bT

1
b becomes fermionic due to the quantum number of the electromagnetic field.

Its action is

S =
1

2e2

∫

M

F ∧ ∗F +
i θ

8π2

∫

M

F ∧ F . (2.13)

(b) WbTf(τ) By setting the magnetic background field Bm = πw2(M), the fundamental

’t Hooft line is fractionalized under SO(4) [84]. We obtain the fermionic ’t Hooft line whose

– 7 –



n

m

(a) WbTb(τ)

n

m

(b) WbTf(τ)

n

m

(c) WfTb(τ)

n

m

(d) WfTf(τ)

Figure 1: The four ways of the Lorentz symmetry fractionalization of Maxwell theory. Each

theory is characterized by the statistical pattern of line operators. The horizontal (vertical)

axis shows the charge of Wilson (’t Hooft) lines. Bosonic and fermionic lines are represented

by the blue and red dots, respectively.

action is given by

S =
1

2e2

∫

M

F ∧ ∗F +
i θ

8π2

∫

M

F ∧ F +
i

2π

∫

M

F ∧ πw2(M) . (2.14)

(c) WfTb(τ) As discussed previously, by activating the electric background gauge field, we

obtain a non-spin Maxwell theory with a fermionic Wilson line. The action is

S =
1

2e2

∫

M

|F − πw2(M)|2 + i θ

8π2

∫

M

(F − πw2(M))2 . (2.15)

(d) WfTf(τ) Turning on both magnetic and electric one-form background gauge fields gives

Maxwell theory WfTf known as all-fermion electrodynamics [84–86, 92]. Its action can be

written as

S =
1

2e2

∫

M

|F − πw2(M)|2 + i θ

8π2

∫

M

(F − πw2(M))2

+
i

2π

∫

M

(F − πw2(M)) ∧ πw2(M) .

(2.16)

As in the discussion below Eq. (2.6), this theory has a purely gravitational anomaly, 2 while

the other three theories are non-anomalous.

2.1.3 SL(2,Z) duality

Maxwell theory enjoys an equivalence relation between different coupling constants by SL(2,Z)

duality. On a spin manifold M, the difference between the four versions of Maxwell the-

ory is invisible. The electric-magnetic duality exchanges a U(1) gauge field with its dual

2This gravitational anomaly is characterized by the five-dimensional action

π

∫
N

w2(N ) ∪ β (w2(N )) = π

∫
N

w2(N ) ∪ w3(N ), (2.17)

where β is the Bockstein homomorphism associated with the short exact sequence 0 → Z2 → Z4 → Z2 → 0.
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field [78, 93–95], and acts on the coupling constant τ as

S : τ → −1/τ . (2.18)

In the simplest case θ = 0, the S-transformation yields e → 2π/e and connects between weak

and strong couplings. Additionally, Maxwell theory on a spin manifold has the equivalence

T : τ → τ + 1 . (2.19)

These dualities dictate the equivalence between Maxwell theory with different couplings on a

spin manifold.3 Since S and T generate the group SL(2,Z), Maxwell theory with coupling τ is

equivalent to the one with coupling τ ′ = (aτ + b)/(cτ +d) where a, b, c, d ∈ Z and ad− bc = 1.

Since τ takes values in the upper half plane H, the fundamental region is H/PSL(2,Z).

On a non-spin manifold M, there are four theories that differ in the statistics of their

line operators. Then, it is necessary to follow the duality map between line operators. The

dyonic line W nTm is subject to the transformation law [78, 80, 93]

S : W nTm → WmT−n , T : W nTm → W n−mTm . (2.20)

Note that the statistics of the line operators remain invariant after the transformation. Hence,

the SL(2,Z) transformation flows a non-spin Maxwell theory to another one:

S : WbTb(τ) → WbTb(−1/τ) , WbTf(τ) → WfTb(−1/τ) ,

WfTb(τ) → WbTf(−1/τ) , WfTf(τ) → WfTf(−1/τ) ,
(2.21)

T : WbTb(τ) → WbTf(τ + 1) , WbTf(τ) → WbTb(τ + 1) ,

WfTb(τ) → WfTb(τ + 1) , WfTf(τ) → WfTf(τ + 1) .
(2.22)

We can summarize the transformation rule as in Fig. 2. The three non-anomalous theories

covariantly transform each other under the SL(2,Z) map, while the anomalous theoryWfTf(τ)

is invariant by itself.4

2.2 Topological Zn gauge theory

Let us consider a four-dimensional pure Zn gauge theory called the BF theory [102–104]. The

degrees of freedom are a one-form U(1) gauge field A and a two-form U(1) gauge field B. The

action of the theory is

S =
in

2π

∫

M

B ∧ dA , (2.23)

3The theory has a mixed anomaly between the SL(2,Z) duality and background gravity [93, 96, 97]. The

pure SL(2,Z) anomaly is analyzed in [98, 99].
4The transformation rule is analogous with the modular transformation of torus partition functions for 2d

fermionic theories. Note that the spin structure σ(a) of one-cycle a ∈ H1(Σ,Z2) obeys σ(a+b) = σ(a)+σ(b)+∫
a∪ b where the last term denotes the intersection number between a and b [100, 101]. This is in parallel with

the composition rule (2.12) fixing the statistical pattern of line operators in Fig. 1. Therefore, each choice of

statistical pattern for the line operators is equivalent to a choice of spin structures on a torus.
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WbTb

S

T

WbTf
S

WfTb

T
WfTf

S,T

Figure 2: Duality map between four types of Maxwell theory on a non-spin manifold under

SL(2,Z) generators S and T. The three non-anomalous theories covariantly transform each

other, while the anomalous theory remains invariant under the SL(2,Z) transformation.

where n is an integer. For a while, we assume that our spacetime M is closed. Then, it is

invariant under two U(1) gauge symmetries

A → A+ dλ(0) , B → B + dλ(1) , (2.24)

where dλ(i) is not necessarily exact, but
∫

dλ(i) ∈ 2πZ. Note that these gauge fields have the

standard periodicity for every 2-cycle Σ2 and 3-cycle Σ3
∫

Σ2

dA

2π
∈ Z ,

∫

Σ3

dB

2π
∈ Z . (2.25)

This is necessary to specify a class of line bundles that we sum over in the path integral. The

equations of motion vanish the two gauge-invariant field strengths

dB = 0 , F = dA = 0 . (2.26)

Hence, no local degrees of freedom appear and the theory turns out to be topological. Fur-

thermore, from (2.25), the path integral for the gauge fields gives the periodicity condition
∫

γ

A

2π
∈ Z

n
,

∫

Σ

B

2π
∈ Z

n
, (2.27)

where γ is a closed curve and Σ is a closed surface. Equivalently, we can write down nA = dφ

and nB = dχ where
∮

dφ ∈ 2πZ and
∮

dχ ∈ 2πZ. This implies that these fields A,B

effectively play the role of Zn gauge fields.

Furthermore, the system has higher-form global symmetries. One is the shift symmetry

of the gauge field A, and the other is the shift symmetry of B:

A → A+
1

n
ǫ(1) , B → B +

1

n
ǫ(2) , (2.28)

where ǫ(i) (i = 1, 2) is a closed form and
∫

ǫ(i) ∈ 2πZ. The one-form Zn symmetry is generated

by a Wilson surface and the two-form global Zn symmetry is generated by a Wilson line. For

a closed path γ and a closed surface Σ on M, the Wilson operators are defined as

W (γ) = ei
∮
γ
A , W (Σ) = ei

∫
Σ B . (2.29)
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It is easy to see that these are gauge-invariant under the transformation (2.24). Note that

there are no additional ’t Hooft operators except when our spacetime M has torsion one-

cycle [1]. Under the global symmetries (2.28), these gauge-invariant Wilson operators trans-

form as

W (γ) → e
i
n

∮
γ
ǫ(1) W (γ) ,

W (Σ) → e
i
n

∫
Σ ǫ(2) W (Σ) .

