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Abstract—Intersection crossing represents one of the most
dangerous sections of the road infrastructure and Connected
Vehicles (CVs) can serve as a revolutionary solution to the
problem. In this work, we present a novel framework that detects
preemptively collisions at urban crossroads, exploiting the Multi-
access Edge Computing (MEC) platform of 5G networks. At the
MEC, an Intersection Manager (IM) collects information from
both vehicles and the road infrastructure to create a holistic view
of the area of interest. Based on the historical data collected, the
IM leverages the capabilities of an encoder-decoder recurrent
neural network to predict, with high accuracy, the future vehicles’
trajectories. As, however, accuracy is not a sufficient measure
of how much we can trust a model, trajectory predictions are
additionally associated with a measure of uncertainty towards
confident collision forecasting and avoidance. Hence, contrary
to any other approach in the state of the art, an uncertainty-
aware collision prediction framework is developed that is shown
to detect well in advance (and with high reliability) if two vehicles
are on a collision course. Subsequently, collision detection triggers
a number of alarms that signal the colliding vehicles to brake.
Under real-world settings, thanks to the preemptive capabilities
of the proposed approach, all the simulated imminent dangers
are averted.

Index Terms—Collision Avoidance; Trajectory Predictions;
Uncertainty Estimation; Intelligent Transportation Systems.

I. INTRODUCTION

Recent studies have shown that accidents on the road infras-

tructure result in more than 1.35 million worldwide casualties

annually [1], highlighting that safety is still of the utmost

concern in the automotive sector. As a possible solution, new

intelligent functionalities have been recently considered for

the new generation of connected (and automated) vehicles that

are about to enter the market [2]. Specifically, several efforts

exploit the fact that these vehicles can exchange information

and create a better understanding of their surroundings, which,

in turn, can help to improve driving assistance systems and
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avoid dangerous situations. As an example, an enriched view

of the driving environment helps in refining the vehicles’

trajectory predictions, which could be later used as the main

tool to foresee possible collisions on the road infrastructure.

As a consequence, predicting the trajectories of Connected

Vehicles (CVs) is a well-researched topic. Nevertheless, pre-

dicting future collisions starting from trajectory predictions

has been scarcely investigated, and still remains a challenging

task. For a successful collision detection framework, indeed,

trajectory predictions must be compared effectively, and, for

any possible real-time safety application exploiting such a

framework, in a time-efficient manner. Hence, when it comes

to collision avoidance, simplified trajectory predictions have

been proposed, namely: (i) constant speed location projections

[3]; (ii) Kalman Filter (KF) predictions, with a Time-To-

Collision (TTC) metric being used as a risk factor [4]; and (iii)

collision time estimation via polynomial approximations [5].

However, the aforementioned approaches do not achieve the

level of precision required for reliable and preemptive collision

detection when a complex driving environment is considered,

i.e., when human-driven vehicles at urban intersections are

considered [6]. Indeed, due to the human factor, these simpli-

fied trajectory predictions cannot cope with the higher levels

of uncertainty (i.e., input uncertainty is present) and with the

more evident non-linearities.

This work aims at filling this gap by presenting a framework

that preemptively detects collisions, with short execution time,

exploiting a precise model able to capture the highly non-

linear and uncertain behavior of drivers, even at dense urban

crossroads. Our framework is based on the ability of the Multi-

access Edge Computing (MEC) platform of 5G networks

to collect, thanks to both Vehicle-to-Infrastructure (V2I) and

Infrastructure-to-Infrastructure (I2I) communications, relevant

and extensive data sampled in real-time (e.g., regarding vehicle

location and speed, but also traffic light phases) at an edge

entity, named the Intersection Manager (IM). Such data is

processed directly at the edge to obtain not only accurate

trajectory predictions, but also an estimation of the associated

prediction uncertainty. It is worth mentioning that, even if

a few trajectory uncertainty estimation models exist in the

literature, e.g., [7], these are obtained in a computationally

expensive way, which is not appropriate for real-time decision-

making. In our work, instead, trajectory uncertainty estimation

is obtained through an estimation of the prediction inter-

vals [8], which capture indirectly the various, possible, modes

of future vehicle trajectories without the need of defining the

set of possible driver actions at the intersection.

More in detail, trajectory predictions and uncertainty estima-
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tions are obtained through the use of two lightweight indepen-

dent encoder-decoder regression architectures with recurrent

units, specifically designed for sequence-to-sequence predic-

tion problems, i.e., using LSTM Encoder Decoder (LSTM-ED)

models [9]. Then, a Random Forest Classifier (RFC), working

as an ensemble technique, is used to recognize patterns of

trajectory predictions and uncertainty estimations that led to

dangerous situations in the past, to timely determine if two

vehicles are on collision course. Thanks to the proposed

approach, the IM can transmit alarms to the vehicles involved,

so that the imminent danger is avoided. The performance

of the proposed approach is verified through extensive tests

performed on a diverse set of simulations drawn by real-world

intersection data, with results of high quality in terms of:

(i) detection rate; (ii) low false positive rate; and (iii) time

between the alarm sent by the IM and the collision time, i.e.,

the available reaction time. In the obtained results, accounting

for trajectory prediction uncertainty estimation allows for: (i)

reducing the number of false collision detections when the

point trajectory predictions suggest a collision but a large pre-

diction uncertainty is associated with them; and (ii) improving

the available reaction time to possible threats where a large

uncertainty is associated with safe trajectory predictions. As a

result, all dangerous situations are predicted largely in advance

by the proposed framework, allowing to efficiently avoid the

imminent collisions with simple maneuvers that can be applied

also by human drivers, e.g., constant braking.

In the rest of the paper, Sec. II reviews the state of the art

on trajectory prediction and on collision avoidance algorithms

at urban intersections, and summarizes the main contributions

of this work (Sec. II-C). Sec. III illustrates an overview on

the proposed collision forecast framework, Sec. IV shows the

trajectory prediction and the uncertainty estimation models,

while Sec. V and Sec. VI present the RFC technique that is

used to forecast collisions, and how it can be used to avoid

imminent dangers at urban intersections, respectively. Sec.

VII showcases the obtained performance on a realistic real-

world intersection data, including comparisons with a collision

avoidance technique that only exploits point-based vehicle

trajectory predictions and with the state-of-the-art approach

in [5]. Finally, Sec. VIII concludes the work.

II. RELATED WORK

As a vital safety application in the automotive domain,

diverse methodologies have been presented for preemptive

vehicle collision detection [10]. As in our approach, in most of

the proposed solutions, e.g., [4,5,11,12], a collision is detected

thanks to the use of vehicle trajectory predictions. As such, we

first discuss existing trajectory prediction approaches that can

be applied to urban intersections (Sec. II-A), then we discuss

previous works that propose collision avoidance frameworks

(Sec. II-B), and finally, we summarize how our proposed

approach advances the state of the art (Sec. II-C).

A. Vehicle Trajectory Prediction

The vehicle trajectory prediction problem is by itself a

popular topic with significant research activity [13]. Related

works mostly focus on predicting vehicle trajectories for

simple scenarios, e.g., in highway scenarios, or they exploit

only a partial view of the road infrastructure ([14]–[17]) when

more complex ones are analyzed.

This type of solution can hardly be extended to urban

intersections. As an example, [18] proposes a vehicle trajectory

prediction framework where its output is based on a “static”

categorization of the drivers’ driving styles. Assuming that

driving styles remain constant over time works well in a

highway setting, but such an assumption does not hold at

intersections, where the drivers’ decisions depend on the

specific scenario encountered. On the other hand, authors

in [19] use Gaussian Processes to define both the vehicle’s

expected trajectory and the uncertainty associated with the

prediction, enumerating the probabilities associated with all

possible driver intentions in a highway scenario. Considering

the countless possible maneuvers at intersections, a similar

approach is difficult to tune and does not scale.

Fewer works are present if the urban intersection use case

is taken into account. A first result involves the prediction

of drivers’ maneuver intentions, i.e., predicting if a vehicle

proceeds straight or turns at the intersection, rather than

examining full trajectory predictions [20,21]. More evolved

approaches provide a “group” trajectory prediction framework,

following the intuition that vehicles’ interaction is critical to

improve performance [22,23]. Similarly, single-vehicle trajec-

tory predictions accounting for interaction-aware architectures

based on Graphical Neural Networks (GNNs) have been

proposed recently [24,25]. Herein, both interactions among

vehicles and between vehicles and the road infrastructure

are modeled and accounted for to improve performance.

Furthermore, a multimodal trajectory prediction framework

generating multiple possible trajectories for each vehicle, and

their corresponding likelihood, was proposed in [26]. Even if

the support of wireless communications has been envisioned

in [26], and despite the fact that incorporating surrounding

vehicle movements improves the prediction accuracy, the

computation complexity increases multi-fold when all the

possible maneuvers and interactions are modeled individually.

Building on the same concept, hence suffering from the

same limitations, [27] makes use of Temporal Convolutional

Networks and of Kalman Filter outputs, to also obtain a

trajectory uncertainty estimation.

