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Abstract

This paper provides an alternative implementation of the principle of general local covariance
for algebraic quantum field theories (AQFTs) which is more flexible and powerful than the
original one by Brunetti, Fredenhagen and Verch. This is realized by considering the 2-
functor HK : Locop → CAT which assigns to each Lorentzian manifold M the category
HK(M) of Haag-Kastler-style AQFTs over M and to each embedding f :M → N a pullback
functor f∗ = HK(f) : HK(N)→ HK(M) restricting theories from N to M . Locally covariant
AQFTs are recovered as the points of the 2-functor HK. The main advantages of this new
perspective are: 1.) It leads to technical simplifications, in particular with regard to the
time-slice axiom, since global problems on Loc become families of simpler local problems
on individual Lorentzian manifolds. 2.) Some aspects of the Haag-Kastler framework which
previously got lost in locally covariant AQFT, such as a relative compactness condition on
the open subsets in a Lorentzian manifold M , are reintroduced. 3.) It provides a successful
and radically new perspective on descent conditions in AQFT, i.e. local-to-global conditions
which allow one to recover a global AQFT on a Lorentzian manifold M from its local data in
an open cover {Ui ⊆M}.
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1 Introduction and summary

In its traditional form as proposed by Haag and Kastler [HK64], algebraic quantum field theory
(AQFT) studies nets of operator algebras which are defined on suitable open subsets of the
Minkowski spacetime and are endowed with an action of the Poincaré group, i.e. the group
of automorphisms of the Minkowski spacetime. This axiomatic approach therefore combines
the key principles of quantum theory and special relativity, leading to a powerful framework
in which one can prove a variety of model-independent results about quantum field theories,
such as the CPT and spin-statistics theorems, as well as general results about scattering theory,
see e.g. Haag’s monograph [Haa96]. Much of this power however gets lost when one replaces the
Minkowski spacetime by an arbitrary (oriented, time-oriented and globally hyperbolic) Lorentzian
manifoldM , because the latter will in general have no non-trivial geometric automorphisms. This
issue led Brunetti, Fredenhagen and Verch to propose their principle of general local covariance
for AQFTs [BFV03]. This principle was implemented by replacing the Haag-Kastler point of
view, i.e. that an AQFT is formulated with respect to open subsets in an individual Lorentzian
manifold, with the proposal that a locally covariant AQFT is a functor A : Loc → Alg out
of the category of all (oriented, time-oriented and globally hyperbolic) Lorentzian manifolds M
with morphisms given by (isometric, causal and open) embeddings f :M → N , which is subject
to some physically motivated conditions such as causality and the time-slice axiom. See also
[FV15] for a more modern presentation of these ideas. Through this enhanced functoriality,
locally covariant AQFT regains much of the power of Haag-Kastler AQFT on the Minkowski
spacetime, leading to a variety of model-independent results for AQFTs on Lorentzian manifolds
which extend the traditional ones on the Minkowski spacetime, see e.g. [FV12, Few17, Few18].
Furthermore, the principle of general local covariance is the key to developing renormalization
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techniques for AQFTs on Lorentzian manifolds [HW01, HW02, Hol08, KM16], see also Rejzner’s
monograph [Rej16], and it plays a pivotal role in applications to physics, see e.g. [Hac16, FV20].

The aim of this paper is to provide an alternative, more flexible and powerful implementation
of the principle of general local covariance for AQFTs which is compatible with, but considerably
enhances, the original Haag-Kastler viewpoint that AQFTs are defined on suitable open subsets
of a Lorentzian manifold M ∈ Loc. Starting from the latter viewpoint, there is a category
HK(M) whose objects are all Haag-Kastler-style AQFTs overM and whose morphisms are natural
transformations. The key idea is to consider not only one of these categories, but rather the
whole family of categories {HK(M) : M ∈ Loc}, for all Lorentzian manifolds M ∈ Loc, and
endow it with additional structure describing the behavior of Haag-Kastler-style AQFTs under
Loc-morphisms f : M → N . We assemble these structures into a (contravariant) 2-functor
HK : Locop → CAT from the category Loc of Lorentzian manifolds and their embeddings to the
2-category CAT of categories, functors and natural transformations. This 2-functor assigns to
each Lorentzian manifold M ∈ Loc the category HK(M) of all Haag-Kastler-style AQFTs over
M and to each embedding f :M → N in Loc a pullback functor f∗ = HK(f) : HK(N)→ HK(M)
which describes the restriction along f of AQFTs over N to AQFTs over M . See Definition 3.1
for the precise definition of this 2-functor. Our approach identifies the locally covariant AQFTs
from [BFV03, FV15] with the points of the 2-functor HK, i.e. pseudo-natural transformations
A : ∆1⇒ HK from the constant 2-functor ∆1 : Locop → CAT assigning the one-object category
1 ∈ CAT, see Theorem 3.8 and Corollary 3.12. This identification gives a precise meaning to
the following intuitive slogan: “A locally covariant AQFT is the same datum as a natural family
of Haag-Kastler-style AQFTs over all M ∈ Loc.” It also shows that our framework is richer
than locally covariant AQFT, since the 2-functor HK contains more structure than its category
of points ∆1⇒ HK.

Even though our approach might superficially look more complicated than locally covariant
AQFT, owing to its use of some 2-categorical concepts and techniques, it actually leads to consid-
erable technical simplifications. Loosely speaking, the origin of these simplifications lies in the fact
that our approach turns complicated global problems for the category Loc into families of simpler
local problems for the categories of causally convex open subsets COpen(M) in all individual
Lorentzian manifoldsM ∈ Loc. An example for this is given by the time-slice axiom, which from
a structural point of view corresponds to a localization of the relevant spacetime category at all
Cauchy morphisms, see e.g. [BSW21] and [BS19, BS23] for reviews. The localization of the cate-
gory Loc at all Cauchy morphisms is in general notoriously difficult to understand and describe,
with notable exceptions given by the very special cases of 1-dimensional Lorentzian manifolds
[BCS23] and of 2-dimensional conformal Lorentzian manifolds [BGS22], while the localizations of
the categories COpen(M) at all Cauchy morphisms admit very simple and intuitive models, see
[BDS18] and also Example 2.10 and Appendix B. When combined with the identification from
Corollary 3.12 between locally covariant AQFTs and points of the 2-functor HK, this leads to a
technically useful perspective on the time-slice axiom in locally covariant AQFT.

A notable feature of our framework is that it allows us to reintroduce some aspects of Haag-
Kastler-style AQFTs which previously got lost in the generalization of [BFV03] to locally covari-
ant AQFT. For instance, in the original framework [HK64] one assigns algebras only to relatively
compact open subsets of the Minkowski spacetime, but there is no remnant of this restriction
in locally covariant AQFT [BFV03]. In our approach one can easily include such relative com-
pactness conditions by considering the 2-functor HKrc : Locop → CAT that assigns to each
Lorentzian manifold M ∈ Loc the category HKrc(M) of all Haag-Kastler-style AQFTs on M
which are modeled on the full subcategory RC(M) ⊆ COpen(M) of relatively compact causally
convex opens in M . See Definition 3.13 for the precise definition of this 2-functor. One can then
show that relative compactness does interplay well with the time-slice axiom, leading to very sim-
ple and intuitive models for the localizations of the categories RC(M) at all Cauchy morphisms,
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see Example 2.10 and Appendix B. An interesting observation is that the points ∆1 ⇒ HKrc

of the relatively compact 2-functor HKrc are related to, but not exactly the same as additive
locally covariant AQFTs, see Corollaries 3.20 and 3.25. This indicates that the relatively com-
pact 2-functor HKrc implements a weakened variant of the additivity property of locally covariant
AQFTs.

Another significant novelty of our framework is that it provides a radically new approach
to the issue of descent conditions in AQFT, i.e. local-to-global conditions which allow one to
recover the global datum of an AQFT on a complicated Lorentzian manifold M from its local
data in simpler regions. Descent conditions have been relatively little studied in the context
of AQFT, even though they are technically powerful and also conceptually interesting as they
provide mathematical realizations of the slogan that “quantum field theory should be local”. One
of the reasons why descent conditions did not receive much attention in AQFT could be that in
their most basic form, which is given by a cosheaf condition with respect to causally convex open
covers {Ui ⊆ M} for the underlying functors A : Loc→ Alg, they are not satisfied even by the
simplest examples, see [BS19, Appendix A]. An alternative to such cover-type descent conditions
is given by Fredenhagen’s universal algebra [Fre90, FRS92, Fre93], which can be realized in terms
of a left Kan extension of AQFTs along the functor Loc⋄ → Loc from contractible Lorentzian
manifolds to all Lorentzian manifolds, see [Lan14] for the latter point of view and also [BSW21]
for a refinement using operad theory. Descent conditions which are based on Fredenhagen’s
universal algebra are however conceptually very different to cover-type descent conditions: Instead
of reconstructing the global datum of an AQFT on M from local data in any choice of cover
{Ui ⊆ M}, one must exhaust M by all possible embeddings D → M of contractibles and glue
together the local data on all these subsets. This means that these descent conditions are less
flexible and practical, and hence also less powerful, than cover-type descent conditions.

In our framework there are two different layers of cover-type descent conditions, which are
related to each other, as we shall explain below. The more abstract top layer is to ask whether
or not the 2-functor HK : Locop → CAT satisfies the descent conditions of a stack of categories,
which means whether or not the category HK(M) of global Haag-Kastler-style AQFTs on M can
be recovered from the categories of local Haag-Kastler-style AQFTs on the regions of a causally
convex open cover {Ui ⊆ M}. See Definition 2.14 for the precise definition of a stack. We will
show in Propositions 3.3, 3.11, 3.14 and 3.23 that these descent conditions are not automatically
satisfied by the Haag-Kastler 2-functor HK : Locop → CAT and all of its variations arising from
relative compactness and/or the time-slice axiom. Using more sophisticated technology from
the theory of locally presentable categories, we are able to pin down the origin of this violation
and provide an interpretation in terms of ‘bad objects’ in the categories HK(M) which do not
have appropriately local behavior, see Theorems 4.9 and 4.15. Discarding these ‘bad objects’,
we introduce improvements of the Haag-Kastler 2-functors, see Definitions 4.22 and 4.30 for
the details. The selection criterion (see Definitions 4.17 and 4.29) for the full subcategories
HK(M) ⊆ HK(M) of ‘good objects’ which are assigned by the improved pseudo-functors can be
understood as a second layer of descent conditions. The latter demand that the selected ‘good’
AQFTs over M satisfy suitable cover-type descent conditions, i.e. they are recovered by gluing
their local data on any cover {Ui ⊆M}. Such a gluing construction for AQFTs, which has been
recently considered also in [AB24], can be exploited also more constructively to build new ‘good’
AQFTs on M by gluing simpler ‘good’ AQFTs on the regions of a causally convex open cover
{Ui ⊆ M}, see Propositions 4.24 and 4.32. We will show in Theorems 4.27 and 4.35 that our
improvement construction yields stacks HKrc and HKrc,W of relatively compact Haag-Kastler-
style AQFTs, with or without the time-slice axiom. We currently do not know if similar results
hold true without relative compactness. In Subsection 4.4, we verify that the usual examples of
free (i.e. non-interacting) AQFTs, such as the Klein-Gordon quantum field, satisfy our descent
conditions, hence they define points of the stacks HKrc and HKrc,W . This is in stark contrast
to the more elementary cosheaf-type descent conditions discussed above, which are violated for
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such examples, see [BS19, Appendix A].

The framework and results of this paper suggest various avenues for future research. On
the one hand, the focus of our present paper is on the case where the collection of all AQFTs
over M assembles into a 1-category HK(M), which is however inadequate for gauge theories as
these are described by higher-categorical AQFTs which assemble into an ∞-category, see e.g.
[BSW19, BPSW21, Yau20, Car23] and also the reviews [BS19, BS23]. It would be interesting to
generalize our framework and results to this ∞-categorical context and explore if the resulting
higher-categorical descent conditions are satisfied by examples of free quantum gauge theories
as in [BBS19, BMS24]. On the other hand, the key idea to consider 2-functors HK : Locop →
CAT which assign to each Lorentzian manifold M ∈ Loc the category of all AQFTs over M is
transferable to other axiomatizations of quantum field theory, in particular to (pre)factorization
algebras [CG17, CG21] which are usually described on the open subsets of a fixed manifold M ,
similar in perspective to Haag-Kastler-style AQFTs. It would be interesting to understand if the
2-functor which assigns to each manifold M (potentially endowed with geometry) its category of
prefactorization algebras over M can be improved to a stack by adapting our constructions from
Subsection 4.3. This would provide an alternative to the Weiss cover descent conditions from
[CG17, CG21]. It is worthwhile to mention that locally constant prefactorization algebras, which
describe topological quantum field theories, automatically assemble into an ∞-stack [Mat17,
KSW24]. However, we expect this to be a special feature of the topological nature of such
theories, and that prefactorization algebras over manifolds endowed with (Riemannian, complex
or Lorentzian) geometry will require an improvement construction as in Subsection 4.3.

The outline of the remainder of this paper is as follows: In Section 2 we recall some pre-
liminaries which are needed to state and prove the results of the present paper. Subsection 2.1
covers some basic aspects of the theory of orthogonal categories and AQFTs. More details can
be found in [BSW21], see also the reviews [BS19] and [BS23]. Subsection 2.2 gives a brief in-
troduction to pseudo-functors and stacks, focusing mainly on the classes of examples appearing
in our work. Subsection 2.3 recalls some well-known aspects of the theory of locally presentable
categories which are needed for developing our Haag-Kastler stacks in the last Section 4. Readers
who are mostly interested in our more elementary Haag-Kastler 2-functors from Section 3 can
skip this subsection. In Section 3 we develop the concept of Haag-Kastler 2-functors and prove
the results announced in the paragraphs above, except the ones concerning descent which will
be presented afterwards in Section 4. This section is split into Subsections 3.1 and 3.2 which
cover separately the case of Haag-Kastler-style AQFTs modeled over all causally convex opens
and the case modeled over all relatively compact causally convex opens. In Section 4 we study
descent conditions of the Haag-Kastler 2-functors from Section 3. Subsection 4.1 starts with
some general observations and constructions to streamline the presentation. Subsection 4.2 uses
techniques from the theory of locally presentable categories to prove that suitable adjoints of our
Haag-Kastler 2-functors automatically satisfy the weaker codescent conditions of a precostack,
see Theorems 4.9 and 4.15 for the main results. Subsection 4.3 develops our improvement con-
struction for the Haag-Kastler 2-functors which consists of selecting suitable full subcategories of
AQFTs that satisfy cover-type descent conditions, see Definitions 4.17 and 4.29. We then prove
that, under certain additional hypotheses, this construction yields stacks, see Theorems 4.25 and
4.33. It is shown in Theorems 4.27 and 4.35 that these additional hypotheses hold true for the case
of the relatively compact Haag-Kastler 2-functor, with or without the time-slice axiom, which
yields stacks HKrc and HKrc,W . Subsection 4.4 verifies our descent conditions for the typical
examples of free (i.e. non-interacting) AQFTs, leading to the main result (see Theorem 4.39) of
this subsection that the Klein-Gordon quantum field defines a point in both stacks HKrc and
HKrc,W . This paper includes four appendices. Appendix A recalls some aspects of operadic left
Kan extensions which are needed for some of our proofs. Appendix B develops explicit models for
the localizations at all Cauchy morphisms of the categories of causally convex opens COpen(M)
and of relatively compact causally convex opens RC(M) in any Lorentzian manifold M ∈ Loc.

5



Appendix C provides the details for the computation of a bicategorical limit which is needed in
Subsection 4.3. Appendix D proves some results about Cauchy development stable covers which
are needed for the proof of Theorem 4.35.

2 Preliminaries

In this section we recollect some background material which is needed to state and prove the
results of this paper. We try to be as concise as possible and provide the reader with references
in which additional information and more details can be found.

2.1 Orthogonal categories and AQFTs

Orthogonal categories are an abstraction of categories of spacetimes which are endowed with a
notion of independent pairs of subspacetimes f1 : M1 → N ← M2 : f2. The following definition
originated in [BSW21], see also [G-S23] for subsequent developments.

Definition 2.1. (a) An orthogonal category is a pair C = (C,⊥C) consisting of a small cat-
egory C and a subset ⊥C ⊆ MorC t×tMorC (called orthogonality relation) of the set of
pairs of morphisms to a common target, which satisfies the following conditions:

(i) Symmetry: (f2, f1) ∈ ⊥C for all (f1, f2) ∈ ⊥C.

(ii) Composition stability: (g f1 h1, g f2 h2) ∈ ⊥C for all (f1, f2) ∈ ⊥C and all composable
C-morphisms g, h1, h2.

We often write f1 ⊥C f2 to denote orthogonal pairs (f1, f2) ∈ ⊥C.

(b) An orthogonal functor F : C → D is a functor F : C → D between the underlying
categories which preserves orthogonal pairs, i.e. F (f1) ⊥D F (f2) for all f1 ⊥C f2.

(c) We denote byCat⊥ the 2-category whose objects are all orthogonal categories, 1-morphisms
are all orthogonal functors and 2-morphisms are all natural transformations between or-
thogonal functors.

Example 2.2. The following orthogonal categories and functors are pivotal for our work:

(1) Denote by Loc the category whose objects are oriented, time-oriented and globally hy-
perbolic Lorentzian manifolds M of a fixed dimension1 m ≥ 1 and whose morphisms
f : M → N are orientation and time-orientation preserving isometric embeddings with
causally convex and open image f(M) ⊆ N . The orthogonal category Loc is defined by
equipping Loc with the following orthogonality relation: (f1 : M1 → N) ⊥ (f2 : M2 → N)
if and only if the images f1(M1) ⊆ N and f2(M2) ⊆ N are causally disjoint in N . This
orthogonal category features in locally covariant AQFT [BFV03, FV15, BSW21].

(2) Choose any oriented, time-oriented and globally hyperbolic Lorentzian manifold M ∈ Loc.
Denote by COpen(M) the category whose objects are all non-empty causally convex open
subsets U ⊆M and whose morphisms U → V are subset inclusions U ⊆ V . The orthogonal
category COpen(M) is defined by equipping COpen(M) with the following orthogonality
relation: (U1 ⊆ V ) ⊥ (U2 ⊆ V ) if and only if U1 and U2 are causally disjoint in V , or
equivalently inM . Restricting to causally convex opens U ⊆M that are relatively compact,
i.e. the closure cl(U) ⊆M is a compact subset of M , defines a full orthogonal subcategory
which we denote by RC(M) ⊆ COpen(M). These orthogonal categories feature in Haag-
Kastler-style AQFT [HK64] on a fixed M ∈ Loc, where the relative compactness condition
generalizes the concept of bounded regions in Minkowski spacetime.

1More pedantically, one should write Locm to make explicit the dimension m of the manifolds. Since m will be
fixed but arbitrary throughout our whole paper, we ease notation by simply writing Loc.

6



(3) Consider the functor kM : COpen(M) → Loc which is given by assigning to an object
U ⊆ M the object U ∈ Loc (with orientation, time-orientation and metric induced by
restricting those of M ∈ Loc) and to a morphism U ⊆ V the canonical inclusion morphism
ιVU : U → V in Loc. This defines an orthogonal functor kM : COpen(M) → Loc with
respect to the orthogonality relations defined in items (1) and (2) above. The restriction
to relatively compact subsets defines an orthogonal functor which we denote with a slight
abuse of notation by the same symbol kM : RC(M)→ Loc. ▽

Associated to every orthogonal category C is a concept of AQFTs over C. These admit a
concise and powerful description in terms of algebras over the AQFT operads OC from [BSW21],
see also Definition A.1 and [BS19, BS23] for reviews. In particular, this operadic perspective
is crucial to prove the key results in Propositions 2.5 and 2.6 below. In order to simplify the
presentation of our present paper, we will not recall this operadic approach to AQFT and we
provide instead an equivalent, but more elementary definition. For this we fix any cocomplete
closed symmetric monoidal category T and denote byAlguAs(T) the category of unital associative
algebras in T.2

Definition 2.3. LetC be an orthogonal category and T a cocomplete closed symmetric monoidal
category. The category of T-valued AQFTs over C is defined as the full subcategory

AQFT(C) ⊆ Fun
(
C,AlguAs(T)

)
(2.1)

consisting of all functors A : C→ AlguAs(T) which satisfy the following ⊥-commutativity axiom:
For every orthogonal pair (f1 :M1 → N) ⊥C (f2 :M2 → N), the diagram

A(M1)⊗ A(M2)
A(f1)⊗A(f2)

//

A(f1)⊗A(f2)

��

A(N)⊗ A(N)

µN
��

A(N)⊗ A(N)
µopN

// A(N)

(2.2)

in T commutes, where µ
(op)
N denotes the (opposite) multiplication in the algebra A(N).

Remark 2.4. For the orthogonal categories from Example 2.2, the ⊥-commutativity axiom gives
precisely the Einstein causality axiom of locally covariant [BFV03, FV15] or Haag-Kastler-style
[HK64] AQFTs. The implementation of the time-slice axiom will be explained in Proposition 2.8
and Remark 2.9 below. △

Given any orthogonal functor F : C→ D, there exists an associated pullback functor

F ∗ : AQFT(D) −→ AQFT(C) (2.3)

between the corresponding AQFT categories. Explicitly, this pullback functor acts on objects A ∈
AQFT(D) by precomposition F ∗(A) := AF of the underlying functor, which defines an object in
AQFT(C) since orthogonal functors preserve orthogonal pairs and hence the ⊥-commutativity
axiom. On morphisms ζ : A ⇒ B in AQFT(D), which are natural transformations between
the underlying functors, the pullback functor is given by whiskering F ∗(ζ) := ζ F : AF ⇒ BF .
The following result is a non-trivial consequence of the operadic description of AQFTs, see e.g.
[BSW21, Theorem 2.11] for a proof.

Proposition 2.5. For every orthogonal functor F : C→ D, the pullback functor in (2.3) admits
a left adjoint, i.e. one has an adjunction

F! : AQFT(C)
//
AQFT(D) : F ∗

oo (2.4)

between the corresponding AQFT categories. The left adjoint F! is called operadic left Kan ex-
tension along F , see also Appendix A for an explicit model.

2In applications, one often chooses T = VecK to be the cocomplete closed symmetric monoidal category of
vector spaces over a field K. In this case AlguAs(T) is the usual category of unital associative K-algebras.
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This result can be strengthened in specific cases where the orthogonal functor has additional
properties, see [BSW21, Sections 4.2–4.4]. For our present work, the following strengthening will
be crucial.

Proposition 2.6. Suppose that the orthogonal functor F : C → D is fully faithful and reflects
orthogonality, i.e. F (f1) ⊥D F (f2) if and only if f1 ⊥C f2. Then the adjunction (2.4) exhibits
AQFT(C) as a coreflective full subcategory of AQFT(D), i.e. the left adjoint F! is fully faithful
or, equivalently, the adjunction unit η : idAQFT(C) ⇒ F ∗ F! is a natural isomorphism.

Example 2.7. For every object M ∈ Loc, the full orthogonal subcategory inclusion iM :
RC(M) → COpen(M) from item (2) of Example 2.2 satisfies the hypotheses of Proposition
2.6. Hence, we obtain an adjunction

iM ! : AQFT(RC(M))
//
AQFT(COpen(M)) : i∗Moo (2.5)

which exhibits AQFT(RC(M)) as a coreflective full subcategory of AQFT(COpen(M)). This
adjunction restricts to an adjoint equivalence

iM ! : AQFT(RC(M)) ∼
//
AQFT(COpen(M))ϵ−iso : i∗Moo (2.6)

between the category AQFT(RC(M)) and the full subcategory AQFT(COpen(M))ϵ−iso ⊆
AQFT(COpen(M)) consisting of all objects A ∈ AQFT(COpen(M)) for which the counit

ϵA : iM !i
∗
M (A)

∼=
=⇒ A is an isomorphism.

One can characterize the latter property very explicitly by observing that iM satisfies the j-
closedness property from [BSW21, Definition 5.3], which by [BSW21, Corollary 5.5] implies that
the left adjoint iM ! can be modeled by a categorical (in contrast to operadic) left Kan extension.
Via the usual colimit formula for categorical left Kan extensions, see e.g. [Rie16, Chapter 6.2],
we have explicitly that, for every B ∈ AQFT(RC(M)),

iM !(B)(U) = colim
(
RC(M)/U −→ RC(M)

B−→ AlguAs(T)
)

, (2.7)

for all U ∈ COpen(M), where the comma category RC(M)/U describes all relatively compact
causally convex opens in M which are also contained in U . The component of the counit ϵA at
U ∈ COpen(M) is then given by the canonical map

(ϵA)U : colim
(
RC(M)/U −→ COpen(M)

A−→ AlguAs(T)
)
−→ A(U) . (2.8)

This implies that ϵA is an isomorphism if and only if the value of A ∈ AQFT(COpen(M))
on any causally convex open U ∈ COpen(M) can be recovered via the colimit (2.8) from the
restriction of A to the comma category RC(M)/U , i.e. to open subsets of U that are relatively
compact and causally convex with respect to M .

The property that ϵA is an isomorphism is therefore a particular kind of additivity property
on A ∈ AQFT(COpen(M)). In Subsection 3.2.2, we will compare this concept to an alternative
additivity property used in locally covariant settings [BPS19, Definition 2.16]. ▽

To conclude this subsection, we shall briefly explain how the time-slice axiom of AQFT can be
encoded in the framework presented above. The key tool is given by the concept of localizations
of orthogonal categories, see [BCS23] for the technical details. This is similar to localizations of
ordinary (non-orthogonal) categories, which allow one to universally “add inverses” to a chosen
collection of morphisms in a category.

