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Shot noise in coupled electron-boson systems
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The nature of charge carriers in strange metals has become a topic of intense current investigation.
Recent shot noise measurements in the quantum critical heavy fermion metal YbRh2Sis revealed a
suppression of the Fano factor that cannot be understood from electron-phonon scattering or strong
electron correlations in a Fermi liquid, indicating loss of quasiparticles. The experiment motivates
the consideration of shot noise in a variety of theoretical models in which quasiparticles may be
lost. Here we study shot noise in systems with co-existing itinerant electrons and dispersive bosons,
going beyond the regime where the bosons are on their own in thermal equilibrium. We construct
the Boltzmann-Langevin equations for the coupled system, and show that adequate electron-boson

couplings restore the Fano factor to its Fermi liquid value.

Our findings point to the beyond-

Landau form of quantum criticality as underlying the suppressed shot noise of strange metals in

heavy fermion metals and beyond.

Introduction: In conventional metals described by
Landau Fermi liquid theory, the scattering rate increases
quadratically with temperature, and the electrical cur-
rent is carried by well-defined quasiparticles with elec-
tronic charge e [I]. However, in strange metals, like
quantum critical heavy fermion materials [2], resistivity
increases linearly with temperature, and quasiparticles
may lose their identity [3,[4]. This requires a new descrip-
tion beyond the Landau paradigm, which may no longer
involve discrete current carriers. Shot noise provides a
non-equilibrium probe of the granularity of charge carri-
ers [5l [6], helping to clarify the nature of current carriers
in these enigmatic metals.

The shot noise Fano factor (F) measures the low-
frequency current fluctuations relative to the average
current, serving as a valuable indicator of discreteness
of the current carriers. Recent measurements in the
quantum critical heavy fermion metal YbRhsSis revealed
a strong suppression of the Fano factor in the strange
metal regime [7], which cannot be attributed to electron-
phonon interactions in a Fermi liquid. The experiment
has motivated theoretical studies of shot noise in strongly
correlated metals [8HI0]. In particular, we found that
when the current is carried by quasiparticles, the Fano
factor ' = \/3/ 4 even when the renormalization effect
is extremely strong as in heavy Fermi liquids [§]. This
implies that quasiparticles must be destroyed to account
for the shot-noise reduction, a conclusion that is consis-
tent with the beyond-Landau form of quantum criticality

advanced for heavy fermion metals [ITTHI3]; it also is sup-
ported by the overall phenomenology of YbRhySis and
related quantum critical heavy fermion metals [I4] [15],
which includes Fermi surface jump across the quantum
critical point (QCP) [I6HI8] and dynamical Planckian
scaling at the QCP [19H2I]. This conclusion also im-
plies that the Fano factor joins the Weidemann-Franz
law [22] 23] and Kadowaki-Woods ratio [24] 25] as a valu-
able tool for characterizing strong correlations in diffusive
Fermi liquids and diagnosing quasiparticle loss.

To further sharpen the considerations, here we study
shot noise in coupled electron-boson systems. We take
cue from the known result about the effect of electron-
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FIG. 1. (a) Schematic plot of the Fano factor (F) as a
function of system size L, initially derived based on a Fermi
gas experiencing electron-electron and electron-phonon scat-
tering [26H29]. With the phonons taken as in equilibrium on
its own, the electron-phonon coupling equilibrates the elec-
tron distribution and, thus, reduces the Fano factor, when
the system size L exceeds the scattering lengths lo;. Here
we ask what happens if the bosons are not assumed to be
in equilibrium. (b) Schematic result for the Fano factor as a
function of the electron-boson coupling, Acp, when the bosons
are allowed to be out of equilibrium.