Alternatively, [28] proposes an approach similar to the

one presented in our work. A trajectory prediction model

is obtained through the monitoring of a specific area by

collecting information at a MEC server. A general trajectory

prediction model is then transmitted back to the vehicles, to

update the model based on their driving style. Even though

interesting, this approach considers the area of interest divided

into “squares”, among which the movement of vehicles is

predicted, hence suffering from the quantization effect. Fur-

thermore, [7] obtains a set of predictors based on different

input sources (i.e., camera, odometry, and other sensor data).

Herein, uncertainty is obtained as a confidence score and it

is used to select, among the predictors obtained, the best tra-

jectory prediction. Nevertheless, trajectory predictions based

on a single source, even if the best at any point in time, are
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not as precise as building a trajectory prediction from multiple

sources and properly accounting for the associated uncertainty.

Finally, it must be noted that none of the approaches

presented above integrates the trajectory prediction framework

with an approach that preemptively forecasts collisions among

vehicles; hence, it is unclear if any of the advanced aforemen-

tioned approaches are able to fulfill the necessary critical time-

sensitive requirements of a collision avoidance application.

B. Collision Detection/Avoidance

The approaches present in the state of the art for collision

detection/avoidance can be divided into two groups, i.e., in

frameworks that forecast collisions based: (i) on information

relative to the present state of the vehicles; and (ii) on

information that involves predictions of future vehicles’ states.

For the first class of collision prediction algorithms, two

metrics are used to identify imminent dangers: (i) distance

[3,29,30], and (ii) time [4,11,12,31]. In [3,29,30] distance-

based collision detection methodologies utilize both real-time

in-vehicle sensors’ measurements and/or information received

through a communication framework. In [31], while similar

input data are considered, a time-based approach is used to

detect and avoid collisions. Specifically, authors in [31] utilize

a set of virtual collision points between any two lanes in an

intersection and a local database where vehicles’ intentions

are collected. Then, while approaching the intersection, each

vehicle queries the database to check if any of the surrounding

vehicles will simultaneously be at the same virtual collision

point. All the aforementioned approaches use the current

vehicle information to estimate the future vehicles’ pair-wise

distances or collision times, assuming, however, only constant

movement, without any speed or direction changes. As a

consequence, these methods are reactive in nature and are

inherently affected by a delay in detecting imminent collisions

at urban intersections.

Very few approaches, e.g., [4,5,11,12], belong to the second

class of collision detection algorithms. As in our work, in this

class of solutions, more precise trajectory predictions are used

as a mean to foresee or prevent collisions. In [4,12], a KF is

used to predict the future trajectories of the vehicle, with TTC

used as a risk factor to identify the potential collisions. Sim-

ilarly, [11] uses a non-linear Square-Root Unscented Kalman

Filter (SR-UKF) to predict vehicles’ trajectories, and utilizes

the Monte Carlo sampling method to define the uncertainty

region around the predicted trajectories. Then, a set of collision

risk factors, such as the probability of the current trajectory,

TTC, and conflict points in vehicles’ bounding boxes, are used

to detect collisions.

A different approach is followed in [32], where a decen-

tralized collision avoidance method is proposed. Specifically,

this method forbids a vehicle to enter specific sets of speed

and position configurations that eventually lead to collisions.

Based on the assumption that the vehicle path and collision

area are known, the study predicts if a vehicle is about to

enter such a set, based on a Kalman filter prediction technique,

and, if this is the case, it ensures that the automated collision

avoidance mechanism located on-board the vehicle executes

specific strategies to avoid the imminent danger. Similarly, [33]

and [34] account for constant turn rate and acceleration-based

unscented Kalman filter to predict collisions. Accounting

for human drivers, herein the automated collision avoidance

mechanism enters in action only if the danger is imminent,

and the driver has not intervened as of yet. Furthermore, [5]

approximates future vehicles’ trajectories by solving a fourth-

degree equation concerning the vehicles’ derivatives (position,

velocity, and acceleration). Collisions are then determined

based on the time (time-to-collision) and spatial (space-to-

collision) domain thresholds across all vehicle pairs.

Finally, following a completely different philosophy, in the

state of the art there exists a set of approaches that, instead

of predicting a collision, they plan safe trajectories for the

vehicles based on an estimation of risk from their surroundings

([35,36]). Nevertheless, this class of solutions only applies to

autonomous vehicles, hence it is outside of the scope of our

work.

C. Novel Contribution

Overall, even though there exists a large body of work

concerning vehicle trajectory prediction and LSTM models

have already been used for this task, e.g., [14], our framework

differs from prior art as it exploits a holistic view of the area

of interest, including the past and the present status of both

the infrastructure and all the vehicles crossing that area. Such

holistic view is obtained thanks to the adoption of 5G and

MEC technologies. Furthermore, differently from any other

work in the field, prediction intervals are used to measure the

reliability of the trajectory predictions. This allows capturing

the presence of multiple possible future driver choices in a

single metric, which can be computed efficiently, since it does

not require modeling separately all maneuvers.

To the best of our knowledge, this work presents, for the first

time, an ML-aided uncertainty-aware framework that allows

obtaining efficient preemptive collision detection, even when

considering human-driven vehicles at urban intersections. In-

deed, contrary to all proposed approaches, our collision fore-

cast method exploits both precise trajectory predictions and

the associated uncertainty estimations, which allow raising

alarms, in specific scenarios, even if the vehicles’ predicted

trajectories appear to be safe. Thanks to the use of the RFC,

the adopted framework is able to easily recognize real-time

patterns of trajectory predictions and uncertainty estimations

that led to dangerous situations in the past, raising the corre-

sponding alarms within tight latency constraints. As a result,

the proposed framework is able to predict an imminent danger

well in advance, so that human drivers can avoid the collision

by performing simple maneuvers.

Using real-world data, the proposed framework shows im-

proved performance in all monitored metrics (i.e., in terms

of trajectory prediction errors, collision detection false posi-

tives, available reaction time to drivers to avoid an imminent

collision) when compared to: (i) the most relevant work on

collision detection at urban intersections, i.e., [5]; and (ii) a

collision detection technique based only on trajectory predic-

tions. In particular, when compared to a conventional tech-

nique that considers only point-based trajectory predictions,
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our framework improves the median available reaction time by

61%. Hence, given the obtained performance, our framework

satisfies all the requirements (highly accurate output and short

runtime) of the collision avoidance application at hand.

Fig. 1: An edge computing-based scenario, including an IM collecting
data generated by the vehicles and the road infrastructure and
transmitting alarms in case of imminent collisions.

III. NETWORK-ASSISTED COLLISION DETECTION:

OVERVIEW OF OUR FRAMEWORK

In this work, we focus on a network-assisted preemptive

collision detection framework that allows vehicles to prevent

dangerous situations. Although the use of such an application

can be extended to any dangerous area of the road infras-

tructure, here we focus on automated and human-driven CVs

crossing urban intersections, as depicted in Fig. 1.

In our framework, an IM is hosted at the MEC [37] in the

proximity of a gNodeB (gNB) covering the geographical area

around the intersection. The appropriate number of computing

resources to allocate to the IM to respect the time-sensitive

nature of the application at hand can be determined through

strategic scheduling even in a MEC platform running multi-

ple services, as shown in [38]. Through integrated V2I and

V2V communications, the IM can gather data from multiple

sources, namely, (i) onboard sensor measurements sent by

the vehicles crossing the intersection through Cooperative

Awareness Messages (CAMs), and (ii) infrastructure-based

information transmitted by city smart sensors and cameras.

Note that CAMs can include several pieces of information

provided by the vehicle’s Controller Area Network (CAN)

bus, including speed, direction, steering angle, acceleration,

braking, yaw rate, and relative distances with surrounding

vehicles obtained through LiDAR. As for the data collected by

the road infrastructure, these can include traffic light phases,

vehicle lane information, and number of vehicles in each

lane. As a result, the benefits of using a central entity, i.e.,

the IM, at the network edge for road safety are multi-fold:

(i) at any time, the IM has a significantly richer view of

the intersection than the individual vehicles, (ii) the IM can

collect CAMs and historical data (e.g., collisions/dangerous

situations) in a local database to train precise models, and

(iii) unlike cloud implementations, the IM meets the tight

latency constraints of real-time safety applications. In this

work, with the obtained extended view of the intersection, the

IM accurately predicts potential future dangerous situations.

Moreover, upon detecting two or more vehicles on a collision

course, it promptly alerts them by transmitting a Decentralized

Environmental Notification Message (DENM). Upon receiving

such an alarm, CVs will start braking; thus, the objective of

the IM is to detect a possible upcoming collision early enough

to let vehicles avoid the imminent risk.

To this end, we envision the implementation at the IM of

the collision detection framework whose structure is depicted

in Fig. 2. Our detection framework searches for a possible

collision as soon as a new CAM, updating the information

relative to a vehicle status, is received. Using a sliding window

approach, recent past information originating from vehicles

and the road infrastructure are used as input data to our

framework. Collision detection at intersections is in essence

composed of two complementary, yet distinct, sub-problems

that operate in cascade, i.e., the latter takes as input the output

of the former: (i) trajectory prediction and (ii) detection of

vehicles on a collision course. Vehicle trajectory prediction

consists of point-based estimates, inevitably containing some

uncertainty. Thus, to develop a trustworthy collision detection

mechanism, trajectory prediction uncertainty is appropriately

measured, interpreted, and processed before decision-making.