8



Proposition 2.8. Let C be an orthogonal category and W ⊆ MorC a subset of the set of
morphisms in C. Then an orthogonal localization functor L : C→ C[W−1] exists and it induces
via pullback (2.3) an equivalence

L∗ : AQFT
(
C[W−1]

) ≃−→ AQFT(C)W (2.9)

between the full subcategory AQFT(C)W ⊆ AQFT(C) consisting of all AQFTs over C which
send all W -morphisms to isomorphisms and the category AQFT

(
C[W−1]

)
of AQFTs over the

localized orthogonal category C[W−1].

Remark 2.9. In the context of Example 2.2, one choosesW to be the set of all Cauchy morphisms
in, respectively, Loc, COpen(M) or RC(M), i.e. morphisms with image containing a Cauchy
surface of the codomain. The property of an AQFT sending all W -morphisms to isomorphisms
is then precisely the time-slice axiom of locally covariant or, respectively, Haag-Kastler-style
AQFTs. Proposition 2.8 implies that the time-slice axiom can be implemented either as an
additional property or, equivalently, as a structure by replacing the orthogonal categories Loc,
COpen(M) and RC(M) by their orthogonal localizations at all Cauchy morphisms. △

Example 2.10. We present explicit models for the orthogonal localizations COpen(M)[W−1
M ]

and RC(M)[W−1
rc,M ] of the orthogonal categories COpen(M) and RC(M) at all Cauchy mor-

phisms. These models are obtained from a calculus of fractions and details are explained in
Appendix B.

(1) The orthogonal category COpen(M)[W−1
M ] has as objects all non-empty causally convex

opens U ⊆ M and there exists at most one morphism U → U ′ for any objects U,U ′. The
morphism U → U ′ exists if and only if U ⊆ DM (U ′) is contained in the Cauchy development
of U ′ ⊆ M in M . Two morphisms are orthogonal (U1 → U ′) ⊥ (U2 → U ′) if and only if
(U1 ⊆ M) ⊥ (U2 ⊆ M) are causally disjoint in M . The orthogonal localization functor
LM : COpen(M)→ COpen(M)[W−1

M ] acts as the identity on objects and it sends a subset
inclusion U ⊆ U ′ to the unique morphism U → U ′ in the localized orthogonal category.

(2) The orthogonal category RC(M)[W−1
rc,M ] has as objects all non-empty relatively compact

causally convex opens U ⊆ M and there exists at most one morphism U → U ′ for any
objects U,U ′. The morphism U → U ′ exists if and only if U ⊆ DM (U ′) is contained in
the Cauchy development of U ′ ⊆ M in M . Two morphisms are orthogonal (U1 → U ′) ⊥
(U2 → U ′) if and only if (U1 ⊆M) ⊥ (U2 ⊆M) are causally disjoint in M . The orthogonal
localization functor Lrc,M : RC(M)→ RC(M)[W−1

rc,M ] acts as the identity on objects and it
sends a subset inclusion U ⊆ U ′ to the unique morphism U → U ′ in the localized orthogonal
category.

We would like to note that an alternative but equivalent model for COpen(M)[W−1
M ] has been

presented in [BDS18, Proposition 3.3] in terms of a reflective orthogonal localization, however this
model does not generalize to the relatively compact case RC(M)[W−1

rc,M ]. In the present paper,
we prefer to work with our two models from above because they treat uniformly the non-relatively
compact and the relatively compact case. ▽

2.2 Pseudo-functors and stacks

We assume that the reader has some familiarity with elementary 2-categorical concepts, such as
(strict) 2-categories, pseudo-functors, pseudo-natural transformations, modifications and bilimits.
Complete definitions and explanations of these concepts can be found for instance in the book
[JY21], see also [Lac10] for a concise introduction.

Since the particular case of pseudo-functors X : Cop → K from the opposite of a small
1-category C to a 2-subcategory K ⊆ CAT of the 2-category CAT of (not necessarily small)
categories, functors and natural transformations will appear very frequently in our work, we spell
this concept out in detail.
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Definition 2.11. Let C be a small 1-category and K ⊆ CAT a 2-subcategory. A pseudo-functor
X : Cop → K is given by the following data:

(1) For each object M ∈ C, a category X(M) in K.

(2) For each morphism f :M → N in C, a functor X(f) : X(N)→ X(M) in K.

(3) For each pair of composable morphisms f : M → N and g : N → O in C, a natural
isomorphism Xg,f : X(f)X(g)⇒ X(g f) in K.

(4) For each object M ∈ C, a natural isomorphism XM : idX(M) ⇒ X(idM ) in K.

These data have to satisfy the following axioms:

(i) For all triples of composable morphisms f : M → N , g : N → O and h : O → P in C, the
diagram of natural transformations

X(f)X(g)X(h)

Id ∗Xh,g

��

Xg,f ∗ Id
+3 X(g f)X(h)

Xh,gf

��
X(f)X(h g)

Xhg,f

+3 X(h g f)

(2.10)

commutes, where Id denotes the identity natural transformations and ∗ denotes horizontal
composition of natural transformations.

(ii) For all morphisms f :M → N in C, the two diagrams of natural transformations

idX(M)X(f)

XM ∗ Id
��

X(f) idX(N)

Id ∗XN

��
X(idM )X(f)

Xf,idM

+3 X(f idM ) X(f)X(idN )
XidN,f

+3 X(idN f)

(2.11)

commute.

To ease our notations, we will often suppress the coherence natural isomorphisms Xg,f and XM

by simply writing ∼=.

In the case where C comes endowed with a Grothendieck topology, i.e. there exists a concept
of coverings for objects M ∈ C, one can demand that the pseudo-functor X : Cop → K satisfies
a suitable descent condition with respect to these coverings. This leads to the notion of a stack,
see e.g. [Vis05] for the details. For the purpose of our work, we do not have to introduce the
concepts of Grothendieck topologies and stacks in full generality. It suffices instead to discuss
the examples which will be relevant later. Let us recall from Example 2.2 the category Loc of
oriented, time-oriented and globally hyperbolic Lorentzian manifolds of a fixed dimension m ≥ 1.

Definition 2.12. Given any object M ∈ Loc, we say that a family of subsets U := {Ui ⊆M} is
a causally convex open cover of M if each Ui ⊆ M is a non-empty causally convex open subset
and

⋃
i Ui = M . A causally convex open cover U = {Ui ⊆ M} is called D-stable if each Ui

coincides with its Cauchy development in M , i.e. DM (Ui) = Ui for all i.

Remark 2.13. Note that each causally convex open cover U = {Ui ⊆ M} defines, through the
canonical inclusion morphisms, a family of Loc-morphisms {ιMUi

: Ui → M}. Since intersections
Uij := Ui∩Uj ⊆M of causally convex open subsets are either causally convex open or empty, we

further obtain canonical inclusion Loc-morphisms ιUi
Uij

: Uij → Ui and ι
Uj

Uij
: Uij → Uj , for all i, j

with Uij ̸= ∅. A similar statement holds true for triple intersections Uijk := Ui ∩ Uj ∩ Uk ⊆ M ,
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which come with canonical inclusion Loc-morphisms ι
Uij

Uijk
: Uijk → Uij , ι

Uik
Uijk

: Uijk → Uik

and ι
Ujk

Uijk
: Uijk → Ujk, for all i, j, k with Uijk ̸= ∅. Since Uii = Ui, there are also canonical

Loc-morphisms idUi : Ui → Uii.

Note that in the case where U = {Ui ⊆M} isD-stable, all intersections and triple intersections
inherit D-stability. Indeed, one observes that Uij ⊆ DM (Uij) ⊆ DM (Ui) ∩ DM (Uj) = Uij and
similar for triple intersections. △

Let us now suppose that the 2-subcategory K ⊆ CAT admits all small bilimits.3 Given
any pseudo-functor X : Locop → K, we can then define for each causally convex open cover
U = {Ui ⊆M} of an object M ∈ Loc the descent category

X(U) := bilim

( ∏
i
X(Ui)

//
//

∏
ij
X(Uij)oo

//

//
//
∏
ijk

X(Uijk)oo
oo

)
∈ K , (2.12)

where the second product runs over all non-empty intersections Uij ̸= ∅ and the third product
runs over all non-empty triple intersections Uijk ̸= ∅. The arrows in this diagram are given by
applying the pseudo-functor X to the canonical Loc-morphisms from Remark 2.13. Due to the
universal property of bilimits, there exists a canonical functor

X(M) −→ X(U) (2.13)

in K fromX(M) to the descent category, which is defined by applyingX to the canonical inclusion
morphisms ιMUi

: Ui →M .

Definition 2.14. Suppose that the 2-subcategory K ⊆ CAT admits all small bilimits. A pseudo-
functor X : Locop → K is called a K-valued stack with respect to the (D-stable) causally convex
open Grothendieck topology on Loc if it satisfies the following descent conditions: For every
object M ∈ Loc and every (D-stable) causally convex open cover U = {Ui ⊆ M}, the canonical
functor X(M)→ X(U) of (2.13) is an equivalence in K.

Remark 2.15. Note that a stack X formalizes the idea of a local-to-global property since its
‘global’ value X(M) on an object M ∈ Loc is determined (up to equivalence) via (2.13) from its
‘local’ values (2.12) on a cover U = {Ui ⊆M}. △

Remark 2.16. In the case where K = CAT is the 2-category of all categories, functors and
natural transformations, the bilimit (2.12) which defines the descent category X(U) for a cover
U = {Ui ⊆M} can be computed explicitly. This yields the following concrete description:

• An object in X(U) is a tuple ({xi}, {φij}) consisting of a family of objects xi ∈ X(Ui), for
all i, and a family of isomorphisms φij : xj |Uij → xi|Uij in X(Uij), for all i, j with Uij ̸= ∅,

where xj |Uij := X
(
ι
Uj

Uij

)
(xj) ∈ X(Uij) and xi|Uij := X

(
ιUi
Uij

)
(xi) ∈ X(Uij) are convenient

short-hand notations. These data have to satisfy the cocycle conditions

xj |Ujk
|Uijk

∼=
((

xk|Ujk
|Uijk

∼=
��

φjk|Uijk
66

xj |Uij |Uijk

φij |Uijk
��

xk|Uik
|Uijk

φik|Uijk
((

xi|Uij |Uijk

xi|Uik
|Uijk

∼=

66

xi|Uii

φii // xi|Uii

xi

∼=

OO

idxi

// xi

∼=

OO

, (2.14)

for all i, j, k with Uijk ̸= ∅. The arrows labeled by ∼= are given by the coherence isomor-
phisms of the pseudo-functor.

3In the terminology of [JY21], our bilimits are pseudo bilimits.
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• A morphism {ψi} : ({xi}, {φij}) → ({x′i}, {φ′
ij}) in X(U) is a family of morphisms ψi :

xi → x′i in X(Ui), for all i, which is compatible with the cocyles according to

xj |Uij

φij

��

ψj |Uij
// x′j |Uij

φ′
ij
��

xi|Uij ψi|Uij

// x′i|Uij

, (2.15)

for all i, j with Uij ̸= ∅. △

2.3 Locally presentable categories

We will briefly recall some well-known aspects of the theory of locally presentable categories
which will become essential when we construct the Haag-Kastler stacks in Section 4. Readers
who are mainly interested in our discussion of the more elementary Haag-Kastler 2-functors in
Section 3 can skip this technical subsection.

A locally presentable category E is a special kind of category which satisfies the following
technical conditions: 1.) It is cocomplete, i.e. all small colimits exist in E, and 2.) it is generated
under λ-directed colimits from a subset Γ ⊆ Obj(E) of λ-presentable objects, for λ some regular
cardinal. We refer the reader to [AR94] for an extensive description of the rich theory of locally
presentable categories and also to [Bor94, Chapter 5] for a more concise introduction.

Example 2.17. The following examples of locally presentable categories are relevant in the
context of AQFT.

(1) The category VecK of vector spaces over a field K is locally presentable for λ = ℵ0. Indeed,
VecK is clearly cocomplete and the ℵ0-presentable objects are the finite-dimensional vector
spaces. Each vector space V ∈ VecK is an ℵ0-directed colimit over its finite-dimensional
subspaces.

(2) For every small categoryC and every locally presentable categoryE, the category Fun(C,E)
of functors and natural transformations is locally presentable, see [AR94, Corollary 1.54].
As a special case, the product category ES :=

∏
s∈S E

∼= Fun(S,E) corresponding to a set
S, which we also regard as a category with only identity morphisms, is locally presentable
whenever E is.

(3) Let E be a locally presentable category which is endowed with a closed symmetric monoidal
structure. Given any small colored operad O, i.e. its class of objects O0 is a set, the category
AlgO(E) of O-algebras in E is locally presentable. Indeed, the category of O-algebras is
equivalent to the category of algebras over the monad O ◦ (−) : EO0 → EO0 , see e.g.
[Yau20, Chapter 4.5] for details, which is locally presentable as a consequence of item (2)
and [Bor94, Theorem 5.5.9].

(4) As a special case of item (3), we observe that, for each orthogonal category C, the AQFT
category AQFT(C) ∼= AlgOC

(T) from Definition 2.3 is locally presentable whenever the

target category T is. By item (1), this is in particular the case for the standard choice
T = VecK. ▽

Locally presentable categories assemble into the following two interesting 2-subcategories of
CAT, both of which will be important for our work.

Definition 2.18. (a) We denote by PrL ⊆ CAT the 2-subcategory whose objects are all
locally presentable categories, 1-morphisms are all left adjoint functors between locally
presentable categories and 2-morphisms are all natural transformations between left adjoint
functors.
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(b) We denote by PrR ⊆ CAT the 2-subcategory whose objects are all locally presentable
categories, 1-morphisms are all right adjoint functors between locally presentable categories
and 2-morphisms are all natural transformations between right adjoint functors.

The two 2-categories PrL and PrR from Definition 2.18 can be related by the following
construction. Let us denote by (PrR)coop the 2-category which is obtained by reversing the
direction of all 1-morphisms and of all 2-morphisms in PrR. Consider the pseudo-functor

(−)† : PrL −→ (PrR)coop (2.16a)

which acts on objects as the identity, on 1-morphisms F : E → F by taking right adjoints
F † : F→ E, and on 2-morphisms ζ : F ⇒ G via

ζ† : G† ηF G
†
+3 F † F G† F † ζ G†

+3 F †GG† F † ϵG +3 F † , (2.16b)

where ηF denotes the unit of the adjunction F ⊣ F † and ϵG the counit of the adjunction G ⊣ G†.

Lemma 2.19. The pseudo-functor (2.16) exhibits a biequivalence

PrL ≃ (PrR)coop . (2.17)

Remark 2.20. An explicit quasi-inverse for the pseudo-functor (2.16) is given by applying coop

to the pseudo-functor (denoted with abuse of notation by the same symbol as (2.16))

(−)† : PrR −→ (PrL)coop (2.18a)

which acts on objects as the identity, on 1-morphisms F : E → F by taking left adjoints F † :
F→ E, and on 2-morphisms ζ : F ⇒ G via

ζ† : G† G† ηF +3 G† F F † G† ζ F †
+3 G†GF † ϵG F

†
+3 F † , (2.18b)

where ηF is the unit of the adjunction F † ⊣ F and ϵG the counit of the adjunction G† ⊣ G. △

The following key result about bilimits and bicolimits in PrL and PrR is proven in [Bir84],
see also [BCJF15] for a sketch.

Theorem 2.21. The 2-categories PrL and PrR from Definition 2.18 admit all small bilimits and,
as a consequence of Lemma 2.19, they also admit all small bicolimits. The forgetful 2-functors
PrL → CAT and PrR → CAT preserve and reflect all bilimits.

Remark 2.22. The statement that the forgetful 2-functors PrL/R → CAT reflect all bilimits
does not appear explicitly in [Bir84], but it is a simple consequence of the following argument. Let
us observe that the 2-subcategories PrL/R ⊆ CAT are closed under equivalences, and that the
forgetful 2-functors PrL/R → CAT reflect equivalences since any fully faithful and essentially
surjective functor is both a left and right adjoint. Since the forgetful 2-functors preserve all
bilimits by [Bir84], it then follows that they also reflect all bilimits. △

Construction 2.23 (Computing bilimits in PrL/R). We would like to emphasize that Theorem
2.21 is very useful to compute bilimits. Given any diagram (i.e. pseudo-functor) X : D→ PrL/R

from a small category D, we can compute its bilimit in PrL/R by the following construction:

1. Postcompose X with the forgetful 2-functor, which yields a pseudo-functor X : D→ CAT
to the 2-category CAT.
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2. Compute the bilimit of X : D → CAT in CAT. For this one can use, for example, the
explicit model

bilim(X) = Hom(∆1, X) ∈ CAT (2.19)

given by the category of pseudo-natural transformations from the constant diagram ∆1 :
D → CAT to X : D → CAT and their modifications, where 1 ∈ CAT denotes the
category consisting of a single object and its identity morphism.

3. Theorem 2.21 implies that (2.19) is a locally presentable category, i.e. bilim(X) ∈ PrL/R,
and that the universal pseudo-cone ∆bilim(X) ⇒ X, i.e. the projection maps from the
bilimit to the diagram, consists of left/right adjoint functors. This provides an explicit
model for the bilimit of our original diagram X : D→ PrL/R in PrL/R. ▷

Construction 2.24 (Computing bicolimits in PrL/R). Combining Theorem 2.21 and Lemma
2.19, one also obtains an explicit approach to compute bicolimits. To avoid notational clutter, we
will spell out this construction only for the case of the bicolimit of a diagram (i.e. pseudo-functor)
X : D→ PrL from a small category D to PrL. The case of diagrams in PrR works analogously.

1. Postcompose X with the pseudo-functor (−)† from (2.16), which yields a pseudo-functor
X† : D → (PrR)coop. This is the same datum as a pseudo-functor X† : Dop → PrR from
the opposite category Dop to PrR.

2. Compute the bilimit of X† : Dop → PrR using, for example, Construction 2.23. This
defines an object bilim(X†) ∈ PrR with a universal pseudo-cone ∆bilim(X†)⇒ X†.

3. Apply the quasi-inverse pseudo-functor (−)† from (2.18) to the universal pseudo-cone, which
defines a universal pseudo-cocone X ≃ X†† ⇒ ∆bilim(X†)† = ∆bilim(X†) for the original
diagram X : D → PrL, where in the last step we used that (−)† acts as the identity on
objects, i.e. bilim(X†)† = bilim(X†). A model for the bicolimit of X is then given by

bicolim
(
X : D→ PrL

)
= bilim

(
X† : Dop → PrR

)
(2.20)

together with the given universal pseudo-cocone.

In simpler words, this construction can be described as follows: If one would like to compute the
bicolimit of a diagram in PrL/R, one can equivalently compute the bilimit of the adjoint diagram
in PrR/L. The latter is relatively easy to do, e.g. by using the explicit Construction 2.23. ▷

The above results imply that the concept of a PrL/R-valued stack on some site is equivalent
to that of a PrR/L-valued costack on the same site. Let us state this observation explicitly for
the case of PrR-valued stacks on Loc and PrL-valued costacks on Loc, which will be important
for proving our main results in Section 4.

Corollary 2.25. Let X : Locop → PrR be a pseudo-functor taking values in the 2-category
PrR. Then X is a stack in the sense of Definition 2.14 if and only if the adjoint pseudo-functor
X† : Loc → PrL is a costack in the following sense: For every object M ∈ Loc and every
(D-stable) causally convex open cover U = {Ui ⊆M}, the canonical functor

X†(U) −→ X†(M) (2.21a)

in PrL from the codescent category

X†(U) := bicolim

( ∐
i
X†(Ui) //

∐
ij
X†(Uij)oo

oo //
//

∐
ijk

X†(Uijk)oo

oo
oo

)
(2.21b)

is an equivalence in PrL.
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Proof. This follows directly from the bilimit/bicolimit rewriting in Construction 2.24. Indeed,
the codescent category

X†(U) = X(U) (2.22)

of X† coincides with the descent category of X, and the canonical functor (2.21a) is the left
adjoint of the canonical functor

X(M) −→ X(U) (2.23)

to the descent category. (Recall that X†(M) = X(M) because (−)† acts as the identity on
objects.)

3 Haag-Kastler 2-functors

Haag-Kastler-style AQFTs [HK64] are AQFTs which are defined on suitable causally convex
opens in a fixed oriented, time-oriented and globally hyperbolic Lorentzian manifold M ∈ Loc.
Depending on whether or not one wishes to demand a boundedness condition for these opens,
one can formalize such AQFTs by using either the orthogonal category RC(M) of relatively
compact causally convex opens inM or the orthogonal categoryCOpen(M) of all causally convex
opens in M , see Example 2.2. Furthermore, if desired, the time-slice axiom can be implemented
as in Proposition 2.8 either as a property or, equivalently, through an orthogonal localization.
The Haag-Kastler 2-functors we define and study in this section describe the behavior of Haag-
Kastler-style AQFTs under Loc-morphisms f :M → N . We consider all of the above mentioned
variations of Haag-Kastler-style AQFTs and establish relationships between different variations
and also a comparison to locally covariant AQFT.

3.1 The case of causally convex opens

In this subsection we describe the variants of the Haag-Kastler 2-functor which are associated
with Haag-Kastler-style AQFTs that are modeled on the orthogonal categories COpen(M) of
all causally convex opens in M ∈ Loc from Example 2.2.

3.1.1 Definition and properties

Let us start by observing that the assignment M 7→ COpen(M) can be upgraded to a 2-functor

COpen(−) : Loc −→ Cat⊥ (3.1)

from Loc to the 2-category Cat⊥ of orthogonal categories, orthogonal functors and natural
transformations. Indeed, given any Loc-morphism f : M → N , we can define an orthogonal
functor (denoted with abuse of notation by the same symbol f)

f := COpen(f) : COpen(M) −→ COpen(N) , U ⊆M 7−→ f(U) ⊆ N (3.2)

which sends causally convex opens inM to their images under f in N . Note that this assignment
is strictly 2-functorial.

Definition 3.1. The Haag-Kastler 2-functor

HK : Locop −→ CAT (3.3a)

is defined by assigning to each object M ∈ Loc the category

HK(M) := AQFT(COpen(M)) ∈ CAT (3.3b)

15



of Haag-Kastler-style AQFTs on M and to each Loc-morphism f :M → N the pullback functor

HK(N)
HK(f) := f∗

// HK(M)

AQFT(COpen(N))
f∗
// AQFT(COpen(M))

(3.3c)

from (2.3) which is associated to the orthogonal functor f : COpen(M)→ COpen(N) in (3.2).

Remark 3.2. We would like to emphasize that the pullback functor f∗ describes the obvious and
expected concept of pulling back Haag-Kastler-style AQFTs along Loc-morphisms f : M → N .
Indeed, given any A ∈ HK(N) on N , the pullback f∗(A) ∈ HK(M) on M assigns to a causally
convex open subset U ⊆M the same algebra f∗(A)(U) = A(f(U)) as the original theory assigns
to the image f(U) ⊆ N . △

It is natural to ask whether or not the Haag-Kastler 2-functor is a stack on Loc in the sense
of Definition 2.14, i.e. if Haag-Kastler-style AQFTs satisfy a local-to-global property with respect
to either causally convex open covers, or their Cauchy development stable counterparts. This is
in general not the case.

Proposition 3.3. Suppose that the category of algebras AlguAs(T) has two objects A,B ∈
AlguAs(T) for which the Hom-set Hom(A,B) is not a singleton.4 Then the Haag-Kastler 2-
functor HK from Definition 3.1 is not a stack with respect to either Grothendieck topology from
Definition 2.14 on Loc. It is not even a prestack.

Proof. Let us choose any object M ∈ Loc with a (D-stable) causally convex open cover U =
{Ui ⊆ M} such that every Ui ⊂ M is a proper subset of M . (The existence of such a cover is
guaranteed because M is globally hyperbolic, so also strongly causal. For the D-stable case, see
also Proposition D.1 and Remark D.3.) We will now show that the functor

HK(M) −→ HK(U) (3.4)

to the descent category is not fully faithful, which in particular implies that it can not be an
equivalence. For this we consider two specific objects A,B ∈ HK(M) which are defined by

A(U) :=

{
A , if U =M

I , if U ⊂M
, B(U) :=

{
B , if U =M

I , if U ⊂M
, (3.5)

for all causally convex opens U ⊆ M , where I ∈ AlguAs(T) denotes the initial algebra and
A,B ∈ AlguAs(T) are the algebras from our hypotheses. We endow A and B with the AQFT
structures which are uniquely determined by the universal property of the initial algebra.

Since every Ui ⊂ M is a proper subset, the two AQFTs A,B ∈ HK(M) defined above are
mapped via the functor (3.4) to the same object in the descent category. In the model for the
descent category from Remark 2.16, this object reads as I := ({IUi}, {idIUij

}) ∈ HK(U), where
IUi ∈ HK(Ui) denotes the initial object, i.e. the constant AQFT sending all causally convex opens
U ⊆ Ui to the initial algebra. Acting with the functor (3.4) on Hom-sets, we obtain

HomHK(M)(A,B) ∼= HomAlguAs(T)(A,B) −→ HomHK(U)(I, I) . (3.6)

Since HomHK(U)(I, I) is a singleton and HomAlguAs(T)(A,B) is by our hypotheses not a single-
ton, this map can not be a bijection. In particular, the functor (3.4) fails to be full when
HomHK(M)(A,B) = ∅ is empty and it fails to be faithful when HomHK(M)(A,B) contains more
than one element.

4This technical condition is very mild and it is only used to rule out pathological examples of T, such as the
one-object category 1. In the standard case where T = VecK, one has that Hom(A,K) = ∅ is empty for every
simple noncommutative K-algebra A and that Hom(A,A) has more than 1 element for every K-algebra A with
non-trivial automorphisms.
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3.1.2 Comparison to locally covariant AQFT

Our next aim is to explain how the Haag-Kastler 2-functor from Definition 3.1 is related to locally
covariant AQFT [BFV03, FV15]. For this we recall the following standard concept.

Definition 3.4. The category of points of the Haag-Kastler 2-functor is defined as the category

HK(pt) := Hom(∆1,HK) ∈ CAT (3.7)

of pseudo-natural transformations from the constant 2-functor ∆1 : Locop → CAT to HK :
Locop → CAT and their modifications, where we recall that 1 ∈ CAT denotes the category
consisting of a single object and its identity morphism.