phonon scattering when the phonons are in equilibrium
on their own as illustrated in Fig.[T{a): when this scatter-
ing is operative, which happens when the corresponding
scattering length I, falls below the system size L, the



electron-phonon coupling equilibrates the electron distri-
bution and, thus, reduces the Fano factor [26-29]. While
this phonon-based mechanism per se was ruled out for
YbRhsSis through measurements of long wires [7], it
provides a concrete setting for addressing the following
question: What happens to the shot noise in coupled
electron-boson systems when the bosons can be driven
out of equilibrium through their coupling with the elec-
trons? This question is relevant for the electron-boson
problem in the boson-drag regime, where the momen-
tum or energy transferred from the electrons to the boson
component can be transferred back to the electron com-
ponent. While the drag effect for the electron-phonon
problem is negligible except for extreme low tempera-
tures, it is expected to be important for the cases where
the bosons are collective modes of the electron system
due to a large electron-boson coupling (which traces
back to the bare electron-electron Coulomb repulsion).
The latter case applies to the quantum criticality in the
Hertz-Millis-based description [30H32]. In this scenario,
in the clean limit, only specific sections of the Fermi sur-
face lose quasiparticle-like behavior (the so-called “hot-
spots”) [33] [34] whereas the Fermi liquid description re-
mains valid across the remainder of the Fermi surface,
dominating transport properties and leaving the Fano
factor intact. In contrast, zero momentum order pa-
rameter fluctuations — the kind relevant for ferromag-
netism, Ising-nematic and excitonic orders — render the
entire Fermi surface “hot” [30], even though their con-
tributions to the electrical resistivity is expected to be
superlinear in temperature. It is desirable to construct
the Boltzmann-Langevin equations suitable for the study
of shot noise in coupled electron-boson systems without
assuming equilibrium bosons. Here, we do so and de-
termine the shot noise. Our key conclusion is that a
sufficiently strong electron-boson coupling restores the
Fano factor to F' = v/3/4, as illustrated in Fig.(b). Our
results support the suggestion [7, [§] that quantum crit-
icality of beyond the Landau form [ITHI3] underlies the
suppressed shot noise in YbRhsSis, in a similar way that
it causes a violation of the Wiedemann-Franz law [35].

Transport in electron-boson systems: Here, we
consider metals with two distinct interacting degrees
of freedom, one fermionic (electrons; 1) and the other
bosonic (phonons, collective soft modes, etc.; ¢), with
their interaction modeled by a Yukawa term, ¢ iy [36]
A universal description of the system in the presence of an
external electromagnetic field, E, which acts as a source
terms, is given by

S /dT dr {L[, @) + V(r)ple + ieA(r,r) - 01V},
(1)

where L[y, ¢] = 91[0, — Ho(V)]¢) — ¢1[07 + *V?]¢ +

PYTg(V)h + uy (1&*1&)2 + ug|é|*, V(r) is a random po-
tential with (V(r)V (7)) o d(r — ') which is responsi-
ble for elastic scatterings among the electrons, g(V) is a
coupling function that controls the interaction between
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FIG. 2. Scattering processes contributing to the electrical
conductivity. In diagrams of type (a) the external frequency-
momentum can be carried entirely by electronic propagators.
Here, one or more of the boson lines can be exchanged for the
dashed lines representing four-fermion vertices [c.f. Appendix
C]. For diagrams of type (b), both virtual bosons and elec-
trons carry external frequency-momentum. These processes
become important in the drag regime, as explained in the
text. (c) and (d) are the renormalized current vertices that
capture the scattering of electrons and bosons by the exter-
nal photon, the thick straight (wavy) lines represent the fully
renormalized electron (boson) propagators.

1 and ¢, A is an external electromagnetic field such that
the applied electric field E = —0;A. We will work in
the regime where the self-interaction among the bosons
is weak; henceforth, we set ug = 0 and simplify notation
by setting u, — wu. The diagrammatic representation
of the remaining vertices is shown in Appendix C. Here,
the source of the Yukawa vertex is the four-fermion in-
teraction channel that produces soft collective modes as
the system is tuned towards a quantum critical point.
The remaining four-fermion interaction channels are rep-
resented by the u(1f4)? term. Thus, away from the crit-
ical point, while both interaction channels suppress the
quasiparticle weight, the development of non-Fermi lig-
uid correlations solely result from the Yukawa vertex [30].

The conductivity tensor is given by o5 =
<(¢T8iw)(1ﬁ8jw)>, which receives quantum corrections
from the interaction terms in £. Following Holstein [37],
we compute o;; at finite g and u. Two classes of diagrams
contribute to o;;. The first class of diagrams is exempli-
fied by processes depicted in Figs. 2fa), where the exter-
nal frequency-momentum can be carried entirely by elec-
tronic virtual excitations. The second class of diagrams,
represented by Fig. b), constitute scattering processes
where the external frequency-momentum must necessar-
ily be carried by both virtual electrons and bosons. As a
result, in scattering processes of the former (latter) cate-
gory the bosons are at equilibrium (out of equilibrium),
which makes the latter class of diagrams to become im-
portant in the drag regime where both the electrons and
the bosons are out of equilibrium [37].