For both trajectory prediction and uncertainty estimation (even

though with different loss functions), LSTM-ED models are

exploited to: (i) solve the problem of storing long time-steps

in the learning memory [39]; (ii) capture the intrinsic non-

linear nature of vehicle trajectories; and (iii) scale to high-

dimensional data (unlike Bayesian learning).

The obtained vehicles’ trajectory predictions, along with

the associated uncertainty estimation and other relevant in-

formation, are subsequently used by the IM to train an RFC

that, based on historical data, recognizes patterns of dangerous

inputs dangerous inputs so to detect in real-time the event of a

collision or of situations that are deemed dangerous. Finally,

to avoid spurious detections, the IM employs a sporadicity

filter that transmits to the vehicles involved an actual alarm

only if, for a specific pair of vehicles, the RFC detects a

dangerous situation for a number of consecutive predictions.

Overall, a novel uncertainty-aware collision detection mecha-

nism is developed, showing, as presented in Sec. VII, to be

capable of accurately and timely identifying future collisions.

Interestingly, adding to the proposed framework a measure of

the trajectories’ certainty level is crucial for improving the

obtained performance.

IV. VEHICLE TRAJECTORY PREDICTION AND

UNCERTAINTY IN DEEP LSTM-ED

The trajectory prediction sub-problem can be in general

described as a sequence-to-sequence problem where the past

vehicle trajectory is used as input, together with other relevant

information, for predicting the future vehicle trajectory for

several time-steps ahead. LSTM-ED models are a promis-

ing modeling approach (as shown in [6]) for the trajectory

prediction problem. As in similar use cases, a least squares

loss function is minimized to find a predictive model that,

in essence, approximates the relationship between the input
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Fig. 2: An overview of the proposed network-assisted collision detection methodology.

data collected by the IM and the future vehicle positions.

Hence, the output of the model is an estimate of the future

vehicles’ positions, inevitably containing some uncertainty.

This estimate is in fact the mean response value, with the

variability around that mean representing the uncertainty of

the model itself and of the noisy input data.

When collision avoidance is the ultimate goal of the trajec-

tory prediction sub-problem, a point-estimate is not enough, as

it may lead to erroneous collision detections or more severely

to the underestimation of a possible collision event. While the

latter situation is more severe as the vehicles cannot be notified

timely towards collision avoidance, the former should not be

ignored, since it may lead to inappropriate decisions/actions

with many undesired effects (i.e., frustration of drivers or

even collisions). Measuring the certainty level of trajectory

estimates, essentially building prediction intervals that quantify

the existence of multimodal future trajectories [8], helps

reducing the errors associated with our framework since:

(i) it reduces the number of false collision detections when

the average trajectory estimations suggest a collision, but

a large prediction uncertainty is associated with them; and

(ii) it avoids underestimating a possible threat when a large

uncertainty is associated with safe trajectory predictions.

To this end, in this section we focus on trajectory prediction

(Sec. IV-A) and uncertainty estimation (Sec. IV-B) with the

purpose of defining a set of appropriate, uncertainty-aware

trajectory estimates, subsequently utilized by the collision

detection mechanism developed in this work. Furthermore,

the set of inputs used by the presented model is introduced

in Sec. IV-C. The LSTM-ED model used for both trajectory

prediction and uncertainty estimation is then described in

Sec. IV-D.

A. Least Squares Regression for Trajectory Prediction: Esti-

mating Mean Response Values

For trajectory prediction, a least squares LSTM-ED model

is trained to minimize the Mean Squared Error (MSE) loss

function given by:

Lmse =
1

NL

N
∑

i=1

L
∑

j=1

||yi,t+j − ŷi,t+j ||
2
2, (1)

where N is the number of vehicle sequences used for MSE

evaluation (i.e., during training/testing), L are the time-steps

used for prediction, t is the present time, xi ∈ R
d is a

vector describing vehicle i’s input data, yi,t+j ∈ R
2 is a

vector describing the true location (i.e., latitude and longitude

information) of vehicle i at time slot t + j, and ŷi,t+j ∈ R
2

is the estimated vector inferred by the trained least squares

LSTM-ED model F̂ . In essence, F̂ is formally defined as

F̂ (xi, {ŷi,t+s}
j−1
s=0) as it utilizes as inputs both present and

past data, i.e., xi, and previously predicted trajectory values

to infer the trajectory value for the next step ahead. Hence,

when j = 1, then F̂ (xi) predicts ŷi,t+1, with this estimate

subsequently used as input to F̂ (xi, ŷi,t+1) to predict ŷi,t+2,

and so on.

B. Deep Quantile Regression for Trajectory Prediction: Esti-

mating Lower and Upper Response Values

As previously mentioned, our uncertainty estimation method

is based on building prediction intervals. By definition, a

prediction interval is a range of values in which a single

future observation will fall in, with a certain probability, based

on the estimated model (i.e., given the previous observations

used for training the model). While in ML several approaches

exist for building prediction intervals, such as conducting

Bayesian or Monte Carlo (MC) dropout inference [40], in this
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work, a deep quantile regression framework is adopted [41],

providing a principled way of controlling the certainty level of

the estimates. Specifically, a deep LSTM-ED model is trained

to estimate a set of conditional quantile functions capable of

providing lower and upper estimates for each future vehicle

position.

To this end, we apply deep quantile regression to

approximate the conditional quantile function y
q
i,t+j =

Qq(xi, {y
q
i,t+s}

j−1
s=1), also known as the q-quantile, where q

is the probability that the random variable yi,t+j ∈ yi,t+j

(representing the true vehicle location at the t+j-th future

time step) conditional on the value of the random variable

xi (representing the input data) is less than or equal to y
q
i,t+j ,

i.e., P(yi,t+j ≤ y
q
i,t+j |xi, {y

q
i,t+s}

j−1
s=1) = q [42].

To derive lower and upper vehicle trajectory estimates, two

q-quantiles need to be estimated. Since the objective is to

create a prediction interval able to contain most of the true

future vehicle locations given the input data xi, a low enough

quantile (i.e., with q → 0) and a high enough quantile (i.e.,

with q → 1) must be used for the lower and upper quantiles,

respectively (denoted as l and u, respectively). It is worth

mentioning, that while for each q value different quantile

models can be trained, in this work we opted to train one single

model for both lower and upper estimates of the vehicle’s

future position (i.e., longitude and latitude). Hence, an LSTM-

ED model is trained to return upper and lower estimates for

the longitude future locations of the vehicle, and an LSTM-

ED model is trained to return upper and lower estimates

for the latitude future locations of the vehicle. Considering

that, in a deep learning framework a q-quantile is estimated

by minimizing the asymmetrically weighted sum of absolute

errors [41,42], the loss function minimized during training is

given by:

Lq =
1

2NL

N
∑

i=1

L
∑

j=1

ρl
(

yi,t+j − ŷli,t+j

)

+ ρu
(

yi,t+j − ŷui,t+j

)

,

(2)

where q denotes any of the two quantiles u and l:

ρq(z) =

{

qz, if z ≥ 0,
(q − 1)z, if z < 0,

(3)

and where ŷ
q
i,t+s ∈ ŷ

q
i,t+s is the estimation of the trained q-

quantile LSTM-ED model Q̂q. Similarly to F̂ , in this work

the approximation of Qq obtained with the LSTM-ED model,

i.e., Q̂q, sequentially utilizes as inputs previous quantile values

{ŷqi,t+s}
j−1
s=1. Hence, when j = 1, then Q̂q(xi) returns ŷ

q
i,t+1,

subsequently used as input to Q̂q(xi, ŷ
q
i,t+1) to return ŷ

q
i,t+2,

and so on.

C. Dataset Formulation

For both the considered least squares and quantile loss

functions, the objective is to optimize the unknown parameters

of an LSTM-ED model such that a non-linear function (i.e.,

the F or Qq function, respectively) is approximated. In the

former case, the approximation allows accurately predicting

the vehicle’s future location:

yi = [yi,t+1,yi,t+2, · · · ,yi,t+L] (4)

where

yi,t+j = [y
(λ)
i,t+j , y

(φ)
i,t+j ] (5)

is a vector including latitude vehicle information y
(λ)
i,t+j and

longitude vehicle information y
(φ)
i,t+j at the j-th future time

step. In the latter case, instead, the approximation allows to

accurately estimate the prediction intervals of the vehicle’s

future location:

y
q
i = [yq

i,t+1,y
q
i,t+2, · · · ,y

q
i,t+L] (6)

where

y
q
i,t+j = [yli,t+j , y

u
i,t+j ] (7)

is a vector that includes the lower and upper estimates of the

latitude/longitude vehicle location at the j-th future time step

(i.e., yli,t+j and yui,t+j , respectively).