(2.30)

Therefore, for topologically nontrivial cycles γ and Σ, the Wilson operators transform by an

n-th root of unity. These are the fundamental Wilson objects. We can construct a k-charged

Wilson line W k(γ) and Wilson surface W k(Σ) by composition of k fundamental objects.

Electric coupling to Maxwell theory. Let us consider the electric coupling of the BF

theory to Maxwell theory

S =
1

2e2

∫

M

|F −B|2 + i θ

8π2

∫

M

(F −B)2 +
in

2π

∫

M

B ∧ F ′ , (2.31)

where F ′ = dA′ is the field strength. Here, the gauge transformations are

A → A+ dλem + λe , B → B + dλe , A′ → A′ + dλb . (2.32)

Furthermore, the dual gauge field Â′ for the gauge field A′ transforms into Â′ → Â′+dλ0+nλe

under the gauge transformation. Now we focus on the two one-form global symmetries [2]:

One is the one-form symmetry with the current je = nB/2π, which is conserved due to the

equation of motion for A′. Its gauge-invariant charged object is a Wilson line exp(i
∫

γ
A′).

The other is the one-form symmetry with the current Je = F ′/2π, which is conserved due to

the Bianchi identity. The gauge-invariant charged object is an ’t Hooft line exp(i
∫

γ
(Â′−nA)).

If one turns on both of the associated background gauge fields, then we have the action

S =
1

2e2

∫

M

|F −B|2 + i θ

8π2

∫

M

(F −B)2 + SBF[C1, C2] , (2.33)

and the BF theory with the background fields (C1, C2) is

SBF[C1, C2] =
in

2π

∫

M

B ∧ (F ′ − C1) +
i

2π

∫

M

C2 ∧ F ′ , (2.34)

where Ci (i = 1, 2) are the two-form Zn gauge fields satisfying nCi = dKi where
∮

dKi ∈ 2πZ.

Here, the gauge transformations are

A′ → A′ + dλb + Λ1 , C1 → C1 + dΛ1 ,

B → B + dλe , C2 → C2 + dΛ2 ,
(2.35)

in addition to A → A + dλem + λe. When both background fields C1, C2 are activated

simultaneously, the action (2.33) is not invariant under the gauge transformations due to a

mixed anomaly.
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Focusing on the Z2 symmetry (n = 2), one can take the following choices on a non-spin

manifold M:

(C1, C2) = (0, 0) , (0, πw2(M)) , (πw2(M), 0) , (πw2(M), πw2(M)) . (2.36)

Here, w2(M) represents the second Stiefel–Whitney class of the tangent bundle. We some-

times abbreviate w2(M) to w2. Each choice specifies the type of BF theory on a non-spin

manifold. Although these theories make sense only when coupled with Maxwell theory, we

call the BF theory BF[C1, C2] for simplicity. In what follows, we list the BF theories with

non-trivial background gauge fields.

When giving the trivial background gauge fields: C1 = C2 = 0, we obtain the ordinary

BF action for the Z2 symmetry

SBF[0, 0] =
i

π

∫

M

B ∧ dA′ . (2.37)

Setting the background gauge fields by C1 = 0 and C2 = πw2(M), we have the action

SBF[0, πw2] =
i

2π

∫

M

(2B + π w2(M)) ∧ dA′ , (2.38)

On an oriented manifold, integration by parts gives the BF theory with fermionic strings [84].

Note that this procedure is valid only for the absence of the coupling with Maxwell theory.

Once we put (C1, C2) = (πw2(M), 0), the action of the BF theory is

SBF[πw2, 0] =
i

π

∫

M

B ∧
(

dA′ + πw2(M)
)

. (2.39)

This action dictates that the gauge field A′ is the SpinC connection and correspondingly the

Wilson line becomes fermionic.

Lastly, turning on both background gauge fields results in the action

SBF[πw2, πw2] =
i

π

∫

M

(

B ∧ dA′ +
π

2
w2(M) ∧ dA′ +B ∧ πw2(M)

)

. (2.40)

This theory has the same gravitational anomaly as the one of all-fermion electrodynamics [84].

Magnetic coupling to Maxwell theory. Similarly, we can discuss the magnetic coupling

of the BF theory to Maxwell theory. The action is

S =
1

2e2

∫

M

F ∧ ∗F +
i θ

8π2

∫

M

F ∧ F +
i

2π

∫

M

B ∧ F +
in

2π

∫

M

B ∧ F ′ , (2.41)

where F ′ = dA′ is the field strength. The gauge transformations are

A → A+ dλem , B → B + dλf , A′ → A′ + dλb , (2.42)
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and the dual gauge field Â′ transforms into Â′ → Â′ + dλ0 + nλf . In this case, there are

the following two one-form symmetries: One is the one-form symmetry with the current

jm = nB/2π, which is conserved due to the equation of motion for F ′. The corresponding

charged object is a Wilson line exp(i
∫

γ
A′). The other is the one-form symmetry with the

current Jm = F ′/2π, which is conserved due to the Bianchi identity. Its gauge-invariant

charged object is an ’t Hooft line exp(i
∫

γ
(Â′ − nÃ)) where Ã is the dual gauge field for the

original one A in Maxwell theory, whose gauge transformation is Ã → Ã+ dλ̃em + λf .

Once we introduce the associated two-form background fields, we have the action

S =
1

2e2

∫

M

F ∧ ∗F +
i θ

8π2

∫

M

F ∧ F +
i

2π

∫

M

Bm ∧ F + SBF[C1, C2] , (2.43)

where the last term is given by (2.34). The above action is the same as (2.34) in the electric

coupling. The gauge transformations are

A′ → A′ + dλb + Λ1 , C1 → C1 + dΛ1 ,

B → B + dλf , C2 → C2 + dΛ2 .
(2.44)

As in the electric coupling, we can choose the background gauge fields (C1, C2) by (2.36) on

a non-spin manifold.

3 Symmetry fractionalization map in Maxwell theory

This section is devoted to gauging the electric and magnetic Z2 one-form symmetry in the

Maxwell theories on a non-spin manifold. To define the Z2 gauging consistently, our consider-

ation is on the three non-anomalous theories WbTb(τ), WbTf(τ) and WfTb(τ), excluding the

anomalous theory WfTf(τ). We construct the map between the non-anomalous theories and

identify their interrelationships by coupling an appropriate TQFT to the Maxwell theories.

Let us pick up the two non-anomalous Maxwell theories T and T ′, and construct the

map F : T 7→ T ′ by gauging. By coupling an appropriate TQFT to the theory T , the theory

after gauging can be equivalent to another Maxwell theory T ′. More concretely, we couple a

topological Z2 gauge theory introduced in section 2.2 to the theory T and gauge the diagonal

Z2 symmetry:

F : T 7−→ T ×e,m BF[C1, C2]

Z2

∼= T ′ , (3.1)

where ×e and ×m denote the electric and magnetic coupling, respectively, and BF[C1,C2]

is given by the action (2.34) with n = 2. The gauging modifies the background gauge field

in the original theory T and replaces line operators of T to those of T ′. This provides

the interrelationships between the different symmetry fractionalizations and is called the

symmetry fractionalization map [69].
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WbTb

WbTf WfTb

(a) The magnetic coupling.

WbTb

WbTf WfTb

(b) The electric coupling.

Figure 3: The symmetry fractionalization maps between the non-spin Maxwell theories by

the magnetic gauging (a) and the electric gauging (b). After the Z2 gauging, the coupling

constant is replaced to τ → 22τ in the magnetic case and τ → τ/22 in the electric case. The

type of arrow represents the type of BF action BF[C1, C2]. The straight arrow implies the

coupling with BF[0, 0] in (2.37). The dashed arrow and the dotted arrow show the coupling

with BF[πw2, 0] in (2.39) and the one with BF[0, πw2] in (2.38), respectively.