While computing o;; in the drag regime, it is conve-
nient to view the renormalizations to the external-source
vertex (c.f., Appendix C) as a self consistent solution to
a pair of coupled equations for renormalizations to the
current-vertices, one for each type of current-vertex in
Figs. 2[c) and (d). These equations are represented dia-
grammatically as

In Eq. the quantum corrections are split into three
categories: the first term is the renormalized current ver-
tex for the electrons due to the four-fermion scatterings,
the second term contains additional corrections purely
due to the Yukawa vertex, and the final term encodes
the feedback from the boson-current vertex. Since the
bosons are not charged, they do not directly couple with
the external gauge field. Consequently, the quantum cor-
rections in Eq. are generated only through the renor-
malized electron-current vertex. We note that in Eqgs.
and the propagators are fully dressed by u, g, and V
appearing in , which implies that the fermionic ex-
citations that contribute to the above processes are not
necessarily quasiparticles. We have assumed that the sys-
tem is in the regime where the Migdal’s theorem applies
such that the vertex corrections from the Yukawa vertex
can be neglected and, in addition, the spectral functions
contain dispersive peaks.

The coupled equations above can be utilized to obtain
a relationship between the electron and boson distribu-
tion functions [37], as described in Appendix A.

In the limit Q@ — 0, Egs. (Al) and lead to a
set of coupled Boltzmann equations for the electrons and
bosons with electron-boson (1) and boson-electron (1)
collision integtals. For completeness, we add collision
integrals resulting electron-electron (I..), boson-boson
(Ipp), electron-impurity scatterings (I;y,,) and Langevin
source 6.J°“(z, k,t) [38] This procedure leads to the fol-
lowing coupled Boltzmann-Langevin equations:

Loy f(x,k) + Limp(x, k) + Lee(x, k) + Lp(z, k) = 5T
LyN (. q) + I (2, q) + Ie(2,q) = 0 (4)

where
Lyf(z, k)
= |0+ 0200+ (eBE =Y Ur 0,0 frr) - O | f (. k)
A : o)
LyN(z,q) = (9; + c20:)N(z,q) (6)

and v, = 0O¢;/0k, and ¢y = Owy/0q, are the group
velocities of the electronic and bosonic excitations, re-
spectively, and the fermion distribution function f here
equals f* introduced above. In addition, U ks describes
the effective electron-electron interaction, §.J¢*? is the ex-
traneous electronic flux for the description of electronic
fluctuations and shot noise [8, 39]. In the correlated
regime, where the electron-electron scattering length I..
is much smaller than the system size L, strong elec-
tron scattering significantly shapes the nonequilibrium
fermion distribution. This distribution, which was de-
rived in our previous work[§], has the following form:
f(z, k) = fr(er, Te(x)) + eEv,T0 fr, where fr(ex,Te)
is the Fermi Dirac distribution function with the elec-
tron energy € = eg + Zp, Uk, k0 frr and temperature 7.
The first term in this expression, symmetric in momen-
tum space, is critical for determining the characteristics
of shot noise, while the second, antisymmetric term pre-
dominantly influences the current behavior.

Shot noise: When the impurity scattering is domi-
nant over inelastic scatterings, the shot noise can be ex-
pressed as [8] [39]:

L/2 _
- / da / def(z,)(1— f(z,6)) = AGT, (7)

L2

S

where T, = % ffé% dxzT,(z) is the averaged nonequilib-

rium temperature. The Fano factor, defined as the ratio
between noise and current, could be expressed as follows,