To make predictions, the model is given as input the

vehicle’s past and present information:

xi = [xi,t−T ,xi,t−T+1, · · · ,xi,t−1,xi,t]. (8)

In the aforementioned expression, T is the number of past and

present observations, t is the present time instant, L is the

number of next vehicle observations (i.e., the prediction hori-

zon), and xi, yi, and y
q
i form a time series (i.e., are sequential

in time), with each time instant of interest being τ seconds

apart (i.e., τ is the time scale of sampling/estimating time

instants). Regarding the past vehicle input data xi, each xi,j ,

∀j = t − T, ..., t, is a vector containing d measurements for

both the on-board and infrastructure components. Specifically,

each xi,j ∈ R
d consists of the following set of observations:

xi,j={x
(λ)
i,j , x

(φ)
i,j , x

(r)
i,j, x

(v)
i,j, x

(a)
i,j , x

(l)
i,j , x

(e)
i,j , x

(p,λ)
i,j , x

(p,φ)
i,j , x

(p,v)
i,j },

(9)

where:

• x
(λ)
i,j is the latitudinal position of vehicle i at time instant

t− j;

• x
(φ)
i,j is the longitudinal position of vehicle i at time

instant t− j;

• x
(r)
i,j is the movement angle of vehicle i at time instant

t− j;

• x
(v)
i,j is the velocity of vehicle i at time instant t− j;

• x
(a)
i,j is the acceleration of vehicle i at time instant t− j;

• x
(l)
i,j is the lane index where vehicle i is traveling on at

time instant t− j;

• x
(e)
i,j is the road index on which vehicle i is traveling at

time instant t− j;

• x
(p,λ)
i,j is the latitudinal position of the vehicle preceding

vehicle i in the same lane, at time instant t− j;

• x
(p,φ)
i,j is the longitudinal position of the vehicle preceding

vehicle i in the same lane, at time instant t− j;

• x
(p,v)
i,j is the velocity of the vehicle preceding vehicle i

in the same lane, at time instant t− j.
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Amongst the input features, the lane index information (x
(l)
i,j )

and road index information (x
(e)
i,j ) are converted into a one-hot

encoded vector to benefit the learning process. Rather than

giving semantic information on the road structure, in our work,

lane and road index help the LSTM-based trajectory prediction

to identify the intention of drivers of turning or of proceeding

straight at the intersection. Indeed, given the structure of

an intersection, drivers can turn only when approaching the

intersection on specific lanes of the road. Furthermore, apart

from features describing the past movement of vehicle i, e.g.,

its location, speed, and direction, a set of information regarding

the preceding vehicle on the same lane is also included. The

rationale is that, at an intersection, the correlation between

vehicle i’s future locations and the present location of the

preceding vehicle is very high. Finally, it is worth mentioning

that additional input features were also considered and tested

during model training and inference, without however con-

tributing to further improving model accuracy. Even though

our model achieves a very high accuracy, as shown in the

following sections, a further analysis of input features naturally

present in CAM messages (or at the infrastructure) constitutes

an interesting future research direction.

D. The LSTM-ED Model

The LSTM-ED architecture we use is illustrated in Fig. 3,

where index i is omitted to simplify the notation and the

output yt is alternatively equal to the trajectory prediction or

the uncertainty estimation depending on the use of the LSTM

model. Note that, for simplicity, encoders and decoders of one

layer only are depicted, but the model can include more hidden

layers (i.e., stack of LSTM layers). Both encoder and decoder

components are formed by LSTM cells, which in Fig. 3

appear unfolded through time to depict their operation over

the input and output sequences. In reality, inputs are processed

sequentially, and outputs are obtained one after the other (and

reintroduced at the input of the decoder for predicting the next

time step).

Fig. 3: The encoder-decoder LSTM architecture used for vehicle
trajectory estimation and uncertainty estimation.

The key of LSTM is the cell state ct, that acts as the

cell memory, storing a summary of the past input sequence.

At the output, the LSTM cell combines such accumulated

memory with the input received, so as to obtain the hidden

state ht, also representing the output vector of the LSTM cell.

At the decoder cell, the output ht is fed to a fully connected

dense layer (applied sequentially) to generate the output of the

LSTM-ED model. Further details on the LSTM cell structure

can be found in [6,43].

To summarize, the LSTM-ED model, parameterized by the

set of unknown parameters of the model, learns a nonlinear

function that predicts the current output value yt+k as:

yt+k = Θ̂(xt−T , · · · ,xt−1,xt,yt+1,yt+2, · · · ,yt+k−1),
(10)

with the encoder providing the summary of the input data

{xt−k′}Tk′=0 through the cell and hidden states ct and ht,

respectively, and Θ̂ being F̂ or Q̂, depending on the regression

task at hand.

The two components of the LSTM-ED are trained on a

dataset D = {xi,yi}Ni=1 where N is the number of labeled

vehicle sequences, to minimize the MSE or quantile loss

function. Note that, for what concerns the prediction intervals,

the LSTM-ED model is trained for obtaining the uncertainty

estimation on both latitude and longitude. Hence, dataset D is

further partitioned into two datasets D(λ) = {xi, y
(λ)
i }Ni=1 and

D(φ) = {xi, y
(φ)
i }Ni=1. For training, the Adam optimization

algorithm [44] is used. The actual implementation of the

presented LSTM-ED model is available online and can be

found at https://github.com/krish-din/C-AVOID.

V. AN ML-AIDED UNCERTAINTY-AWARE COLLISION

DETECTION MECHANISM

Because of our LSTM-ED approach, for any vehicle in

the area of interest, both the trajectory prediction and the

associated uncertainty estimation are available at the IM for

a prediction window of L time-steps. The IM exploits such

estimation of the future vehicles’ position, along with other

relevant data, to make an informed decision on whether a

pair of vehicles is on a collision course. To this end, the

IM trains an RFC [45,46] with the aim to determine if two

vehicles, described by an input pattern χ = {χ1, χ2, ..., χk},

are expected to collide within the prediction window, in which

case the RFC returns classification outcome υ = 1, otherwise

it returns υ = 0.

In a nutshell, RFC is an ensemble of multiple independent

decision trees, where the classification of unseen patterns is

performed through majority voting. Thanks to its structure,

RFC is one of the most successful ensemble learning tech-

niques,robust to overfitting (as compared to individual decision

trees [45]), and proven to be very powerful for problems

characterized by high dimensionality and by skewed data.

Thus, it suits very well our scenario where real-world data is

expected to be skewed, due to the presence of outlying driving

behaviors.

Specifically, we apply feature subsampling to build the trees

by splitting the training dataset into sub-datasets according to

the value taken by the input features. Eventually, each decision

tree is organized into branches composed of two types of

nodes, i.e., the decision nodes (at which splits are made) and

the leaf nodes, where the classification outcome takes place.

Finding the best split at the decision nodes involves choosing

https://github.com/krish-din/C-AVOID
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the feature and the split value (i.e., a threshold) for that feature

that will result into the highest improvement to the model,

given the desired outcome υ. That is, at each split, two sub-

datasets with lower “impurity” are obtained when compared

to the original dataset at the decision node. In this work,

similarity within each sub-dataset is computed following the

Gini Index (GI) [46], which measures the portion of samples in

each sub-dataset having different outcomes. At each decision

node, since the number of split options is large, only a subset

of potential split values is considered per feature [47].

Splitting at the decision nodes continues until either all

values in the sub-datasets of that node are pure (i.e., all

samples describe a collision or a non-collision) or some other

conditions are met (e.g., maximum tree depth).

In the inference phase, to classify any unseen pattern, the

tree is navigated up to reaching a leaf node containing an

output for the objective binary variable υ. A specific leaf node

is reached if the unseen pattern falls into specific ranges for

the input features, as learned during training.

A. RFC’s Inputs

As it is clear from the random forest approach presented

above, the classification of the input data relative to two

vehicles i and k in the “collision” class happens if the chosen

input is within specific features’ intervals. Hence, the choice

of the input features is critical for improving the obtained

performance.

Among the different possible input features, present and

future vehicle locations certainly play a crucial role in deter-

mining whether the two vehicles are on a collision course.

Indeed, such features help to determine specific locations on

the road infrastructure where more often vehicles tend to

collide/experience dangerous situations. Accordingly, also the

road direction traveled by the vehicles under analysis carries

important information, since collisions are usually prone to

happen to vehicles heading towards a specific route.

Intuitively, the future predicted distance between vehicles

is also an indicator of a possible imminent collision. Indeed,

independently from their location, a dangerous situation is

certain in case two vehicles are predicted to be too close

to each other. From the experiments performed, two metrics

of proximity between vehicles helped to obtain the best

performance, one based on the trajectory prediction and one

based on its uncertainty estimation. That is, the first one is

the Euclidean Distance (ED) dik,t+j between the predicted

location of vehicles i and k at time t+ j. The second one is

based on transforming the obtained prediction intervals into

a distribution around the trajectory prediction described in

Sec. IV-A, and on computing in distribution (and not based on

the point estimates) the squared expected distance E[d2ik,t+j ]
between the predicted location of vehicles i and k at time

t+j. Specifically, it is assumed that the uncertainty associated

with the trajectory prediction follows a Gaussian distribution,

an assumption that is typically valid when the uncertainty is

due to a combination of several independent factors, as in

the use case under consideration. Then, the future location

of vehicle i follows the multivariate Gaussian distribution

N (yi,t+j ,Σi,t+j = [σ
2 (λ)
i,t+j 0; 0 σ

2 (φ)
i,t+j ]). Given that the

length of the prediction intervals is known from the method

introduced in Sec. IV-B, the covariance matrix of the Gaussian

distribution can be easily obtained as follows[48]:

σ
2 (λ)
i,t+j =

(y
u(λ)
i,t+j − y

l(λ)
i,t+j)

2

Kǫ

; σ
2 (φ)
i,t+j =

(y
u(φ)
i,t+j − y

l(φ)
i,t+j)

2

Kǫ
(11)

where σ
2 (λ)
i,t+j and σ

2 (φ)
i,t+j are the variances associated with

the predicted latitude and longitude location, respectively, of

vehicle i at time t+j, and Kǫ is the inverse of the Cumulative

Density Function (CDF) of the chi-squared distribution having

two degrees of freedom computed at 1−ǫ = 1 − (u − l). As

a result, the expected squared ED between the two vehicles i

and k can be computed as:

E[d2ik,t+j ] = ||yi,t+j − yk,t+j ||
2 +Tr[Σi,t+j +Σk,t+j ] (12)

where Tr[·] denotes the trace operator.