Remark 3.5. Spelling out the definitions of pseudo-natural transformations and modifications
(see e.g. [JY21]) and using that a functor 1 → D from the one-object category to any category
D is the same datum as an object in D, one obtains the following explicit description of the
category of points HK(pt):

• An object in HK(pt) is a tuple ({AM}, {αf}) consisting of a family of objects AM ∈ HK(M),
for all M ∈ Loc, and a family of isomorphisms αf : AM ⇒ f∗(AN ) in HK(M), for all Loc-
morphisms f :M → N , which satisfies the following conditions:

(i) For all composable Loc-morphisms f :M → N and g : N → O, the diagram

AM

αgf

��

αf +3 f∗(AN )

f∗(αg)

��
(g f)∗(AO) f∗g∗(AO)

(3.8a)

in HK(M) commutes.

(ii) For all objects M ∈ Loc, the diagram

AM

idAM #+

αidM +3 id∗M (AM )

AM

(3.8b)

in HK(M) commutes.

• A morphism {ζM} : ({AM}, {αf}) ⇒ ({BM}, {βf}) in HK(pt) is a family of morphisms
ζM : AM ⇒ BM in HK(M), for all M ∈ Loc, which satisfies the following condition: For
all Loc-morphisms f :M → N , the diagram

AM

αf

��

ζM +3 BM

βf
��

f∗(AN )
f∗(ζN )

+3 f∗(BN )

(3.9)

in HK(M) commutes.

In simple words, this description shows that points of the Haag-Kastler 2-functor are natural
families of Haag-Kastler-style AQFTs over all M ∈ Loc. △
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In order to set up a comparison between the category of points HK(pt) and the category of
locally covariant AQFTs AQFT(Loc), we recall from Example 2.2 the orthogonal functors

kM : COpen(M) −→ Loc , U ⊆M 7−→ U , (3.10)

for all M ∈ Loc. Given any Loc-morphism f :M → N , we can compose the orthogonal functor
f : COpen(M)→ COpen(N) from (3.2) with the orthogonal functor kN : COpen(N)→ Loc
and define a natural isomorphism

kf : kM =⇒ kN f (3.11a)

of orthogonal functors from COpen(M) to Loc in terms of the component Loc-isomorphisms

(kf )U := f |U : U
∼=−→ f(U) (3.11b)

which are obtained by restricting and corestricting the given Loc-morphism f : M → N , for all
causally convex opens U ⊆M .

Construction 3.6. We define a functor

AQFT(Loc) −→ HK(pt) (3.12)

from the category of locally covariant AQFTs to the category of points of the Haag-Kastler
2-functor. To an object A ∈ AQFT(Loc), this functor assigns the tuple({

k∗M (A) := A kM
}
,
{
A kf : k∗M (A) = A kM ⇒ A kN f = f∗k∗N (A)

})
∈ HK(pt) (3.13)

which is obtained by applying the pullback construction (2.3) to (3.10) and whiskering with (3.11).
One directly checks that this tuple satisfies the compatibility conditions (3.8) from Remark 3.5.
To a morphism ζ : A⇒ B in AQFT(Loc), this functor assigns the tuple{

k∗M (ζ) : k∗M (A) ⇒ k∗M (B)
}

:
({
k∗M (A)

}
,
{
A kf

})
=⇒

({
k∗M (B)

}
,
{
B kf

})
(3.14)

which is obtained by applying the pullback construction (2.3) to (3.10). One directly checks that
this tuple satisfies the compatibility conditions (3.9) from Remark 3.5. ▷

Construction 3.7. We now define a functor

HK(pt) −→ AQFT(Loc) (3.15)

which goes in the reverse direction of Construction 3.6. To an object ({AM}, {αf}) ∈ HK(pt), this
functor assigns the locally covariant AQFT A ∈ AQFT(Loc) which is defined by the following
functor A : Loc→ AlguAs(T): To an object M ∈ Loc, we assign the evaluation

A(M) := AM (M) ∈ AlguAs(T) (3.16a)

of the corresponding Haag-Kastler-style AQFT AM ∈ HK(M) on the terminal object M ∈
COpen(M). To a Loc-morphism f : M → N , we assign the AlguAs(T)-morphism defined
by

A(f) : A(M) = AM (M)
(αf )M // AN (f(M)) // AN (N) = A(N) , (3.16b)

18



where the second arrow uses the functorial structure of AN ∈ HK(N) for the inclusion f(M) ⊆ N .
One can immediately verify that the functor A : Loc→ AlguAs(T) satisfies the ⊥-commutativity
axiom from Definition 2.3 by observing that the diagram

AM1(M1)⊗ AM2(M2)

AN (f1(M1))⊗ AN (f2(M2)) AN (N)⊗ AN (N)

AN (N)⊗ AN (N) AN (N)
µopN

µN

(αf1
)M1

⊗(αf2
)M2

A(f1)⊗A(f2)

A(f1)⊗A(f2)

(3.17)

in T commutes, for all orthogonal pairs (f1 : M1 → N) ⊥ (f2 : M2 → N) in Loc. This follows
from the ⊥-commutativity axiom of AN ∈ HK(N) and the orthogonal pair (f1(M1) ⊆ N) ⊥
(f2(M2) ⊆ N) in COpen(N).

To a morphism {ζM} : ({AM}, {αf}) ⇒ ({BM}, {βf}) in HK(pt), the functor (3.15) assigns
the morphism ζ : A⇒ B of locally covariant AQFTs which is defined by the following components

A(M) = AM (M)
(ζM )M // BM (M) = B(M) , (3.18)

for all M ∈ Loc. Recalling (3.9) and (3.16), one obtains the commutative diagrams

AM (M)

(ζM )M
��

(αf )M // AN (f(M))

(ζN )f(M)

��

// AN (N)

(ζN )N
��

BM (M)
(βf )M

// BN (f(M)) // BN (N)

(3.19)

in AlguAs(T), for all Loc-morphisms f : M → N , which confirm that ζ as defined above is a
natural transformation. ▷

Theorem 3.8. The two functors defined in Constructions 3.6 and 3.7 are quasi-inverse to each
other. Hence, they exhibit an equivalence

HK(pt) ≃ AQFT(Loc) (3.20)

between the category of points HK(pt) of the Haag-Kastler 2-functor and the category AQFT(Loc)
of locally covariant AQFTs.

Proof. One immediately checks that the composition AQFT(Loc) → HK(pt) → AQFT(Loc)
of (3.12) followed by (3.15) is the identity functor on AQFT(Loc).

Concerning the composition HK(pt) → AQFT(Loc) → HK(pt), we apply first (3.15) and
then (3.12) to any object ({AM}, {αf}) ∈ HK(pt), which results in the object(

{k∗M (A)}, {k∗M (A)⇒ f∗k∗N (A)}
)
∈ HK(pt) . (3.21a)

More explicitly, the family of objects is specified by

k∗M (A)(U) = AU (U) , (3.21b)

for all M ∈ Loc and all causally convex opens U ⊆M , and the family of isomorphisms by

k∗M (A)(U) // f∗k∗N (A)(U)

AU (U)
(αf |U )U

// Af(U)(f(U))

, (3.21c)
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for all Loc-morphisms f : M → N and all causally convex opens U ⊆ M , where f |U : U →
f(U) denotes the Loc-isomorphism obtained by restricting and corestricting f . There exists an
isomorphism in HK(pt) from this object to the original object, which is given by the components

AU (U)
(α

ιM
U

)U
// AM (U) , (3.22)

for all M ∈ Loc and all causally convex opens U ⊆ M , where ιMU : U → M denotes the canon-
ical inclusion Loc-morphism. From this one shows that the composition of functors HK(pt) →
AQFT(Loc)→ HK(pt) is naturally isomorphic to the identity functor on HK(pt).

3.1.3 Time-slice axiom

We conclude this subsection with a brief study of the time-slice axiom, which by Proposition 2.8
can be implemented either as an additional property or, equivalently, as a structure through an
orthogonal localization. In the present context, it will be more convenient to regard the time-slice
axiom as an additional property.

Definition 3.9. The time-sliced Haag-Kastler 2-functor is defined as the 2-subfunctor HKW ⊆
HK of the Haag-Kastler 2-functor from Definition 3.1 which assigns to every M ∈ Loc the full
subcategory HKW (M) ⊆ HK(M) consisting of all Haag-Kastler-style AQFTs on M which satisfy
the time-slice axiom.

Remark 3.10. We note that Proposition 2.8 and Example 2.10 provide us with the following
equivalent model for the time-sliced Haag-Kastler 2-functor. The assignment of the localized
orthogonal categories M 7→ COpen(M)[W−1

M ] from Example 2.10 is 2-functorial

COpen(−)[W−1
(−)] : Loc −→ Cat⊥ (3.23a)

with action on Loc-morphisms f :M → N given by

fW := COpen(f)[W−1
f ] : COpen(M)[W−1

M ] −→ COpen(N)[W−1
N ] , (3.23b)

U ⊆M 7−→ f(U) ⊆ N ,

(U → V ) 7−→
(
f(U)→ f(V )

)
,

see also Appendix B. Replacing in Definition 3.1 the 2-functor COpen(−) by COpen(−)[W−1
(−)],

one obtains an equivalent model for the time-sliced Haag-Kastler 2-functor which, with abuse of
notation, we denote by the same symbol HKW : Locop → CAT. Explicitly, this 2-functor assigns
to an object M ∈ Loc the category

HKW (M) = AQFT
(
COpen(M)[W−1

M ]
)
∈ CAT (3.24a)

of AQFTs on the orthogonal localization COpen(M)[W−1
M ] and to a Loc-morphism f :M → N

the pullback functor

HKW (N)
HKW (f) := f∗W // HKW (M)

AQFT
(
COpen(N)[W−1

N ]
)

f∗W

// AQFT
(
COpen(M)[W−1

M ]
) (3.24b)

associated to the orthogonal functor (3.23b). The equivalence between this model and the one in
Definition 3.9 is implemented as in Proposition 2.8 by pullbacks along the orthogonal localization
functors LM : COpen(M)→ COpen(M)[W−1

M ], for all M ∈ Loc. △

The result of Proposition 3.3 remains valid in the present case.
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Proposition 3.11. Suppose that the category of algebras AlguAs(T) has two objects A,B ∈
AlguAs(T) for which the Hom-set Hom(A,B) is not a singleton. Then the time-sliced Haag-
Kastler 2-functor HKW from Definition 3.9 is not a stack with respect to either Grothendieck
topology from Definition 2.14 on Loc. It is not even a prestack.

Proof. The proof is very similar to one of Proposition 3.3. The only differences are: 1.) We take
a (D-stable) causally convex open cover U = {Ui ⊆M} such that every Ui ⊆M does not contain
a Cauchy surface of M . 2.) Instead of the objects A and B from (3.5), we consider the objects
A,B ∈ HKW (M) which are defined by

A(U) :=

{
A , if U contains a Cauchy surface of M

I , otherwise
, (3.25a)

B(U) :=

{
B , if U contains a Cauchy surface of M

I , otherwise
, (3.25b)

for all causally convex opens U ⊆ M . We endow A and B with the AQFT structures which are
defined by the universal property of the initial algebra and the identity morphisms idA : A→ A
and idB : B → B. As in the proof of Proposition 3.3, one then shows that the canonical functor
HKW (M)→ HKW (U) to the descent category is not fully faithful by using these A and B.

Our Comparison Theorem 3.8 between locally covariant AQFTs and points of the Haag-
Kastler 2-functor adapts to the case where all AQFTs satisfy their relevant time-slice axiom.
Indeed, by direct inspection, one verifies that the functors from Constructions 3.6 and 3.7 preserve
the time-slice axioms, hence they induce functors

AQFT(Loc)W −→ HKW (pt) , HKW (pt) −→ AQFT(Loc)W (3.26)

between the category AQFT(Loc)W of locally covariant AQFTs satisfying the time-slice axiom
and the category of points HKW (pt) of the time-sliced Haag-Kastler 2-functor. As a consequence
of Theorem 3.8, we then obtain the following result.

Corollary 3.12. The two functors in (3.26) exhibit an equivalence

HKW (pt) ≃ AQFT(Loc)W (3.27)

between the category of points HKW (pt) of the time-sliced Haag-Kastler 2-functor and the category
AQFT(Loc)W of locally covariant AQFTs satisfying the time-slice axiom.

3.2 The case of relatively compact causally convex opens

In this subsection we describe the variants of the Haag-Kastler 2-functor which are associated with
Haag-Kastler-style AQFTs that are modeled on the orthogonal categories RC(M) of relatively
compact causally convex opens in M ∈ Loc from Example 2.2.

3.2.1 Definition and properties

Analogously to the 2-functor COpen(−) : Loc→ Cat⊥ from (3.1), there exists a 2-functor

RC(−) : Loc −→ Cat⊥ . (3.28)

This 2-functor assigns to each object M ∈ Loc the orthogonal category RC(M) of relatively
compact causally convex opens in M and to each Loc-morphism f : M → N the orthogonal
functor (denoted with abuse of notation by the same symbol f)

f := RC(f) : RC(M) −→ RC(N) , U ⊆M 7−→ f(U) ⊆ N (3.29)

which sends relatively compact causally convex opens in M to their images under f in N .
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Definition 3.13. The relatively compact Haag-Kastler 2-functor

HKrc : Locop −→ CAT (3.30a)

is defined by assigning to each object M ∈ Loc the category

HKrc(M) := AQFT(RC(M)) ∈ CAT (3.30b)

of relatively compact Haag-Kastler-style AQFTs on M and to each Loc-morphism f : M → N
the pullback functor

HKrc(N)
HKrc(f) := f∗

// HKrc(M)

AQFT(RC(N))
f∗
// AQFT(RC(M))

(3.30c)

from (2.3) which is associated to the orthogonal functor f : RC(M)→ RC(N) in (3.29).

The result of Proposition 3.3 remains valid in the present case.

Proposition 3.14. Suppose that the category of algebras AlguAs(T) has two objects A,B ∈
AlguAs(T) for which the Hom-set Hom(A,B) is not a singleton. Then the relatively com-
pact Haag-Kastler 2-functor HKrc from Definition 3.13 is not a stack with respect to either
Grothendieck topology from Definition 2.14 on Loc. It is not even a prestack.

Proof. The proof is very similar to the one of Proposition 3.11. The only difference is that we
assume that M ∈ Loc admits compact Cauchy surfaces. Under this hypothesis, the two objects
A,B ∈ HKrc(M) defined by

A(U) :=

{
A , if U contains a Cauchy surface of M

I , else
, (3.31a)

B(U) :=

{
B , if U contains a Cauchy surface of M

I , else
, (3.31b)

for all relatively compact causally convex opens U ⊆M , differ from the initial object in HKrc(M)
since there exist relatively compact causally convex opens U ⊆ M which contain a Cauchy
surface of M . (Consider for example time-slabs with a bounded time interval.) As in the proof of
Proposition 3.3, one then shows that the canonical functor HKrc(M) → HKrc(U) to the descent
category is not fully faithful by using these A and B.

3.2.2 Comparison to additivity properties

The canonical full orthogonal subcategory inclusions iM : RC(M)→ COpen(M) from Example
2.7, for all M ∈ Loc, assemble into a (strict) 2-natural transformation

i : RC(−) =⇒ COpen(−) (3.32)

between the 2-functors defined in (3.28) and (3.1). This induces via object-wise pullback a 2-
natural transformation

i∗ : HK =⇒ HKrc (3.33)

which allows us to compare the Haag-Kastler 2-functor from Definition 3.1 with the relatively
compact Haag-Kastler 2-functor from Definition 3.13.
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Additivity in Haag-Kastler-style AQFTs: It was shown in Example 2.7 that, restricting
to any fixed object M ∈ Loc, the component

i∗M : HKϵ−iso(M)
≃−→ HKrc(M) (3.34)

of the 2-natural transformation (3.33) defines an equivalence between the category of relatively
compact Haag-Kastler-style AQFTs on M and the full subcategory HKϵ−iso(M) ⊆ HK(M) con-
sisting of all Haag-Kastler-style AQFTs A ∈ HK(M) which satisfy the property that the counit
ϵA of the adjunction iM ! ⊣ i∗M in (2.5) is an isomorphism. Moreover, (2.8) identifies this property
as an additivity property of the Haag-Kastler-style AQFT A ∈ HK(M) on M .

This object-wise identification between HKrc(M) and the full subcategory HKϵ−iso(M) ⊆
HK(M) however fails to extend to the level of 2-functors because the family of full subcategories
HKϵ−iso(M) ⊆ HK(M), for all M ∈ Loc, does not form a 2-subfunctor of the Haag-Kastler
2-functor HK.

Proposition 3.15. Suppose that there exists a commutative algebra A ∈ AlguAs(T) which is
not isomorphic to the initial algebra.5 Then, for every Loc-morphism f : M → N whose image
f(M) ⊆ N is relatively compact, the pullback functor f∗ : HK(N)→ HK(M) of the Haag-Kastler
2-functor does not restrict to a functor between HKϵ−iso(N) and HKϵ−iso(M).

Proof. Our proof strategy is to present an explicit example for an object A ∈ HKϵ−iso(N) whose
pullback f∗(A) ∈ HK(M) does not lie in the full subcategory HKϵ−iso(M) ⊆ HK(M). Let us
define

A(V ) =

{
A , if f(M) ⊆ V ,

I , if f(M) ̸⊆ V ,
(3.35)

for all V ∈ COpen(N), where A ∈ AlguAs(T) denotes the commutative algebra from our
hypotheses and I ∈ AlguAs(T) denotes the initial algebra. We endow A ∈ HK(N) with the
AQFT structure which is defined by the universal property of the initial algebra and the identity
morphism idA : A→ A. (Note that the ⊥-commutativity axiom follows from the commutativity
of the algebras A and I.) To show that A ∈ HKϵ−iso(N) ⊆ HK(N), recall (2.8) and consider the
components of the counit

(ϵA)V : colim
(
RC(N)/V −→ COpen(N)

A−→ AlguAs(T)
)
−→ A(V ) , (3.36)

for all V ∈ COpen(N). In the case where f(M) ̸⊆ V , the restriction of A to the comma
category yields the constant functor assigning I, hence we obtain an isomorphism. In the case
where f(M) ⊆ V , we use that f(M) ⊆ V defines an object in the comma category RC(N)/V
since the image of f is by our hypotheses relatively compact in N . Using further that A is
constantly assigning A to all Ṽ ⊇ f(M), we obtain again an isomorphism.

It remains to show that f∗(A) ∈ HK(M) does not define an object in HKϵ−iso(M) ⊆ HK(M).
For this we consider the component of the counit

(ϵf∗(A))M : colim
(
RC(M)/M −→ COpen(M)

f∗(A)−→ AlguAs(T)
)
−→ A(f(M)) = A (3.37)

on the terminal object M ∈ COpen(M). Note that the restriction of the functor f∗(A) to
the comma category RC(M)/M yields the constant functor assigning I because M ⊆ M is
not relatively compact for a (necessarily non-compact) globally hyperbolic Lorentzian manifold.
Hence, ϵf∗(A) is not an isomorphism.

5This technical condition is very mild and it is only used to rule out pathological examples of T. In particular,
it holds true for T = VecK.
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The implication of this result is that the structure of the relatively compact Haag-Kastler
2-functor HKrc can not be encoded in terms of a property of the Haag-Kastler 2-functor HK,
despite the object-wise equivalence HKrc(M) ≃ HKϵ−iso(M) of (3.34) with Haag-Kastler-style
AQFTs satisfying a particular additivity property. This makes the relatively compact Haag-
Kastler 2-functor HKrc a genuinely new concept.

Additivity in locally covariant AQFTs: We next compare the relatively compact Haag-
Kastler 2-functor HKrc with an additivity property used in the context of locally covariant AQFTs,
see e.g. [BPS19, Definition 2.16].

Definition 3.16. For every objectM ∈ Loc, we denote by HKadd(M) ⊆ HK(M) the full subcat-
egory of the category of Haag-Kastler-style AQFTs on M consisting of all objects A ∈ HK(M)
which satisfy the following locally covariant additivity property : For every U ∈ COpen(M), the
canonical map

colim
(
RC(U)

⊆−→ COpen(M)
A−→ AlguAs(T)

) ∼=−→ A(U) (3.38)

is an isomorphism in AlguAs(T).

This will be related to an additivity property on AQFT(Loc) below, justifying the name.

Remark 3.17. We would like to highlight a subtle but important difference between the locally
covariant additivity property (3.38) and the ϵ-iso property (2.8) from Example 2.7, which we
rewrite here for comparison

(ϵA)U : colim
(
RC(M)/U −→ COpen(M)

A−→ AlguAs(T)
) ∼=−→ A(U) . (3.39)

The colimit in the locally covariant additivity property is indexed over the category RC(U) of all
relatively compact causally convex opens in U , while the colimit in the ϵ-iso property is indexed
over the comma category RC(M)/U of all relatively compact causally convex opens in M which
are also contained in U ⊆ M . Note that these two categories are in general very different. For
example, if U ⊆M is a relatively compact causally convex open subset, then the comma category
RC(M)/U has a terminal object U ⊆ U , while the category RC(U) never has a terminal object
because U is a (necessarily non-compact) globally hyperbolic Lorentzian manifold. In simpler
words, this means that relative compactness is a relative condition which is sensitive to the
ambient manifold in which one considers open subsets. For the ϵ-iso property (3.39), the relevant
relative compactness condition RC(M)/U is formulated relative to the ambient manifold M
itself, while for the locally covariant additivity property (3.38) the relative compactness condition
RC(U) is formulated intrinsically relative to the submanifold U ⊆M . △

In stark contrast to Proposition 3.15, the family of full subcategories HKadd(M) ⊆ HK(M),
for all M ∈ Loc, forms a 2-subfunctor of the Haag-Kastler 2-functor HK.

Proposition 3.18. For every Loc-morphism f : M → N , the pullback functor f∗ : HK(N) →
HK(M) of the Haag-Kastler 2-functor restricts to a functor f∗ : HKadd(N)→ HKadd(M) between
the full subcategories of locally covariantly additive objects. This defines a 2-subfunctor HKadd ⊆
HK.

Proof. We have to show that, given any locally covariantly additive object A ∈ HKadd(N) ⊆
HK(N) on N , the pullback f∗(A) ∈ HK(M) satisfies the locally covariant additivity property
from Definition 3.16. This follows from the direct calculation

colim
(
RC(U)

⊆−→ COpen(M)
f∗(A)−→ AlguAs(T)

)
= colim

(
RC(U)

⊆−→ COpen(M)
f−→ COpen(N)

A−→ AlguAs(T)
)

∼= colim
(
RC(f(U))

⊆−→ COpen(N)
A−→ AlguAs(T)

)
∼= A(f(U)) = f∗(A)(U) , (3.40)
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for all U ∈ COpen(M). In the first step we used the definition of the pullback functor f∗(A) =
A f . In the second step we used the commutative diagram

RC(U)

f |U ∼=
��

⊆
// COpen(M)

f

��

RC(f(U))
⊆
// COpen(N)

, (3.41)

where f |U : U → f(U) denotes the Loc-isomorphism obtained by restricting and corestricting
f : M → N . The last two steps follow from the locally covariant additivity property of A ∈
HKadd(N) ⊆ HK(N) and using the definition of the pullback functor f∗(A) = A f once more.

We can now compare the relatively compact Haag-Kastler 2-functor HKrc with the locally
covariantly additive 2-subfunctor HKadd ⊆ HK by restricting the 2-natural transformation (3.33)
to

i∗ : HKadd =⇒ HKrc . (3.42)

As a consequence of Proposition 3.15, we already know that this 2-natural transformation can
not be an equivalence of 2-functors, so the relative compactness structure of HKrc and the locally
covariant additivity property of HKadd ⊆ HK are not equivalent. However, we have the following
result which implies that the locally covariant additivity property is stronger than the relative
compactness structure.

Theorem 3.19. For every object M ∈ Loc, the component i∗M : HKadd(M) → HKrc(M) of the
2-natural transformation (3.42) is a fully faithful functor. Hence, by taking essential images, one
can present the locally covariantly additive Haag-Kastler 2-functor HKadd ⊆ HK as a 2-subfunctor
of the relatively compact Haag-Kastler 2-functor HKrc.

Proof. Using the equivalence i∗M : HKϵ−iso(M)
≃−→ HKrc(M) from (3.34), see also Example 2.7,

it suffices to show that HKadd(M) ⊆ HKϵ−iso(M) is a full subcategory. In other words, we have
to show that every locally covariantly additive object A ∈ HKadd(M) ⊆ HK(M) satisfies the ϵ-iso
property (2.8) from Example 2.7, i.e. the canonical map

colim
(
RC(M)/U −→ COpen(M)

A−→ AlguAs(T)
)
−→ A(U) (3.43)

is an isomorphism in AlguAs(T), for all U ∈ COpen(M). Using that A is additive in the sense
of Definition 3.16, we can rewrite the source of the canonical map as an iterated colimit

colim
(
RC(M)/U −→ COpen(M)

A−→ AlguAs(T)
)

= colim(U ′⊆U)∈RC(M)/U

(
A(U ′)

)
∼= colim(U ′⊆U)∈RC(M)/U colimU ′′∈RC(U ′)

(
A(U ′′)

)
∼= colim

(∫
U RC

π−→ RC(U)
⊆−→ COpen(M)

A−→ AlguAs(T)
)

, (3.44)

hence as a colimit over the Grothendieck construction
∫
U RC of the 2-functor RC : RC(M)/U →

Cat , (U ′ ⊆ U) 7→ RC(U ′). Similarly, the target of the canonical map can be rewritten by using
locally covariant additivity as a colimit

A(U) ∼= colim
(
RC(U)

⊆−→ COpen(M)
A−→ AlguAs(T)

)
. (3.45)

The problem then reduces to proving that the functor π :
∫
U RC→ RC(U) in (3.44) is final.