Before proceeding with the detailed construction of the symmetry fractionalization maps,

we summarize our results in Fig. 3. To construct the symmetry fractionalization maps,

we utilize the three BF actions BF[0, 0], BF[πw2, 0], and BF[0, πw2]. In Fig. 3, they are

represented by the straight arrows, the dashed arrows, and the dotted arrows, respectively.

For example, we can read off that the theory WbTb is mapped to the theory WbTf when it is

electrically coupled to the BF theory BF[πw2, 0]:

F : WbTb(τ) 7−→ WbTb(τ)×e BF[πw2, 0]

Z2

∼= WbTf(τ/2
2) , (3.2)

where the coupling constant transforms into τ → τ/22 by the electric gauging. On the

other hand, we cannot obtain WbTb from WbTf by the electric gauging due to the mixed

anomaly between the electric and magnetic one-form symmetries. In section 5, we discuss

the implications of the maps for quantum dual symmetry.

In the rest of this section, we show the explicit construction of the symmetry fraction-

alization maps in Fig. 3 by using the path integral formulation. First, in section 3.1, we

demonstrate the magnetic gauging to obtain the corresponding symmetry fractionalization

maps, as this is somewhat easier than the electric counterpart, and then section 3.2 focuses

on the electric gauging later.

3.1 Gauging magnetic symmetry

We begin by identifying the symmetry fractionalization map associated with gauging a mag-

netic Z2 one-form symmetry with the BF theory. Note that we can perform the magnetic

gauging only for the theories WbTb and WbTf , since this gauging is disturbed by the mixed

anomaly in the theory WfTb. Hence we have totally six ways of magnetic gauging, as shown
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in Fig. 3. In the following, we explicitly demonstrate three of them. For the other three cases,

we will only make a few comments, but the results are obvious.

BF[C1 = 0, C2 = 0]: We first consider the magnetic coupling BF[C1 = 0, C2 = 0] to the

theory WbTb(τ). In this case, there is no subtlety arising from the Stiefel–Whitney w2(M).

The corresponding action is given by

S =
1

2e2

∫

M

F ∧ ∗F +
i θ

8π2

∫

M

F ∧ F +
i

2π

∫

M

Bm ∧ F +
2i

2π

∫

M

Bm ∧ Fm . (3.3)

The equation of motion for Bm produces the condition

F + 2Fm = 0. (3.4)

This condition restricts the topological sum in the path integral to the sectors, whose period

is even, i.e.
∫

Σ F/2π ∈ 2Z on any closed surface Σ, which can be regarded as the change

of coupling constant τ → 22τ . Indeed, by replacing F with −2Fm in the original theory

WbTb(τ), we obtain

S =
22

2e2

∫

M

Fm ∧ ∗Fm +
22i θ

8π2

∫

M

Fm ∧ Fm. (3.5)

Therefore, this gauging procedure gives the symmetry fractionalization map WbTb(τ) 7→
WbTb(2

2τ).

In the case of coupling to the theory WbTf(τ), we have the additional term i
2π

∫

M
F ∧

πw2(M) to the action (3.3). The term does not change the equation of motion for Bm (3.4),

so the replacement F → −2Fm is still available. It turns out that the additional term becomes

an integer multiple of 2πi by the replacement, which is trivial in the exponential form. As a

result, we obtain the map WbTf(τ) 7→ WbTb(2
2τ).

BF[C1 = 0, C2 = πw2(M)]: We next gauge the magnetic Z2 symmetry in the theory

WbTf(τ) by coupling BF[C1 = 0, C2 = πw2(M)]. The gauged action is given by the following

expression:

S =
1

2e2

∫

M

F ∧ ∗F +
i θ

8π2

∫

M

F ∧ F +
i

2π

∫

M

F ∧ πw2(M) +
i

2π

∫

M

Bm ∧ F

+
2i

2π

∫

M

Bm ∧ Fm +
i

2π

∫

M

Fm ∧ πw2(M) .

(3.6)

Similar to the previous case, the original U(1) gauge field F is replaced by−2Fm by integrating

out Bm. The action resulting from this process can be expressed as

S =
22

2e2

∫

M

Fm ∧ ∗Fm +
22i θ

8π2

∫

M

Fm ∧ Fm +
i

2π

∫

M

Fm ∧ πw2(M), (3.7)

where we have ignored the term i
2π

∫

M
Fm ∧ 2πw2(M) because it is an integer multiple of

2πi. This action is that of the theory WbTf , but with the coupling constant different from
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the original action. Hence, the symmetry fractionalization map WbTf(τ) 7→ WbTf(2
2τ) is

obtained.

Note that in the above argument, the third term in the action (3.6), which makes WbTb

to be WbTf , does not contribute to the result of the gauging procedure. This fact implies that

the coupling BF[0, πw2(M)] to WbTb(τ) yields the map WbTb(τ) 7→ WbTf(2
2τ), as well.

BF[C1 = πw2(M), C2 = 0]: We demonstrate that the magnetic coupling BF[C1 =

πw2(M), C2 = 0] to the theory WbTf(τ) results in the map WbTf(τ) → WfTb(2
2τ). To this

end, we consider the action

S =
1

2e2

∫

M

F ∧ ∗F +
i θ

8π2

∫

M

F ∧ F +
i

2π

∫

M

F ∧ πw2(M) +
i

2π

∫

M

Bm ∧ F

+
2i

2π

∫

M

Bm ∧ (Fm − πw2(M)) +
2i

2π

∫

M

πw2(M) ∧ πw2(M) ,

(3.8)

where the last term is a local counter term depending only on the SW class w2(M). Now,

the equation of motion for Bm is given by

F + 2(Fm − πw2(M)) = 0. (3.9)

By substituting this constraint to remove the original gauge field F , the action is written as

S =
22

2e2

∫

M

|Fm − πw2(M)|2 + 22i θ

8π2

∫

M

(Fm − πw2(M))2

− i

2π

∫

M

Fm ∧ 2πw2(M) +
i

2π

∫

M

2πw2(M) ∧ 2πw2(M) .

(3.10)

Here, the last two terms are an integer multiple of 2πi, and this action is nothing but that of

the theory WfTb(2
2τ).

On the other hand, to describe the map WbTb(τ) → WfTb(2
2τ) by the magnetic coupling

of BF[πw2(M), 0], no additional counter terms are required. Thus, the appropriate gauged

action is given by

S =
1

2e2

∫

M

F ∧ ∗F +
i θ

8π2

∫

M

F ∧ F +
i

2π

∫

M

Bm ∧ F

+
2i

2π

∫

M

Bm ∧ (Fm − πw2(M)) .

(3.11)

It is straightforward to show that this action is equivalent to that of the theory WfTb(2
2τ)

by integrating Bm.

3.2 Gauging electric symmetry

In this subsection, we investigate the symmetry fractionalization maps produced from gauging

the electric Z2 symmetry. These maps are ones from the theory WbTb or WfTb, since gauging

electric Z2 symmetry in the theory WbTf is obstructed by the mixed anomaly. As in the case

of gauging magnetic symmetry, there are three choices of BF theories coupled to a theory.
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BF[C1 = 0, C2 = 0]: To see the typical effect of gauging electric symmetry, we first

consider the electric coupling between the theory WbTb(τ) and BF[C1 = 0, C2 = 0]. The

corresponding action is obtained by setting n = 2 in the action (2.31):

S =
1

2e2

∫

M

|F −Be|2 +
i θ

8π2

∫

M

(F −Be)
2 +

2i

2π

∫

M

Be ∧ Fe . (3.12)

Recall that the invariance under the one-form gauge transformations

A → A+ λe , Be → Be + dλe (3.13)

is imposed as the gauge symmetry. Following [93], we carefully implement the path integral

with respect to Ae. The path integral for Ae consists of a discrete sum over line bundles and

a continuous integral over connections on a fixed line bundle. For each line bundle L, we
denote a connection on it by Ae = V0 + V ′ where V0 is a fixed connection on the line bundle

and V ′ is a globally defined one-form. The continuous integral with respect to V ′ reduces to
∫

DV ′ e
2i
2π

∫
V ′∧ dBe = δ(dBe) . (3.14)

On the other hand, the discrete sum over line bundles yields

∑

L∈H2(M,Z)

e
2i
2π

∫
dV0 ∧Be = δ

([

2Be

2π

]

∈ Z

)

. (3.15)

The first condition tells us that Be is flat, while the other means the nontrivial period

[Be/2π] ∈ 1
2Z. This is an obstruction to gauging Be to zero by using the gauge symme-

try (3.13) because we can set Be = 0 only if dBe = 0 and the period [Be/2π] is integral. To

avoid the obstruction, we rescale the gauge field as A → A/2. Then, we can make Be trivial,

and the action becomes

S =
1

2 · 22e2
∫

M

F ∧ ∗F +
i θ

8π2 · 22
∫

M

F ∧ F (3.16)

This is the theory WbTb with the coupling constant τ/22, and the symmetry fractionalization

map WbTb(τ) → WbTb(τ/2
2) is obtained.