Finally, we also include in the input data the size of the

prediction intervals and the covariance matrices Σi,t+j and

Σk,t+j as a measure of the uncertainty estimation in order to

account in the classification task for the reliability level of the

information based on the trajectory predictions, i.e., the future

positions of vehicles i and k and their ED.

To summarize, the input data χ concerning a pair of vehicles

i and k and a specific future time instant t + j, includes the

following features:

• y
(λ)
z,t+j (y

(φ)
z,t+j) is the latitudinal (longitudinal) position of

either vehicle i or k at future time instant t+ j;

• x
(l)
z,t+j is the road direction where either vehicle i or k

are predicted to be traveling on at the future time instant

t+ j;

• dik,t+j is the ED between vehicles i and k at future time

instant t+ j, based on the predicted point estimates;

• E[d2ik,t+j ] is the expected squared ED between vehicles

i and k at future time instant t+j, based on the predicted

distribution estimates;

• y
u(λ)
z,t+j − y

l(λ)
z,t+j (y

u(φ)
z,t+j − y

l(φ)
z,t+j) is the latitudinal (lon-

gitudinal) prediction interval of either vehicle i or k at

future time instant t+ j;

• Σz,t+j is the covariance matrix associated with the pre-

dicted location yz,t+j of either vehicle i or k at future

time instant t+ j.

VI. AVOIDING COLLISIONS AT URBAN INTERSECTIONS

Due to the proposed approach, the IM can exploit an

uncertainty-aware collision detection mechanism to predict in

advance whether two vehicles are on a collision course. Once

a collision is detected, the IM informs the vehicles in danger

through unicast DENMs, so that corrective actions can be

undertaken. In order to reduce the number of alarms relative

to situations that do not lead to an actual collision or to an

actual dangerous circumstance (i.e., to reduce the number of

unnecessary and sudden corrective actions), the IM transmits

DENMs only after the RFC has detected a collision over a

number of consecutive observations.

Selecting the right number of consecutive observations,

which leads to a DENM message transmission, represents a
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crucial trade-off between detecting a collision on time, so that

corrective actions are effective, and reducing the number of

generated false alarms. In this context, it has to be considered

that, from the moment the DENM is transmitted to the moment

a vehicle starts braking, several latency components need to

be accounted for. Figure 4 illustrates an overview of such

latency components. As an alarm is raised by a CAM that

triggers the detection of a collision at the IM, the end-

to-end communication latency component, i.e., Tx, includes

both CAM and DENM transmission latencies. To reduce this

latency, as mentioned earlier, the IM runs at the edge on the

5G-MEC platform, geographically close to the intersection

where the collision detection application is intended to work.

The detection latency component, i.e., Td, models the time

required by the IM to process the information received from

the vehicles. Thereafter, the DENM is received at the vehicle

side and before a corrective action is actually undertaken, two

further latency components need to be considered, i.e., the in-

vehicle processing time Tp and the human reaction time Tr.

Clearly, these latency components are modeled differently if a

vehicle is assumed to be exclusively human-driven or if it is

assisted by an automated braking system. In the former case,

the two components include the fact that the vehicle processes

the DENM and displays on the dashboard a visual alarm to the

driver, which reacts to it with some delay. In the latter case,

instead, the vehicle processes the DENM and automatically

starts braking, without additional delay, i.e., Tr = 0. As a

corrective action, we assume that vehicles brake as soon as

the alarm is correctly analyzed, with the intention of reaching

a halt position (reached after braking for Ta seconds) before

colliding with any other vehicle in the intersection. Hence, in

our system, a collision is considered as successfully detected

if:

Tx + Td + Tp + Tr + Ta < Tc, (13)

where Tc is the time interval between the moment a CAM

is transmitted by a vehicle and the moment such vehicle is

involved in a collision. It must be noted that the different

latency components represent random variables, which depend

on the specific scenario at hand and which specific distribution

is detailed in Sec. VII-E below.

Fig. 4: Collision avoidance - An overview of the latency components
involved.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the proposed approach using

realistic simulated mobility data traces for the cities of Lux-

embourg and Monaco.

A. Data Collection and Pre-processing

To evaluate the proposed methodology, we used synthetic

mobility traces from pre-built and validated traffic scenarios

in the SUMO emulator representing realistic traffic demands

and mobility patterns. Specifically, in this work, we extracted

the mobility traces from two specific unregulated intersections

in Luxembourg [49] and Monaco [50] through the SUMO’s

Traffic Control Interface (TraCI) library. The two intersec-

tions from different cities enable us to validate the proposed

approach under distinct multi-modal traffic demands, vehicle

movements, and physical topology. Figure 5 illustrates the

layout of the Luxembourg and Monaco intersections.

Luxembourg Intersection: It is a four-way intersection

with a surface area of 1284 m2 connecting roads with three

lanes. Using TraCI, we collected the vehicle movements at the

intersection during a time period including the early morning

peak hour, i.e., 6-11 AM, to create the dataset. The dataset

contains 6,132 vehicles, among which 2,035 turned at the

intersection while 4,097 were traveling straight. We have also

registered 197 vehicle pairs that collided at the intersection.

Monaco Intersection: It is a two-lane, four-way intersec-

tion with a surface area of 386 m2 and with a long-stretch

highway road on one side connecting the urban driveways at an

intersection. Like the Luxembourg intersection, we extracted

the vehicle movements during a time period that includes

the early morning peak hour, i.e., 7 AM-12 PM. The Monaco

dataset contains the mobility traces of 5,950 vehicles, with

1,105 turning and 4,845 non-turning at the intersection. In

addition, we have recorded 244 vehicle collision pairs at the

intersection.

Pre-processing: For both datasets, the TraCI library fa-

cilitates collecting all the features mentioned in Sec. IV-C at

a sampling period of 100ms. Furthermore, to regularize the

input features, a feature scaling technique is used. As a result

of the scaling technique, all inputs are standardized with zero

mean and standard deviation equal to one, allowing the LSTM

ED model to converge to a model of high accuracy. The

proposed LSTM network takes the last 3 seconds of data,

i.e., 30 data points, as input to predict the future vehicles’

position for the next 3 seconds, i.e., 30 data points. Alternative

input and output windows were also tested, with no significant

improvement in the obtained results. Additionally, we are

using a sliding window technique to share 29 data points

between two consecutive data samples. With this setup, we

have 2.4× 106 and 5.1× 106 sequences for the Luxembourg

and Monaco intersection datasets, respectively. The datasets

use 65%, 15%, and 20% as a split ratio to divide the vehicle

trajectories into training, validation, and testing sets, respec-

tively. Among the vehicle collision pairs, the testing set for

the Luxembourg and Monaco intersections comprises 39 and

51 vehicle collision pairs, respectively. Both the Luxembourg

TABLE I: Collision classifications

Front Rear Side Corner

Luxembourg 0 0 34 5

Monaco 3 6 34 8
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Fig. 5: Physical topology of the Luxembourg (left) and Monaco intersections (right). The layout highlights the distinct nature of the presented
four-way intersections.

TABLE II: Euclidean prediction errors for the Luxembourg dataset

Prediction Eucl. Interaction-Aware KF Eucl.
Time [s] Error [m] Eucl. Error [m] Error [m]

All vehicles
t+ 1 0.541 0.574 1.39

t+ 2 0.684 0.748 4.06

t+ 3 1.126 1.168 7.03

Non-turning

Vehicles

t+ 1 0.528 0.541 1.35

t+ 2 0.639 0.706 3.85

t+ 3 1.032 1.112 6.56

Turning

Vehicles

t+ 1 0.563 0.631 1.48

t+ 2 0.763 0.82 4.45

t+ 3 1.289 1.265 7.9

and Monaco testing sets include various collision types. Table I

presents a summary of the number of collisions belonging to

the rear, front, side, and corner categories. In Table I, we define

a “side collision” as a scenario where at least one of the two

vehicles involved proceeds straight at the intersection, and the

other vehicle collides on its side. Conversely, we classify a

collision as a “corner collision” if both vehicles are turning at

the intersection when the crash occurs.

B. Performance Results - Trajectory Prediction

Luxembourg Intersection: The proposed LSTM model

comprises a single encoder and decoder layer with 300 hid-

den units each. The decoder layer is followed by a Time

Distributed (TD) dense layer with the same hidden units

as in the encoder/decoder layers. Finally, the output layers

comprise two units representing the predicted (longitudinal

and latitudinal) positions. The model is trained with a batch

size equal to 48 and a learning rate of 0.0001. Additionally,

to avoid overfitting, we have employed the early stopping

criteria to end the training when the error is less than 0.001

in the validation set for two epochs. It should be noted that

extensive trials with different hidden layers and batch sizes

were performed, with the chosen hyperparameters presenting

the best performance in terms of prediction errors. Since

we are working at an unregulated intersection, the dataset

contains a few traffic slowdowns for a short period of time.