An explicit model for the relevant Grothendieck construction
∫
U RC is given by the category

whose objects are pairs (V,W ) with V ∈ RC(M)/U a relatively compact causally convex open
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in M such that V ⊆ U and W ∈ RC(V ) a relatively compact causally convex open in V .

There exists a unique morphism (V,W ) → (Ṽ , W̃ ) if and only if V ⊆ Ṽ and W ⊆ W̃ . The
functor π :

∫
U RC → RC(U) then sends an object (V,W ) to W and the unique morphism

(V,W )→ (Ṽ , W̃ ) in
∫
U RC to the subset inclusion W ⊆ W̃ in RC(U).

Recall that the functor π :
∫
U RC → RC(U) is final if, for each U ′ ∈ RC(U), the comma

category U ′/π is non-empty and connected. An object of U ′/π is an object (V,W ) ∈
∫
U RC such

that U ′ ⊆ W in RC(U), while a morphism (V,W ) → (Ṽ , W̃ ) in U ′/π exists if and only if the

underlying
∫
U RC-morphism exists, i.e. if and only if V ⊆ Ṽ and W ⊆ W̃ .

Let us show that U ′/π is non-empty. Since U ′ ∈ RC(U), its closure cl(U ′) ⊆ U with respect
to U is compact. For each point p ∈ cl(U ′), global hyperbolicity and hence strong causality
of M entails the existence of a relatively compact causally convex open neighborhood Vp ⊆ U
of p. Since {Vp}p∈cl(U ′) is an open cover of the compact subset cl(U ′) ⊆ U , it admits a finite

subcover {Vp1 , . . . , Vpn}. Define V := J+
U (∪ni=1Vpi) ∩ J

−
U (∪ni=1Vpi) ⊆ U as the causally convex

hull of the finite subcover. Using Lemma B.4, we obtain that V ⊆ U ⊆M is a relatively compact
causally convex open subset, hence V is an object of RC(M)/U . Furthermore, cl(U ′) ⊆ V by
construction, hence (V,U ′) ∈ U ′/π.

Let us now show that U ′/π is connected. Take any two objects (V1,W1) and (V2,W2) of U
′/π.

We exhibit an object (V,W ) and morphisms (V1,W1)← (V,W )→ (V2,W2) in U
′/π. Define the

relatively compact causally convex opens V := V1 ∩ V2 ⊆ M and W := W1 ∩ W2 ⊆ V . (To
confirm that W is relatively compact in V , recall that the closures of Wi with respect to Vi are
compact, hence the closure of W with respect to V is compact too.) Then U ′ ⊆ Wi entails that
U ′ ⊆W , hence (V,W ) ∈ U ′/π. The morphisms (V,W )→ (Vi,Wi) in U

′/π exist because V ⊆ Vi
and W ⊆Wi.

We conclude this subsection with a comment on the relationship between additive locally
covariant AQFTs and the relatively compact Haag-Kastler 2-functor. The usual definition of the
full subcategory AQFT(Loc)add ⊆ AQFT(Loc) of additive locally covariant AQFTs, see e.g.
[BPS19, Definition 2.16], can be equivalently rephrased through the equivalence from Theorem
3.8 as follows: An object A ∈ AQFT(Loc) is additive if and only if its underlying Haag-Kastler-
style AQFTs k∗M (A) ∈ HK(M) are locally covariantly additive in the sense of Definition 3.16, for
all M ∈ Loc. This implies that Theorem 3.8 restricts to an equivalence

HKadd(pt) ≃ AQFT(Loc)add (3.46)

between the category of points of the locally covariantly additive Haag-Kastler 2-subfunctor
HKadd ⊆ HK and the category AQFT(Loc)add of additive locally covariant AQFTs. Together
with Theorem 3.19, this yields the following result.

Corollary 3.20. The category AQFT(Loc)add of additive locally covariant AQFTs is presented
via the fully faithful functor

AQFT(Loc)add ≃ HKadd(pt) −→ HKrc(pt) (3.47)

as a full subcategory of the category of points HKrc(pt) of the relatively compact Haag-Kastler
2-functor, where the last functor is obtained by inducing (3.42) to the categories of points.

3.2.3 Time-slice axiom

This subsection contains a brief study of the time-slice axiom in the context of the relatively
compact Haag-Kastler 2-functor. The following definition is analogous to Definition 3.9.

Definition 3.21. The time-sliced relatively compact Haag-Kastler 2-functor is defined as the
2-subfunctor HKrc,W ⊆ HKrc of the relatively compact Haag-Kastler 2-functor from Definition
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3.13 which assigns to every M ∈ Loc the full subcategory HKrc,W (M) ⊆ HKrc(M) consisting of
all relatively compact Haag-Kastler-style AQFTs on M which satisfy the time-slice axiom.

Remark 3.22. Similarly to Remark 3.10, we have the following equivalent model for the time-
sliced relatively compact Haag-Kastler 2-functor. The assignment of the localized orthogonal
categories M 7→ RC(M)[W−1

rc,M ] from Example 2.10 is 2-functorial

RC(−)[W−1
rc,(−)] : Loc −→ Cat⊥ (3.48a)

with action on Loc-morphisms f :M → N given by

fW := RC(f)[W−1
rc,f ] : RC(M)[W−1

rc,M ] −→ RC(N)[W−1
rc,N ] , (3.48b)

U ⊆M 7−→ f(U) ⊆ N ,

(U → V ) 7−→
(
f(U)→ f(V )

)
,

see also Appendix B. Replacing in Definition 3.13 the 2-functor RC(−) by RC(−)[W−1
rc,(−)], one

obtains an equivalent model for the time-sliced relatively compact Haag-Kastler 2-functor which,
with abuse of notation, we denote by the same symbol HKrc,W : Locop → CAT. Explicitly, this
2-functor assigns to an object M ∈ Loc the category

HKrc,W (M) = AQFT
(
RC(M)[W−1

rc,M ]
)
∈ CAT (3.49a)

of AQFTs on the orthogonal localization RC(M)[W−1
rc,M ] and to a Loc-morphism f : M → N

the pullback functor

HKrc,W (N)
HKrc,W (f) := f∗W // HKrc,W (M)

AQFT
(
RC(N)[W−1

rc,N ]
)

f∗W

// AQFT
(
RC(M)[W−1

rc,M ]
) (3.49b)

associated to the orthogonal functor (3.48b). The equivalence between this model and the one in
Definition 3.21 is implemented as in Proposition 2.8 by pullbacks along the orthogonal localization
functors Lrc,M : RC(M)→ RC(M)[W−1

rc,M ], for all M ∈ Loc. △

The result of Proposition 3.14 remains valid in the present case.

Proposition 3.23. Suppose that the category of algebras AlguAs(T) has two objects A,B ∈
AlguAs(T) for which the Hom-set Hom(A,B) is not a singleton. Then the time-sliced relatively
compact Haag-Kastler 2-functor HKrc,W from Definition 3.21 is not a stack with respect to either
Grothendieck topology from Definition 2.14 on Loc. It is not even a prestack.

Proof. Note that the two objects A and B constructed in the proof of Proposition 3.14 satisfy
the time-slice axiom, hence that proof applies to the present case without any alterations.

We conclude by adapting the results of Theorem 3.19 and Corollary 3.20 to the case where
the time-slice axiom is implemented. For this we observe that the 2-natural transformation (3.42)
restricts to a 2-natural transformation

i∗ : HKadd,W =⇒ HKrc,W (3.50)

between the 2-subfunctor HKadd,W ⊆ HKadd ⊆ HK, which implements both the locally covariant
additivity property and the time-slice axiom, and the time-sliced relatively compact Haag-Kastler
2-functor HKrc,W from Definition 3.21. This is a consequence of the fact that the orthogonal
functor iM : RC(M)→ COpen(M) sends Cauchy morphisms in RC(M) to Cauchy morphisms
in COpen(M), for all M ∈ Loc.
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Theorem 3.24. For every object M ∈ Loc, the component i∗M : HKadd,W (M) → HKrc,W (M)
of the 2-natural transformation (3.50) is a fully faithful functor. Hence, by taking essential
images, one can present the time-sliced and locally covariantly additive Haag-Kastler 2-functor
HKadd,W ⊆ HK as a 2-subfunctor of the time-sliced relatively compact Haag-Kastler 2-functor
HKrc,W .

Proof. Recall from Theorem 3.19 that i∗M : HKadd(M) → HKrc(M) is a fully faithful func-
tor, hence its restriction to the full subcategories HKadd,W (M) ⊆ HKadd(M) and HKrc,W (M) ⊆
HKrc(M) is fully faithful too.

Recalling also Corollary 3.12, we then obtain the following result.

Corollary 3.25. The category AQFT(Loc)add,W of additive locally covariant AQFTs satisfying
the time-slice axiom is presented via the fully faithful functor

AQFT(Loc)add,W ≃ HKadd,W (pt) −→ HKrc,W (pt) (3.51)

as a full subcategory of the category of points HKrc,W (pt) of the time-sliced relatively compact
Haag-Kastler 2-functor, where the last functor is obtained by inducing (3.50) to the categories of
points.

4 Haag-Kastler stacks

All variants HK, HKW , HKrc and HKrc,W of the Haag-Kastler 2-functor we have encountered in the
previous section (see Definitions 3.1, 3.9, 3.13 and 3.21) have failed to satisfy the local-to-global
(descent) properties which are described by the concept of a stack, see Definition 2.14. Even
worse, we have shown in Propositions 3.3, 3.11, 3.14 and 3.23 that each of these 2-functors is not
even a prestack. In this section we shall address and partially solve this issue by constructing from
our original 2-functors new ones which, under certain hypotheses that hold true for the relatively
compact examples HKrc and HKrc,W , enjoy better descent properties. Our construction is guided
by leveraging very specific properties of AQFTs and the Haag-Kastler 2-functors which arise by
combining the techniques from Subsection 2.1 with the theory of locally presentable categories
from Subsection 2.3. It is unclear to us whether our AQFT-inspired construction differs from
the general stackification construction, which as far as we currently understand does not admit
a quantum field theoretic interpretation.

4.1 Preparations

In order to streamline our arguments and to avoid unnecessary repetitions, let us introduce the
following abstract notion of a Haag-Kastler 2-functor.

Definition 4.1. Let C(−) : Loc → Cat⊥ be a strict 2-functor to the 2-category of orthogonal
categories. The associated Haag-Kastler-style 2-functor

HKC : Locop −→ CAT (4.1a)

is defined by assigning to an object M ∈ Loc the category

HKC(M) := AQFT(C(M)) ∈ CAT (4.1b)

of AQFTs over C(M), and to a Loc-morphism f :M → N the pullback functor

HKC(N)
HKC(f) := f∗

// HKC(M)

AQFT(C(N))
f∗
// AQFT(C(M))

(4.1c)

from (2.3) along the orthogonal functor f := C(f) : C(M)→ C(N).
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Example 4.2. We observe that Definition 4.1 covers all the different variants of the Haag-Kastler
2-functor from Section 3.

(1) The Haag-Kastler 2-functor HK from Definition 3.1 is associated to the 2-functorCOpen(−)
which assigns the orthogonal categories of causally convex opens.

(2) The time-sliced Haag-Kastler 2-functor HKW from Definition 3.9 (see also Remark 3.10)
is associated to the 2-functor COpen(−)[W−1

(−)] which assigns the orthogonal categories of
causally convex opens localized at all Cauchy morphisms.

(3) The relatively compact Haag-Kastler 2-functor HKrc from Definition 3.13 is associated to
the 2-functor RC(−) which assigns the orthogonal categories of relatively compact causally
convex opens.

(4) The time-sliced relatively compact Haag-Kastler 2-functor HKrc,W from Definition 3.21
(see also Remark 3.22) is associated to the 2-functor RC(−)[W−1

rc,(−)] which assigns the
orthogonal categories of relatively compact causally convex opens localized at all Cauchy
morphisms. ▽

We will now provide a useful description of the descent category HKC(U) of the general Haag-
Kastler-style 2-functor from Definition 4.1 for a causally convex open cover U = {Ui ⊆M} of an
object M ∈ Loc. The key idea is to present this descent category in terms of an AQFT category
over the following orthogonal category associated with the cover.

Definition 4.3. Let C(−) : Loc → Cat⊥ be a strict 2-functor. For each causally convex open
cover U = {Ui ⊆ M} of an object M ∈ Loc, we define the category C(U) by the following
generators and relations description:

• An object in C(U) is a pair (i, U) consisting of an index i of the cover and an object
U ∈ C(Ui).

• The morphisms in C(U) are generated by the following two types of generators:

(i) For every i and every morphism g : U → U ′ in C(Ui), there exists a morphism

(i, g) : (i, U) −→ (i, U ′) . (4.2a)

(ii) For every i, j such that Uij ̸= ∅ and every V ∈ C(Uij), there exists a morphism

φij,V :
(
j, ι

Uj

Uij
(V )

)
−→

(
i, ιUi

Uij
(V )

)
, (4.2b)

where here and below we use the short-hand notations ι
Uj

Uij
(V ) = C

(
ι
Uj

Uij

)
(V ) and

ιUi
Uij

(V ) = C
(
ιUi
Uij

)
(V ).

These generators are required to satisfy the following relations:

(r1) For all i and all composable morphisms g : U → U ′ and g′ : U ′ → U ′′ in C(Ui),

(i, g′) ◦ (i, g) = (i, g′ g) . (4.3a)

Furthermore, for all i and all U ∈ C(Ui),

(i, idU ) = id(i,U) . (4.3b)
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(r2) For all i, j with Uij ̸= ∅ and all morphisms h : V → V ′ in C(Uij), the diagram(
j, ι

Uj

Uij
(V )

)
(
j, ι

Uj
Uij

(h)
)
��

φij,V
//

(
i, ιUi

Uij
(V )

)
(
i, ι

Ui
Uij

(h)
)

��(
j, ι

Uj

Uij
(V ′)

)
φij,V ′

//

(
i, ιUi

Uij
(V ′)

) (4.4)

commutes.

(r3) For all i and all U ∈ C(Uii) = C(Ui),

φii,U = id(i,U) . (4.5a)

Furthermore, for all i, j, k with Uijk ̸= ∅ and all W ∈ C(Uijk), the diagram

(
k, ιUk

Uijk
(W )

)
φ
ik, ι

Uik
Uijk

(W )
((

φ
jk, ι

Ujk
Uijk

(W )

//

(
j, ι

Uj

Uijk
(W )

)
φ
ij, ι

Uij
Uijk

(W )

��(
i, ιUi

Uijk
(W )

)
(4.5b)

commutes.

We endow this category with the structure of an orthogonal category C(U) by taking the smallest
orthogonality relation such that(

(i, g1) : (i, U1)→ (i, U)
)
⊥

(
(i, g2) : (i, U2)→ (i, U)

)
(4.6)

is orthogonal, for all i and all orthogonal pairs (g1 : U1 → U) ⊥ (g2 : U2 → U) in C(Ui).

For every M ∈ Loc and every causally convex open cover U = {Ui ⊆ M}, we define an
orthogonal functor

jU : C(U) −→ C(M) (4.7a)

from the orthogonal category in Definition 4.3 to the orthogonal category C(M). This orthogonal
functor maps an object (i, U) to

jU (i, U) := ιMUi
(U) := C

(
ιMUi

)
(U) , (4.7b)

a type (i) generating morphism (i, g) : (i, U)→ (i, U ′) to

jU (i, g) := ιMUi
(g) := C

(
ιMUi

)
(g) : ιMUi

(U) −→ ιMUi
(U ′) , (4.7c)

and a type (ii) generating morphism φij,V :
(
j, ι

Uj

Uij
(V )

)
→

(
i, ιUi

Uij
(V )

)
to the identity morphism

jU (φij,V ) := id
ιMUij

(V )
: ιMUij

(V ) −→ ιMUij
(V ) . (4.7d)

One directly checks that this assignment is compatible with the relations from Definition 4.3 and
also that it preserves the orthogonality relations.
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Proposition 4.4. For every M ∈ Loc and every causally convex open cover U = {Ui ⊆ M},
there exists a canonical identification

HKC(U) ∼= AQFT(C(U)) (4.8)

between the descent category of the Haag-Kastler-style 2-functor HKC and the category of AQFTs
over the orthogonal category from Definition 4.3. Upon this identification, the canonical functor
to the descent category coincides with the pullback functor

HKC(M) // HKC(U)
∼=
��

AQFT(C(M))
j∗U

// AQFT(C(U))
(4.9)

along the orthogonal functor (4.7). Operadic left Kan extension as in Proposition 2.5 then defines
an adjunction

jU ! : HKC(U)
//
HKC(M) : j∗Uoo (4.10)

between the descent category HKC(U) and HKC(M).

Proof. The first statement follows directly by spelling out and comparing the data and properties
of a ⊥-commutative functor A : C(U) → AlguAs(T) from the orthogonal category in Definition
4.3 with the model for the descent category in Remark 2.16. The canonical identification is then
given by A(i, U) = Ai(U), for all i and all objects U ∈ C(Ui). The type (i) morphisms (i, g)
describe the structure of the local AQFTs Ai on Ui in the descent category, and the type (ii)
morphisms φij,V describe the cocycle data in the descent category. Note that, choosing triple
overlaps of the form Uiji and Ujij , the relations (r3) in Definition 4.3 imply that every type
(ii) morphism is invertible, as required for the cocyles. Through this identification, one directly
verifies that the canonical functor to the descent category coincides with j∗U .

Assumption 4.5. Throughout the remainder of this section, we shall assume that the target
symmetric monoidal category T in which the AQFTs take values is locally presentable, see also
Section 2.3. Let us recall from Example 2.17 that the standard choice, given by the category of
vector spaces VecK over a field K, is of this kind.

As a consequence of Example 2.17 and Proposition 2.5, it follows from Assumption 4.5 that
the general Haag-Kastler-style 2-functor from Definition 4.1 takes values in the 2-subcategory
PrR ⊆ CAT from Definition 2.18, i.e.

HKC : Locop −→ PrR . (4.11)

This provides by Corollary 2.25 a new angle through which one can study the descent properties
of HKC, which is given by studying the codescent properties of the adjoint pseudo-functor

HK†
C

: Loc −→ PrL . (4.12)

Let us recall that the adjoint pseudo-functor assigns to each object M ∈ Loc the same cat-
egory HK†

C
(M) := HKC(M) as assigned by HKC, and to each Loc-morphism f the left ad-

joint HK†
C
(f) := f! ⊣ f∗ = HKC(f) of the pullback functor assigned by HKC. The adjunction

(4.10) established in Proposition 4.4 gives an explicit and powerful model for both the canonical
functor j∗U : HKC(M) → HKC(U) to the descent category of HKC and the canonical functor

jU ! : HKC(U)→ HKC(M) from the codescent category of HK†
C
in terms of pullback and operadic

left Kan extension along the orthogonal functor jU from (4.7). This explicit description will be a
key ingredient for proving our results in the subsections below.
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4.2 Adjoint precostacks

In this subsection we will prove that, for all our variants of the Haag-Kastler 2-functor from Exam-
ple 4.2, the adjoint pseudo-functor (4.12) is a precostack with respect to a suitable Grothendieck
topology on Loc. In the case where no time-slice axiom is implemented, the topology is given
by all causally convex open covers U = {Ui ⊆ M}. In the case where a time-slice axiom is
implemented, the topology must be chosen coarser and it is given by all D-stable causally convex
open covers U = {Ui ⊆M}. See also Definition 2.12.

4.2.1 The case of no time-slice

Of the Haag-Kastler 2-functors in Example 4.2, the non-time-sliced examples (1) and (3) are
associated with 2-functors C(−) : Loc → Cat⊥ that have additional properties which consider-

ably simplify the study of codescent of the adjoint pseudo-functor HK†
C
. The following definition

captures these properties abstractly.

Definition 4.6. A 2-functor C(−) : Loc → Cat⊥ is called a net domain if it satisfies the
following properties:

(1) For all M ∈ Loc, the underlying category of C(M) is thin, i.e. there exists at most one
morphism between every two objects.

(2) For all M ∈ Loc and all causally convex open subsets V ⊆ M , the orthogonal functor

ιMV = C
(
ιMV

)
: C(V )→ C(M) is a full orthogonal subcategory inclusion C(V ) ⊆ C(M).

(3) For allM ∈ Loc and all causally convex open subsets V1, V2 ⊆M , if there exists a morphism
U1 → U2 in C(M) from U1 ∈ C(V1) ⊆ C(M) to U2 ∈ C(V2) ⊆ C(M), then U1 ∈
C(V1 ∩ V2) ⊆ C(M).

Example 4.7. The 2-functors COpen(−) : Loc→ Cat⊥ from (3.1) and RC(−) : Loc→ Cat⊥

from (3.28) clearly satisfy the properties of Definition 4.6. Hence, the Haag-Kastler 2-functor
HK and the relatively compact Haag-Kastler 2-functor HKrc are defined over net domains. The
orthogonal localizations COpen(−)[W−1

(−)] : Loc → Cat⊥ from (3.23) and RC(−)[W−1
rc,(−)] :

Loc → Cat⊥ from (3.48) satisfy only a weaker variant of these properties, see Definition 4.12
and Example 4.13 below for more details. ▽

In the case of net domains, one can drastically simplify the description of the orthogonal
category C(U) from Definition 4.3.

Lemma 4.8. Suppose that the 2-functor C(−) : Loc → Cat⊥ is a net domain. Let U = {Ui ⊆
M} be any causally convex open cover of any object M ∈ Loc. Then the orthogonal category
C(U) from Definition 4.3 admits the following explicit description:

• There exists a unique morphism (i, U) → (j, V ) if and only if there exists a morphism
U → V in C(M) from U ∈ C(Ui) ⊆ C(M) to V ∈ C(Uj) ⊆ C(M).

• A pair of morphisms (i1, U1) → (j, V ) ← (i2, U2) in C(U) is orthogonal if and only if the
pair of morphisms U1 → V ← U2 in C(M) is orthogonal.

Proof. We will use the properties from Definition 4.6 in order to simplify the generators and
relations presentation of the category C(U) from Definition 4.3. As a consequence of thinness
(item (1)), we can drop the labels for the type (i) generators because there exists at most one
such generator for fixed source and target. Using also the full subcategory assumption (item (2)),
we can regard all objects and morphisms associated with the cover as living in C(M). Given any
type (ii) generator ψji,V : (i, V ) → (j, V ) with V ∈ C(Uij) ⊆ C(M) and any type (i) generator
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(i, U)→ (i, V ) with U ∈ C(Ui) ⊆ C(M), then item (3) implies that U ∈ C(Uij) ⊆ C(M). Hence,
we get from the relations (r2) a commutative diagram

(i, U)

��

ψji,U
// (j, U)

��

(i, V )
ψji,V

// (j, V )

(4.13)

exchanging the order of composition of type (i) and type (ii) generators. This implies that any
morphism in C(U) can be written in the form (type (i))◦ (type (ii)) where all type (ii) generators
are to the right of the type (i) generators. Using thinness (item (1)) and the relations (r1)
and (r3), it then follows that there exists at most one morphism (i, U) → (j, V ) in C(U), with
U ∈ C(Ui) ⊆ C(M) and V ∈ C(Uj) ⊆ C(M), which must be of the form

(i, U)
ψji,U−→ (j, U) −→ (j, V ) (4.14)

given by a type (ii) generator composed with a type (i) generator. The type (i) morphism in this
composition exists if and only if there exists a morphism U → V in C(M), which implies using
item (3) that U ∈ C(Uij) ⊆ C(M) and hence also the type (ii) morphism exists.

Let us now focus on the characterization of the orthogonality relation. Given two morphisms
(i1, U1) → (j, V ) and (i2, U2) → (j, V ) in C(U), the above description of morphisms yields
factorizations (i1, U1) ∼= (j, U1)→ (j, V ) and (i2, U2) ∼= (j, U2)→ (j, V ) in C(U). (The first steps
are isomorphisms by the relations (r3) from Definition 4.3.) Therefore, by composition stability
(i1, U1) → (j, V ) ← (i2, U2) in C(U) is orthogonal if and only if (j, U1) → (j, V ) ← (j, U2) in
C(U) is orthogonal. According to Definition 4.3 and item (2) from Definition 4.6, the latter is
orthogonal if and only if U1 → V ← U2 in C(M) is orthogonal.

Theorem 4.9. Suppose that the 2-functor C(−) : Loc→ Cat⊥ is a net domain in the sense of
Definition 4.6. Let U = {Ui ⊆ M} be any causally convex open cover of any object M ∈ Loc.
Then the canonical functor

jU ! : HKC(U) −→ HKC(M) (4.15)

from the codescent category of HK†
C

in this cover to its value on M is fully faithful. Hence,

the adjoint pseudo-functor HK†
C

: Loc → PrL is a precostack with respect to the Grothendieck
topology given by all causally convex open covers.

Proof. Using Lemma 4.8, one verifies that the orthogonal functor jU : C(U) → C(M) from
(4.7) is fully faithful and reflects orthogonality. Proposition 2.6 then implies that the associated
operadic left Kan extension jU ! is a fully faithful functor.

Remark 4.10. The result of Theorem 4.9 implies that, in the case where C(−) is a net domain,
the canonical functor

j∗U : HKC(M) −→ HKC(U) (4.16)

to the descent category of the original 2-functor HKC : Locop → PrR is essentially surjective, for
every causally convex open cover U = {Ui ⊆ M}. Indeed, since jU ! is fully faithful, the unit of
the adjunction jU ! ⊣ j∗U is a natural isomorphism, so we obtain an isomorphism

(ηU )B : B
∼=

=⇒ j∗U jU !(B) , (4.17)

for every object B ∈ HKC(U). Hence, every object of HKC(U) lies in the essential image of the
functor (4.16). △
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As a direct consequence of Examples 4.2 and 4.7, we obtain the following result.

Corollary 4.11. The adjoint pseudo-functors HK† and HKrc † of the Haag-Kastler 2-functor and
the relatively compact Haag-Kastler 2-functor are both precostacks with respect to the Grothendieck
topology given by all causally convex open covers.