It is straightforward to extend this argument to the electric coupling to the theory

WfTb(τ). The action is given by

S =
1

2e2

∫

M

|F − πw2(M)−Be|2 +
i θ

8π2

∫

M

(F − πw2(M)−Be)
2 +

2i

2π

∫

M

Be ∧ Fe

=
1

2e2

∫

M

|F −B′
e|2 +

i θ

8π2

∫

M

(F −B′
e)

2 +
2i

2π

∫

M

B′
e ∧ Fe −

i

2π

∫

M

2πw2(M) ∧ Fe ,

(3.17)

where the integrated variable Be is shifted to B′
e := Be + πw2(M) in order to obtain the

second line. Note that we can ignore the last term because this term is an integer multiple

of 2πi. Similar to the argument in the previous paragraph, the two-form gauge field B′
e is

removed after rescaling the one-form gauge field as A → A/2. The resulting theory is again

WbTb(τ/2
2). Therefore, this procedure corresponds to the the map WfTb(τ) → WbTb(τ/2

2).
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BF[C1 = 0, C2 = πw2(M)]: Our next aim is the construction of the map WfTb(τ) →
WfTb(τ/2

2). To this end, we electrically couple BF[C1 = 0, C2 = πw2(M)] to the theory

WfTb(τ) and consider the action

S =
1

2e2

∫

M

|F − πw2(M)−Be|2 +
i θ

8π2

∫

M

(F − πw2(M) −Be)
2

+
2i

2π

∫

M

Be ∧ Fe +
i

2π

∫

M

Fe ∧ πw2(M) .

(3.18)

Again, we divide the integral over Ae into the discrete sum of line bundles and the continuous

integral over the globally defined one-form. The continuous integral ensures Be to be flat,

and the discrete sum produces the condition
∫

Σ

2Be

2π
=

1

2

∫

Σ
w2(M) modZ , (3.19)

for any two-cycle Σ. Now, in order to eliminate πw2(M) and Be from the expression F −
πw2(M)−Be, we attempt to rescale the original connection as A → A/2. After this rescaling,

the action is written as

S =
1

2 · 22e2
∫

M

|F − 2πw2(M)− 2Be|2 +
i θ

8π2 · 22
∫

M

(F − 2πw2(M)− 2Be)
2 . (3.20)

The 2πw2(M) part in this expression is removed by the one-form gauge transformation (3.13).

However, we cannot eliminate the Be part due to the non-trivial contribution from the right-

hand side of the constraint (3.19). This obstruction implies that F − 2Be is nothing but the

SpinC connection. Hence, we conclude that this theory is WfTb(τ/2
2).

The discussion of the theory WbTb(τ) is the same. We can easily check that the electric

coupling of BF[0, πw2(M)] to WbTb(τ) yields the map WbTb(τ) → WfTb(τ/2
2).

BF[C1 = πw2(M), C2 = 0]: One of the remaining maps is WfTb(τ) → WbTf(τ/2
2).

In order to construct this map, we consider coupling BF[πw2(M), 0] to WfTb(τ) with the

appropriate counter term. The action with the counter term is given by

S =
1

2e2

∫

M

|F − πw2(M)−Be|2 +
i θ

8π2

∫

M

(F − πw2(M)−Be)
2

+
2i

2π

∫

M

Be ∧ (Fe − πw2(M)) +
2i

2π

∫

M

πw2(M) ∧ πw2(M) .

(3.21)

By performing the integral over Ae, Be is closed and constrained to be Z2-valued. Then, it is

convenient to define the shifted two-form gauge field as B′
e = Be + πw2(M) and write down

the action in terms of this variable. At this stage, the action is written as

S =
1

2e2

∫

M

|F −B′
e|2 +

i θ

8π2

∫

M

(F −B′
e)

2

− i

2π

∫

M

2B′
e ∧ πw2(M) +

i

2π

∫

M

2πw2(M) ∧ 2πw2(M) .

(3.22)
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The last term is trivial, and the two-from gauge field Be appearing in the first and second

term can be removed after the rescaling of A. Naively, the third term also seems to vanish

by the one-form gauge transformation (3.13). Recall, however, that we cannot set Be to be

zero due to the constraint (3.15). Rather, this obstruction is passed on to the F after the

rescaling, and the third term is written as i
2π

∫

M
F ∧ πw2(M). Therefore, it turns out that

this theory is WbTf(τ/2
2).

The map WbTb(τ) → WbTf(τ/2
2) is obtained by the same discussion. We consider the

action

S =
1

2e2

∫

M

|F −Be|2 +
i θ

8π2

∫

M

(F −Be)
2 +

2i

2π

∫

M

Be ∧ (Fe − πw2(M)) . (3.23)

Note that we do not need the additional counter term in the above action. By repeating the

argument in the previous paragraph, we can easily achieve the theory WbTf(τ/2
2).

4 Duality defects of non-spin Maxwell theory

Maxwell theory defined on a spin manifold has SL(2,Z) duality and one-form symmetries. We

can combine the action of the SL(2,Z) transformation with the gauging procedure to define

more general operations. These operations map a theory with a given coupling constant to

the same theory but with a different coupling constant. At a particular value of the coupling

constant, the theory becomes self-dual under certain operations. For instance, the operation

S defined in (2.18) maps the theory with τ = i to itself. A simple non-trivial example appears

at τ = 2i. At the coupling constant, the theory is self-dual under the combination of gauging

electric Z2 symmetry and S-transformation:

τ = 2i
Ze
2−−→ 2i/22

S−−→ 2i. (4.1)

Such self-dual operations can be interpreted as symmetries of Maxwell theory. This implies

that the topological defects associated with these symmetries can be constructed. In general,

it turns out that this type of symmetry is non-invertible [7, 10, 11, 32]. Correspondingly,

the algebraic structure of the symmetry is characterized by not a group-like fusion rule but a

more general fusion rule, which has no inverse operator.

To construct a general topological defect, it is convenient to prepare two types of topo-

logical interfaces. One acts as SL(2,Z) transformation, and the other implements the gauging

of a one-form symmetry. We call these interfaces SL(2,Z) interfaces and gauging interfaces,

respectively. A general topological defect can be composed by stacking these interfaces [11].

Let us consider Maxwell theories on a non-spin manifold. As reviewed in subsection 2.1.3,

the three non-anomalous theories are related by SL(2,Z) duality. Besides, we have identified

the effect of gauging one-form symmetries in section 3. Now, we proceed to investigate topo-

logical defects constructed by these structures on a non-spin manifold. At the self-dual point
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under a composition of SL(2,Z) and the gauging procedure, there is a corresponding topo-

logical defect. To reveal the nature of the defect, we explicitly specify the defect Lagrangian.