However, the performance of our trajectory prediction model

is not majorly affected by this heterogeneous traffic behavior.

The ED metric is used to evaluate the model’s performance

by comparing the predicted positions with the true vehicle

positions for the next 3 seconds. As suggested in [15], the

performance of Encoder-Decoder LSTM is also compared

with a constant speed KF technique, which performs quite

well in highways. Furthermore, to evaluate how the proposed

technique compares against one leveraging information on

multiple surrounding vehicles, we assess the performance of

an LSTM-ED approach that not only considers the preced-

ing vehicle, but also the closest lateral (left and right) and

following vehicles. Hereinafter, we refer to such an approach

as Interaction-Aware LSTM-ED. Table II presents the average

ED error in predicting the vehicle position at t + 1, t + 2,

and t + 3 seconds. The resulting ED error shows that the

proposed LSTM-ED model can predict the future trajectories

for the horizon of 3 seconds with minimal deviations from

the true trajectories. The proposed approach outperforms also

the KF benchmark, showing that, assuming little to no mod-

ifications of the vehicles’ behavior at intersections, leads to

very large errors both in short and long prediction windows.

When considering the best hyperparameter selection for both

approaches, the proposed LSTM-ED also performs slightly

better than the Interaction-Aware LSTM-ED approach. The

obtained results confirm that: (i) given the small error, the

performance obtained by the proposed approach is difficult

to improve, even including further input data; (ii) in a busy

intersection, where a change of lanes is rare, the information

on the preceding vehicle is the most relevant one. Specifically,

in the datasets at hand, only 8.71% and 2.8% of the vehicles

change lane in the surrounding of the intersection in the

Luxembourg and the Monaco testing set, respectively. For

all other vehicles, and for all vehicles changing lanes in all

time periods during which they are not changing lanes, the

surrounding vehicle information can be considered as noisy

input data. Being in most cases unnecessary, surrounding

vehicle information can introduce additional complexity to

the LSTM model and might hinder the model’s ability to

generalize well, leading to overfitting on the training data,

negatively impacting performance on unseen data.

Finally, Fig. 6 presents the CDF of the prediction errors at

time t+ 1 and t+ 3 (for the sake of space, the CDF of t+ 2
is not included). The CDF of the prediction errors reveals that

not only the average prediction errors but also the distribution

of errors are indeed small. Specifically, 91.67% of the 1-s look

ahead predictions exhibit an error of less than 1 m, while 2-s

look ahead presents 96.81% of errors below 2 m and 3-s look

ahead presents 94.09% of errors less than 3 m.

Monaco Intersection: For the Monaco dataset, the best model

utilizes a single-layer encoder and decoder with 300 hidden

units each. The TD dense layer contains a hidden layer of size
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Fig. 6: Mean error CDF for predicted trajectories at t+1 (left) and
t+ 3 (right) (Luxembourg dataset).

TABLE III: Euclidean prediction errors for the Monaco dataset

Prediction Eucl. Interaction-Aware KF Eucl.
Time [s] Error [m] Eucl. Error [m] Error [m]

All vehicles
t+ 1 0.437 0.843 1.46

t+ 2 0.496 0.902 4.24

t+ 3 0.751 1.178 7.26

Non-turning

Vehicles

t+ 1 0.434 0.838 1.60

t+ 2 0.491 0.864 4.59

t+ 3 0.733 1.099 7.74

Turning

Vehicles

t+ 1 0.442 0.85 1.17

t+ 2 0.505 0.965 3.54

t+ 3 0.782 1.308 6.28

300 neurons. Like the Luxembourg dataset, we set the output

of the final dense layer to 2 units, representing the predicted

longitudinal and latitudinal positions. We trained the model

with a batch size of 32 and 0.0001 as a learning rate. Again,

to avoid overfitting, we employed the early stopping criteria to

stop training when the error is less than 0.001 in the validation

set for two epochs. As this is also an unregulated intersection,

the dataset presents quite a few gridlock situations restricting

the vehicles’ movements on different occasions in the five

hours of collected mobility traces. This traffic scenario poses

an additional challenge to the model, as it has to consider con-

gestion while predicting traffic stoppages. Table III presents

the average ED error between actual and predicted trajectories

for a 3-second horizon of the proposed LSTM-ED approach, of

a constant speed KF [15], and of the Interaction-Aware LSTM-

ED benchmark introduced above. Even with the additional

complexity of increased traffic congestion, the results show

that the model is able to achieve sub-meter prediction errors

in all prediction windows and outperform both benchmark

approaches. Figure 7 presents the CDF of the prediction errors

for t+ 1 and t+ 3 seconds look ahead. In all cases, the CDF

shows that the distribution of errors is small and similar to the

Luxembourg dataset. Specifically, 95.41% of 1-s look ahead

predictions exhibit less than 1 m error, 98.25% of 2-s look

ahead (omitted for the sake of space) have prediction error less

than 2 m, and 96.49% of 3-s look ahead predictions maintain

less than 3 m error.

The results from both datasets indicate that the proposed ap-

proach can excel in diverse scenarios and mobility conditions.

Several other comparisons (also including real-world datasets)

10−1 100

Euclidean Distance [m]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

of
 t+

1 
Pr

ed
ict

io
n

Non-Turning Vehicles
Turning Vehicles
Mean (Non-Turning)
Mean (T(rn ng)

10−2 10−1 100 101

E(cl dean D stance [m]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

of
 t+

3 
Pr

ed
 ct

 o
n

Non-Turning Vehicles
Turning Vehicles
Mean (Non-Turning)
Mean (Turning)

Fig. 7: Mean error CDF for predicted trajectories at t+1 (left) and
t+ 3 (right) (Monaco dataset).

have been reported in our previous work [6]. Specifically, the

proposed approach was found to perform better than (i) a

Vanilla LSTM model, (ii) a Stacked LSTM-ED model, and

(iii) a Bidirectional LSTM model. These results have been

omitted here due to space limitations.

C. Performance Results - Trajectory Uncertainty Estimation

A prediction interval estimates the uncertainty of a point

prediction with probabilistic upper and lower bounds on the

output variable. For this task, as discussed earlier in Sec. IV-A,

an LSTM-ED model trained to minimize the asymmetrically

weighted sum of absolute errors is used. With the objective

of characterizing the tails of the trajectory prediction’s dis-

tribution, for this work, we have utilized the 0.9-quantile as

the upper bound u and the 0.1-quantile as the lower bound l.

Hence, the geographical regions individuated by the proposed

trajectory uncertainty estimation are expected to contain in

total 80% of the vehicle’s future positions. Unlike the point

prediction model, the deep quantile regression approach uses

two models to separately predict the vehicle’s longitudinal and

latitudinal positions. This solution is motivated by the obtained

performance, which approximates closely the expected number

of the vehicles’ future locations included in the prediction

intervals. Further, as in point predictions, the models utilize

early stopping criteria controlling the training epochs.

For both the Luxembourg and Monaco datasets, the best

LSTM-ED model comprises a single encoder/decoder layer

with 320 LSTM units. The decoder output is linked to a TD

dense layer using 128 neurons, while the final output dense

layer presents two values, one for the lower and one for the

upper quantile estimation. The model uses 48 as a batch size

with 0.0001 as a learning rate to minimize the quantile loss

function for a specific number of epochs.

Table IV presents the deep quantile regression results for the

Luxembourg and Monaco datasets regarding the percentage of

the vehicle’s true locations captured by the computed quantiles

for t+1, t+2, and t+3 prediction horizons on the latitudinal

(λ) and longitudinal (φ) directions. The 0.9 and 0.1 quantiles,

i.e., upper and lower bounds, present the ratio of true vehicle

positions below the predicted output, while the “in-between”

column presents the percentage of true vehicle locations in-

between the two quantiles. From the results of both datasets,

we can determine that the 0.9 and 0.1 quantiles included,
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TABLE IV: Trajectory uncertainty estimation: The percentage of true vehicle trajectories captured by the 0.9 and 0.1 quantiles and the
percentage of true vehicles in-between the quantiles.

Dataset Prediction Time [s]

Quantile Estimation [%]

0.9 0.1 In-between

φ λ φ λ φ λ

Luxembourg
t+ 1 92.47 95.29 8.58 8.38 83.89 86.91

t+ 2 90.58 93.38 5.14 7.09 85.44 86.29

t+ 3 89.94 92.56 5.23 7.52 84.71 85.04

Monaco
t+ 1 99.60 99.04 1.33 7.37 98.27 91.67

t+ 2 98.00 98.70 2.16 7.42 95.84 91.28

t+ 3 96.00 97.67 4.42 7.69 91.57 89.98

respectively, slightly more and slightly less samples than

expected. Notably, even though the tested samples are unseen

in the testing dataset, the number of true vehicle locations

included between the obtained quantiles approximate closely

its expected value. Indeed, 89.24% of vehicle trajectories are

between the two quantiles’ output on average, as compared to

the expected 80%.