4.2.2 The case of time-slice

For our examples (2) and (4) of time-sliced Haag-Kastler 2-functors from Example 4.2, the 2-
functor C(−) : Loc→ Cat⊥ satisfies only a weaker variant of the properties in Definition 4.6.

Definition 4.12. A 2-functor C(−) : Loc→ Cat⊥ is called a localized net domain if it satisfies
the following properties:

(1) For all M ∈ Loc, the underlying category of C(M) is thin, i.e. there exists at most one
morphism between every two objects.

(2) For all M ∈ Loc and all D-stable causally convex open subsets V ⊆ M , i.e. DM (V ) = V

is stable under Cauchy development in M , the orthogonal functor ιMV = C
(
ιMV

)
: C(V ) →

C(M) is a full orthogonal subcategory inclusion C(V ) ⊆ C(M).

(3) For all M ∈ Loc and all D-stable causally convex open subsets V1, V2 ⊆M , if there exists
a morphism U1 → U2 in C(M) from U1 ∈ C(V1) ⊆ C(M) to U2 ∈ C(V2) ⊆ C(M), then
U1 ∈ C(V1 ∩ V2) ⊆ C(M).

Example 4.13. Using the explicit localization models from Example 2.10, we will now verify that
the 2-functors COpen(−)[W−1

(−)] : Loc→ Cat⊥ from (3.23) and RC(−)[W−1
rc,(−)] : Loc→ Cat⊥

from (3.48) satisfy the properties of Definition 4.12. Hence, the time-sliced Haag-Kastler 2-
functor HKW and the time-sliced relatively compact Haag-Kastler 2-functor HKrc,W are defined
over localized net domains.

Let us start with the case of COpen(−)[W−1
(−)]. We observe that the category underlying

COpen(M)[W−1
M ] is manifestly thin, for allM ∈ Loc. Furthermore, given any D-stable causally

convex open subset V ⊆ M , one has that the orthogonal functor ιMV : COpen(V )[W−1
V ] →

COpen(M)[W−1
M ] is faithful and reflects orthogonality. To prove fullness, we observe that given

any causally convex open subsets U,U ′ ⊆ V such that U ⊆ DM (U ′), the D-stability DM (V ) = V
of V entails that DV (U

′) = DM (U ′), hence U ⊆ DV (U
′). Finally, given any D-stable causally

convex open subsets V1, V2 ⊆M and any causally convex open subsets U1 ⊆ V1 and U2 ⊆ V2 such
that U1 ⊆ DM (U2), it follows that U1 ⊆ V1 ∩DM (U2) = V1 ∩DV2(U2) ⊆ V1 ∩ V2.

The case of RC(−)[W−1
rc,(−)] follows by specializing the above arguments to causally convex

open subsets U,U ′ ⊆ V , U1 ⊆ V2 and U2 ⊆ V2 which are also relatively compact. ▽

The following statement is the analogue of Lemma 4.8 in the present case.

Lemma 4.14. Suppose that the 2-functor C(−) : Loc → Cat⊥ is a localized net domain. Let
U = {Ui ⊆ M} be any D-stable causally convex open cover of any object M ∈ Loc. Then the
orthogonal category C(U) from Definition 4.3 admits the following explicit description:

• There exists a unique morphism (i, U) → (j, V ) if and only if there exists a morphism
U → V in C(M) from U ∈ C(Ui) ⊆ C(M) to V ∈ C(Uj) ⊆ C(M).

• A pair of morphisms (i1, U1) → (j, V ) ← (i2, U2) in C(U) is orthogonal if and only if the
pair of morphisms U1 → V ← U2 in C(M) is orthogonal.

Proof. Since the cover U = {Ui ⊆ M} is by hypothesis D-stable, it follows that all intersections
Uij = Ui ∩ Uj ⊆ M are D-stable too, i.e. DM (Uij) = Uij . The proof is then identical to the one
of Lemma 4.8.
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Theorem 4.15. Suppose that the 2-functor C(−) : Loc → Cat⊥ is a localized net domain in
the sense of Definition 4.12. Let U = {Ui ⊆ M} be any D-stable causally convex open cover of
any object M ∈ Loc. Then the canonical functor

jU ! : HKC(U) −→ HKC(M) (4.18)

from the codescent category of HK†
C

in this cover to its value on M is fully faithful. Hence,

the adjoint pseudo-functor HK†
C

: Loc → PrL is a precostack with respect to the Grothendieck
topology given by all D-stable causally convex open covers.

Proof. Using that the cover U is D-stable and Lemma 4.14, one verifies that the orthogonal
functor jU : C(U)→ C(M) from (4.7) is fully faithful and reflects orthogonality. Proposition 2.6
then implies that the associated operadic left Kan extension jU ! is a fully faithful functor.

As a direct consequence of Examples 4.2 and 4.13, we obtain the following result.

Corollary 4.16. The adjoint pseudo-functors HKW † and HKrc,W † of the time-sliced Haag-Kastler
2-functor and the time-sliced relatively compact Haag-Kastler 2-functor are both precostacks with
respect to the Grothendieck topology given by all D-stable causally convex open covers.

4.3 Improving descent

Our results in Subsection 4.2 provide insights about why the Haag-Kastler-style 2-functors HKC

fail to satisfy the descent conditions of a stack. From the dual perspective of the adjoint pseudo-
functors HK†

C
, we see that the canonical functors (4.15) and (4.18) from the (co)descent category

HKC(U) to HKC(M) are fully faithful but fail to be essentially surjective. (This failure follows
by an argument as in Remark 4.10 from our results in Propositions 3.3, 3.11, 3.14 and 3.23.)
Loosely speaking, this means that the category HKC(M) contains also ‘bad objects’ which do not
interplay well with descent and it suggests that one should select a suitable class of ‘good objects’
in HKC(M). Our proposal for a selection criterion can be stated in simple terms as follows: We
would like to intersect the essential images of the (co)descent categories HKC(U) → HKC(M)
over all covers U and thereby define a full subcategory of ‘good objects’ in HKC(M). In this

subsection we shall formalize and discuss this idea for both the case where C(−) is a net domain
and the case where C(−) is a localized net domain. These two cases are very similar but, as
already indicated in Theorems 4.9 and 4.15, they require slightly different choices of Grothendieck
topologies on Loc. To avoid messy notations and case distinctions, we shall present each case in
an individual subsection.

4.3.1 The case of no time-slice

Throughout this subsection, let us assume that C(−) : Loc → Cat⊥ is a net domain as in
Definition 4.6. We formalize our selection criterion for ‘good objects’ as follows.

Definition 4.17. Let C(−) : Loc → Cat⊥ be a net domain. For every object M ∈ Loc, we
denote by

HKC(M) ⊆ HKC(M) (4.19a)

the full subcategory consisting of all objects A ∈ HKC(M) which satisfy the following descent
conditions: For every causally convex open cover U = {Ui ⊆M}, the A-component of the counit

(ϵU )A : jU ! j
∗
U (A)

∼=
=⇒ A (4.19b)

of the adjunction jU ! : HKC(U) ⇄ HKC(M) : j∗U of (4.10) is an isomorphism in HKC(M).
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From this definition it is not immediately clear that the categories HKC(M) are locally
presentable and that the inclusion functors HKC(M) ⊆ HKC(M) are left adjoints. We will now
show that HKC(M) arises as the bilimit of a suitable diagram in PrL which will manifestly
imply these properties. To set up this construction, we briefly recall the concept of refinements
of covers.

Definition 4.18. Given any object M ∈ Loc, we denote by cov(M) the category whose objects
are all causally convex open covers U = {Ui ⊆ M} of M and whose morphisms α : U = {Ui ⊆
M} → U ′ = {U ′

i′ ⊆M} are refinements, i.e. α : I → I ′ , i 7→ α(i) is a map between the indexing
sets such that Ui ⊆ U ′

α(i), for all i. Note that the category cov(M) has a terminal object, which

is given by the coarsest cover {M ⊆M}.

We observe that the assignment of the orthogonal categories from Definition 4.3 is 2-functorial

C(−) : cov(M) −→ Cat⊥ , U 7−→ C(U) . (4.20)

Using the simplification for a net domain from Lemma 4.8, the action of this 2-functor on refine-
ments α : U → U ′ is given by the orthogonal functors (denoted with abuse of notation by the
same symbol α)

α := C(α) : C(U) −→ C(U ′) , (4.21)

(i, U) 7−→ (α(i), U) ,(
(i, U)→ (j, V )

)
7−→

(
(α(i), U)→ (α(j), V )

)
.

For each refinement α : U → U ′, the orthogonal functor (4.21) is fully faithful and reflects
orthogonality. Applying Proposition 2.6, we then obtain an adjunction

α! : HKC(U)
//
HKC(U

′) : α∗
oo (4.22)

whose left adjoint α! is fully faithful.

Remark 4.19. As a side remark which will become relevant in some of our proofs below, we
observe that the descent conditions in Definition 4.17 are not independent because descent on
finer covers implies descent on coarser ones. Let us provide the relevant argument. Given any
refinement of covers α : U → U ′, we obtain a commutative diagram of orthogonal functors

C(U)

α ##

jU // C(M)

C(U ′)
jU′

::

. (4.23)

Suppose that an object A ∈ HKC(M) satisfies descent on the finer cover U , i.e. the counit
(ϵU )A : jU ! j

∗
U (A)⇒ A is an isomorphism HKC(M). Applying (−)! to the diagram (4.23) gives a

diagram which commutes up to a natural isomorphism, so we find that our object

A ∼= jU ! j
∗
U (A)

∼= jU ′ ! α! j
∗
U (A) =: jU ′ !(B) (4.24)

lies in the essential image of jU ′ ! : HKC(U
′) → HKC(M) for the coarser cover. From this

isomorphism we obtain a commutative diagram

jU ′ ! j
∗
U ′(A)

(ϵU′ )A +3 A

jU ′ ! j
∗
U ′ jU ′ !(B)

∼=

KS

(ϵU′ )jU′ !(B)
+3 jU ′ !(B)

∼=

KS

jU ′ !(B)

jU′ !(ηU′ )B ∼=

KS
(4.25)
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with bottom part the triangle identity for the unit and counit of the adjunction jU ′ ! ⊣ j∗U ′ .
This implies that A satisfies descent on the coarser cover U ′ because the unit of the adjunction
jU ′ ! ⊣ j∗U ′ is a natural isomorphism by Theorem 4.9. △

Let us define the pseudo-functor

HK†
C

: cov(M) −→ PrL (4.26)

which assigns to each cover U the locally presentable category HKC(U) and to each refinement α
the corresponding left adjoint α! from (4.22).

Proposition 4.20. Let C(−) : Loc → Cat⊥ be a net domain. For every object M ∈ Loc, the
category

HKC(M) ≃ bilim
(
HK†

C
: cov(M)→ PrL

)
(4.27)

from Definition 4.17 is a bilimit of the pseudo-functor (4.26), hence it is locally presentable
HKC(M) ∈ PrL. Furthermore, the full subcategory inclusion ιM : HKC(M) ⊆ HKC(M) is
coreflective, i.e. there exists an adjunction

ιM : HKC(M)
⊆
//
HKC(M) : πMoo (4.28)

with coreflector πM .

Proof. The key properties which enable this result are 1.) all functors α! are fully faithful, and
2.) the category cov(M) has a terminal object, given by the coarsest cover {M ⊆M}. The proof
then follows from our general bilimit computation in Appendix C.

The categories of covers from Definition 4.18 are 2-functorial cov(−) : Locop → Cat with
respect to pullbacks of covers along Loc-morphisms. Explicitly, given any Loc-morphism f :
M → N , we obtain a functor

f−1 := cov(f) : cov(N) −→ cov(M) , (4.29)

V = {Vj ⊆ N} 7−→ f−1V = {f−1(Vj) ⊆M} ,(
α : V → V ′

)
7−→

(
α : f−1V → f−1V ′

)
by taking preimages under f . (Since we focus on non-empty causally convex opens, we always
discard all empty preimages f−1(Vj) = ∅ from the covers.) This 2-functorial structure endows
the bilimits from Proposition 4.20 with a pseudo-functorial structure. Transferring this structure
to our explicit models from Definition 4.17 yields the pseudo-functor

HK†
C

: Loc −→ PrL (4.30a)

which assigns to each object M ∈ Loc the locally presentable category HK†
C
(M) := HKC(M) ∈

PrL from Definition 4.17 and to each Loc-morphism f :M → N the restriction

HK†
C
(f) := f! : HKC(M) −→ HKC(N) (4.30b)

of the left adjoint f! : HKC(M) → HKC(N) to the full subcategories HKC(M) ⊆ HKC(M) and
HKC(N) ⊆ HKC(N).

Remark 4.21. For readers who prefer a more direct and computational argument, let us also
verify explicitly that the functors f! : HKC(M) → HKC(N) restrict to the full subcategories f! :
HKC(M)→ HKC(N). Given any object A ∈ HKC(M), we have to show that f!(A) ∈ HKC(N)
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satisfies the descent condition from Definition 4.17 for every causally convex open cover V of
N ∈ Loc. Taking the pullback f−1V of this cover, we obtain a commutative square

C(f−1V)

f̃
��

jf−1V
// C(M)

f

��

C(V)
jV

// C(N)

(4.31)

of orthogonal functors. The orthogonal functor f̃ is defined on objects by (j, U) 7→ (j, f(U)) and
on morphisms by

(
(j, U)→ (j′, U ′)

)
7→

(
(j, f(U))→ (j′, f(U ′)

)
. We then obtain the commutative

diagram

jV ! j
∗
V f!(A)

(ϵV )f!(A) +3 f!(A)

jV ! j
∗
V f! jf−1V ! j

∗
f−1V(A)

∼=jV !j
∗
Vf!(ϵf−1V )A

KS

(ϵV )f!jf−1V !
j∗
f−1V

(A)

+3 f! jf−1V ! j
∗
f−1V(A)

∼= f!(ϵf−1V )A

KS

jV ! j
∗
V jV ! f̃! j

∗
f−1V(A)

∼=

KS

(ϵV )jV !f̃!j
∗
f−1V

(A)

+3 jV ! f̃! j
∗
f−1V(A)

∼=

KS

jV ! f̃! j
∗
f−1V(A)

∼=jV !(ηV )f̃!j
∗
f−1V

(A)

KS

. (4.32)

In the top square we use that A ∈ HKC(M) satisfies the descent condition from Definition 4.17
for the cover f−1V of M and in the middle square we use that applying (−)! to the commutative
diagram (4.31) yields a diagram which commutes up to a natural isomorphism. In the bottom
triangle we use the triangle identity for the unit and counit of the adjunction jV ! ⊣ j∗V , as well as
the fact that the unit is a natural isomorphism since jV is fully faithful and reflects orthogonality.
From this diagram it follows that (ϵV)f!(A) is an isomorphism, hence f!(A) satisfies the descent
conditions from Definition 4.17. △

Definition 4.22. Let C(−) : Loc → Cat⊥ be a net domain. The improved Haag-Kastler-style
pseudo-functor

HKC := HK††
C

: Locop −→ PrR (4.33)

is defined as the adjoint via (2.16) of the pseudo-functor HK†
C

in (4.30).

The improved Haag-Kastler-style pseudo-functorHKC is in general hard to work with because

the right adjoints to the functors HK†
C
(f) = f! : HKC(M) → HKC(N) in (4.30) are difficult

to construct explicitly. Indeed, the pullback functors f∗ : HKC(N) → HKC(M) assigned by the
(non-improved) Haag-Kastler-style 2-functor HKC : Locop → PrR for a generic net domain C do
not necessarily restrict to the full subcategories HKC(N) ⊆ HKC(N) and HKC(M) ⊆ HKC(M)
from Definition 4.17. To describe the pseudo-functorial structure of HKC, one can then use the
coreflectors πM from (4.28), with a possible model for the right adjoint functor HKC(f) ⊢ f! =
HK†

C
(f) given by

HKC(N)
ιN−→ HKC(N)

f∗−→ HKC(M)
πM−→ HKC(M) . (4.34)

The existence of these coreflectors was argued in Proposition 4.20 by abstract reasoning, but we
are currently not aware of any explicit models for πM which are useful for computations. In order
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to simplify the remaining part of this subsection, we will now include a very useful, but possibly
quite strong, assumption on the behavior of the Haag-Kastler-style 2-functor HKC. We will verify
in Theorem 4.27 below that this assumption holds true for the relatively compact Haag-Kastler 2-
functor HKrc, but it is currently not clear to us if it also holds true for the Haag-Kastler 2-functor
HK which is modeled on all causally convex opens.

Assumption 4.23. We assume that, for every Loc-morphism f :M → N , the pullback functor
f∗ : HKC(N) → HKC(M) restricts to a functor f∗ : HKC(N) → HKC(M) between the full
subcategories HKC(N) ⊆ HKC(N) and HKC(M) ⊆ HKC(M) from Definition 4.17.

Provided that Assumption 4.23 holds true, one obtains a particularly simple model for the
improved Haag-Kastler-style pseudo-functor from Definition 4.22 in terms of a 2-subfunctor
HKC ⊆ HKC. This 2-functor assigns to each object M ∈ Loc the locally presentable cat-
egory HKC(M) ∈ PrR from Definition 4.17 and to each Loc-morphism the restricted pull-
back functor f∗ : HKC(N) → HKC(M), which in this case is right adjoint to the functor
f! : HKC(M) → HKC(N) from (4.30). For every object M ∈ Loc and every causally convex
open cover U = {Ui ⊆M}, the descent category of HKC is then given by the full subcategory

HKC(U) ⊆ HKC(U) (4.35)

consisting of all objects ({Ai}, {φij}) ∈ HKC(U) such that Ai ∈ HKC(Ui) ⊆ HKC(Ui) lies in the
full subcategory of objects satisfying the descent conditions from Definition 4.17, for all i. The
canonical functor

j∗U : HKC(M) −→ HKC(U) (4.36)

to the descent category is given by restricting the right adjoint j∗U : HKC(M) → HKC(U) from
(4.10) to the full subcategories HKC(M) ⊆ HKC(M) and HKC(U) ⊆ HKC(U). The following
result provides an explicit model for the left adjoint of (4.36).

Proposition 4.24. Suppose that the 2-functor C(−) : Loc → Cat⊥ is a net domain and that
Assumption 4.23 holds true. Then, for every object M ∈ Loc and every causally convex open
cover U = {Ui ⊆ M}, the left adjoint jU ! : HKC(U) → HKC(M) from (4.10) restricts to the full
subcategories HKC(U) ⊆ HKC(U) and HKC(M) ⊆ HKC(M), and thereby defines a left adjoint
jU ! : HKC(U)→ HKC(M) for the functor (4.36).

Proof. We have to prove that, given any object A := ({Ai}, {φij}) ∈ HKC(U) in the improved
descent category (4.35), i.e. every Ai ∈ HKC(Ui) satisfies the descent conditions from Definition
4.17 for all causally convex open covers of Ui, the resulting object jU !(A) ∈ HKC(M) satisfies
the descent conditions from Definition 4.17 for all causally convex open covers of M . We shall
denote these arbitrary covers by U ′ since the symbol U is already reserved by the choice of cover
in the statement of this proposition.

To prove that jU !(A) ∈ HKC(M) satisfies descent on any causally convex open cover U ′ of
M , we can use Remark 4.19 and study instead descent on any cover which is finer than U ′. A
suitable choice is given by intersecting the covers U ′ and U , yielding the causally convex open
cover U ∩ U ′ := {Ui ∩ U ′

i′ ⊆ M} of M which is labeled by pairs of indices (i, i′) ∈ I × I ′. The
projection maps pr1 : I ×I ′ → I and pr2 : I ×I ′ → I ′ then define refinements which fit into the
following commutative diagram of orthogonal functors

C(U)
jU
&&

C(U ∩ U ′)

pr1 77

pr2 ''

jU∩U′
// C(M)

C(U ′)
jU′

88
. (4.37)
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Taking the upper path of this diagram and using the same argument as the one at the end of

Remark 4.19, we find that the descent condition (ϵU∩U ′)jU !(A) : jU∩U ′ ! j
∗
U∩U ′ jU !(A)

∼=
=⇒ jU !(A) on

the intersection cover holds true provided that A lies in the essential image of pr1 !. To this end, we
will argue that the counit component ϵA : pr1 ! pr

∗
1(A)⇒ A is an isomorphism, which follows from

the fact that, for every i, the component Ai ∈ HKC(Ui) of the tuple A = ({Ai}, {φij}) ∈ HKC(U)
satisfies by definition the descent conditions on Ui and the fiber Ui := pr−1

1 (i) := {Ui∩U ′
i′ : i

′ ∈ I ′}
of pr1 : U ∩ U ′ → U defines a causally convex open cover of Ui.

Using Appendix A, one obtains an explicit model for the operadic left Kan extension pr1 ! for
which the counit component ϵA is given by the canonical maps

(ϵA)(i,U) : colim
(
O⊗

pr1

/
(i, U) −→ O⊗

C(U∩U ′)

O⊗
pr1−→ O⊗

C(U)

A⊗
−→ T

)
−→ A(i, U) , (4.38)

for all (i, U) ∈ C(U). Using also the explicit description of the orthogonal categories C(U) and
C(U ∩ U ′) from Lemma 4.8, one finds that an object in the comma category O⊗

pr1

/
(i, U) is given

by a tuple
(
((i1, i

′
1), V1), . . . , ((in, i

′
n), Vn)

)
, with Vj ∈ C(Uij ∩ U ′

i′j
) ⊆ C(M) for all j ∈ {1, . . . , n},

together with an operation
(
(i1, V1), . . . , (in, , Vn)

)
→ (i, U) in the operad O

C(U)
. Using the

factorizations (ij , Vj) ∼= (i, Vj) → (i, U) in C(U), we observe that every object in O⊗
pr1

/
(i, U)

is isomorphic to one whose underlying tuple is of the form
(
((i, i′1), V1), . . . , ((i, i

′
n), Vn)

)
. This

provides an equivalence O⊗
pr1

/
(i, U) ≃ O⊗

jUi
/U with the comma category of the functor O⊗

jUi
:

O⊗
C(Ui)

→ O⊗
C(Ui)

which is associated with the cover Ui = pr−1
1 (i) of Ui. Under this equivalence,

the family of maps in (4.38) gets identified with the counit components (ϵUi)Ai : jUi ! j
∗
Ui
(Ai)⇒ Ai,

which are isomorphisms because Ai ∈ HKC(Ui) satisfies descent, for all i.

We can now prove the main result of this subsection.

Theorem 4.25. Suppose that the 2-functor C(−) : Loc → Cat⊥ is a net domain in the
sense of Definition 4.6 and that Assumption 4.23 holds true. Then the improved Haag-Kastler-
style pseudo-functor HKC : Locop → PrR from Definition 4.22 is a stack with respect to the
Grothendieck topology given by all causally convex open covers.

Proof. By Assumption 4.23, we can present the improved Haag-Kastler-style pseudo-functor as
a 2-subfunctor HKC ⊆ HKC. Using Proposition 4.24, we obtain for every object M ∈ Loc and
every causally convex open cover U = {Ui ⊆M} the adjunction

jU ! : HKC(U)
// HKC(M) : j∗Uoo (4.39)

whose right adjoint is the canonical functor (4.36) to the descent category. The unit ηU of this
adjunction is a natural isomorphism by Theorem 4.9 and the counit ϵU is a natural isomorphism
by Definition 4.17 of the full subcategories HKC(M) ⊆ HKC(M). This implies that (4.39)
is an (adjoint) equivalence, for every object M ∈ Loc and every causally convex open cover
U = {Ui ⊆M}, hence HKC is a stack.

The category of points of the Haag-Kastler-style stack HKC from Theorem 4.25 is defined
similarly to Definition 3.4 in terms of the category

HKC(pt) := Hom(∆1,HKC) ∈ CAT (4.40)

of pseudo-natural transformations from the constant 2-functor ∆1 : Locop → PrR (which is a
stack with respect to the Grothendieck topology given by all causally convex open covers) to
HKC : Locop → PrR and their modifications.
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Proposition 4.26. Suppose that the 2-functor C(−) : Loc → Cat⊥ is a net domain and that
Assumption 4.23 holds true. Then there exists an equivalence

HKC(pt) ≃ HKC(pt)
desc (4.41)

between the category of points (4.40) of the Haag-Kastler-style stack HKC and the full subcategory
HKC(pt)

desc ⊆ HKC(pt) of the category of points of the Haag-Kastler-style 2-functor HKC con-
sisting of all objects ({AM}, {αf}) ∈ HKC(pt) (see also Remark 3.5) such that AM ∈ HKC(M) ⊆
HKC(M) satisfies the descent conditions from Definition 4.17, for all M ∈ Loc.

Proof. This follows immediately by using Assumption 4.23 to present the Haag-Kastler-style stack
as a 2-subfunctor HKC ⊆ HKC and the fact that HKC(M) ⊆ HKC(M) is a full subcategory, for
all M ∈ Loc.

It remains to verify that the above results apply to at least some of our examples. As already
anticipated above, it is currently not clear to us if the Haag-Kastler 2-functor HK from Definition
3.1 satisfies Assumption 4.23. However, we have the following positive result for the relatively
compact Haag-Kastler 2-functor HKrc from Definition 3.13.

Theorem 4.27. The relatively compact Haag-Kastler 2-functor HKrc from Definition 3.13 satis-
fies the requirements of Assumption 4.23. Hence, as a consequence of Theorem 4.25, the improved
relatively compact Haag-Kastler pseudo-functor HKrc associated to the net domain RC(−) is a
stack with respect to the Grothendieck topology given by all causally convex open covers.