To this end, we construct SL(2,Z) interfaces and gauging interfaces. Note that, although

the bulk theory is formulated on a non-spin manifold, the worldvolume of an interface is a

spin manifold, since for any closed oriented three-manifold, the second Stiefel-Whitney class

is trivial [105, 106].

4.1 SL(2,Z) interfaces

This section gives the interface actions of SL(2,Z) duality transformation in non-spin Maxwell

theories. We consider the interface actions of the S-transformation and the T-transformation

because they are generators of SL(2,Z) transformation. A general SL(2,Z) interface can be

constructed by stacking them together.

In our setup, the spacetime manifold M is decomposed into left and right parts as

M = ML ∪MR, (4.2)

where we define an interface on the codimension-one submanifold ∂ML = ∂MR = W . Given

the U(1) gauge fields AL and AR on the left and right, the total Lagrangian with an interface

action takes the form

S =

∫

ML

LL(AL; τ) +

∫

W

LS(AL, AR) +

∫

MR

LR(AR; τ
′) , (4.3)

where LL and LR are Lagrangians of an appropriate anomaly-free theory and may include

w2. The second Stiefel-Whitney class that appears in the interface Lagrangian LS should

originally be represented as w2(M)|W or w2(W ), but in the following we will simply denote it

as w2. On a spin manifold, the duality transformation does not change the theory itself and

only changes its coupling constant τ → τ ′. On the other hand, the SL(2,Z) transformation

for non-spin Maxwell theories alters the type of theory in addition to the coupling constant

as in Fig. 2. In what follows, we construct each SL(2,Z) generator interface depending on

the theories living on the left and right parts.

4.1.1 S-transformation

We describe the interface actions of the S-transformation in non-spin Maxwell theories. From

Fig. 2, we have three types of the S-transformation interfaces acting as

WbTb(τ) → WbTb(−1/τ), WbTf(τ) → WfTb(−1/τ), WfTb(τ) → WbTf(−1/τ) . (4.4)

We often omit the bulk terms and focus only on the interface Lagrangian.

WbTb → WbTb: In this case, the action of the S-transformation interface is given by

S =
i

2π

∫

W

AL ∧ dAR , (4.5)
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and the bulk Lagrangian LL and LR are those of the theory WbTb(τ) and WbTb(−1/τ),

respectively. This interface action is the same as the one for Maxwell theories on a spin

manifold [94, 95]. It is obvious that the action is invariant under the gauge transformation

AL → AL + dλL, AR → AR + dλR. The boundary terms in equations of motion for AL and

AR yield the following continuity equations on W ,

1

e2
∗FL +

i θ

4π2
FL +

i

2π
FR = 0 ,

− 1

e′2
∗FR − i θ′

4π2
FR +

i

2π
FL = 0 ,

(4.6)

where e′ and θ′ are the electric coupling and the theta angle in the complex coupling τ ′ =

−1/τ . The U(1) field strength FL and its dual F̃L are related by

F̃L = −2πi

e2
∗FL +

θ

2π
FL . (4.7)

In terms of this dual description, those continuity equations can be written as

FR = −F̃L , F̃R = FL . (4.8)

These equations imply that the gauge fields AL and AR are connected through the S-

transformation. To verify that the interface (4.5) is topological, we check that the energy-

momentum tensor is continuous when passing through this interface [95]. The symmetric

traceless energy-momentum tensor of the theory WbTb(τ) is given by

Tµν =
1

e2

(

FµαF
α
ν +

1

4
δµνFαβF

αβ

)

, (4.9)

and a similar expression is valid for the theory WbTb(−1/τ). Using the matching conditions

(4.8), we can confirm the continuity of the energy-momentum tensor at the interface W .

WbTf → WfTb: We next consider the interface of the S-transformation from WbTf(τ) to

WfTb(−1/τ). The interface action is written as

S =
i

2π

∫

W

AL ∧ (dAR − 2πw2) . (4.10)

The action is invariant under the zero-form gauge transformation AL → AL + dλL, AR →
AR+dλR, since i

∫

W
dλL∧w2 is an integer multiple of 2πi. We reiterate that the electric one-

form gauge transformation is given by the first two equations in Eq. (2.6) and WfTb is defined

by the identification of the background two-form gauge field with w2. Consequently, we ensure

that the whole action is invariant under the one-form gauge transformation expressed as

AR → AR +Λ , πw2 → πw2 + dΛ . (4.11)

The variation of the interface action under the one-form gauge transformations yields

− i

2π

∫

W

AL ∧ dΛ , (4.12)
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but this term is canceled by the boundary contribution of the theory WbTf(τ) on ML. From

the equation of motions, we obtain the matching condition on W

1

e2
∗FL +

i θ

4π2
FL +

i

2π
(FR − πw2) = 0 ,

− 1

e′2
∗ (FR − πw2)−

i θ′

4π2
(FR − πw2) +

i

2π
FL = 0 ,

(4.13)

where e′ and θ′ are again the parameters in the complex coupling τ ′ = −1/τ . 5 As in the

previous case, it follows from these matching conditions that the energy-momentum tensor is

continuous, and the interface is topological.

WfTb → WbTf : The interface action of the S-transformation that maps the theoryWfTb(τ)

to WbTf(−1/τ) is given by

S =
i

2π

∫

W

AL ∧ dAR . (4.14)

Although this interface action is the same as Eq. (4.5), the bulk theories on both sides are

different. The one-form gauge transformation is given by AL → AL+Λ, and the whole system

is gauge invariant in the presence of the interface. This interface is topological due to the

continuity of the energy-momentum tensor.

4.1.2 T-transformation

We construct the interface action implementing the T-transformation in non-spin Maxwell

theories. From Fig. 2, there are three types of the T-transformation:

WbTb(τ) → WbTf(τ + 1) , WfTb(τ) → WbTb(τ + 1) , WfTb(τ) → WfTb(τ + 1) . (4.15)

As in the S-transformation, we show that our interface actions give appropriate transformation

laws and are topological by using the equations of motion on the wall W and the continuity

of the energy-momentum tensor on W .

WbTb → WbTf : Let us consider the interface connecting WbTb(τ) to WbTf(τ + 1). The

interface action is

S =
i

2π

∫

W

a ∧ (dAL − dAR) +
i

4π

∫

W

AL ∧ dAL +
i

2π

∫

W

AR ∧ πw2 , (4.16)

where a is the auxiliary field living only on the wall W . This action is obviously invariant

under the gauge transformation a → a+dφ and AL → AL+dλL. For the gauge transformation

AR → AR + dλR and πw2 → πw2 + dΛ, the interface action transforms by

δS =
i

2π

∫

W

dλR ∧ πw2 +
i

2π

∫

W

AR ∧ dΛ . (4.17)

5When the spacetime manifold has no torsion, the expression ∗(F − πw2) should be interpreted as fol-

lows [78]. First, w2 is lifted to H2(M,Z). Then, in the expression ∗w2, the Hodge dual is taken after

embedding it into H2(M,R). A more careful treatment of the coupling between U(1) gauge fields and discrete

gauge fields requires the introduction of differential cohomology.
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The first term vanishes because w2 is trivial on the wall W and the second term is canceled

by the variation from the theory WbTf on the right region. Therefore, the interface action is

gauge invariant.

To verify its validity, consider the equation of motion on the wall W from (4.3). We

have the three independent fields on the wall: AL, AR, and the auxiliary field a, and their

equations of motion are

1

e2
∗FL +

iθ

4π2
FL +

i

2π
da+

i

2π
FL = 0 ,

− 1

e′2
∗FR − iθ′

4π2
FR − i

2π
da = 0 ,

(4.18)

and FL = FR. Thus, we can check that the interface action contributes as the T-transformation

τ ′ = τ + 1. Also, we can conclude that the interface is topological because the energy-

momentum tensor is continuous due to FL = FR.