D. Performance Results - Collision Detection

To identify any collision at the intersection, our detection

algorithm hosted at the IM utilizes an RFC exploiting as input,

at any time t, both the vehicles’ predicted trajectories and the

vehicles’ location uncertainty estimations for the following 3

seconds. Hence, the objective of our approach is to detect a

collision 3 seconds before it actually happens, i.e., as soon

as the predicted data includes also the moment of collision.

Even though, due to the output provided by SUMO, all pairs

of colliding vehicles can be easily identified, it is possible

that a collision is not easily identifiable when looking only

at the true locations of the vehicles. Indeed, given the fact

that the location of the vehicles corresponds to the vehicles’

front bumper, it is possible that two vehicles will collide even

though the distance between their true locations is always

greater than zero. This may happen, e.g., if the front bumper

of a vehicle collides with the rear bumper of another vehicle.

In order to make all collisions uniform from the RFC’s

perspective, during training an input sequence concerning a

pair of colliding vehicles i and k is manually assigned to the

“collision” class if one the following three events occurs:

• within three seconds, vehicles i and k collide;

• dik,t+j is less than dc, with dc being the 0.9-quantile

of the minimum distance between the true locations of

training colliding vehicles’ pairs;

• E[d2ik,t+j ] is less than d2c , with d2c being the 0.9-quantile

of the minimum squared distance between the true loca-

tions of training colliding vehicles’ pairs.

For the Luxembourg and Monaco datasets, dc is set to

4.87 m and 3.51 m, while d2c is specified as 23.73m2 and

12.34m2, respectively. As detailed later, this choice is driven

by the fact that the ED and the expected squared ED between

the estimated vehicles’ locations play a crucial role in collision

detection. Hence, a diverse characterization of such metrics

during training would produce unbalanced results, depending

on the type of collision at hand. Furthermore, during inference,

a DENM is sent to the vehicles expected to collide if a

collision is predicted for three consecutive time-steps, i.e.,

for a time interval of 300 ms. This choice for the sporadicity

filter represents the numerical optimal solution to restrict the

number of False Positives (FPs), while detecting all pairs of

vehicles on a collision course. The performance of the obtained

solution is compared to two benchmark solutions:

• an approach (named “Relative Distance”) based only on

the point estimates obtained in Sec. IV-A, that transmits

an alarm to the corresponding pair of vehicles, as soon

as the ED between the predicted locations of vehicles is

below dc;

• a state-of-the-art solution (named “Cooperative Intersec-

tion - Collision Warning System (CI-CWS)”) [5] that uses

the vehicles’ velocity, acceleration, and position to predict

their collision time by solving a fourth-degree polynomial

approximation and that consequently transmits an alarm

to the vehicles in danger.

Fig. 8: Collision detection analysis for the Luxembourg intersection.

1) Collision Detection Examples: Before analyzing the

performance of the proposed approach in all the collisions

present in the testing set, we first choose two collisions that

exemplify the role of the uncertainty estimation in the pro-

posed framework. Figures 8 and 9 represent the two selected

collisions for the Luxembourg and the Monaco intersection,

respectively. Both figures refer to the moment at which our

proposed methodology, based on the RFC, identifies a possible

dangerous situation and sends a DENM message to the two ve-

hicles involved. The top-left image of each figure illustrates the

trajectory traveled in the dataset by the two colliding vehicles,
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Fig. 9: Collision detection analysis for the Monaco intersection.

starting from the moment where the RFC triggers the alarm

(detection and collision are interleaved by 8.8 seconds in the

Luxembourg intersection, and by 3.9 seconds in the Monaco

intersection). Herein, green, blue, and purple, mark the loca-

tion of the vehicles when the RFC, the detection performed

exploiting relative distance only, and the approach in [5],

respectively, detect the imminent danger. The remaining three

images, instead, depict the 3-second trajectory predictions

used by our approach, by the detection performed exploiting

relative distance only, and by the approach in [5], to predict

a possible collision. Furthermore, the image referring to our

approach, also reports the uncertainty estimation associated

with each of the future locations predicted for the vehicles

involved. Such uncertainty is represented graphically as an

ellipse, with major and minor axes equal to the prediction

intervals obtained with the LSTM model using a quantile

loss function. In both Fig. 8(a) and Fig. 9(a), our proposed

collision detection technique reacts earlier than any other

approach to the imminent danger. Even though the trajectory

predictions obtained by the LSTM are not showcasing a

possible collision (the front bumpers are still at least 8m away

in both intersections), the associated prediction intervals are

large, indicating that multiple possible driver maneuvers are

available in both cases (as depicted in Fig. 8(b) and Fig. 9(b)).

Based on the knowledge of dangerous situations present in the

training set of the Monaco and Luxembourg intersection, the

RFC used in our approach identifies as dangerous the inputs

given, i.e., based on the speed of the vehicles, the predicted

trajectories, and the associated uncertainty, the RFC correctly

detects that the two vehicles may collide. Hence, our proposed

approach can react to imminent dangers even if the vehicles

trajectories appear to be safe, allowing for a smooth collision

avoidance, even in the presence of human drivers. Simple

trajectory predictions, as the ones used in [5] and showcased

in Fig. 8(d) and Fig. 9(d), fail to provide a reliable predicted

location for vehicles at intersections, and, as a result, detect

possible collisions very late.

2) Statistical Comparative Analysis: Tables V and VI

summarize the predicted collision detection results for the

Luxembourg and Monaco intersections, respectively. We have

performed a collision check for each pair of vehicles that came

TABLE V: Comparison of collision detection methods (Luxembourg
dataset).

Collision Detection Method

Random Forest Relative Distance CI-CWS

False Positive 30 18 186

False Negative 0 0 1

True Positive 39 39 38

TABLE VI: Comparison of collision detection methods (Monaco
dataset).

Collision Detection Method

Random Forest Relative Distance CI-CWS

False Positive 34 24 419

False Negative 0 2 2

True Positive 51 49 49

as close as 50 meters, i.e., 45,674 (Luxembourg) and 69,712

(Monaco) collision checks for the two intersections analyzed.

For the Luxembourg intersection, our approach, named herein

“Random Forest”, and the “Relative Distance” collision de-

tection method were able to identify all the collisions that

occurred in the testing set, i.e., zero False Negatives were

obtained, irrespective of the type of collision. Notwithstanding,

for the Monaco intersection, the “Relative Distance” approach

was not able to detect all collisions with the 0.9-quantile

as a distance threshold while “Random Forest” was able to

identify all of them. Contrary to the introduced methods, the

CI-CWS algorithm [5] is not able to detect all collisions at

either intersection. This is due to the less accurate trajectory

prediction used, which is also reflected by a much higher

number of FPs in the simulated time frames.

Furthermore, Tables VII and VIII show the FP count

distribution with respect to the minimum distance between

vehicles. For this set of results, the actual minimum distance

between the vehicles’ bodies is reported, rather than the

distance between the true location of the vehicles. Almost

all FPs are related to vehicles that, in the simulation, are

actually getting very close to each other. Among the Random

Forest model’s FPs, at least 66% of the vehicles are in a

TABLE VII: Distribution of distance range for FP detections (Lux-
embourg dataset).

Vehicle body

distance range [m]

Number of occurrences

Random Forest Relative Distance CI-CWS

0− 5 12 16 103

5− 10 10 1 53

10− 15 4 1 17

≥ 15 4 0 13

TABLE VIII: Distribution of distance range for FP detections
(Monaco dataset).

Vehicle body

distance range [m]

Number of occurrences

Random Forest Relative Distance CI-CWS

0− 5 31 23 319

5− 10 2 0 87

10− 15 1 1 12

≥ 15 0 0 1
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critical region with less than a 5-meter distance between them.

In some cases, especially in the Luxembourg dataset, our

proposed Random Forest approach detects possible collisions,

even though the true minimum distance between them never

goes below 15 m. In three of the four such predicted collisions,

one of the two drivers in the simulation applied the brakes

to evade the collision, leading to a longer distance for the

FP. As a confirmation that the trajectories used by the CI-

CWS algorithm are less accurate than the ones used by our

approach, Tables VII and VIII also show that, in many cases,

the alarms raised with the considered benchmark approach

concerns vehicles whose distance never drops below 15 m.
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Fig. 10: CDF of the available reaction time (Luxembourg dataset).
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Fig. 11: CDF of the available reaction time (Monaco dataset).

The effect of accounting for uncertainty in the detection

mechanism is clear when a critical metric for avoiding a

collision is considered, i.e., the time between the detection

of a collision and the time of the collision, which we refer

to as “available reaction time” and denote with Tc in Sec. VI.

Figures 10 and 11 showcase the performance of the Random

Forest and Relative Distance approaches through the CDF of

the available reaction time. For the Luxembourg intersection,

Fig. 10 shows that the Relative Distance approach allows as

low as 1.2 s to react to a collision, which is insufficient for

any driver to perform a corrective action. However, with the

Random Forest model, we can detect all the collisions 2 s

before they occur, and the distribution of the available reaction

time is better compared to the Relative Distance method for

any time instance. Similarly, for the Monaco intersection,

Fig. 11 indicates that the Random Forest model detected all

but one collisions before the 2-second mark, outperforming

the Relative Distance method, which could not identify all the

collisions.