S
F= 2eGV

=20, (8)

where ©, = T./eV denotes for the dimensionless aver-
aged temperature. In the absence of any electron-boson
coupling, the Fano factor F is 1/3 for non-interacting
electrons[39] and +/3/4 for hot electrons with strong
electron-electron collisions[27, [40]. It holds true even in
the context of a strongly correlated Fermi liquid where
the Landau parameters are considered to be large [§].
When the electron-boson coupling is present, the elec-
trons and bosons will exchange energy and momentum
during electron-boson scattering. Consequently, the tem-
peratures of the electrons (7,) and bosons (T}) evolve,
which in turn affects the characteristics of the shot noise.
To accurately track this evolution, it is necessary to solve
the coupled Boltzmann-Langevin equations for both elec-
trons and bosons. In this study, we consider the case
where bosons deviate from global equilibrium due to



interactions with nonequilibrium electrons, and assume
they achieve local equilibrium in the steady state due to
scattering with electrons. This local equilibrium is char-
acterized by a Bose distribution function ng(w,Ty(x)),
where Ty () denotes the locally defined temperature at
position z within the sample.

To investigate the evolution of T, and T3, we derive the
diffusion equations for electrons and bosons. They are
obtained by splitting their nonequilibrium distributions
into symmetric and antisymmetric part, and substituting
equation for the antisymmetric part into symmetric part
(for details see the Appendix D):

DO2f(e,T.) + Iy =0 (9)

d 1 1
CThe (Tbe + 7'bb> np(w,Ty) — nB(w,(Te;]
10

Pnp(w, Ty) =

where

I, = /de(w)[Zf(e,Te) —fle—w,T.) — fle +w,Te)]

[nB(vae) - nB(waTb)] (11)
n — n
where M(w) = 2ot L — deNpdais (2)

Here, d is the space dimension, n = 1 describes the scal-
ing of the Yukawa coupling with Goldstone bosons (e.g.
phonons and AFM magnons), and n = 0 corresponds to
the Yukawa coupling with critical bosons (e.g. collective
soft modes of the Hubbard-Stratonovich field). The in-
verse boson-boson scattering time, represented by 1/7p,
is assumed to be negligible relative to 1/7.. Multiply-
ing E@ with € and integrate with ¢, also multiplying
Eq. with w9 and integrate with w, one gets:

6
L2a§@2 + ﬁ — ,ye(@g-i-n-i-l _ QngnJrl) (12)
LZa:z@gfnJrl _ ,yb((_)g+n+1 o @ZJrnJrl) (13)

where O, ), the dimensionless temperature for electrons
(bosons), and the parameters 7. and ~, are defined as
follows

Ocry = Tewy/€V:  ve =L/ o =L*/l5,, (14)
with 15! = 17L, = \/SGEEHIR )  (ev)dnt

-1 _— - 8dm2N2 ¢(d+n dtn .
and lbel =1 7 ¢(d+n+D)T(d+ H)Agb(eV)? ’

bi—e — vZwZ ((d—ntD)I(d—nt1)

((z) and T'(z) denote the Riemann zeta function and
the Gamma function, respectively. v, are dimension-
less quantities that characterize the energy relaxations of
electrons (bosons) due to interactions with bosons (elec-
trons), respectively. The terms lo, and I, denote the
electron-boson and boson-electron relaxation lengths, re-
spectively. Specifically, I, measures the distance elec-
trons can travel without energy relaxation due to bosons,
and [pe similarly applies for bosons relative to electrons.
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FIG. 3. Fano factor F' as a function of the ratio v, /ve < Aes,
in the electron-boson drag regime for critical bosons (n = 0),
where T.(z) = Tp(z). This regime is characterized by either
Ye > 1 or v > 1.

We note that the electron-boson relaxation length ., dif-
fers from the electron-boson scattering length used in
the context of resistivity (e.g., Bloch’s law for acous-
tic phonons), where the latter is derived from the lin-
earized electron-boson collision integral assuming that
bosons are in equilibrium. We further note that the ratio
Yo/Ye X Aep, the electron-boson coupling at the Yukawa
vertex.