WbTf → WbTb: For the interface connecting WbTf(τ) to WbTb(τ + 1), its action is

S =
i

2π

∫

W

a ∧ (dAL − dAR) +
i

4π

∫

W

AL ∧ dAL − i

2π

∫

W

AL ∧ πw2 . (4.19)

This interface action is invariant under the gauge transformation because of triviality for w2

on W . On the wall W , we have the same equations of motion as in the previous case, from

which we can check that the interface implements the T-transformation.

WfTb → WfTb: Under the T-transformation, the statistical pattern of line operators in

the theory WfTb(τ) remains invariant. In this case, the interface action is

S =
i

2π

∫

W

a ∧ (dAL − dAR) +
i

4π

∫

W

(AL − πc) ∧ (dAL − πw2) , (4.20)

where c is a trivialization of w2 on the wall W . Noting the gauge transformation πc → πc+Λ

from πw2 → πw2 + dΛ, the action turns out to be gauge invariant. This interface action

realizes the T -transformation because the equations of motion on the wall W are

1

e2
∗(FL − πw2) +

iθ

4π2
(FL − πw2) +

i

2π
da+

i

2π
(FL − πw2) = 0 ,

− 1

e′2
∗(FR − πw2)−

iθ′

4π2
(FR − πw2)−

i

2π
da = 0 ,

(4.21)

and FL = FR. It turns out that the interface implements the T-transformation and is topo-

logical because of the continuity of the energy-momentum tensor.

4.2 Gauging interfaces

Next, we discuss the nature of gauging interfaces. As discussed in Section 3, there are six

gauging procedures each for both magnetic and electric coupling, and for each procedure, the
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corresponding gauging interface can be constructed. To summarize the results collectively,

we introduce a pair of parameters (α, β) where α, β ∈ {0, 1}. We specify the types of the

non-anomalous Maxwell theories by

(α, β) =











(0, 0) for WbTb ,

(0, 1) for WbTf ,

(1, 0) for WfTb .

(4.22)

The parameters α and β reflect the statistics of fundamental Wilson loopW 1 and fundamental

’t Hooft loop T 1 in the theory, respectively. For each parameter, α, β = 0 corresponds to a

bosonic line, while α, β = 1 corresponds to a fermionic line.

In terms of this notation, the general action of the magnetic gauging interface between

(αL, βL) and (αR, βR) is given by

S =
i

2π

∫

W

a ∧ [dAL − 2 (dAR − αRπw2)]−
i

2π

∫

W

(βLAL − βRAR) ∧ πw2, (4.23)

where the subscripts L and R denote the theories defined on ML and MR, and a is an

additional dynamical U(1) one-form gauge field defined only on the interface. The action

of the magnetic gauging interface is independent of αL, since only WbTb and WbTf can be

magnetically gauged. On the other hand, the general action of the electric gauging interface

between (αL, βL) and (αR, βR) is given by

S =
i

2π

∫

W

a ∧ [2(dAL − αLπw2)− (dAR − αRπw2)] +
i

2π

∫

W

βRAR ∧ πw2, (4.24)

where the action is independent of βL because the theory WbTf cannot be electrically gauged.

4.2.1 Half gauging and topological nature

To ensure that gauging interfaces are topological, we apply the half gauging construction [7].

As in the construction of the SL(2,Z) interfaces, we decompose the spacetime into left and

right regions. On both regions, we place a single theory whose symmetry we would like to

gauge and we connect trivially their U(1) gauge fields at the interface. To construct the

gauging interface, we couple an appropriate BF theory with the right theory. At this point,

it is necessary to specify a boundary condition for the BF theory at the interface. Here, we

choose to impose the Dirichlet boundary condition for the two-form gauge field

Bm,e |W = 0 . (4.25)

After the path integral on the right side, the resulting interface connects the two theories

related by the gauging operation.

Note that the boundary condition (4.25) renders the interface topological for any back-

ground field (C1, C2) = (0, 0), (πw2, 0), (0, πw2) in the BF theory. To understand its topolog-

ical nature, consider the equation of motion for one-form gauge field Am,e in the BF theory.
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For the action BF[0, 0] or BF[πw2, 0], the equation of motion for Am,e requires that the two-

form gauge field Bm,e is flat and Z2-valued. Thus, there does not occur any effect under

the infinitesimal deformations of the locus where the Dirichlet boundary condition (4.25) is

imposed. In the case of BF[0, πw2], the condition for Bm,e is replaced to the twisted condi-

tion (3.19). However, we can infinitesimally deform the position of the interface because the

Stiefel–Whitney class w2 becomes trivial on the interface W .

Also, we can check that the gauging interfaces are topological for Maxwell theories with a

non-trivial fractionalization class. Since w2 is trivial on W , the background field in WbTf and

WfTb can be regarded as imposed the Dirichlet boundary condition, which concludes that

the interface is topological even when gauging a one-form symmetry in WbTf or WfTb on the

right region. For instance, when we obtain the fractionalization map WfTb(τ) → WbTb(τ/2
2),

two-form gauge field Be in the BF theory is shifted by B′
e = Be+πw2. In this case, due to the

Dirichlet boundary condition for Be and w2, the same boundary condition is applied for the

new variable B′
e and the gauging procedure preserves the topological nature of the interface.

There is another way to verify that the gauging interfaces are topological. As in the pre-

vious subsection, we can use the continuity of the energy-momentum tensor at the interface to

ensure the topological nature. We can check that the energy-momentum tensor is continuous

in all cases of the gauging process discussed earlier.

4.2.2 Gauge invariance and matching conditions

The whole system must be gauge invariant in the presence of a gauging interface. We need to

care about the zero-form gauge transformations for AL, AR and a, and their one-form gauge

transformations. These gauge transformations are explicitly given by

AL → AL + dλL + αLΛ , AR → AR + dλR + αRΛ ,

a → a+ dλW , πw2 → πw2 + dΛ ,
(4.26)

where λL,R,W are parameters of zero-form gauge transformations, and Λ is a parameter of

one-form gauge transformation. Let us consider the magnetic gauging interface (4.23). The

zero-form gauge transformations yield

i

2π

∫

W

dλW ∧ [dAL − 2(dAR − αRπw2)]−
i

2π

∫

W

(βLdλL − βRdλR) ∧ πw2 . (4.27)

The first integral is obviously an integer multiple of 2πi, since 2i
2π

∫

(AR − πw2) is an integer.

To deal with the second integral, note that w2 is trivial on W . In other words, we can treat

w2 as a cocycle of even number on W . Thus, the second integral is also an integer multiple

of 2πi. The variation of the interface action (4.23) under the one-form gauge transformation

is

− i

2π

∫

W

(βLAL − βRAR) ∧ dΛ , (4.28)
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but the boundary terms from the bulk theories exactly cancel this term. Similarly, we can

confirm that the system with the electric gauging interface (4.24) is also gauge invariant.

To see properties of the interfaces (4.23) and (4.24), we derive the matching conditions

between AL and AR. Again, we consider the magnetic gauging interface (4.23). The equation

of motion for the additional gauge field a on the interface leads

FL = 2(FR − αR πw2) . (4.29)

This equation implies that the magnetic Z2 gauging is performed on the interface to rescale

the gauge field by 2. From the equations of motion for AL and AR, we obtain

i

2π
da+

1

e2
∗FL +

iθ

4π2
FL = 0 ,

2i

2π
da+ 22

[

1

e2
∗(FR − αRπw2) +

iθ

4π2
(FR − αRπw2)

]

= 0 .
(4.30)

As discussed below, these equations will play essential roles in identifying the action of topo-

logical defects on line operators.

