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Rabi oscillations have long been thought to be out of reach in simulations using time-dependent
density functional theory (TDDFT), a prominent symptom of the failure of the adiabatic approxima-
tion for non-perturbative dynamics. We present a reformulation of TDDFT which requires response
quantities only, thus enabling an adiabatic approximation to predict such dynamics accurately be-
cause the functional is evaluated on a domain much closer to the domain for which it was derived.
Our reformulation applies to any real-time dynamics, redeeming TDDFT far from equilibrium. Ex-
amples of a resonantly-driven local excitation in a model He atom, and charge-transfer in the LiCN
molecule are given.

While the balance between accuracy and effi-
ciency makes time-dependent density functional theory
(TDDFT) a very successful method for predictions of
molecular spectra and response [1–5], the difficulty in
obtaining functional approximations that perform reli-
ably beyond the response regime has dogged its general
use in applications where the system is driven far from
equilibrium [6, 7]. Advances in experiments and in tech-
nologies involving non-perturbative electron dynamics,
triggered for example by laser fields or collisions with
ions, give urgency to solving this problem, especially
given the dearth of alternative computationally feasible
methods on complex systems. In some situations, the
TDDFT simulations nevertheless give useful mechanis-
tic information and sometimes give results that quali-
tatively match the experiment [8–11] but in others, such
as scattering [12–14] and pump-probe spectroscopy [15–
18], TDDFT can give large errors, and even completely
fail, such as for Rabi oscillations [15, 19–23] or long-
range charge-transfer dynamics [24–27].

In the non-perturbative regime, TDDFT operates via
the time-dependent Kohn-Sham (TDKS) equations, in
which the many-body effects are mapped to a one-body
potential, the exchange-correlation (xc) potential. The
root of the failures is the adiabatic approximation to the
xc functional [7], which is unable to capture step and
peak features that depend on local KS velocities and ac-
celerations of the electron density [28], and that are a
signature of memory-dependence of the exact xc func-
tional. While the exact vXC[n; Ψ(0),Φ(0)](r, t) depends
on the history of the density n(r, t′ < t), the initial in-
teracting state Ψ(0) and the choice of the initial KS state
Φ(0), this dependence is neglected in adiabatic approxi-
mations that insert the instantaneous density n(r, t) into
a ground-state approximation vg.s.XC [n(t)](r). The non-
adiabatic features play a critical role in correcting spuri-
ous frequency-shifts in spectral peaks of systems driven
out of a ground-state [15, 17, 18, 23] that occur in simu-
lations using an adiabatic approximation. These shifts
have an especially grave consequence for resonantly-
driven systems, causing the adiabatic TDKS simulation

to detune itself from the driving frequency. Even an
adiabatically-exact approximation, meaning one where
the exact ground-state functional is used in the TDKS
propagation, fails [7, 29]. It is in fact surprising that
there are situations where adiabatic TDKS predictions
are qualitatively reasonable, given that the xc func-
tional approximation is being evaluated on a fully non-
equilibrium density where the underlying true and KS
wavefunctions are typically far from any ground state, a
domain far from which it was derived.

Although it is understood why Rabi oscillations,
or driven dynamics generally, cannot be captured by
adiabatic TDDFT approximations, finding a practical
non-adiabatic approximation has proven elusive [7].
Developing improved functionals for excitations in
the linear response regime has been more successful,
e.g. those that incorporate exact-exchange can give
improved Rydberg spectra and charge-transfer exci-
tations [25, 30–33], double-excitation frequencies and
oscillator strengths can be captured with frequency-
dependent kernels in dressed TDDFT [34–36], excitonic
spectra can be captured with long-ranged kernels [37–
41], and relaxation and dissipation from electron vis-
cosity can be captured with current-density function-
als [42, 43]. However, the search for practical memory-
dependent functionals that contain the requisite non-
adiabatic features for non-perturbative dynamics has so
far come up dry.

We present a reformulation of TDDFT that applies to
non-perturbative electron dynamics while requiring xc
functionals only in the linear and quadratic response
regimes. This means that, instead of having to evalu-
ate the xc functionals on the fully non-equilibrium sys-
tem, they are evaluated always close to the ground-state,
and thus are far more amenable to adiabatic approxi-
mations. In cases where the adiabatic approximation
performs poorly in the response regime, improved non-
adiabatic functionals are readily at hand. The same adi-
abatic functional performs far better in this response-
reformulated TDDFT (RR-TDDFT) than it does in the
traditional TDKS scheme. A special case of this ap-
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proach was shown in earlier work on Ehrenfest dy-
namics [27], but here we show the approach can be ex-
tended to general non-perturbative problems, resolving
the problem of missing Rabi oscillations and long-range
charge-transfer dynamics in the TDKS approach.