Multiplying Eq. with 7. /9 and sum with Eq.7
one can get an exact relation between the two tempera-
tures:

2, Yeqd—nt1_ 0 [1 1 a2
Oc+ %Gb o2 {8 2 (L) } (15)
where we utilized the zero temperature conditions at
two boundaries: T.(+%) = T,(+%) = 0. This relation
captures the conservation law of heat transfer between
electrons and bosons under local equilibrium conditions.
Here, the second term in Eq. can be neglected when
Ye <K b, corresponding to lp. < lgp. In this regime, the
electrons stay hot, resulting in Fano factor F' = \/3/4
Conversely, when vy, < 7., or equivalently o, < lpe, the
temperature of the bosons, ©, — 0. This occurs be-
cause in the absence of significant scattering from elec-
trons (1/7p = 0), bosons remain in global equilibrium.
We investigate the regime where v, > 1 or v, > 1,
which arises when the electron-boson or boson-electron
scattering is sufficiently strong such that L > [, or lpe.
The strong drag between electrons and bosons equalizes
their temperatures, leading to:

0. =0, (16)

as seen from Eqn. (12 or at leading order. Under
such drag regime, one can get analytic solutions for ©,
after combining Eq. (16) with Eq. (15). We summarize
these results in Table (I) and plot them as functions of
Y/%Ye in Fig. We note that our analytical results
are fully supported by the direct numerical solution to

Eqgs. .



ngfn) (z) n=0 n=1
d=2 0@ (%b 606) V5o, Ooe
3
2
i=3 |L < % inep, - gb) 0 (2, 00.)
TABLE I. Table of local temperature for electrons coupled

with critical (n = 0) and Goldstone (n = 1) bosons in two
(d = 2) and three (d = 3) dimensions in the limit . >

1. @05(23) = 3

oz [1 — (2%’)2] is the local temperature of
hot electrons without electron-boson couplings, which leads
to F(Aep =0) = ?. The form of ©® is shown in Appendix
E.

Discussion: Fig. [3]is the central result of our work.
Note that v,/7e < Aeb. When the electron-boson cou-
pling Aep is small, I,y < L, lpe, and the Fano factor F
goes below v/3/4. By contrast, when the electron-boson
couping is adequately large, as we expect for the cases
where the bosons correspond to collective excitations of
the electrons, the Fano factor is restored to \/3/4 This
qualitative trend is illustrated in Fig.[T{b).

To summarize, in this paper we study the shot noise

in a coupled electron-boson system when the bosons are
allowed to go out of equilibrium due to their interactions
with the electrons. We construct the coupled Boltzmann-
Langevin equations. We show that adequate electron-
boson couplings restore the Fano factor to its Fermi liquid
value. Our results are important for understanding the
reduced shot noise observed in quantum critical heavy
fermion metals and beyond, pointing to the quasiparti-
cles being lost from the beyond-Landau form of quantum
criticality as the underlying mechanism.
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Appendix A: Coupled Boltzmann equations

The coupled equations (2,3) of the main text can be utilized to obtain a relationship between the electron and
boson distribution functions [37],

fE(ehtq + Q) + [ (€rtq)
2

Q- vk = Q)Pp = v + 272 |94/ l(@kiq — O T ng) (

+ nB(wq)> (5(6k — €k+q Tt wq)
q,t

) 1
+ %‘B (Miqiwq> (fzf(ekiq + Q) - f?(ekiq)) (‘Dkiq - ‘I)k) (Al)
Q- Vqwg — Q)ng = 2”2 194120 (€x + wg — €xq) [—f;(ek +wg) + f;(ek)] [Phrq — Pi — 1] (A2)

k

Here, we have set i = 1, vy is the magnitude of the renormalized fermion-current vertex due to local coulomb
interactions, (Q,Q) are the frequency-momentum of the external electromagnetic field, A, f;(x) is the Fermi-
Dirac distribution function for the occupied and vacant states, np(x) is the Bose distribution function, ®; =
[fi — [r(er)]/[eEOe, fr (ex)] and ng = [Ny — np(wy)]/[eEdw,np(wy)] with fi and N, being the full fermion and
boson distribution functions, respectively, PB(x) denotes the principal value, g, is the Fourier components of the
Yukawa coupling [42], and € and w, are the electron and boson dispersions respectively. We note that the Thomas-
Fermi screened temporal part of the electromagnetic gauge field can also participate in Boltzmann transport as an
independent bosonic mode. Here, we assume the temperature window is sufficiently smaller than the Thomas-Fermi
screening scale, such that the temporal part of the electromagnetic gauge field does not participate in transport. We
describe the case when the spectral functions are sharp, though we expect our analysis to remain valid provided that
the spectral functions are sharp enough to display dispersive peaks.