Proof. We have to prove that, given any Loc-morphism f :M → N and any object A ∈ HKrc(N)
which satisfies the descent conditions from Definition 4.17 for all causally convex open covers of
N , the pullback f∗(A) ∈ HKrc(M) satisfies these descent conditions for all causally convex open
covers of M . Recalling the model for the operadic left Kan extension from Appendix A, this
means that we have to show that, for every causally convex open cover U = {Ui ⊆M} of M , the
canonical map

((ϵU )f∗(A))U : colim
(
O⊗
jU
/U −→ O⊗

RC(U)

O⊗
jU−→ O⊗

RC(M)

O⊗
f−→ O⊗

RC(N)

A⊗
−→ T

)
−→ A

(
f(U)

)
(4.42)

is an isomorphism, for all U ∈ RC(M). Our proof strategy is to construct, for every fixed
U ∈ RC(M), a causally convex open cover V of N such that the descent conditions for A in this
cover imply that (4.42) is an isomorphism. For this we use that U ⊆ M is a relatively compact
causally convex open subset, hence the image of its closure f(cl(U)) ⊆ N is a compact subset
of N . We choose any open cover W = {Wj ⊆ N \ f(cl(U))} of the complement such that each
Wj ⊆ N is causally convex in N . (Such cover exists because N is globally hyperbolic and hence
strongly causal, so the open set N \ f(cl(U)) ⊆ N contains a causally convex open neighborhood
of each of its points.) From this we define the causally convex open cover V := f(U) ∪ W =
{f(Ui) ⊆ N} ∪ {Wj ⊆ N} of N . It is important to observe that, by construction, the restriction
f−1V|U = U|U to U ⊆ M of the pullback cover agrees with the restriction of the given cover U .
This implies that we have an isomorphism

f : O⊗
jU
/U

∼=−→ O⊗
jV
/f(U) (4.43)

between the comma categories by taking images under f . Moreover, by direct inspection one
verifies that the diagram

O⊗
jU
/U

∼=f

��

// O⊗
RC(U)

O⊗
jU // O⊗

RC(M)

O⊗
f
��

O⊗
jV
/f(U) // O⊗

RC(V) O⊗
jV

// O⊗
RC(N)

(4.44)
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commutes. This allows us to identify the canonical map (4.42) with the canonical map

((ϵV)A)f(U) : colim
(
O⊗
jV
/f(U) −→ O⊗

RC(V)

O⊗
jV−→ O⊗

RC(N)

A⊗
−→ T

)
−→ A

(
f(U)

)
, (4.45)

which is an isomorphism because A ∈ HKrc(N) satisfies the descent conditions from Definition
4.17 for all causally convex open covers V of N .

Remark 4.28. Our proof of Theorem 4.27 does not generalize in any evident way to the Haag-
Kastler 2-functor HK from Definition 3.1 because in the construction of the extended cover V :=
f(U)∪W = {f(Ui) ⊆ N}∪{Wj ⊆ N} of N , which has the crucial restriction property f−1V|U =
U|U , it was essential to assume that U ⊆ M is relatively compact. It is therefore currently not
clear to us if the improved Haag-Kastler pseudo-functor HK is a stack too. △

4.3.2 The case of time-slice

Throughout this subsection, let us assume that C(−) : Loc → Cat⊥ is a localized net domain.
As a consequence of the similar formal properties of localized net domains from Definition 4.12
and net domains from Definition 4.6, with the only difference given by the additional assumption
of Cauchy development stability in the localized case, all constructions and most of the results
from Subsection 4.3.1 directly generalize to the present case if one consistently replaces general
causally convex open covers by D-stable causally convex open covers. We shall briefly collect the
relevant definitions and results in the present case, without repeating the proofs.

The analogue of Definition 4.17 in the present case is given as follows.

Definition 4.29. LetC(−) : Loc→ Cat⊥ be a localized net domain. For every objectM ∈ Loc,
we denote by

HKC(M) ⊆ HKC(M) (4.46a)

the full subcategory consisting of all objects A ∈ HKC(M) which satisfy the following descent
conditions: For every D-stable causally convex open cover U = {Ui ⊆ M}, the A-component of
the counit

(ϵU )A : jU ! j
∗
U (A)

∼=
=⇒ A (4.46b)

of the adjunction jU ! : HKC(U) ⇄ HKC(M) : j∗U of (4.10) is an isomorphism in HKC(M).

By the same arguments as in the proof of Proposition 4.20, one can show that the category
from Definition 4.29 arises as the bilimit of a pseudo-functor HK†

C
: Dcov(M) → PrL, which

in the present case is defined on the full subcategory Dcov(M) ⊆ cov(M) of D-stable causally
convex open covers. (Note that this subcategory has a terminal object, given by the coarsest
cover {M ⊆ M}.) From this one concludes that HKC(M) ⊆ HKC(M) is a locally presentable
category which is embedded as a coreflective full subcategory into HKC(M). Leveraging pseudo-
functoriality of the bilimits over the categories ofD-stable causally convex open covers, one obtain
the pseudo-functor

HK†
C

: Loc −→ PrL (4.47a)

which assigns to each object M ∈ Loc the locally presentable category HK†
C
(M) := HKC(M) ∈

PrL from Definition 4.29 and to each Loc-morphism f :M → N the restriction

HK†
C
(f) := f! : HKC(M) −→ HKC(N) (4.47b)

of the left adjoint f! : HKC(M) → HKC(N) to the full subcategories HKC(M) ⊆ HKC(M) and
HKC(N) ⊆ HKC(N). The analogue of Definition 4.22 in the present case is then as follows.
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Definition 4.30. Let C(−) : Loc → Cat⊥ be a localized net domain. The improved Haag-
Kastler-style pseudo-functor

HKC := HK††
C

: Locop −→ PrR (4.48)

is defined as the adjoint via (2.16) of the pseudo-functor HK†
C

in (4.47).

As in the previous subsection, this pseudo-functor is difficult to work with, which is why we
introduce an analogue of Assumption 4.23, but weaker since it only applies to Loc-morphisms
with D-stable image.

Assumption 4.31. We assume that, for every Loc-morphism f :M → N whose image f(M) ⊆
N is D-stable, i.e. DN (f(M)) = f(M), the pullback functor f∗ : HKC(N) → HKC(M) restricts
to a functor f∗ : HKC(N)→ HKC(M) between the full subcategories HKC(N) ⊆ HKC(N) and
HKC(M) ⊆ HKC(M) from Definition 4.29.

Provided that Assumption 4.31 holds true, one can choose a model for the improved Haag-
Kastler-style pseudo-functor such that HKC(f) = f∗ : HKC(N) → HKC(M) is the restriction
of the pullback functor, for all Loc-morphisms f : M → N with D-stable image. (For Loc-
morphisms whose image is not D-stable, the pseudo-functorial structure is more complicated
because one has to use coreflectors as in (4.34).) This partially simplified description of the
pseudo-functor HKC however suffices to conclude that, for every object M ∈ Loc and every
D-stable causally convex open cover U = {Ui ⊆ M}, the descent category of HKC is given by
the full subcategory

HKC(U) ⊆ HKC(U) (4.49)

consisting of all objects ({Ai}, {φij}) ∈ HKC(U) such that Ai ∈ HKC(Ui) ⊆ HKC(Ui) lies in the
full subcategory of objects satisfying the descent conditions from Definition 4.29, for all i. The
canonical functor

j∗U : HKC(M) −→ HKC(U) (4.50)

to the descent category is given by restricting the right adjoint j∗U : HKC(M) → HKC(U) from
(4.10) to the full subcategories HKC(M) ⊆ HKC(M) and HKC(U) ⊆ HKC(U). With the same
proof as in Proposition 4.24, one then shows the following result.

Proposition 4.32. Suppose that the 2-functor C(−) : Loc→ Cat⊥ is a localized net domain and
that Assumption 4.31 holds true. Then, for every object M ∈ Loc and every D-stable causally
convex open cover U = {Ui ⊆M}, the left adjoint jU ! : HKC(U)→ HKC(M) from (4.10) restricts
to the full subcategories HKC(U) ⊆ HKC(U) and HKC(M) ⊆ HKC(M), and thereby defines a
left adjoint jU ! : HKC(U)→ HKC(M) for the functor (4.50).

The main result of the present subsection is then similar to Theorem 4.25.

Theorem 4.33. Suppose that the 2-functor C(−) : Loc→ Cat⊥ is a localized net domain in the
sense of Definition 4.12 and that Assumption 4.31 holds true. Then the improved Haag-Kastler-
style pseudo-functor HKC : Locop → PrR from Definition 4.30 is a stack with respect to the
Grothendieck topology given by all D-stable causally convex open covers.

Proof. By the same arguments as in the proof of Theorem 4.25, this follows directly from Propo-
sition 4.32 and Theorem 4.15.

The result from Proposition 4.26 about the category of points of the Haag-Kastler-style stack
does not generalize to the present case because Assumption 4.31 is too weak to imply that HKC

can be presented as 2-subfunctor of HKC. However, we have the following weaker result which
does not rely on any additional assumptions but characterizes only a full subcategory of the
category of points HKC(pt).
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Proposition 4.34. Suppose that the 2-functor C(−) : Loc → Cat⊥ is a localized net domain.
Then there exists a fully faithful functor

HKC(pt)
desc −→ HKC(pt) (4.51)

from the full subcategory HKC(pt)
desc ⊆ HKC(pt) of the category of points of the Haag-Kastler-

style 2-functor HKC consisting of all objects ({AM}, {αf}) ∈ HKC(pt) (see also Remark 3.5)
such that AM ∈ HKC(M) ⊆ HKC(M) satisfies the descent conditions from Definition 4.29, for
all M ∈ Loc, to the category of points (4.40) of the improved Haag-Kastler-style pseudo-functor
HKC.

Proof. We provide a direct construction of the fully faithful functor (4.51). For this we use the
model for the Haag-Kastler-style pseudo-functor HKC which is given by the coreflected pullback
functors in (4.34), i.e. HKC(f) = πM f∗ ιN for all Loc-morphisms f : M → N . Note that this
model is only pseudo-functorial with coherences

HKC(g f)
∼= +3 HKC(f)HKC(g)

πMf
∗g∗ιO ∼=

+3 f∗πNg
∗ιO

f∗ηNπNg
∗ιO

∼= +3 f∗πN ιNπNg
∗ιO ∼=

+3 πMf
∗ιNπNg

∗ιO

(4.52a)

and

ηM : idHKC(M)

∼= +3 πM ιM = HKC(idM ) (4.52b)

given by the units of the coreflection adjunctions ιM : HKC(M) ⇄ HKC(M) : πM , for all
M ∈ Loc. The unlabeled isomorphisms in the bottom row of (4.52a) are the natural isomorphisms
πM f∗ ∼= f∗ πN which are a consequence of the commutativity property ιN f! = f! ιM of the left
adjoint functors. In the following we shall suppress all ι because these are just full subcategory
inclusions.

For every object ({AM}, {αf}) ∈ HKC(pt)
desc, the fact that AM ∈ HKC(M) ⊆ HKC(M)

lies in the full subcategory and the isomorphism αf : AM
∼=

=⇒ f∗(AN ) in HKC(M) imply that
f∗(AN ) ∈ HKC(M) ⊆ HKC(M) lies in the full subcategory, for every Loc-morphism f :M → N .
We define the functor (4.51) on objects by sending ({AM}, {αf}) ∈ HKC(pt)

desc to the tuple({
AM ∈ HKC(M)

}
,
{
α̃f : AM

αf
=⇒ f∗(AN )

ηf∗(AN )
=⇒ πMf

∗(AN )
})

. (4.53)

One directly checks that this tuple satisfies the conditions in Remark 3.5, hence it defines an
object ({AM}, {α̃f}) ∈ HKC(pt). The action of the functor (4.51) on morphisms {ζM} :
({AM}, {αf}) ⇒ ({BM}, {βf}) in HKC(pt)

desc is given by the same tuple of maps {ζM} :

({AM}, {α̃f}) ⇒ ({BM}, {β̃f}). One directly checks that this tuple satisfies the conditions in
Remark 3.5. Fully faithfulness then follows immediately from the fact that HKC(M) ⊆ HKC(M)
is a full subcategory, for all M ∈ Loc.

Analogously to the case where no time-slice axiom is implemented, see Theorem 4.27 and
Remark 4.28, we can confirm the hypotheses of Theorem 4.33 only for the time-sliced relatively
compact Haag-Kastler 2-functor HKrc,W from Definition 3.21. We currently do not know if the
improvement construction from Definition 4.30 applied to the (non-relatively compact) time-sliced
Haag-Kastler 2-functor HKW from Definition 3.9 defines a stack.

Theorem 4.35. The time-sliced relatively compact Haag-Kastler 2-functor HKrc,W from Defi-
nition 3.21 satisfies the requirements of Assumption 4.31. Hence, as a consequence of Theorem
4.33, the improved time-sliced relatively compact Haag-Kastler pseudo-functor HKrc,W associated
to the localized net domain RC(−)[W−1

rc,(−)] is a stack with respect to the Grothendieck topology
given by all D-stable causally convex open covers.
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Proof. We use the same proof strategy as in Theorem 4.27, but there are additional technical
aspects (treated in Appendix D) arising from 1.) the D-stability requirement for causally convex
open covers, and 2.) the fact that morphisms U → U ′ in the localized orthogonal categories
RC(M)[W−1

rc,M ] from Example 2.10 exist whenever U ⊆ DM (U ′). This requires us to construct,
for every Loc-morphism f : M → N with D-stable image f(M) ⊆ N , every D-stable causally
convex open cover U = {Ui ⊆ M} of M and every relatively compact causally convex open
subset U ⊆ M , a D-stable causally convex open cover V of N which satisfies the restriction
property f−1V|DM (U) = U|DM (U) on the Cauchy development DM (U) ⊆ M . As an immediate
corollary of Proposition D.1, one can find an open cover W = {Wj ⊆ N \ cl(f(DM (U)))} of
the complement of the closure cl(f(DM (U))) ⊆ N such that each Wj ⊆ N is causally convex
and D-stable in N . Using further that cl(f(DM (U))) ⊆ cl(DN (f(U))) ⊆ f(M) is contained
in the image of f by Proposition D.2, we then obtain a D-stable causally convex open cover
V := f(U) ∪ W = {f(Ui) ⊆ N} ∪ {Wj ⊆ N} of N which, by construction, satisfies the desired
restriction property f−1V|DM (U) = U|DM (U). The remaining steps in the proof are then identical
to Theorem 4.27.

4.4 Exhibiting examples of points

The aim of this subsection is to exhibit points of the relatively compact Haag-Kastler stack
HKrc from Theorem 4.27 and of the time-sliced relatively compact Haag-Kastler stack HKrc,W

from Theorem 4.35. These points correspond to AQFTs which are presented by generators and
relations that satisfy certain simpler descent conditions. Explicit examples include free (i.e. non-
interacting) AQFTs such as the free Klein-Gordon quantum field.

We start with some technical preparations for these results. Let C(−) : Loc→ Cat⊥ be a net
domain (see Definition 4.6) or a localized net domain (see Definition 4.12). Given any causally
convex open cover U = {Ui ⊆ M} of any object M ∈ Loc, which we assume to be D-stable in
the localized case, there exists a diagram of adjunctions

HKC(U)

⊆

��

⊥
jU ! //

HKC(M)
j∗U

oo

⊆

��

Fun
(
C(U),AlguAs(T)

)⊣pU

OO

UU

��

⊥

LanjU //
Fun

(
C(M),AlguAs(T)

)⊣pM

OO

j∗U

oo

UM

��

Fun(C(U),T)

⊣FU

OO

⊥

lanjU //
Fun(C(M),T)

⊣FM

OO

j∗U

oo

. (4.54)

The top horizontal adjunction jU ! ⊣ j∗U is the one determining the descent conditions from Defi-
nitions 4.17 and 4.29 for the improved Haag-Kastler-style pseudo-functor HKC, while the middle
and bottom horizontal adjunctions LanjU ⊣ j∗U and lanjU ⊣ j∗U are given by left Kan extensions
of functors along the fully faithful functors jU : C(U) → C(M). All horizontal left adjoints
are fully faithful functors. The top vertical adjunctions pU ⊣ ⊆ and pM ⊣ ⊆ describe the re-
flectors for the full subcategory inclusions HKC(U) ⊆ Fun

(
C(U),AlguAs(T)

)
and HKC(M) ⊆

Fun
(
C(M),AlguAs(T)

)
. The left adjoints of these adjunctions enforce the ⊥-commutativity

axiom and they appeared before in [BSW21, Section 4.1] under the name ⊥-abelianizations. The
bottom vertical adjunctions FU ⊣ UU and FM ⊣ UM are the free-forget adjunctions for unital
associative algebras in the functor categories Fun(C(U),T) and Fun(C(M),T). Concretely,
given any object X ∈ Fun(C(M),T), then FM (X) ∈ Fun

(
C(M),AlguAs(T)

)
is defined object-

wise FM (X)(U) := FuAs(X(U)) by taking the free unital associative algebra over X(U) ∈ T, for
all U ∈ C(M). (The functor FU is defined similarly by taking object-wise free unital associa-
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tive algebras.) Let us record the following commutativity properties of the diagram (4.54) of
adjunctions:

(1) The top square of right adjoints commutes ⊆ j∗U = j∗U ⊆. Hence, also the top square of left
adjoints commutes up to a natural isomorphism jU ! pU ∼= pM LanjU .

(2) The bottom square of right adjoints commutes j∗U UM = UU j
∗
U . Hence, also the bottom

square of left adjoints commutes up to a natural isomorphism LanjU FU ∼= FM lanjU .

(3) In the bottom square we have also FU j
∗
U = j∗U FM because the free algebra functors FU

and FM are defined object-wise, hence they commute with the pullback functors along
jU : C(U)→ C(M).

Let us consider two objects LM ,RM ∈ Fun(C(M),T) and two parallel morphisms r̃M1 , r̃
M
2 :

RM ⇒ UMFM (LM ) in Fun(C(M),T). We define the object

AM := colimAlg

(
FM (RM )

rM1 +3

rM2

+3 FM (LM )
)
∈ Fun

(
C(M),AlguAs(T)

)
(4.55)

by taking the colimit (i.e. coequalizer) in Fun
(
C(M),AlguAs(T)

)
, where rM1 , r

M
2 denote the ad-

juncts of r̃M1 , r̃
M
2 with respect to the free-forget adjunction FM ⊣ UM . We assume that AM satisfies

the ⊥-commutativity axiom from Definition 2.3, hence we obtain an object AM ∈ HKC(M) ⊆
Fun

(
C(M),AlguAs(T)

)
which we interpret as an AQFT that is presented by the generators LM

and the relations r̃M1 , r̃
M
2 .

Our goal is to establish criteria for this object to satisfy the descent conditions from Definitions
4.17 and 4.29, i.e. criteria such that the counit component (ϵU )AM

: jU ! j
∗
U (AM ) ⇒ AM is an

isomorphism in HKC(M). Using commutativity of the top square of right adjoints in (4.54), we
can compute the pullback j∗U (AM ) ∈ HKC(U) by

j∗U (AM ) = j∗U

(
colimAlg

(
FM (RM )

rM1 +3

rM2

+3 FM (LM )
))

= colimAlg

(
j∗UFM (RM )

j∗U (rM1 )
+3

j∗U (rM2 )
+3 j∗UFM (LM )

)
, (4.56)

where in the second step we used that colimits in functor categories are computed object-wise,
hence they commute with pullback functors. Since the top vertical adjunctions in (4.54) exhibit
reflective full subcategory inclusions, we can model the top horizontal left adjoint by jU ! :=
pM LanjU ⊆, see also [BSW21, Proposition 4.3] for more details on this point. We then compute

jU !j
∗
U (AM ) = pM LanjU

(
colimAlg

(
j∗UFM (RM )

j∗U (rM1 )
+3

j∗U (rM2 )
+3 j∗UFM (LM )

))

∼= pM

(
colimAlg

(
LanjU j

∗
UFM (RM )

LanjU j
∗
U (rM1 )

+3

LanjU j
∗
U (rM2 )

+3 LanjU j
∗
UFM (LM )

))
. (4.57)

In this model, the counit component (ϵU )AM
: jU ! j

∗
U (AM ) ⇒ AM ∼= pM (AM ) in HKC(M) is

given by applying the reflector pM to the map between colimits which is induced by the map of
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diagrams

LanjU j
∗
UFM (RM )

(ϵLan
U )FM (RM )

��

LanjU j
∗
U (rM1 )

+3

LanjU j
∗
U (rM2 )

+3 LanjU j
∗
UFM (LM )

(ϵLan
U )FM (LM )

��
FM (RM )

rM1 +3

rM2

+3 FM (LM )

, (4.58a)

where ϵLanU denotes the counit of the adjunction LanjU ⊣ j∗U . Using the commutativity properties
in the diagram of adjunctions (4.54), we can rewrite this map of diagrams in the following more
convenient form

FM lanjU j
∗
U (RM )

FM (ϵlanU )RM

��

sM1 +3

sM2

+3 FM lanjU j
∗
U (LM )

FM (ϵlanU )LM

��
FM (RM )

rM1 +3

rM2

+3 FM (LM )

, (4.58b)

where ϵlanU denotes the counit of the adjunction lanjU ⊣ j∗U and the relations sM1 , s
M
2 are defined

implicitly through this identification. (In what follows we do not need explicit expressions for
sM1 , s

M
2 .) This allows us to formulate a useful criterion for AM ∈ HKC(M) to satisfy the descent

conditions from Definitions 4.17 and 4.29.

Proposition 4.36. Suppose that the counit component (ϵlanU )LM
: lanjU j∗U (LM ) ⇒ LM of the

generators LM ∈ Fun(C(M),T) is an isomorphism in Fun(C(M),T). Then the counit compo-
nent (ϵU )AM

: jU ! j
∗
U (AM ) ⇒ AM of the AQFT AM ∈ HKC(M) from (4.55) is an isomorphism

in HKC(M) if and only if the diagram

pMFM lanjU j
∗
U (RM )

pM (rM1 ◦FM (ϵlanU )RM
)
+3

pM (rM2 ◦FM (ϵlanU )RM
)
+3 pMFM (LM ) +3 AM (4.59)

is a coequalizer in HKC(M). A sufficient condition for this is that the diagram

FM lanjU j
∗
U (RM )

rM1 ◦FM (ϵlanU )RM +3

rM2 ◦FM (ϵlanU )RM

+3 pMFM (LM ) +3 AM (4.60)

is a coequalizer in the functor category Fun
(
C(M),AlguAs(T)

)
, where the unit of the adjunction

pM ⊣ ⊆ is left implicit.

Proof. Using the hypothesis that (ϵlanU )LM
is an isomorphism and the diagrams (4.58), we obtain

an isomorphic presentation for (4.57) which is given by

jU !j
∗
U (AM ) ∼= pM

(
colimAlg

(
FM lanjU j

∗
U (RM )

rM1 ◦FM (ϵlanU )RM +3

rM2 ◦FM (ϵlanU )RM

+3 FM (LM )
))

∼= colimHK

(
pMFM lanjU j

∗
U (RM )

pM (rM1 ◦FM (ϵlanU )RM
)
+3

pM (rM2 ◦FM (ϵlanU )RM
)
+3 pMFM (LM )

)
, (4.61)

where colimHK denotes the colimit in HKC(M). Then (ϵU )AM
is an isomorphism if and only if

the diagram (4.59) is a coequalizer in HKC(M). To prove the second statement, we apply the
left adjoint functor pM to the coequalizer (4.60), which yields a coequalizer in HKC(M) that is
isomorphic to (4.59) since pM ⊣ ⊆ exhibits a reflective full subcategory, hence pMpMFM (LM ) ∼=
pMFM (LM ) and pM (AM ) ∼= AM .
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Example 4.37. We will show that the free Klein-Gordon quantum field onM ∈ Loc, formulated
in terms of a relatively compact Haag-Kastler-style AQFT AKG

M ∈ HKrc(M) neglecting the time-
slice axiom, satisfies the descent conditions from Definition 4.17 for every causally convex open
cover U = {Ui ⊆M}. For this we shall test the criterion from Proposition 4.36. In this example
we choose as target T = VecC the closed symmetric monoidal category of complex vector spaces.

Recalling the standard construction of the free Klein-Gordon quantum field, see e.g. [BDH13,
BD15] for reviews, the object AKG

M ∈ HKrc(M) may be presented by the generators

LKG
M := C∞

c (−)
PMC∞

c (−) : RC(M) −→ VecC , (4.62)

where PM := −□M+m2 denotes the Klein-Gordon operator. More explicitly, this functor assigns
to an object U ∈ RC(M) the quotient vector space LKG

M (U) = C∞
c (U)

PMC∞
c (U) and to a morphism

U ⊆ U ′ in RC(M) the pushforward (extension by zero) map, which we shall simply write as
LKG
M (U) → LKG

M (U ′) , [φ] 7→ [φ]. (Recall that these pushforward maps are injective, for all
morphisms U ⊆ U ′ in RC(M).) The relations are given by the canonical commutation relations
(CCR), i.e.

RKG
M := LKG

M ⊗ LKG
M : RC(M) −→ VecC (4.63a)

is the object-wise tensor product of generators,

r̃M1 := [−,−] : RKG
M =⇒ UMFM (LKG

M ) (4.63b)

is the commutator in the free algebra, and

r̃M2 := i ℏ τM (−,−)1 : RKG
M =⇒ UMFM (LKG

M ) (4.63c)

is given by weighting the unit 1 of the free algebra with i ℏ times the usual Poisson struc-
ture τM (−,−) :=

∫
M (−)GM (−) volM which is constructed out of the retarded-minus-advanced

Green’s operator GM := G+
M − G−

M for the Klein-Gordon operator PM . It is well-known
[BDH13, BD15] that the AQFT AKG

M constructed above satisfies the time-slice axiom, i.e. it
sends Cauchy morphisms U ⊆ U ′ in RC(M) to isomorphisms. This fact will be helpful for some
of the computations performed below.