Likewise, for the electric gauging interface (4.24), the equation of motion for a imposes

the matching condition

FL − αLπw2 =
1

2
(FR − αRπw2) . (4.31)

It follows from this equation that the gauge field is rescaled by 1/2 as the result of gauging

electric symmetry. The constraints that connect the bulk fields to a are given by

2i

2π
da+

1

e2
∗(FL − αLπw2) +

iθ

4π2
(FL − αLπw2) = 0 , (4.32)

i

2π
da+

1

22

[

1

e2
∗(FR − αRπw2) +

iθ

4π2
(FR − αRπw2)

]

= 0 . (4.33)

4.3 Non-invertible duality defects

As mentioned at the beginning of Section 4, when the theory is self-dual under a composite

operation of the SL(2,Z) transformations and the gauging procedures, we can construct a

corresponding topological defect. The Lagrangian of the topological defect is given by the

fusion of the SL(2,Z) interfaces and the gauging interfaces, which are discussed in the previous

two subsections. From the defect Lagrangian, we can see the detailed profile of the topological

defects. In this section, we illustrate the fusion of topological interfaces and the properties of

the resulting defects using several examples, while focusing on Maxwell theories with coupling

constant τ = i and τ = (−1 + i
√
15)/2.
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(a) S-transformation
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(b) Condensation Ze
2 ◦ Zm

2

W n W n

T 2m−1

T 2m T 2m

(c) Condensation Zm
2 ◦ Ze

2

Figure 4: The action of the defects on line operators. The S-transformation defect (a) swaps

the Wilson and ’t Hooft lines. This behavior is consistent with (2.20). The condensation

defects (b) and (c) project out the Wilson and ’t Hooft lines with odd charges, respectively.

4.3.1 Defects at τ = i

WbTb(τ = i): Since the S-transformation acts as WbTb(τ) → WbTb(−1/τ), the theory

WbTb(τ = i) is self-dual under this operation. The Lagrangian of the associated topological

defect is given by Eq. (4.5). The same defect in Maxwell theory on a spin manifold has

been constructed in [94, 95]. Let us consider what happens when a line operator pierces

the defect, as in Fig. 4a. Suppose that the defect is penetrated from the left side by the

’t Hooft line with the charge m, which is described by the dual field ÃL. At the junction,

the matching condition (4.8) is imposed, and the ’t Hooft line is transformed into the Wilson

line with the charge m. Similarly, the Wilson line with the charge n from the left side is

transformed into the ’t Hooft line with the charge −n. Note that an orientation reversal

of this S-transformation defect implements the inverse operation. In other words, this S-

transformation defect is invertible. To see this, we consider fusing of the defect (4.5) and its

orientation reversal. When these two defects are inserted, the spacetime is divided into three

regions:

M = ML ∪MI ∪MR . (4.34)

We assume that MI is a thin slab region and the topology of MI is regarded as W ×I, where

I = [0, δx] is an interval. We denote the local coordinate for the interval I by x. The gauge

fields on these three regions are as shown in Fig. 5. After fusing two defects, the field aI is

regarded as the degrees of freedom on the defect, and the resulting Lagrangian is given by

S =
i

2π

∫

W

AL ∧ daI −
i

2π

∫

W

aI ∧ dAR =
i

2π

∫

W

daI ∧ (AL −AR) . (4.35)

This Lagrangian describes the identity defect, since by integrating out the field aI , it implies

that the fields AL and AR are trivially connected.

We next consider the composition of the two gauging interfaces. The theory WbTb(τ = i)

is self-dual under the following two operations combined the electric gauging and the magnetic
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x
x = 0 x = δx

TL TI TR

AL aI AR
δx → 0

x
x = 0

TL TR

AL AR

Figure 5: The fusion of two topological interfaces. While an interface at x = 0 glues the left

theory TL with the intermediate theory TI , the other at x = δx connects the intermediate

TI and the right theory TR. By stacking them together (δx → 0), we obtain a combined

topological interface that glues TL and TR.

gauging:

WbTb(τ = i)
Ze
2−−→ WbTb(τ = i/22)

Zm
2−−→ WbTb(τ = i) ,

WbTb(τ = i)
Ze
2−−→ WbTf(τ = i/22)

Zm
2−−→ WbTb(τ = i) .

(4.36)

The corresponding topological defects are constructed by fusing the appropriate gauging

defects. To this end, we again consider the configuration as Fig. 5. From the expressions for

interfaces (4.23) and (4.24), the fused Lagrangian is given by

S =
i

2π

∫

W

ae ∧ (2dAL − daI) +
i

2π

∫

W

βIaI ∧ πw2

+
i

2π

∫

W

am ∧ (daI − 2dAR)−
i

2π

∫

W

βIaI ∧ πw2 ,

(4.37)

where βI = 0, 1 for the intermediate theory TI = WbTb,WbTf , and ae,m,I are one-form gauge

fields on the electric gauging interface, the magnetic gauging interface, and the slab region,

respectively. Integrating out aI imposes the condition a := ae = am and yields

S =
2i

2π

∫

W

a ∧ (dAL − dAR) . (4.38)

Although this Lagrangian is similar to one for the identity defect, this defect acts non-trivially

on the line operators. To understand its property, we regard this defect as the stuck of the

gauging interface and the electric interface, and consider the Wilson line with charge n, pen-

etrating the defect from the left side. Recall that at the junction with the magnetic interface,

the matching condition (4.32) is imposed. In the present case, the matching condition is

written as

2i

2π
da+

1

2π
∗FL = 0. (4.39)
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It follows from this matching condition that the electric charge of the Wilson line measured

on a two-sphere Σ in the magnetic interface is related to the flux of a as

n = − i

2π

∫

Σ
∗FL = − 2

2π

∫

Σ
da ∈ 2Z. (4.40)

This constraint implies that the Wilson line is projected unless its charge n is even. See

Fig. 4b for the summary of the action on line operators. This type of topological defect is

called condensation defect [8, 33].

Moreover, WbTb(τ = i) exhibits self-duality under the operation that is interchanged the

order in the previous ones (4.36):

WbTb(τ = i)
Zm
2−−→ WbTb(τ = 22i)

Ze
2−−→ WbTb(τ = i),

WbTb(τ = i)
Zm
2−−→ WfTb(τ = 22i)

Ze
2−−→ WbTb(τ = i).

(4.41)

After stacking the interfaces, the action of the topological defect is written as

S =
i

2π

∫

W

am ∧ [dAL − 2(daI − αIπw2)] +
i

2π

∫

W

ae ∧ [2(daI − αIπw2)− dAR] , (4.42)

where αI = 0, 1 for the intermediate theory TI = WbTb,WfTb, respectively. To specify the

non-trivial action of this defect, it is sufficient to consider the junction between the magnetic

gauging interface and the ’t Hooft line with charge m coming from the left side. When the

fluxes of AL and aI are measured along a two-sphere in the interface around the junction, it

follows from the matching condition (4.29) that the constraint

m =
1

2π

∫

Σ
FL =

2

2π

∫

Σ
(daI − αIπw2) ∈ 2Z (4.43)

is required. Thus, the magnetic charge of the ’t Hooft line must be even for consistently

passing through the interface. Otherwise, this line operator is projected out as Fig. 4c.

Note that fusing some defects shown above yields the other defects in WbTb(τ = i). For

instance, we can obtain the defect

S =
2i

2π

∫

W

a ∧ dAL − 2i

2π

∫

W

a ∧ daI +
i

2π

∫

W

aI ∧ dAR (4.44)

by fusing the S-dual defect (4.5) and the condensation defect (4.38).

WbTf(τ = i): We can also construct the condensation defect in WbTf , based on the two

operations as

WbTf(τ = i)
Zm
2−−→ WbTb(τ = 22i)

Ze
2−−→ WbTf(τ = i),

WbTf(τ = i)
Zm
2−−→ WfTb(τ = 22i)

Ze
2−−→ WbTf(τ = i).

(4.45)
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The Lagrangian of this condensation defect is

S =
i

2π

∫

W

am ∧ [dAL − 2(daI − αIπw2)] +
i

2π

∫

W

ae ∧ [(2daI − αIπw2)− dAR]

− i

2π

∫

W

(AL −AR) ∧ πw2.

(4.46)

This defect is a counterpart to the defect (4.42) in WbTb(τ = i) and projects out the ’t Hooft

line with an odd charge.