In the limit Q2 — 0, Egs. and leads to a set of coupled Boltzmann equations for the electrons and
bosons with electron-boson (I.;) and boson-electron (Ip.) collision integtals. For completeness, we add collision
integrals resulting electron-electron (I..), boson-boson (Iy,), , electron-impurity scatterings (I;m,) and Langevin
source 6.J°“(z, k,t) [43]. This leads to the coupled Boltzmann-Langevin equations given in Eq. (4) of the main text.

Appendix B: From coupled vertex corrections to Boltzmann equations

In this section we outline the path from Egs. (A1) and (A2]) in the previous Appendix to the coupled Boltzmann
equations. Here, ®;, and n, parameterize the deviations from the equilibrium fermion and boson distribution functions,
respectively,

frv = fr(er) + eE®Oc, fr (€k); Ny = np(wg) + eEngd, np(wy). (B1)

In the limit Q — 0 we obtain

iQ-vp®y = v, + 27 Z Wk, @)(Ppysq — P — snq) (f;s(ekJrsq) + nB(wq)) (B2)
q,s=+
iQ - Vywgng =21 > Wi(k,q) [~ fr(ex +wg) + fr (€8)] [Prrg — P — 1] (B3)
k

where we have defined the transition probability
Wi(k, q) = 2lgq*6(ek — €rtq + swg) (B4)

We multiply both sides of Eq. (B2)) [Eq. (B3)] by eEQ,, fr(ex) [e£0,,nB(w,)], and add iQ- vy fr [1Q - vinp] to obtain
the Boltzmann equations in the main text.

Appendix C: Bare vertices

Here we specify the bare vertices associated with interaction terms in Eq(1) of the main text.



(a) (b) ()
FIG. 4. Graphical representation of the three vertices that contribute to electrical conductivity. (a) The electron-boson vertex;

(b) the four-fermion vertex; (c) the external source vertex representing the direct coupling between an applied electromagnetic
field and the electron current.

Appendix D: Boltzmann equations for electron-boson coupled systems

We study the coupled Boltzmann equations for electrons and bosons:

Lf(x, k) + Limp(x, k) + Lee(x, k) + Te—pn(z, k) =0 (D1)
Ca:a:rN(ma Q) + Iphfph(ax Q) + Iphfe(xa Q) =0 (D2)

where the collision integrals are given by

Limp(z, k) ZW (kK [f(x, k) (1 = f(z, k")) — f(z, k") (1 = f(z, k))], (D3)
k/
Iee(z, k) = Z W(12; 34)Oktkog ks + ks O (€ + €2 — €3 — €4)[f3fa(1 — f1)(1 — f2) — fifa(1 — f3)(1 — fa)], (D4)
234

Lep(z, k) 2772 l9g1* {[1 = f(, k)] f (2, k + @)1 + N(z,q)] = f(z, k)[1 = f(z,k + q)]Nx(2,q)} 6k + wWax — €htq)

+ ngl {1 = flz, B)]f(x, k+ @)N(z,—q) — f(z, k)1 = fz,k + @)1 + Nx(z, )]} (e — w—qr — €k—q)

(D5)

Ine(w,q) =47y |gq|* {[1 + N (2, @))f (2, k + @)[1 = f(x, k)] = N(z,q)[1 = f(z.k + )] (2, k)} 6(ch+q — war — ck),
k

(D6)

awq — Gz

and ¢, = e . is the group velocity of bosons. In these collision integals, W (pp’) and W(lQ; 34) are the scattering

n
probability for electron-impurity and electron-electron collisions respectively, and [g,]* = Aep (ﬁ) , where n = 1

denotes for the Yukawa coupling with Goldstone bosons (e.g. phonons and AFM magnons), and n = 0 denotes for
the Yukawa coupling with critical bosons (e.g. collective soft modes of the Hubbard-Stratonovich field).
When [.. < L, the Fermi distribution has the following local equilibrium form:

flz, k) = frek,Te(z)) +eE - 'vagi frlex —eE -vpr, To(x)) (D7)

For simplicity, we assume the velocity of fermions is equal to the Fermi velocity v, = vp.
The form of Iy, can be simplified with the help of Equ|[D7]