Computing explicitly the left Kan extension lanjU j∗U (L
KG
M ) for any causally convex open

cover U = {Ui ⊆ M} by the usual object-wise colimit formula [Rie16, Chapter 6.2], one finds
that (ϵlanU )LKG

M
is an isomorphism if and only if⊕

i,j
LKG
M (Uij ∩ U) //

//
⊕
i
LKG
M (Ui ∩ U) // LKG

M (U) (4.64)

is a coequalizer in VecC, for all U ∈ RC(M). The unlabeled maps are given by applying the
functor LKG

M to the inclusions Uij ∩ U ⊆ Ui ∩ U , Uij ∩ U ⊆ Uj ∩ U and Ui ∩ U ⊆ U . Picking a
partition of unity {χi} subordinate to the open cover {Ui ∩ U ⊆ U} of U , one shows that the
map

⊕
i L

KG
M (Ui∩U)→ LKG

M (U) in (4.64) is surjective. Indeed, given any element [φ] ∈ LKG
M (U),

then
⊕

i[χiφ] ∈
⊕

i L
KG
M (Ui ∩ U) maps to

∑
i[χiφ] =

[∑
i χiφ

]
= [φ]. It remains to show that

every element
⊕

i[φi] ∈
⊕

i L
KG
M (Ui ∩ U) which is mapped to zero, i.e.

∑
i[φi] =

[∑
i φi

]
= 0 or

equivalently
∑

i φi = PM (ψ) for some ψ ∈ C∞
c (U), is of the form

⊕
i[φi] =

⊕
i

∑
j

(
[φji]− [φij ]

)
for some

⊕
i,j [φij ] ∈

⊕
i,j L

KG
M (Uij∩U). This can be achieved by setting φij := χiφj−χi PM (χjψ),

for all i, j, since∑
j

(
[φji]− [φij ]

)
=

∑
j

[
χjφi − χj PM (χiψ)− χiφj + χi PM (χjψ)

]
=

[
φi − PM (χiψ)

]
−
[
χi

∑
j

φj − χiPM (ψ)
]
= [φi] , (4.65)
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for all i. Hence, (4.64) is a coequalizer and the hypothesis of Proposition 4.36 holds true.

It remains to investigate the diagram (4.60) from Proposition 4.36. Computing the left Kan
extension lanjU j∗U (R

KG
M ) again via the object-wise colimit formula, one finds that (4.60) is a

coequalizer if and only if the object-wise diagrams

FuAs

(⊕
i

(
LKG
M (Ui ∩ U)⊗ LKG

M (Ui ∩ U)
)) (rM1 )U

//

(rM2 )U

//

(
pMFM (LKG

M )
)
(U) // AKG

M (U) (4.66)

are coequalizers in AlguAs(VecC), for all U ∈ RC(M), where the relations are obtained by
restricting the CCR relations (4.63) along the map⊕

i

(
LKG
M (Ui ∩ U)⊗ LKG

M (Ui ∩ U)
)
−→ LKG

M (U)⊗ LKG
M (U) = RKG

M (U) (4.67)

determined by the applying the functor LKG
M to the inclusions Ui ∩ U ⊆ U . The algebra(

pMFM (LKG
M )

)
(U) ∈ AlguAs(VecC) in this expression is generated freely by all [φ] ∈ LKG

M (U),
modulo the minimal ⊥-commutativity relations demanding vanishing of the commutator[

[φ⊥
1 ], [φ

⊥
2 ]
]
= 0 , (4.68)

for all [φ⊥
1 ], [φ

⊥
2 ] ∈ LKG

M (U) such that [φ⊥
a ] comes from extension by zero along morphisms Va ⊆ U

in RC(M) with V1 ⊥ V2 causally disjoint. It thus remains to show that (4.68) and the restricted
CCR relations [

[φi1], [φ
i
2]
]
= i ℏ τM

(
[φi1], [φ

i
2]
)
1 , (4.69)

for all [φi1], [φ
i
2] ∈ LKG

M (Ui∩U) and all i, imply together the general CCR relations in AKG
M (U) for

all [φ1], [φ2] ∈ LKG
M (U). This can be done by an argument which is similar to the one in [DL12,

Lemma 3.2 and Proposition 3.2].6 For this we pick any spacelike Cauchy surface Σ of U and a
family of causally convex open subsets {Vα ⊆ U} in U that covers Σ, i.e. Σ ⊆

⋃
α Vα ⊆ U , but

does not necessarily cover U , and satisfies the following property: If Vα and Vβ are not causally
disjoint then there exists an i such that Vα∪Vβ ⊆ Ui. (Such a cover {Vα} may be found as follows:
For each point p in the Riemannian manifold Σ, pick an index ip and a radius rp such that the
open ball in Σ centered at p with radius 3rp is contained in Uip . (In particular, p ∈ Uip .) The
collection of smaller open balls of radius rp around each p covers Σ and has the property that,
whenever two such balls around p, q ∈ Σ intersect, their union is contained in Uip , where without
loss of generality we assume rq ≤ rp. The family {Vα} can be taken as Cauchy developments of
this cover of Σ by small balls, after possibly shrinking the balls further to ensure Vα ⊆ Ui ∩ U .)
Let us also choose any partition of unity {χα} subordinate to the cover {Vα}. Using the time-slice
axiom and the Cauchy morphism V ⊆ U given by the inclusion in U of a causally convex open
neighborhood V ⊆

⋃
α Vα of Σ, we can and will choose representatives for [φ1], [φ2] ∈ LKG

M (U)
with support in V ⊆ U , and hence also in

⋃
α Vα ⊆ U . This allows us to compute[

[φ1], [φ2]
]
=

∑
α,β

[
[χαφ1], [χβφ2]

]
=

∑
α,β s.t.

not Vα⊥Vβ

[
[χαφ1], [χβφ2]

]
+

∑
α,β s.t.
Vα⊥Vβ

[
[χαφ1], [χβφ2]

]

=
∑

α,β s.t.
not Vα⊥Vβ

i ℏ τM
(
[χαφ1], [χβφ2]

)
1+ 0 =

∑
α,β

i ℏ τM
(
[χαφ1], [χβφ2]

)
1

= i ℏ τM
(
[φ1], [φ2]

)
1 , (4.70)

where in the third step we used the relations (4.69) and (4.68), together with the specified property
of the cover {Vα}, and in the fourth step we used that the Poisson structure vanishes between
causally disjoint generators. ▽

6We refer to the published version, which differs from the preprint available on arXiv.
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Example 4.38. We will now show that the free Klein-Gordon quantum field onM ∈ Loc, formu-
lated in terms of a time-sliced relatively compact Haag-Kastler-style AQFT AKG,W

M ∈ HKrc,W (M),
satisfies the descent conditions from Definition 4.29 for every D-stable causally convex open cover
U = {Ui ⊆ M}. For this we shall test the criterion from Proposition 4.36. In this example we
choose again as target T = VecC the closed symmetric monoidal category of complex vector
spaces.

To streamline our calculations, it will be convenient to describe AKG,W
M ∈ HKrc,W (M) as the

pullback along the full orthogonal subcategory inclusion RC(M)[W−1
rc,M ] ⊆ COpen(M)[W−1

M ]

from Example 2.10 of a time-sliced Haag-Kastler-style AQFT AKG,W
M ∈ HKW (M) (denoted with

abuse of notation by the same symbol) defined on all causally convex open subsets, including
those that are not relatively compact. For the generators of AKG,W

M ∈ HKW (M) we take

LKG,W
M := C∞

c (−)
PMC∞

c (−) : COpen(M)[W−1
M ] −→ VecC (4.71a)

with the functorial structure on morphisms U → U ′ in the localized category COpen(M)[W−1
M ]

from Example 2.10 given by

LKG,W
M (U) −→ LKG,W

M (U ′) , [φ] 7−→ ±
[
PM

(
χ±GM (φ)

)]
, (4.71b)

where {χ+, χ−} is any choice of partition of unity subordinate to the open cover {I+M (Σ−), I−M (Σ+)}
of JM (DM (U ′)) = J+

M (DM (U ′)) ∪ J−
M (DM (U ′)) ⊆M which is associated with any choice of two

spacelike Cauchy surfaces Σ+,Σ− of U ′ such that Σ+ ⊆ I+M (Σ−) lies in the chronological fu-
ture of Σ−. This concrete description of the functorial structure follows by applying7 [BMS24,
Theorem 3.13] to construct inverses for morphisms which are obtained by applying the functor
(4.62) to Cauchy morphisms. Note that for morphisms U → U ′ which correspond to subset
inclusions U ⊆ U ′, this functorial structure simplifies to the extension by zero map LKG,W

M (U)→
LKG,W
M (U ′) , [φ] 7→ ±

[
PM

(
χ±GM (φ)

)]
= [φ] because ±PM

(
χ±GM (φ)

)
= φ + PM (ψ) with

ψ := −χ−G
+
M (φ) − χ+G

−
M (φ) ∈ C∞

c (U ′) for all φ ∈ C∞
c (U) with support in U ⊆ U ′. This

observation will be very useful in our calculations below.

The relations for AKG,W
M ∈ HKW (M) are given again by the CCR relations, i.e.

RKG,W
M := LKG,W

M ⊗ LKG,W
M : COpen(M)[W−1

M ] −→ VecC (4.72a)

is the tensor product of generators,

r̃M,W
1 := [−,−] : RKG,W

M =⇒ UMFM (LKG,W
M ) (4.72b)

is the commutator in the free algebra, and

r̃M,W
2 := i ℏ τM (−,−)1 : RKG,W

M =⇒ UMFM (LKG,W
M ) (4.72c)

is given by weighting the unit 1 of the free algebra with i ℏ times the usual Poisson structure
τM (−,−) :=

∫
M (−)GM (−) volM .

Let us consider now the pullback of the above generators and relations alongRC(M)[W−1
rc,M ] ⊆

COpen(M)[W−1
M ]. Computing explicitly the left Kan extension lanjU j∗U (L

KG,W
M ) for any D-

stable causally convex open cover U = {Ui ⊆ M} by the usual object-wise colimit formula
[Rie16, Chapter 6.2], one finds that (ϵlanU )

LKG,W
M

is an isomorphism if and only if

⊕
i,j

LKG,W
M

(
Uij ∩DM (U)

)
//
//
⊕
i
LKG,W
M

(
Ui ∩DM (U)

)
// LKG,W

M (U) (4.73)

7Our opposite overall sign compared to [BMS24] is a consequence of the fact that the latter considers shifted
cochain complexes.
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is a coequalizer in VecC, for all U ∈ RC(M)[W−1
rc,M ]. Note that Ui ∩ DM (U) ⊆ M and

Uij ∩ DM (U) ⊆ M are not necessarily relatively compact, which is why it was convenient to
introduce the generators (4.71) on all of COpen(M)[W−1

M ] instead of only on the full subcat-
egory RC(M)[W−1

rc,M ] ⊆ COpen(M)[W−1
M ]. We can postcompose (4.73) with the isomorphism

LKG,W
M (U)

∼=−→ LKG,W
M

(
DM (U)

)
, which yields an equivalent diagram where all maps are deter-

mined by subset inclusions, hence the functorial structure (4.71) simplifies to the usual extension
by zero maps. Then the same calculations as in Example 4.37 show that the diagram (4.73) is
indeed a coequalizer for all U ∈ RC(M)[W−1

rc,M ], so the hypothesis of Proposition 4.36 is satisfied.

It remains to investigate the diagram (4.60) from Proposition 4.36. Again via the colimit
formula for the left Kan extension lanjU j∗U (R

KG,W
M ), one finds that (4.60) is a coequalizer if and

only if the object-wise diagrams

FuAs

(⊕
i

(
LKG,W
M (Ui ∩ U)⊗ LKG,W

M (Ui ∩ U)
)) (rM1 )U

//

(rM2 )U

//

(
pMFM (LKG,W

M )
)
(U) // AKG,W

M (U) (4.74)

are coequalizers in AlguAs(VecC), for all U ∈ RC(M)[W−1
rc,M ]. To understand this claim, it is

crucial to observe that the restriction of the CCR relations (4.72) along the map

⊕
i

(
LKG,W
M

(
Ui ∩DM (U)

)
⊗ LKG,W

M

(
Ui ∩DM (U)

))
−→ LKG,W

M (U)⊗ LKG,W
M (U) = RKG,W

M (U) (4.75)

can be restricted further along the isomorphisms LKG,W
M (Ui∩U)

∼=−→ LKG,W
M

(
Ui∩DM (U)

)
, leading

to an equivalent description of the relations. Then the same calculations as in Example 4.37 show
that the diagram (4.74) is indeed a coequalizer, for all U ∈ RC(M)[W−1

rc,M ]. ▽

To state and prove the main result of this subsection, let us recall that the Klein-Gordon
quantum field can be constructed also as a locally covariant AQFT AKG ∈ AQFT(Loc), see e.g.
[BDH13, BD15]. It is well-known and easy to verify that this locally covariant AQFT satisfies
both the time-slice axiom and the additivity property [BPS19], i.e. we even obtain an object
AKG ∈ AQFT(Loc)add,W . The restriction of AKG ∈ AQFT(Loc) along the orthogonal functor
kM : RC(M) → Loc from item (3) of Example 2.2 then coincides with the relatively compact
Haag-Kastler-style AQFT AKG

M ∈ HKrc(M) from Example 4.37, for all M ∈ Loc. Furthermore,

passing also to the orthogonal localization Lrc,M : RC(M)→ RC(M)[W−1
rc,M ] from Example 2.10,

one obtains the time-sliced relatively compact Haag-Kastler-style AQFT AKG,W
M ∈ HKrc,W (M)

from Example 4.38, for all M ∈ Loc.

Theorem 4.39. Let AKG ∈ AQFT(Loc)add,W ⊆ AQFT(Loc) be the free Klein-Gordon quan-
tum field formulated as a locally covariant AQFT.

(1) The point of the relatively compact Haag-Kastler 2-functor HKrc which is obtained by forget-
ting the time-slice axiom AKG ∈ AQFT(Loc)add and applying the fully faithful functor from
Corollary 3.20 defines via Proposition 4.26 a point of the relatively compact Haag-Kastler
stack HKrc from Theorem 4.27.

(2) The point of the time-sliced relatively compact Haag-Kastler 2-functor HKrc,W which is ob-
tained by applying the fully faithful functor from Corollary 3.25 to AKG ∈ AQFT(Loc)add,W

defines via Proposition 4.34 a point of the time-sliced relatively compact Haag-Kastler stack
HKrc,W from Theorem 4.35.

Proof. These claims hold true because the descent conditions required for Propositions 4.26 and
4.34 have already been verified in Examples 4.37 and 4.38 above.
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A Operadic left Kan extensions

In this appendix we present a concrete model for the operadic left Kan extensions from Proposition
2.5. For this we have to recall the explicit description of the AQFT operads O

C
from [BSW21],

see also [BS19].

Definition A.1. Let C = (C,⊥C) be an orthogonal category. The associated AQFT operad OC

is the colored operad which is defined by the following data:

(i) the objects are the objects of C;

(ii) the set of operations from M := (M1, . . . ,Mn) to N is the quotient set

OC

(
N
M

)
:=

(
Σn ×

n∏
i=1

HomC(Mi, N)

)/
∼⊥C

, (A.1)

where HomC(Mi, N) denotes the set of C-morphisms from Mi to N , Σn denotes the per-
mutation group on n letters, and the equivalence relation is defined as follows: (σ, f) ∼⊥C

(σ′, f ′) if and only if f := (f1, . . . , fn) = (f ′1, . . . , f
′
n) =: f ′ and the right permutation

σσ′−1 : fσ−1 :=
(
fσ−1(1), . . . , fσ−1(n)

)
→ fσ′−1 :=

(
fσ′−1(1), . . . , fσ′−1(n)

)
is generated by

transpositions of adjacent orthogonal pairs;

(iii) the composition of [σ, f ] :M → N with [σi, gi] : Ki →Mi, for i = 1, . . . , n, is

[σ, f ] [σ, g] :=
[
σ(σ1, . . . , σn), f g

]
: K −→ N , (A.2a)

where σ(σ1, . . . , σn) denotes the composition in the unital associative operad and

f g :=
(
f1 g11, . . . , f1 g1k1 , . . . , fn gn1, . . . , fn gnkn

)
(A.2b)

is given by compositions in the category C;

(iv) the unit elements are 1 := [e, idN ] : N → N , where e ∈ Σ1 is the identity permutation;

(v) the permutation action of σ′ ∈ Σn on [σ, f ] :M → N is

[σ, f ] · σ′ := [σσ′, fσ′] :Mσ′ −→ N , (A.3)

where fσ′ = (fσ′(1), . . . , fσ′(n)) and Mσ′ = (Mσ′(1), . . . ,Mσ′(n)) denote the permuted tuples
and σσ′ is given by the composition of permutations in Σn.

The key property of the AQFT operad OC is that the category of T-valued AQFTs over C from
Definition 2.3 is isomorphic to the category of OC-algebras with values in T, i.e. AQFT(C) ∼=
AlgOC

(T).
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Given any orthogonal functor F : C → D, one defines an operad morphism OF : OC → OD

by sending each object M ∈ C to F (M) ∈ D and each operation [σ, f ] : M → N in OC to the
operation OF ([σ, f ]) := [σ, F (f)] : F (M)→ F (N) in OD, where F (f) := (F (f1), . . . , F (fn)) and
F (M) := (F (M1), . . . , F (Mn)) denote the actions of F on tuples. The pullback functor F ∗ = O∗

F

from (2.3) then coincides with the pullback functor of operad algebras.

A model for the operadic left Kan extension F! : AQFT(C) → AQFT(D) can be given in
terms of an ordinary left Kan extension along the induced functor O⊗

F : O⊗
C
→ O⊗

D
between

the monoidal envelopes of the AQFT operads. For details about these concepts, we refer the
reader to [Hor17, Section 1.1] and also to [BPSW21, Section 6] where the notations are closer
to our present ones. More explicitly, given any A ∈ AQFT(C), the operadic left Kan extension
F!(A) ∈ AQFT(D) is defined object-wise by the colimit

F!(A)(K) := colim
(
O⊗
F /K −→ O

⊗
C

A⊗
−→ T

)
, (A.4)

for all K ∈ D, together with its canonically defined OD-algebra structure. Let us briefly describe
the building blocks of this colimit in more detail:

• The monoidal envelope O⊗
C

of the AQFT operad OC from Definition A.1 is the category
whose objects are all (possibly empty) tuples M := (M1, . . . ,Mn) of objects in OC. A mor-
phismM → N in O⊗

C
fromM = (M1, . . . ,Mn) to N = (N1, . . . , Np) is a pair

(
α, [σ, f ]

)
con-

sisting of a map of sets α : {1, . . . , n} → {1, . . . , p} and a tuple [σ, f ] :=
(
[σ1, f1], . . . , [σp, fp]

)
of operations [σj , f j ] :Mα−1(j) → Nj in OC, for all j ∈ {1, . . . , p}. Concatenation of tuples

endows the category O⊗
C

with a symmetric monoidal structure.

• The symmetric monoidal functor A⊗ : O⊗
C
→ T is canonically defined from the operad

algebra A ∈ AQFT(C) ∼= AlgOC
(T) as follows: To each object M = (M1, . . . ,Mn) ∈ O⊗

C

it assigns the tensor product A⊗(M) :=
⊗n

i=1A(Mi) ∈ T, and to each morphism
(
α, [σ, f ]

)
:

M → N in O⊗
C

it assigns the T-morphism

A⊗(α, [σ, f ]) : A⊗(M)
permute

//
⊗p

j=1A
⊗(Mα−1(j)

) ⊗p
j=1 A([σj ,fj ])

// A⊗(N) , (A.5)

where the permutation of tensor factors is via the symmetric braiding of T.

• The category O⊗
F /K is the comma category of the functor O⊗

F : O⊗
C
→ O⊗

D
over the length

one tuple K ∈ O⊗
D

consisting of the given object K ∈ D. Hence, an object in O⊗
F /K is

a pair
(
M, [ρ, g]

)
consisting of an object M ∈ O⊗

C
and an operation [ρ, g] : F (M) → K in

OD. A morphism
(
M, [ρ, g]

)
→

(
N, [τ, h]

)
in O⊗

F /K is a morphism
(
α, [σ, f ]

)
: M → N in

O⊗
C

such that the triangle

F (M)

[ρ,g] $$

(α,[σ,F (f)])
// F (N)

[τ,h]{{

K

(A.6)

in O⊗
D

commutes.

B Orthogonal localizations

We develop via the calculus of fractions [GZ67] the explicit model from Example 2.10 for the
orthogonal localization COpen(M)[W−1

M ] of COpen(M) at all Cauchy morphisms WM . The
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same construction will apply to give the explicit model from Example 2.10 for the orthogonal
localization RC(M)[W−1

rc,M ]. Our conventions are those of [KS06, Chapter 7].

Lemma B.1. The set of Cauchy morphisms WM in the category COpen(M) is a right multi-
plicative system.

Proof. We must verify that WM satisfies the four properties (S1)–(S4) listed in [KS06, Definition
7.1.5].

(S1) All isomorphisms in COpen(M) are identities, hence Cauchy morphisms.

(S2) Any Cauchy morphism U ⊆ U ′ exhibits Cauchy surfaces in U as Cauchy surfaces in U ′. It
follows that Cauchy morphisms are closed under composition.

(S3) Given any Cauchy morphism U ⊆ U ′ and any morphism U ⊆ V , we argue that the union
U ′ ∪ V ⊆ M is causally convex, and moreover that the inclusion V ⊆ U ′ ∪ V is a Cauchy
morphism. This gives a (necessarily commuting) square

U

Cauchy
��

// V

Cauchy
��

U ′ // U ′ ∪ V

(B.1)

in COpen(M). To show causal convexity of U ′ ∪ V ⊆M , one verifies first that J±
M (U ′) ⊆

U ′ ∪ J±
M (V ) because U ⊆ U ′ is a Cauchy morphism. It then suffices to consider any causal

curve γ : [0, 1] → M with γ(0) ∈ U ′ and γ(1) ∈ V . If γ is future-directed, then for any
t ∈ [0, 1] it holds that

γ(t) ∈ J+
M (U ′) ∩ J−

M (V )

⊆
(
U ′ ∪ J+

M (V )
)
∩ J−

M (V )

=
(
U ′ ∩ J−

M (V )
)
∪
(
J+
M (V ) ∩ J−

M (V )
)

⊆ U ′ ∪ V , (B.2)

where the last step involves also the causal convexity of V . Thus γ does not exit U ′ ∪ V .
A similar argument holds when γ is past-directed. To see that V ⊆ U ′ ∪ V is a Cauchy
morphism, observe that any inextendable causal curve in M which intersects U ′ ∪ V must
necessarily intersect V . Indeed, if it intersects U ′ then, because U ⊆ U ′ is a Cauchy
morphism, it also intersects U , which is contained in V .

(S4) The property (S4) is trivially satisfied since COpen(M) is thin.

As a consequence of this lemma, the calculus of fractions applies to give a model for the
localization LM : COpen(M) → COpen(M)[W−1

M ], see [KS06, Theorem 7.1.16]. Furthermore,
orthogonal localization endows the localized category COpen(M)[W−1

M ] with the orthogonality
relation pushed forward along the localization functor LM , see [BCS23, Proposition 2.11]. The
resulting model for the orthogonal localization LM : COpen(M) → COpen(M)[W−1

M ] is then
given as follows:

• The category COpen(M)[W−1
M ] has the same objects as COpen(M), and its morphisms

[X] : U → V are equivalence classes of objects X ∈ COpen(M) with U ⊆ X ⊇ V such
that (V ⊆ X) ∈WM is a Cauchy morphism. Two such X,X ′ ∈ COpen(M) are equivalent
if there exists a third X ′′ ∈ COpen(M) with X ⊆ X ′′ ⊇ X ′ such that (V ⊆ X ′′) ∈ WM

is a Cauchy morphism. The composite of [X] : U → V and [Y ] : V → W is given by
[Y ] ◦ [X] = [X ∪ Y ], using (B.1).
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• The orthogonality relation on COpen(M)[W−1
M ] is characterized as follows: ([X1] : U1 →

V ) ⊥ ([X2] : U2 → V ) if and only if (U1 ⊆ X1 ∪X2) ⊥ (U2 ⊆ X1 ∪X2) in COpen(M), or
equivalently U1 and U2 are causally disjoint in M .

• The orthogonal localization functor LM : COpen(M)→ COpen(M)[W−1
M ] acts as identity

on objects and sends a morphism U ⊆ V in COpen(M) to [V ] : U → V .

This model can be simplified significantly. Let us recall that the Cauchy developmentDM (S) ⊆
M of a subset S ⊆M is the set of points p ∈M such that every inextendable causal curve through
p also intersects S. An inclusion U ⊆ V of causally convex open subsets of M is a Cauchy mor-
phism if and only if DM (U) = DM (V ). Other useful properties of Cauchy developments include
that DM (DM (S)) = DM (S) and f(DM (S)) ⊆ DN (f(S)), for every subset S ⊆ M and every
Loc-morphism f :M → N , see also Lemma D.4.

Proposition B.2. The category COpen(M)[W−1
M ] is thin, i.e. there exists at most one morphism

between every two objects. Moreover, the unique morphism U → V exists if and only if U ⊆
DM (V ) is contained in the Cauchy development of V in M .

Proof. For any two parallel morphisms [X], [X ′] : U → V , one verifies using (B.1) that [X] =
[X ∪X ′] = [X ′] since both V ⊆ X and V ⊆ X ′ are Cauchy morphisms.

For the second statement, suppose that a morphism [X] : U → V exists. Then we have a
morphism U ⊆ X and a Cauchy morphism V ⊆ X in COpen(M), hence U ⊆ X ⊆ DM (X) =
DM (V ). Conversely, suppose that U ⊆ DM (V ). We show that [J+∩−

M (U ∪ V )] : U → V is a
valid morphism8 in COpen(M)[W−1

M ], where J+∩−
M (S) := J+

M (S)∩J−
M (S) is the causally convex

hull of S ⊆ M . There are clearly inclusions U ⊆ J+∩−
M (U ∪ V ) and V ⊆ J+∩−

M (U ∪ V ). Using
the hypothesis U ⊆ DM (V ), one has that J±

M (U) ⊆ J±
M (DM (V )). Then also J±

M (U ∪ V ) =
J±
M (U) ∪ J±

M (V ) ⊆ J±
M (DM (V )), so that J+∩−

M (U ∪ V ) ⊆ J+∩−
M (DM (V )) = DM (V ), where the

last equality expresses causal convexity of DM (V ). It follows that DM (J+∩−
M (U ∪V )) = DM (V ),

i.e. the inclusion V ⊆ J+∩−
M (U ∪ V ) is a Cauchy morphism.