On the other hand, there does not exist the S-dual defect in this case, because the S-

transformation mapsWbTf to the other theoryWfTb. Instead, by combining the S-transformation

and the gauging procedures, we can construct a topological defect, under which WbTf(τ = i)

is self-dual. For example, consider the following operations:

WbTf(τ = i)
Zm
2−−→ WbTb(τ = 22i)

Ze
2−−→ WfTb(τ = i)

S−−→ WbTf(τ = i),

WbTf(τ = i)
Zm
2−−→ WfTb(τ = 22i)

Ze
2−−→ WfTb(τ = i)

S−−→ WbTf(τ = i).
(4.47)

To specify the topological defect from these operations, we stack three appropriate interfaces.

The resulting Lagrangian of this defect is given by

S =
i

2π

∫

W

am ∧ [dAL − 2(daI1 − αI1πw2)]−
i

2π

∫

W

AL ∧ πw2

+
i

2π

∫

W

ae ∧ [2(daI1 − αI1πw2)− (daI2 − πw2)]

+
i

2π

∫

W

AR ∧ (daI2 − πw2) +
i

2π

∫

W

AR ∧ πw2 ,

(4.48)

where am, ae, aI1 , and aI2 are U(1) gauge fields on the defect and αI1 is the parameter of the

second theory in the sequence of operations (4.47). Since the second Stiefel-Whitney class

w2 on W is trivial, the fluxes of daI1 − αI1πw2 and daI2 − πw2 are not a half-integer but an

integer. This observation implies that we can redefine these fields as (daI1 −αI1πw2) → daI1
and (daI2 −πw2) → daI2. After integrating aI2 to set AR = ae, the Lagrangian is reduced to

S =
i

2π

∫

W

am ∧ (dAL − 2daI1) +
2i

2π

∫

W

AR ∧ daI1 −
i

2π

∫

W

(AL −AR) ∧ πw2 . (4.49)

Note that this defect is non-invertible since the ’t Hooft lines with an odd charge are projected

out by the magnetic interface. Recall that in the theory WbTb(τ = i), there exists the

invertible S-duality defect (4.5). On the other hand, in the case of WbTf , we cannot construct

an invertible topological defect only from the S-transformation, but one can define the non-

invertible defects including the S-transformation.

WfTb(τ = i): In this case, the discussion of topological defects is parallel to WbTf(τ = i).

The theory WfTb(τ = i) has the condensation defect which corresponds to the operations

WfTb(τ = i)
Ze
2−−→ WbTb(τ = i/22)

Zm
2−−→ WfTb(τ = i),

WfTb(τ = i)
Ze
2−−→ WbTf(τ = i/22)

Zm
2−−→ WfTb(τ = i).

(4.50)
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This defect has the same expression as one given in (4.38) and projects the Wilson lines

with an odd charge. Since WfTb(τ = i) is not self-dual under the S-transformation, we

combine the appropriate gauging procedures to construct the topological defects involving

the S-transformation. The resulting topological defects are non-invertible.

4.3.2 Defects at τ = 1
2(−1 + i

√
15)

In this subsection, we study the topological defects involving the T-transformation. In partic-

ular, we focus on the defects formed by stacking the three interfaces that are discussed in the

previous subsection. We can also construct the non-invertible symmetry of non-spin Maxwell

theory at the coupling τ = 1
8(−1 + i

√
15) in a similar way.

WbTb(τ = 1

2
(−1 + i

√
15)): In contrast to the other two theories discussed below, this

theory does not have any defect that we are focusing on.

WbTf(τ = 1

2
(−1+ i

√
15)): This theory is self-dual under the following sequence of oper-

ations:

WbTf(τ = (−1 + i
√
15)/2)

T−−→ WbTb(τ = (1 + i
√
15)/2)

S−−→ WbTb(τ = (−1 + i
√
15)/8)

Zm
2−−→ WbTf(τ = (−1 + i

√
15)/2) .

By composing appropriate interfaces, the Lagrangian of the defect is obtained as

S =
2i

2π

∫

W

AL ∧ dAR +
i

4π

∫

W

AL ∧ dAL − i

2π

∫

W

(AL −AR) ∧ πw2 . (4.51)

This defect is obviously non-invertible since the magnetic gauging interface projects the

’t Hooft lines with the odd charges.

WfTb(τ = 1

2
(−1 + i

√
15)): As in the previous case, we can construct the topological

defect based on the operation as

WfTb(τ = (−1 + i
√
15)/2)

T−−→ WfTb(τ = (1 + i
√
15)/2)

S−−→ WbTf(τ = (−1 + i
√
15)/8)

Zm
2−−→ WfTb(τ = (−1 + i

√
15)/2) .

The Lagrangian of this defect is given by

S =
2i

2π

∫

W

(AL − πc) ∧ (dAR − πw2) +
i

4π

∫

W

(AL − πc) ∧ (dAL − πw2), (4.52)

where c is a trivialization of w2 on W . The composed topological defect turns out to be non-

invertible since it includes the condensation defect that projects out half of line operators.
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5 Discussion

We have considered the Maxwell theories on a non-spin manifold. Depending on the choice

of statistics for the line operators, there are three non-anomalous theories and one anomalous

theory. We established the gauging maps that connect the non-anomalous theories by coupling

them to a discrete gauge theory. We also constructed topological interfaces associated with

SL(2,Z) duality and gauging of electric and magnetic one-form symmetries. Finally, by

stacking the topological interfaces, we composed various kinds of topological defects, which

lead to non-invertible symmetries of non-spin Maxwell theories.

In section 3, we gave the symmetry fractionalization maps in non-spin Maxwell theories.

Since the electric and magnetic one-form symmetries cannot be gauged simultaneously, we

have not gauged the electric (magnetic) symmetry in the presence of the magnetic (electric)

background gauge field. For example, we do not have an electric gauging map WbTf(τ) →
WbTb(τ/2

2) while we have its inverse by magnetic gauging

F : WbTb(τ) 7−→ WbTb(τ)×m BF[0, πw2]

Z2

∼= WbTf(2
2τ) . (5.1)

After gauging a symmetry, its dual symmetry typically emerges [107], and it is conceivable that

we should be able to obtain the map WbTf(τ) → WbTb(τ/2
2) by gauging a certain symmetry

dual to the magnetic symmetry in (5.1). This general discussion implicitly assumes that an

emergent symmetry does not have any ’t Hooft anomaly. However, after the gauging (5.1), the

magnetic symmetry has a mixed anomaly with a background field, which obstructs returning

to the original theory. It would be interesting to consider more general setups where a

quantum symmetry is anomalous after gauging.

This paper has focused on gauging a Z2 symmetry in the electric and magnetic one-form

symmetries. Its extension to Zk symmetry where k is an odd integer is straightforward. In

this case, the Zn gauge theory BF[C1, C2] coupled with Maxwell theory does not admit the

background gauge fields by Ci = πw2, and the theory after gauging always returns to the

original theory T . It implies the gauging map

T 7−→ T × BF[0, 0]

Zn

∼= T , (5.2)

where the coupling constant is modified after gauging. This can be done for electric and

magnetic couplings due to the absence of a mixed anomaly. This map is similar to the

gauging of Maxwell theory on a spin manifold and by combining the duality map in Fig. 2,

one could construct non-invertible duality defects for Zn gaugings.

This paper has dealt with U(1) gauge theory using continuous quantum field theories.

One can regularize a theory by discretizing the spacetime into a lattice, which gives a lattice

gauge theory. Our consideration was on an oriented but non-spin manifold like the complex

projective plane. We expect that the duality defects given in section 4 and the corresponding
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non-invertible symmetries appear in some lattice gauge theory after discretizing the spacetime

into a lattice. It would be helpful to extend the construction of non-invertible symmetry in

pure Z2 lattice gauge theory in [30] to a non-spin manifold.
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