Ie(w,q) =479 *Inp (we, To(2)) = N(x, @) Y _[f(ex — eBvpT) = f(ex + wy — eEvpT)|0(chpq — war — k) (D)

k
:47I'NF|gq|2£[nB(mee) - N(ZL‘,q)] (Dg)
where
1 1 w
;[f(ek) — J(er+q)|0(w — €pqq + €x) = 7;1771[; W = €4q T € + i(5] - NFF(] (D10)

The nonequilibrium boson distribution can be split into even and odd sectors:

N(.I, Q) = Neven(xa Q) + Nodd(x7Q) (Dll)



where Neyen, = np(wy, Te) preserves under ¢ — —¢, and Nogq(z,q) = —Noga(z, —q). Due to different parities, the
boson Boltzmann equation is split into two equations:

€20:Nogq = 7[”3(“(17 Te) - Neven(xa Q)]/Tph—e (D12)
1
€202 Neven = Nodd(x,Q)(T(q) + m (D13)
with 1/7 = 47rNF|gq|2 c = 47TNF)\eb . Combining Egs. | j one get
9 A2 1 1 1
0:np(we, Ty(x)) = o\t [np(wq, Ty (2)) — np(wq, Te())] (D14)

where ¢, = g‘(‘f = chI’ 2= 502.
On the other hand, from the electron side, the collision integral can be simplified at leading order (we do not

consider Umklapp scattering: G=0),

L) =2 3 lal” {1 = £ St @[+ N )] = £ 9L = e+ M@0+~
+ ngl {1 = f(z, k) f(z,k+ q@)N(z,—q) — f(z,k)[1 - f(z,k+ @)][1 + Na(z, )]} 6 (e — w—gqr — €k—q)
(D15)
:/de(w) {1 = flen, To)lf (er + w, Te)[1 + np(w, Ty)] — f(er, Te))[1 — fler + w, Te)|np(w, Tp)
+[1 = flew, Te)| f (e — w, Te)N(w, Tp)) — flew, Te)[1 — flex —w, Te)][1 + N(w, Tp)]} (D16)
:/dWM(W)[Qf(Gvae) — flew —w, Te) — flex +w, Te)][np(w, Te) — np(w, Tp)], (D17)
where
dd
M(w) = 271'/ on) \gq| O(w — wq)o(€r + wg — €xtq)- (D18)
For parabolic electronic bands we have,
e
Wq + € — €yq = (c—vpcos)g + o (D19)
The form of M (w) is dimensionality dependent. For small g in three dimensions
1 A il
Mw) = 5 vpczwgw , (D20)
while in two dimensions
1 1 n
M) = 2 ~ L (D21)
27 vpesin(arccos (¢/vr)) 2T vpcw’
We can also split the non-equilibrium Fermi distribution function into even and odd sectors:
f(@,k) = feven(w, k) + foaa(x, k), (D22)

where feyen = fr(e,Te(2)), fodda = eEvpTO.fr(€,T.), and 7 denotes the electron-impurity scattering time. After
combining the even and odd sectors of the Boltzmann equations [§], we get the following coupled electron-boson
diffusion equations:

Dagf(ev Te) + Iefph =0 (D23)
*np(w, Ty) = d(4TNpX/vpwh)?w?" [np(w, Ty(x)) — np(w, T.(z))]. (D24)
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Appendix E: Analytic expression of ©. in the drage regime

In the electron-boson drag regime, the bosons and electrons share the same temperatures: ©, = ©,. After combining
with Eq. and Eq. in the main text,

®e:@b (El)
2, Yegdnir_ 6 |1 1 a\2 E2
®e+’yb®b o2 [8 2 (L) (E2)

one can solve O, with different dimension d and scaling exponent n in Yukawa coupling as functions of p = /7. and
2
Ooclw) = /2 [1 - (2)7]:

ed=2n=1:

ed=3n=0:

1 /
Ge(pa 6Oe) = \/Q\/ p2 + 4p®(2)e -Pp (E4)

ed=2n=0andd=3,n=1:

1/3
1 91/3 2 (279(%@17 — 2p® + 3,/816¢,p* — 12@%4’4)

Oc(p, Ope) = 3| 7T iz T 21/3
(2763.0 — 20* + 3\/816.p7 — 1263")

(E5)
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