The theorems of TDDFT [1] tell us that from the one-
body density n(r, t) one can extract all observables for
a system evolving in the time-dependent many-body
Schrödinger equation

iℏ∂t|Ψ⟩ = (H(0) + V app(t))|Ψ⟩; (1)

where H(0) = T + W + V
(0)
ext is the sum of the kinetic

energy operator, electron-electron interaction, and static
external potential due to the nuclei, respectively, and
V app(t) =

∫
d3rvapp(r, t)n̂(r) is a one-body local po-

tential operator representing an externally applied field,
with n̂(r) the one-body density-operator. In standard
TDDFT, the system is mapped to the non-interacting
KS system that reproduces the exact interacting density
n(r, t) with a set of orbitals that evolve under the TDKS
equations:

(−∇2/2 + vS(r, t))ϕi(r, t) = i∂tϕi(r, t), (2)

where vS(r, t) = v
(0)
ext(r, t) + vapp(r, t) + vH(r, t) +

vXC(r, t). Here vH(r, t) is the Hartree potential, a func-
tional of the instantaneous density, while vXC(r, t) =
vXC[n; Ψ(0),Φ(0)](r, t) has the memory-dependence
whose neglect in usual approximations leads to errors
and failures.

Instead, RR-TDDFT bypasses the solution of the
TDKS orbitals and solves for a set of TD expansion co-
efficients of the many-body state, but without needing
to actually find the state. The idea may be seen as
similar in spirit to time-dependent configuration inter-
action, but here linear and quadratic response TDDFT
is used to obtain the static electronic structure quan-
tities and we never find the wavefunction. We ex-
pand the time-dependent physical many-body wave-
function in terms of the (unknown) many-body eigen-
states: |Ψ(t)⟩ =

∑
n Cn(t)|Ψn⟩, where |Ψn⟩ satisfies the

static many-body equation: H(0)|Ψn⟩ = En|Ψn⟩. Insert-
ing this into Eq. (1) gives

iℏĊm(t) = EmCm(t) +
∑
n

V app
mn (t)Cn(t) (3)

where the sum goes over all the eigenstates and

V app
mn (t) = ⟨Ψm|V app(t)|Ψn⟩ =

∫
d3rvapp(r, t)ρmn(r)

(4)
with ρmn(r) = N

∫
d3r2..d

3rNΨ∗
m(r, r2..rN )Ψn(r, r2..rN )

being the transition-density and N the number of elec-
trons. The time-dependent one-body density can be
extracted from

n(r, t) =
∑
n,m

C∗
n(t)Cm(t)ρnm(r) (5)

We now argue that Eqs. 3–5 provide a route to obtaining
all observables of a non-perturbative real-time dynam-
ics from just TDDFT response properties. First, invok-
ing the Runge-Gross theorem, all observables can be ob-
tained from the initial interacting state |Ψ(0)⟩ and the
time-evolving density n(r, t). Eq. (5) provides n(r, t),
which requires solution of the coupled time-evolution
equations, Eqs. (3) for the coefficients. To solve these,
we need:
(i) energies Em that can be obtained from adding fre-
quencies from TDDFT linear response [44, 45] ωm to the
ground-state DFT energy E0,
(ii) the transition-density ρmn(r) which can be obtained
from linear response TDDFT [44–46] for ground-excited
transitions, and quadratic response for excited-excited
transitions [47], and
(iii) the initial coefficients Cm(0) which are obtained
from expanding the initial many-body state |Ψ(0)⟩ in
terms of the many-body eigenstates of H(0). It is impor-
tant to note that the interacting eigenstates themselves
are not required, only knowledge of which states are oc-
cupied and with what amplitudes, which would be de-
termined by the physics of the initial conditions of the
problem. Often this is just the ground-state, in which
case C0(0) = 1, Cm ̸=0(0) = 0.

With the ingredients in (i)–(iii) all obtained from lin-
ear and quadratic response, the time-dependent density
can be obtained, (note that ρmn(r) also appear directly
in the expression for the density in Eq. (5)), and hence
all observables [1].