For every Loc-morphism f :M → N , the orthogonal functor f : COpen(M)→ COpen(N)
from (3.2) preserves Cauchy morphisms, i.e. it maps WM to WN , hence it induces an orthogonal
functor fW : COpen(M)[W−1

M ]→ COpen(N)[W−1
N ] such that LN ◦ f = fW ◦ LM . On objects,

fW (U) := f(U) takes images under f . Note that, by Proposition B.2, this defines a valid functor
since U ⊆ DM (V ) implies f(U) ⊆ f(DM (V )) ⊆ DN (f(V )).

Proposition B.3. The orthogonal functor fW : COpen(M)[W−1
M ]→ COpen(N)[W−1

N ] associ-
ated to any Loc-morphism f :M → N is fully faithful and reflects orthogonality.

Proof. The functor fW both preserves and reflects orthogonality because U1, U2 ⊆M are causally
disjoint if and only if f(U1), f(U2) ⊆ N are causally disjoint. From Proposition B.2, fully faithful-
ness of fW means equivalently that f(U) ⊆ DN (f(V )) if and only if U ⊆ DM (V ), for all causally
convex opens U, V ∈ COpen(M). Suppose that U ⊆ DM (V ). Then f(U) ⊆ f(DM (V )) ⊆
DN (f(V )) by the properties of Cauchy development noted above Proposition B.2. Now sup-
pose that f(U) ⊆ DN (f(V )) and take any point p ∈ U and any inextendable causal curve
γ : (−1, 1) → M with γ(0) = p. Pick an extension γ̃ of f ◦ γ : (−1, 1) → N , i.e. an inex-
tendable causal curve γ̃ : (a, b) → N with (−1, 1) ⊆ (a, b) such that γ̃|(−1,1) = f ◦ γ. Because
γ̃(0) = f(γ(0)) ∈ f(U) ⊆ DN (f(V )), there exists t ∈ (a, b) with γ̃(t) ∈ f(V ). Since γ is inex-
tendable in M , γ̃(−1) and γ̃(1) (if defined) do not lie in f(M). Thus t ∈ (−1, 1) because f(M)
is causally convex. We therefore have f(γ(t)) = γ̃(t) ∈ f(V ), so γ(t) ∈ V because f is injective.
This demonstrates that p ∈ DM (V ).

8It is also true that [DM (V )] : U → V is a valid morphism of COpen(M)[W−1
M ]. However, for U, V ∈ RC(M),

DM (V ) ∈ COpen(M) may fail to be relatively compact and hence may not define a morphism U → V in
RC(M)[W−1

rc,M ]. We prefer to present a proof that adapts straightforwardly to the relatively compact case.
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The above results specialize to the full orthogonal subcategory RC(M) ⊆ COpen(M) of all
relatively compact causally convex open subsets of M because the constructions used in their
proofs preserve relative compactness.

Lemma B.4. Let M ∈ Loc be any object and S ⊆ M a relatively compact subset. Then the
causally convex hull J+∩−

M (S) ⊆M is also relatively compact.

Proof. Because the closure cl(S) ⊆ M is by hypothesis compact, it is a consequence of global
hyperbolicity of M [Min19, Definition 4.117 and Theorem 4.12] that J+∩−

M (cl(S)) ⊆ M is com-
pact and that J+

M (cl(S)) ⊆ M and J−
M (cl(S)) ⊆ M are closed. It follows that cl

(
J+∩−
M (S)

)
⊆

cl
(
J+
M (S)

)
∩ cl

(
J−
M (S)

)
⊆ J+

M (cl(S)) ∩ J−
M (cl(S)) is a closed subset of a compact set, and hence

is compact.

Corollary B.5. The orthogonal localization RC(M)[W−1
rc,M ] of RC(M) at all Cauchy morphisms

Wrc,M is thin and admits the following explicit description: Its objects are all objects U ∈ RC(M),
a morphism U → V exists uniquely if and only if U ⊆ DM (V ), and (U1 → V ) ⊥ (U2 → V ) are
orthogonal if and only if U1 and U2 are causally disjoint in M . The orthogonal localization func-
tor Lrc,M : RC(M) → RC(M)[W−1

rc,M ] acts as the identity on objects and sends the morphism

U ⊆ V in RC(M) to U → V . Furthermore, the orthogonal functor fW : RC(M)[W−1
rc,M ] →

RC(N)[W−1
rc,N ] associated to any Loc-morphism f : M → N is fully faithful and reflects orthog-

onality.

Proof. The proofs of Lemma B.1 and Propositions B.2 and B.3 hold without alteration forRC(M)
in place of COpen(M), since unions and causally convex hulls of relatively compact subsets are
relatively compact.

C Technical details for Proposition 4.20

In this appendix we supply the technical details which are needed to prove Proposition 4.20. To
simplify notation, let us denote the pseudo-functor whose bilimit we wish to compute by

X : D −→ PrL , (C.1)

where D is a small 1-category with terminal object ∗ ∈ D. As in the context of Proposition 4.20,
we assume that the left adjoint functor X(g) : X(d)→ X(d′) is fully faithful, for all D-morphisms
g : d→ d′, and we denote its right adjoint (coreflector) by X†(g) : X(d′)→ X(d).

Following Construction 2.23, we compute the bilimit of X by starting from the explicit model

bilim(X) = Hom(∆1, X) (C.2)

given by the category of pseudo-natural transformations and modifications. Spelling out these
data, one finds the following explicit description:

• An object in bilim(X) is a tuple ({xd}, {φg}) consisting of a family of objects xd ∈ X(d), for
all d ∈ D, and a family of isomorphisms φg : X(g)(xd)→ xd′ in X(d′), for all D-morphisms
g : d→ d′. These data have to satisfy the conditions that

X(g′)X(g)(xd)

∼=
��

X(g′)(φg)
// X(g′)(xd′)

φg′

��
X(g′g)(xd) φg′g

// xd′′

(C.3a)
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commutes in X(d′′), for all composable D-morphisms g : d→ d′ and g′ : d′ → d′′, and that

X(idd)(xd)
φidd // xd

xd

∼=

OO

idxd

66

(C.3b)

commutes in X(d), for all d ∈ D.

• A morphism in bilim(X) is a tuple {ψd} : ({xd}, {φg}) →
(
{x′d}, {φ′

g}
)
consisting of a

family of morphisms ψd : xd → x′d in X(d), for all d ∈ D, such that

X(g)(xd)

X(g)(ψd)

��

φg
// xd′

ψd′

��

X(g)(x′d) φ′
g

// x′d′

(C.4)

commutes in X(d′), for all D-morphisms g : d→ d′.

We will now simplify this description by using our hypotheses on the category D and the
pseudo-functor X. Consider the canonical projection functor

bilim(X) −→ X(∗) (C.5)

from the bilimit to the value of X on the terminal object. Explicitly, this functor assigns to
an object ({xd}, {φg}) ∈ bilim(X) the component x∗ ∈ X(∗) at the terminal object, and to a
morphism {ψd} : ({xd}, {φg}) → ({x′d}, {φ′

g}) in bilim(X) the component ψ∗ : x∗ → x′∗ in X(∗)
at the terminal object.

Lemma C.1. The functor bilim(X)→ X(∗) of (C.5) is fully faithful.

Proof. Specializing the commutative diagrams (C.4) to the terminal D-morphisms td : d→ ∗, we
obtain commutative diagrams

X(td)(xd)

X(td)(ψd)

��

φtd

∼=
// x∗

ψ∗
��

X(td)(x
′
d) φ′

td

∼= // x′∗

(C.6)

which, together with the fact that X(td) is fully faithful by our hypotheses, imply that all compo-
nents ψd of a morphism {ψd} : ({xd}, {φg})→ ({x′d}, {φ′

g}) in bilim(X) are uniquely determined
by ψ∗. This shows faithfulness. To prove fullness, we have to show that, given any ψ∗, the com-
ponents ψd defined uniquely by (C.6) make the diagrams (C.4) commute, for all D-morphisms
g : d → d′. Note that this is equivalent to verifying that the diagrams obtained by applying the
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fully faithful functor X(td′) to (C.4) commute. The latter can be expanded as

X(td)(xd)

X(td)(ψd)

��

∼=

φtd // x∗

ψ∗

��

X(td′)X(g)(xd)

∼=
ii

X(td′ )X(g)(ψd)

��

∼=

X(td′ )(φg)
// X(td′)(xd′)

X(td′ )(ψd′ )

��

∼=

φtd′

88

X(td′)X(g)(x′d)

∼=
vv

∼=
X(td′ )(φ

′
g)
// X(td′)(x

′
d′)

∼=
φ′
td′ &&

X(td)(x
′
d)

∼=
φ′
td

// x′∗

. (C.7)

The bottom and top square commute as a consequence of (C.3), the left square commutes because
X is a pseudo-functor, and the right and outer squares commute as a consequence of (C.6). Hence,
the middle square commutes too, which completes the proof.

In order to characterize the bilimit of our pseudo-functor X, it remains to compute the
essential image X ⊆ X(∗) of the fully faithful functor (C.5). This then yields a factorization

bilim(X)
≃−→ X ⊆−→ X(∗) (C.8)

which provides a model for the bilimit as a coreflective full subcategory of X(∗), i.e. there exists
a right adjoint coreflector X(∗)→ X .

Lemma C.2. The essential image of the functor (C.5) is the full subcategory X ⊆ X(∗) consisting
of all objects x∗ ∈ X(∗) which satisfy the following conditions: For every object d ∈ D, the x∗-
component of the counit

(ϵtd)x∗ : X(td)X
†(td)(x∗)

∼=−→ x∗ (C.9)

of the adjunction X(td) ⊣ X†(td) associated with the terminal D-morphism td : d → ∗ is an
isomorphism.

Proof. To show that the essential image is contained in X , consider any object ({xd}, {φg}) ∈
bilim(X) and observe that we have isomorphisms φtd : X(td)(xd) → x∗, for every object d ∈ D.
The counit condition then follows from the commutative diagram

X(td)X
†(td)(x∗)

(ϵtd )x∗ // x∗

X(td)X
†(td)X(td)(xd)

∼=X(td)X
†(td)(φtd

)

OO

(ϵtd )X(td)(xd)// X(td)(xd)

∼= φtd

OO

X(td)(xd)

∼=X(td)(ηtd )xd

OO
∼=
idX(td)(xd)

44

(C.10)

where we recall that the unit ηtd is a natural isomorphism because X(td) is by hypothesis fully
faithful.

To show that each object x∗ ∈ X lies in the essential image, let us define the tuple of objects{
xd := X†(td)(x∗) ∈ X(d)

}
(C.11a)
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and the tuple of morphisms
X(g)xd

φg
// xd′

X(g)X†(td)(x∗) ∼=
// X(g)X†(g)X†(td′)(x∗)

(ϵg)X†(td′ )(x∗)

// X†(td′)(x∗)


, (C.11b)

where in the unnamed isomorphism we used the unique factorization td = td′ g of the terminal
morphism. Note that the morphisms φg are isomorphisms because, applying the fully faithful
functor X(td′) to the relevant component of ϵg, one obtains the commutative diagram

X(td′)X(g)X†(g)X†(td′)(x∗)

∼=
��

X(td′ )(ϵg)X†(td′ )(x∗) // X(td′)X
†(td′)(x∗)

∼= (ϵtd′ )x∗

��
X(td)X

†(td)(x∗)
∼=

(ϵtd )x∗

// x∗

(C.12)

where the bottom horizontal and right vertical morphisms are isomorphisms by definition of the
full subcategory X ⊆ X(∗). One directly checks that the tuple ({xd}, {φg}) introduced above
defines an object in bilim(X). This object maps under the functor (C.5) to X†(t∗)(x∗) ∼= x∗ ∈ X ,
which completes the proof of essential surjectivity.

D Technical details for Theorem 4.35

Our proof of Theorem 4.35 requires the following facts about Lorentzian geometry, which we
prove in this appendix.

Proposition D.1. Let p ∈M be any point in any object M ∈ Loc and U ⊆M any neighborhood
of p. Then there exists a D-stable causally convex open subset V ⊆M such that p ∈ V ⊆ U .

Proposition D.2. Let f :M → N be any Loc-morphism with D-stable image, i.e. DN (f(M)) =
f(M), and U ⊆ M any relatively compact subset. Then one has cl(DN (f(U))) ⊆ f(M), where
the closure is taken inside N .

Remark D.3. In Subsections 4.2.2 and 4.3.2 we make use of the Grothendieck topology on Loc
given by all D-stable causally convex open covers. Proposition D.1 shows that any M ∈ Loc
has arbitrarily small D-stable causally convex open neighborhoods around each of its points. In
other words, the aforementioned Grothendieck topology contains arbitrarily fine refinements. △

The proofs of Propositions D.1 and D.2 below will require statements of a Lorentz geometric
nature concerning the properties of Cauchy developments. We refer to [Min19] for a comprehen-
sive review of Lorentzian causality theory, and cite this review rather than original sources to
give a unified resource for the reader. For the remainder of this appendix a spacetime will mean
a time-oriented Lorentzian manifold. (Objects of Loc are thus the oriented globally hyperbolic
spacetimes of a chosen dimension.)

Lemma D.4. Let M and N be any spacetimes of the same dimension, f : M → N a time-
orientation preserving isometric embedding with causally convex image, and U ⊆ M any subset.
Then f(DM (U)) = DN (f(U)) ∩ f(M). Moreover, if M is globally hyperbolic and DM (U) ⊆ M
is a relatively compact subset, then DN (f(U)) ⊆ f(M).

Proof. The inclusion f(DM (U)) ⊆ DN (f(U))∩f(M) follows from the fact that, under the above
assumptions, each inextendable causal curve in N admits a unique restriction (along f) to an

59



inextendable causal curve in M . For the inclusion f(DM (U)) ⊇ DN (f(U)) ∩ f(M), take p ∈ M
such that f(p) ∈ DN (f(U)) and consider an inextendable causal curve γ in M through p. Under
the above assumptions, there exists an inextendable causal curve γ̂ in N that restricts (along
f) to γ. By construction, γ̂ goes through f(p) ∈ DN (f(U)). This entails that γ̂ hits f(U) and
therefore γ hits U . This shows that p ∈ DM (U).

It remains to show that DN (f(U)) ⊆ f(M) when DM (U) ⊆M is a relatively compact subset
and M is globally hyperbolic. We will in fact not need global hyperbolicity of M , but merely
a weaker causal property which is implied by it: Every globally hyperbolic spacetime M is also
non-partially imprisoning [Min19, Definition 4.68], i.e. inextendable causal curves inM are proper
maps. Take p ∈ DN (f(U)), and let γ : R→ N be any future-directed inextendable causal curve
with γ(0) = p. Define (a, b) := γ−1(f(M)), which is an interval because f(M) ⊆ N is causally
convex. We show that a < 0 < b, from which it follows that p = γ(0) ∈ f(M).

Assume that b ≤ 0. Let γ̂ : (a, b) → M be the unique restriction of γ along f , i.e. f ◦ γ̂ =
γ|(a,b). Then γ̂ is a future-directed inextendable causal curve in M . Our hypotheses imply that
cl(DM (U)) ⊆M is compact and γ̂ is a proper map, so γ̂−1(cl(DM (U))) ⊆ (a, b) is compact. Thus
there exists some t0 ∈ (a, b) with γ̂(t) ̸∈ DM (U) for all t0 ≤ t < b. It follows that there exists a
future-directed past-inextendable causal curve η in M with future-endpoint γ̂(t0) which does not
intersect U . The concatenation of γ|[t0,∞) after f ◦ η is thus a future-inextendable causal curve
in N which does not intersect f(U). Let δ be any future-directed inextendable causal curve in N
extending the above concatenated curve. It follows by past-inextendability of η in M and causal
convexity of f(M) ⊆ N that no past extension of f ◦ η in N intersects f(U) ⊆ f(M). So, δ never
intersects f(U). But our assumption b ≤ 0 gives that δ passes through p = δ(0) = γ|[t0,∞)(0),
which is a contradiction with p ∈ DN (f(U)). We conclude that b > 0. A similar argument shows
that a < 0.

Our proof of Proposition D.1 will make key use of strictly convex normal neighborhoods
[Min19, Definition 2.3], via the Lemma D.5 below. It is generically true that, under the exponen-
tial map expp : Up ⊆ TpM → U ⊆M at a point p ∈M , the image of the future (past) light-cone

in Up ⊆ TpM is included in the causal future J+
U (p) (causal past J

−
U (p), respectively) of p. Similar

inclusions hold for the time-cone and chronological future/past I±U (p). Strictly convex normal
neighborhoods U ⊆ M have the special property that these inclusions are equalities [Min19,
Corollary 2.10].

Lemma D.5. Let M be a spacetime, U ⊆ M a strictly convex normal, globally hyperbolic,
causally convex open subset and p1, p2 ∈ U . Then I+U (p1) ∩ I

−
U (p2) ⊆ M is a D-stable relatively

compact open subset.

Proof. Relative compactness both in U and in M follows from the inclusion I+U (p1) ∩ I
−
U (p2) ⊆

J+
U (p1) ∩ J

−
U (p2) into a compact (by global hyperbolicity of U) subset. We will show that, for

p ∈ U , I±U (p) ⊆ U is D-stable. This entails D-stability of I+U (p1) ∩ I
−
U (p2) ⊆ U via

DU

(
I+U (p1) ∩ I

−
U (p2)

)
⊆ DU

(
I+U (p1)

)
∩DU

(
I−U (p2)

)
= I+U (p1) ∩ I

−
U (p2) . (D.1)

Then, because U is globally hyperbolic, Lemma D.4 applies to the inclusion U ↪→ M and the
subset I+U (p1) ∩ I

−
U (p2) ⊆ U to give that DU (I

+
U (p1) ∩ I

−
U (p2)) = DM (I+U (p1) ∩ I

−
U (p2)) ∩ U and

DM (I+U (p1) ∩ I
−
U (p2)) ⊆ U , hence

DM

(
I+U (p1) ∩ I

−
U (p2)

)
= DU

(
I+U (p1) ∩ I

−
U (p2)

)
= I+U (p1) ∩ I

−
U (p2) . (D.2)

Given p ∈ U , let us now show that I+U (p) ⊆ U is D-stable. The proof for I−U (p) is similar.
Let q ∈ DU (I

+
U (p)), so any inextendable future-directed causal curve γ : R → U with γ(0) = q

intersects I+U (p) at some t ∈ R. Then γ itself exhibits γ(t′) ∈ J+
U (I

+
U (p)) = I+U (p) for all t′ ≥ t,

where we have used the “push-up lemma” [Min19, Theorem 2.24] in the last equality. Because
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I+U (p) ⊆ U is open, it follows that there exists t0 ∈ R such that γ(t) ∈ I+U (p) for all t > t0 and
γ(t) ̸∈ I+U (p) for all t ≤ t0. In particular, γ(t0) ∈ ∂I+U (p) is a boundary point. We show that
t0 < 0, from which q = γ(0) ∈ I+U (p) follows.

Assume t0 ≥ 0. Because U is globally hyperbolic and hence J+
U (p) ⊂ U is closed, we have

γ(t0) ∈ ∂I+U (p) = ∂J+
U (p) = J+

U (p) \ I
+
U (p). It follows from convex normality of U ⊆ M [Min19,

Corollary 2.10] that either γ(t0) = p or there exists a unique future-directed null vector v ∈ TpM
such that γ(t0) = expp(v). In the latter case, t 7→ η(t) := expp((t+1)v) describes an inextendible

future-directed null geodesic in U through p, with η(0) = γ(t0) and η(t) ∈ J+
U (p) \ I

+
U (p) for all

t ≥ 0. In the former case of γ(t0) = p, pick any future-directed null vector v ∈ TpM . Then t 7→
η(t) := expp(tv) gives again an inextendable future-directed null geodesic with η(0) = p = γ(t0)

and η(t) ∈ J+
U (p) \ I

+
U (p) for all t ≥ 0. In either case, concatenating η|[0,∞) after γ|(−∞,t0] gives

an inextendable causal curve in U through q = γ(0) ∈ DU (I
+
U (p)) that does not hit I+U (p), a

contradiction.

The preceding Lemma D.5 allows us to construct the arbitrarily small D-stable neighborhoods
stipulated in Proposition D.1.

Proof of Proposition D.1. It is a standard result [Min19, Theorems 1.35 and 2.7] that, because
the spacetime M is globally hyperbolic and hence strongly causal, each point p ∈M has a nested
neighborhood basis {Vk}k∈N consisting of strictly convex normal, globally hyperbolic, causally
convex, relatively compact and open neighborhoods Vk ⊆ M . Thus for sufficiently large k,
Vk ⊆ U . Pick p1 ∈ I−Vk(p) and p2 ∈ I+Vk(p). By Lemma D.5, V := I+Vk(p1) ∩ I

−
Vk
(p2) ⊆ M is a

D-stable relatively compact open subset. Furthermore, by construction p ∈ V ⊆ Vk ⊆ U . That
the chronological diamond is also causally convex in Vk and hence in M is a straightforward
consequence of the “push-up lemma” [Min19, Theorem 2.24].

Our proof of Proposition D.2 will make use of certain subsets of a spacetime M which bound
above or below the Cauchy development of U ⊆M . These subsets are constructed by taking the
double causal complement (i.e. the causal complement of the causal complement) of U . Recall
that, for U ⊆M , the causal complement U ′ of U inM is the maximal subset ofM that is causally
disjoint from U , i.e.

U ′ := M \ JM (U) = M \
(
J+
M (U) ∪ J−

M (U)
)
⊆ M . (D.3)

Lemma D.6. Let M be any spacetime. Then DM (U) ⊆ U ′′ for any subset U ⊆M .

Proof. Let us check the equivalent complementary inclusionM \DM (U) ⊇ JM (M \JM (U)). Take
p ∈ JM (M \ JM (U)). Then there exists an inextendible future-directed causal curve γ through p
that hits some q ∈M \ JM (U). Such γ does not meet U (otherwise q ∈ JM (U), a contradiction),
hence p ∈M \DM (U) is not in the Cauchy development of U .

Lemma D.7. Let M be a globally hyperbolic spacetime. Then U ′′ ⊆ DM (J+∩−
M (U)) for any

relatively compact open subset U ⊆M .

Proof. Take p ∈ U ′′ and any inextendable future-directed causal curve γ inM through p. Observe
first that γ lies inside JM (U) = M \ U ′ because U ′ and U ′′ are causally disjoint. Using that
U ⊆ M is relatively compact and M is globally hyperbolic, there exist Cauchy surfaces Σ+ and
Σ− ⊆ I−M (Σ+) of M which lie in the future and past of U respectively, i.e. Σ± ∩ J∓

M (U) = ∅.
Then γ intersects Σ± at a unique point, call it γ(t±) ∈ Σ±. It follows that γ(t±) ∈ Σ±∩JM (U) =
Σ± ∩ J±

M (U). Note that t+ > t− because γ is future-directed and Σ− ⊆ I−M (Σ+) and recall that
γ(t) ∈ JM (U) for all t ∈ [t−, t+]. Because J±

M (U) ⊆M are open subsets, the curve γ is continuous,
and the endpoints of the interval are such that γ(t±) ∈ J±

M (U), there exists t ∈ (t−, t+) with
γ(t) ∈ J+∩−

M (U). This shows that p ∈ DM (J+∩−
M (U)).
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The next statement is an immediate consequence of Lemmas D.6 and D.7.

Corollary D.8. Let M be a globally hyperbolic spacetime. Then U ′′ = DM (U) for any relatively
compact causally convex open subset U ⊆M .

Proof of Proposition D.2. From Lemma D.6, we have DN (f(U)) ⊆ DN (f(cl(U))) ⊆ f(cl(U))′′.
Because cl(U) ⊆ M is a compact subset and N is a globally hyperbolic spacetime, it follows
that JN (f(cl(U))) ⊆ N is closed [Min19, Theorem 4.12], i.e. f(cl(U))′ ⊆ N is open. Therefore
f(cl(U))′′ ⊆ N is closed, and hence

cl(DN (f(U))) ⊆ f(cl(U))′′ . (D.4)

We claim that there exists a relatively compact causally convex open subset V ⊆ N such that
f(cl(U)) ⊆ V ⊆ f(M). We have

V ′′ = DN (V ) ⊆ DN (f(M)) = f(M) , (D.5)

where the first equality follows from Corollary D.8, while the last equality uses the hypothesis
that f(M) ⊆ N is D-stable. Then the inclusion cl(DN (f(U))) ⊆ f(M) is obtained combining
(D.4) and (D.5) with the inclusion f(cl(U))′′ ⊆ V ′′, which follows from f(cl(U)) ⊆ V .

To conclude the proof, let us construct a relatively compact causally convex open subset
V ⊆ N such that f(cl(U)) ⊆ V ⊆ f(M). For each p ∈ f(cl(U)), take a relatively compact,
causally convex and open neighborhood Vp ⊆ f(M) of p, which exists because N is globally
hyperbolic and hence strongly causal [Min19, Theorem 1.35]. Since {Vp} is an open cover of the
compact subset f(cl(U)) ⊆ N , one finds a finite subcover {Vp1 , . . . , Vpn}. Recalling also Lemma
B.4, V = J+∩−

N (∪ni=1Vpi) ⊆ N is a relatively compact causally convex open subset. Furthermore,
f(cl(U)) ⊆ V ⊆ f(M) holds by construction and because f(M) ⊆ N is causally convex.

References
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