Comparing with the standard TDDFT procedure
based on the TDKS equations, Eq. 2, the saliant ad-
vantage of RR-TDDFT is that the adiabatic xc func-
tional approximations are evaluated far closer to the
domain in which they were derived. That is, the xc
functional in TDKS with an adiabatic approximation,
vAXC[n; Ψ(0),Φ(0)](r, t) = vg.s.XC [n(t)](r), applies a ground-
state functional in a domain on the left which evolves
far from any ground-state. Such an approximation is
unlikely to be accurate. On the other hand, in RR-
TDDFT, there are three xc objects: vg.s.XC [ng.s.](r) (needed
for E0 and the KS orbitals and excitation energies
that the linear response builds upon), fXC[ng.s.](r, r

′, ω)
(the central xc kernel in linear response TDDFT), and
gXC[ng.s.](r, r

′, r′′, ω, ω′) (the second-order response ker-
nel). The latter two are related to functional derivatives
of vXC[n,Ψ(0),Φ(0)](r) evaluated on a ground-state den-
sity, so the domain involves only small perturbations
around a ground-state density.

Another fundamental difference is in the role of
the initial state. Similar to TD wavefunction meth-
ods, the physical interacting initial state is a key in-
put in RR-TDDFT, but it in the TDKS approach, it
appears only through the functional dependence of
vXC[n; Ψ(0),Φ(0)](r, t). In practise, this initial-state de-
pendence is neglected in TDKS, since adiabatic func-
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tionals depend only on the instantaneous density, but
the exact xc functional varies significantly when the sys-
tem starts in different initial states even if they all have
the same one-body density [48, 49]. In a sense, the ini-
tial interacting state plays a more prominent, and con-
ceptually easier, role in RR-TDDFT than in TDKS since
it appears directly as an initial condition in the evolu-
tion equations, rather than in an unknown functional-
dependence. In contrast, it is the KS initial state Φ0

that appears directly in the equations to evolve in TDKS;
Φ0 is not unique, different choices give different xc po-
tentials, and the adiabatic approximation gives signif-
icantly varying errors for different choices [14, 48, 50].
Adiabatic approximations perform particularly poorly
when the rank of the true interacting density-matrix
evolves significantly (e.g. Ψ(t) going from close to
a single Slater determinant to a singly-excited singlet
state), because the TDKS state Φ(t) cannot change its
rank. These challenging considerations are moot in RR-
TDDFT.

We now give two examples to demonstrate how
adiabatic functionals achieve Rabi oscillations when
used within RR-TDDFT, while completely failing within
TDKS. Atomic units (e2 = ℏ = me = 1) are used unless
otherwise stated.

Our first example is a one-dimensional Helium atom
(1D He) with soft-Coulomb interactions, studied be-
fore in this context [19–22]: v

(0)
ext = −2/

√
1 + x2, con-

tained in a box of size -40 a.u. to 40 a.u. We ap-
ply a field E(t) = 0.00667 sin(ωt) to the ground-state,
where ω is resonant with the first singlet excitation, ω =
ωex = 0.5336a.u. With the transition dipole moment of
µ01 = 1.106a.u., this gives a Rabi period of TR where
TR/2 = π

0.00667µ01
= 425.9a.u. The observable we are

interested in is the dipole moment, d(t) =
∫
xn(x, t)dx

where n(x, t) =
∑

iocc |ϕi(x, t)|2 is obtained from the so-
lution of Eq. (2) for TDKS and from Eq. (3)–(5) for RR-
TDDFT. Owing to the spatial symmetry of the ground
and first excited states resulting in a zero permanent
dipole moment, the dipole moment from Eq. (5) simpli-
fies to d(t) = 2ℜ [C∗

0 (t)C1(t)]µ0,1.

The top panels of Fig. 1 depict the dipole moment dy-
namics obtained from real-time calculations. The left-
most plot shows the exact solution from the TDSE, with
the expected Rabi oscillation. The second and third plots
in the top panels show the result of TDKS evolution
with the exact exchange (EXX) approximation. While
1d He is driven by the same pulse as the exact in the
second panel, in the third, it is driven instead at the fre-
quency of the excited state predicted by EXX linear re-
sponse, ωEXX = 0.5488 a.u. As has been observed in
earlier work [20], in both cases a significant deviation
from the exact behavior is evident, underscoring the fail-
ure of TDKS to accurately replicate the observed dynam-
ics. The dipole envelopes falsely suggest a Rabi-like os-

FIG. 1. Resonantly-driven dipole dynamics in 1D He. Top pan-
els: (Left) Numerically exact result calculated using TDSE with
a pulse, E(t) = 0.00667 sin(ωt) and ω = ωex = 0.5336a.u.;
(Middle) TDKS with EXX functional; (Right) TDKS-EXX
driven by ωEXX = 0.5488a.u. Bottom panels: (Left and Mid-
dle) Dipole moments calculated from RR-TDDFT with EXX
driven at ωex and ωEXX respectively. Also shown in dot-
ted and dashed lines are the populations of the ground and
the first singlet excited states, |C0(t)|2 and |C1(t)|2 (unla-
belled). (Right) The exact n∗

ex(x) (black solid) and EXX nEXX(x)
(blue dotted) excited-state densities calculated from static (re-
sponse) calculations, compared with the exact time-evolved
densities n∗

ex(x, t
∗ = 425.9a.u.) (orange with circle) and EXX,

nEXX(x, t
∗ = 364.35a.u.) (green dashed).

cillation albeit at wrong frequencies (the expected half-
Rabi period calculated from µEXX

01 = −1.0924 a.u. gives
TEXX
R /2 = 431.2 a.u.): the density at the minimum of the

dipole moment is not that of the EXX excited state (see
the bottom right panel).

Turning now to our RR-TDDFT method, the first plot
in the bottom panel shows the result of applying the
pulse used in the exact case in Eqs. 3–5, with the ener-
gies and transition densities given by EXX. We observe
the expected detuned Rabi oscillation, and only a par-
tial population transfer, due to the mismatch of ωEXX

with the driving ω. Applying the field instead at ωEXX,
displays at true Rabi oscillation as shown in the mid-
dle plot. There is a full population inversion at TEXX

R /2,
and the right-most plot verifies this by showing the den-
sity at this time has the same shape as the excited state
density, unlike that of the TDKS density at what looks
like its half-Rabi time. This plot also shows the excited-
state density n∗

EXX(x) computed from a response calcu-
lation with EXX [51–53], which is very close to the exact
excited state density n∗(x). Thus, while EXX failed to
produce a Rabi oscillation when used within TDKS, this
same functional approximation succeeded when used
within RR-TDDFT.

We now turn to the case of the lithium cyanide (LiCN)
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molecule, which has been studied in the past as a test
system for light-driven dipole switching [26, 54]: the de-
generate second (S2) and third (S3) excited states have
a dipole moment along the bond-axis (ẑ) opposite to
that in the ground-state. Applying a laser pulse reso-
nant with the excitation frequency along the x̂ (ŷ) direc-
tion, which coincides with the direction of the transition
dipole to the S2 (S3) states respectively, drives the transi-
tion to the S2 (S3) state with a concomitant large change
in the z-dipole moment. The known failure of the TDKS
simulation to accurately describe this dipole switching
is one of the prime examples of limitations of adiabatic
approximation [6, 7, 17, 24, 26]. Here we show that the
same adiabatic approximations perform well when ap-
plied instead within the RR-TDDFT approach. We use
the NWChem [55] code to perform the real-time TDKS
calculations, and its linear response module used to ex-
tract the ingredients in Eqs. 3–5 for the RR-TDDFT, trun-
cated to two states: ground S0 and excited S2-state ener-
gies, dipole moments, and the transition dipole moment
between these states.

We take a short enough pulse that the nuclei may
be treated statically during the evolution, fixed at their
equilibrium geometry, RLi–C = 3.683 a.u. and RC–N =
2.168 a.u [54]. The applied field is a resonant π-
pulse [56] along the x̂-direction,

vapp(r, t) = xf0 sin
2

(
πt

2σ

)
sin(ωt) (6)

where ω is the excitation frequency of the S2 state, σ is
the half-width of the pulse envelope and the amplitude
f0 = π

σ|µ0,2;x| with µ0,2;x, the x-transition dipole moment
between states S0 and S2. (For a two-state problem, this
pulse achieves population inversion by time T = 50fs).
We will take the reference (“exact”) calculation as the
time-dependent CISD(10,15)/6-31G* simulation of Fig.
3 in Ref. [26], which applied this π-pulse at resonant fre-
quency ωex = 6.8eV, close to the linear response CISD
value of 6.77 eV, and σ = 25 fs, such that a full popula-
tion inversion is achieved at around 38 fs.

The top panel of Fig. 2 shows the z-dipole moment µz

when driven by the π-pulse of Eq. 6, as predicted from
TDKS and our RR-TDDFT, using adiabatic PBE [57]
and a tuned BNL (tBNL) [58, 59] functional, both us-
ing the same 6-31G* basis set as the reference CISD.
The resonant frequencies predicted by linear response
with these functionals are ωPBE = 4.31eV, and ωtBNL =
6.80eV where we tuned the range-separation parameter
γBNL = 0.8 in order to align the excitation energy of S2

state with the applied frequency. The complete failure
of the TDKS simulations is evident in the figure, simi-
lar to what was observed in the earlier work [26] (the
figures there used a different pulse for the TDKS calcu-
lations which led to more oscillatory behavior), and in
model system analogs of the problem [24, 25, 29] (which

used a flat envelope rather than a π-pulse). In partic-
ular, despite the excellent agreement of the tBNL lin-
ear response frequency with the reference, the real-time
TDKS calculation of the dynamics is miserable. In con-
trast, RR-TDDFT with this functional (RR-tBNL in the
figure) is extremely good.

The PBE functional does equally poorly as tBNL in
the TDKS simulation, while when used in RR-TDDFT
it also fails, giving even less of a response, as shown in
the inset. This is because the PBE frequency is severely
underestimated due to the charge-transfer nature of the
excitation, and with such a weak field, off-resonant to
any system frequency, the system is barely disturbed.
Instead, however PBE achieves dipole switching for a
pulse that is resonant with the PBE frequency. This is
shown in the lower panel of Fig. 2 where we again show
TDKS and RR-TDDFT with PBE and tBNL functionals,
but with the frequency and transition dipole that enter
into the resonant pulse Eq. 6 obtained from the corre-
sponding underlying electronic structure. If we did not
have a reference calculation, and were relying on the
PBE (or tBNL) functional for our description of the sys-
tem, these would be the π-pulse parameters we would
use to achieve the resonant charge-transfer. Now we see
that, due to the domain of the functionals being closer
to the ground-state, RR-TDDFT with either the PBE or
tBNL functional reproduce the dipole-switching well,
while these same functionals used in the real-time TDKS
scheme fail.

In summary, our reformulation of real-time TDDFT
in terms of response quantities yields greatly improved
electron dynamics far from the ground-state when used
with standard functionals. While these same functionals
fail to produce Rabi oscillations when used in the TDKS
scheme, they succeed when used in the RR-TDDFT
framework. This is because, in contrast to TDKS, the
xc functionals in RR-TDDFT are required only in the re-
sponse regime, where the xc potential is evaluated on
densities close to the ground-state, a domain close that
in which the functional approximations were derived.

Effectively, RR-TDDFT separates out the time and
space-dependence of observables, and so reduces the
complexity in the xc effects arising from the inherent
entanglement of time- and spatial-non-locality [60, 61].
This leads to quite different numerical considerations
in the two approaches: the RR-TDDFT trades a self-
consistent solution of the set of N partial-differential
TDKS equations in space and time for a self-consistent
solution of a set of M ordinary differential equations
in time, where M represents the anticipated number
of many-body states that will likely be occupied dur-
ing the dynamics. RR-TDDFT also needs to solve lin-
ear response equations for M energies, densities, and
M(M − 1) couplings some of which require quadratic
response. In scenarios where a very large number of
states are likely to be involved, RR-TDDFT may become
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Exact

TDKS-tBNL
TDKS-PBE

Exact RR-tBNL

RR-PBE

TDKS-PBE

TDKS-tBNL

RR-tBNL

adia

RR-PBE

FIG. 2. Resonantly-driven charge-transfer in the LiCN
molecule: Top panel: Dipole moment computed from TDKS,
and RR-TDDFT, using PBE and tBNL functionals within the
6-31G* basis set. The applied π− pulse has the parameters
ωapp = ωex = 6.8eV , σ = 25 fs and f0 = 0.01019 and the re-
sults are compared with the reference TD-CISD from Ref. [26].
Lower panel: Same quantities as above panel in which the
pulse parameters are determined by the corresponding elec-
tronic structure.

unfeasible. But in many scenarios (like resonant driv-
ing), a smaller sector of the Hilbert space is involved,
and RR-TDDFT, in addition to its much more reliable
predictions, may also offer a computational advantage
over TDKS due to its ordinary rather than partial dif-
ferential equation nature. For computing excited-to-
excited state couplings, we note that quadratic response
may be circumvented by approximating these from lin-
ear response akin to the auxiliary wavefunction method
employed to compute derivative couplings between ex-
cited states[46, 62].

Finally, we note that, like TDKS, RR-TDDFT is exact
in principle, and need not be limited to using adiabatic
approximations. RR-TDDFT with an adiabatic approx-
imation will work poorly in cases where these approx-
imations are known to fail in linear [34, 36] as well as
quadratic [63, 64] response regimes, but given that it
has so far proven to be clearer to identify such cases,
and to develop improved non-adiabatic response func-
tionals, RR-TDDFT promises to overcome the reliability
challenges of TDDFT in the non-perturbative regime.
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