It is worth noting that, in this dataset, our Random Forest

model detects one collision (out of 69, 712 cases) 20 s or more

earlier than the actual moment of collision. This happens at the

time instant when two vehicles are queued at the intersection,

and get on a collision course as they accelerate to cross the

intersection. In the simulation, thanks to a corrective action,

i.e., braking, the vehicles are initially able to avoid the colli-

sion. Nevertheless, when they actually restart a few seconds

later, they in fact collide. The Random Forest approach can

detect both the dangerous situations described above. Overall,

it can be concluded that the Random Forest detection method

is efficient and outperforms any of the presented baseline

techniques. In addition to detecting all collisions, the proposed

Random Forest approach allows for a larger available reaction

time for the drivers to take corrective action. This holds true

for the CI-CWS algorithm as well, which also yields a much

higher rate of FPs.

Finally, Figs. 12 and 13 demonstrate the importance of the

input features in detecting collisions. As discussed in Sec. V,

the Random Forest model comprises a set of decision trees in

which each decision tree is built by splitting data into subsets

based on the GI. The feature importance specifies the average

reduction of the GI by each feature across all trees in the

Random Forest model. Amongst all features of the Random

Forest model, the predicted distance and the average square

distance metrics play a crucial role in detecting collisions for

both datasets. This result (i) justifies the introduced manual

labeling mentioned earlier; and (ii) indicates that the Random

Forest model exploits both the trajectory prediction and un-

certainty estimation in order to detect collisions.
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Fig. 12: Input feature importance for the RFC (Luxembourg dataset).
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Fig. 13: Input feature importance for the RFC (Monaco dataset).

E. Performance Results - Collision Avoidance

As mentioned earlier, the performance of the proposed

approaches in what regards collision avoidance mainly de-
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TABLE IX: Vehicle’s collision speed with and without corrective
action (Luxembourg dataset).

Deceleration
Rate

Vehicle
Pair

Vehicle Speed

(w/o corrective action)

[m/s]

Vehicle Speed

(with corrective action)

[m/s]

Normal 1

V eh1 = 12.09

V eh2 = 6.26

V eh1 = 5.56

V eh2 = 4.53

TABLE X: Vehicle’s collision speed with and without corrective action
(Monaco dataset).

Deceleration
Rate

Vehicle
Pair

Vehicle Speed

(w/o corrective action)

[m/s]

Vehicle Speed

(with corrective action)

[m/s]

Critical 1

V eh1 = 12.16

V eh2 = 8.20

V eh1 = 11.48

V eh2 = 7.86

Normal 1

V eh1 = 12.16

V eh2 = 8.20

V eh1 = 11.82

V eh2 = 8.20

pends on the available reaction time. With the proposed

approach, we can identify the collision timely compared to

other approaches. Nevertheless, to assess if such detection is

enough to avoid a collision, we must consider the latency

pertaining to different components, such as communication,

in-vehicle data processing, and driver reaction time (Sec. VI).

Through post-processing, we tested the collision avoidance

application by enforcing a continuous braking action for both

vehicles till they came to a halt. For the braking action, we

have used normal (4.5 m/s2) and critical (9 m/s2) deceleration

rates to stop the vehicles. In addition, we have repeated the

process for 20 simulation trials with randomly distributed

latency values for each component. Specifically, (i) for the

communication end-to-end latency component, Tx, we used

a beta distribution, B(α = 2.0, β = 5.0), scaled between

2.4 (minimum) and 18 (maximum) ms [51]; (ii) for the in-

vehicle processing data upon receiving the DENM, Tp, a

constant latency of 400ms is considered [5]; while (iii) for

the driver reaction time, Tr, we have used a truncated normal

distribution, N (µ = 680, σ = 145, a = −1.24, b = 1.52),
for human-driven vehicles and Tr = 0 for automated vehicles

[52]. The processing time, Td, was determined through ex-

tended simulations. The LSTM models’ computation time, for

both vehicle trajectory prediction and uncertainty estimation,

was measured to be approximately 11 ms. Likewise, the

RFC model, which checks whether a pair of vehicles is on

a collision course, was evaluated to take around 12 ms. In

both cases, computation time is almost deterministic, with

no deviation from the average. Hence, further assuming that

collision tests are performed in parallel, Td is set to 23 ms.

At both intersections, all automated vehicles involved in a

collision were able to safely reach a halt position with critical

deceleration. In the case of human-driven vehicles, as shown in

Table IX for Luxembourg (with normal deceleration rate) and

Table X for Monaco (considering both critical and normal de-

celeration rates), we successfully avoided all collisions but one

(a side collision at each intersection). Notably, the immediate

danger in both cases stemmed from an abrupt change in the

driver’s behavior, specifically hard braking, rather than from

the type of collision itself. Table IX shows that in all cases our

detection algorithm helps to reduce considerably the collision

intensity. For example, the vehicle speeds are sensibly reduced

when collisions happen by applying a normal deceleration rate,

i.e., on average the speed was reduced by 23.1% with respect

to the case when vehicles collide with no corrective action

taken (i.e., without the assistance of our collision detection

algorithm).

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we addressed the critical problem of collision

detection in complex road segments, e.g., at intersections,

and presented a novel framework that effectively leverages an

Intersection Manager hosted at the MEC of a 5G network, as

well as V2I and I2I communications, to collect and process the

relevant data. Due to its advantageous location, the Intersection

Manager can obtain a holistic view of the system and, exploit-

ing LSTM RNNs, it can provide accurate trajectory predictions

and an estimation of the prediction uncertainty. Exploiting for

the first time a ML-aided network-assisted collision detection

methodology yielded high-quality performance, i.e., a very-

low number of unnecessary FPs and an ability to detect

dangerous situations well in advance, even under real-world

conditions. Performance comparisons against state-of-the-art

solutions and point-estimates show that the exploitation of a

holistic view of the system and the inclusion of prediction

intervals in the collision detection application are the critical

factors for achieving the showcased results.

Future research will focus on determining similarities

among different use case scenarios that will lead to retaining

the main information of the obtained trajectory prediction

and uncertainty trajectory estimation models, so as to reduce

training time. Additionally, to reduce the complexity of multi-

modal frameworks and to further improve collision avoidance

in presence of human-driven vehicles, our trajectory prediction

and uncertainty estimation approach will also be applied to a

selected number of possible alternative driver maneuvers (e.g.,

turning right or left, proceeding straight). Finally, the use of

federated learning to preserve the vehicles’ private information

will be explored.
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[14] F. Altché and A. de La Fortelle, “An LSTM network for highway trajec-
tory prediction,” in Proc. IEEE International Conference on Intelligent

Transportation Systems (ITSC), 2017, pp. 353–359.

[15] N. Deo and M. Trivedi, “Multi-modal trajectory prediction of surround-
ing vehicles with maneuver based LSTMs,” in Proc. IEEE Intelligent

Vehicles Symposium (IV), 2018.

[16] B. Kim, C. Kang, J. Kim, S. H. Lee, C. Chung, and J. Choi, “Probabilis-
tic vehicle trajectory prediction over occupancy grid map via recurrent
neural network,” in Proc. IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2017.

[17] Y. Jeong, S. Kim, and K. Yi, “Surround vehicle motion prediction using
lstm-rnn for motion planning of autonomous vehicles at multi-lane turn
intersections,” IEEE Open Journal of Intelligent Transportation Systems,
vol. 1, pp. 2–14, 2020.

[18] Y. Xing, C. Lv, and D. Cao, “Personalized vehicle trajectory prediction
based on joint time-series modeling for connected vehicles,” IEEE

Transactions on Vehicular Technology, vol. 69, no. 2, pp. 1341–1352,
2020.

[19] J. Liu, Y. Luo, H. Xiong, T. Wang, H. Huang, and Z. Zhong, “An
integrated approach to probabilistic vehicle trajectory prediction via
driver characteristic and intention estimation,” in Proc. IEEE Intelligent

Transportation Systems Conference (ITSC), 2019, pp. 3526–3532.

[20] Q. Tran and J. Firl, “Online maneuver recognition and multimodal
trajectory prediction for intersection assistance using non-parametric
regression,” in Proc. IEEE Intelligent Vehicles Symposium (IV), 2014.

[21] D. J. Phillips, T. A. Wheeler, and M. J. Kochenderfer, “Generalizable
intention prediction of human drivers at intersections,” in Proc. IEEE

Intelligent Vehicles Symposium (IV), 2017.

[22] W. Xu, Z. Chen, C. Zhang, X. Ji, Y. Wang, H. Su, and B. Liu,
“GlobalInsight: An LSTM based model for multi-vehicle trajectory
prediction,” in Proc. IEEE International Conference on Communications

(ICC), 2020, pp. 1–7.

[23] N. Deo and M. Trivedi, “Convolutional social pooling for vehicle
trajectory prediction,” in Proc. IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, 2018.

[24] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid,
“VectorNet: Encoding HD maps and agent dynamics from vectorized
representation,” in Proc. IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2020, pp. 11 522–11 530.

[25] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun,
“Learning lane graph representations for motion forecasting,” in Proc.

European Conference on Computer Vision (ECCV), 2020.

[26] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K.
Huang, J. Schneider, and N. Djuric, “Multimodal trajectory predictions
for autonomous driving using deep convolutional networks,” in Proc.

International Conference on Robotics and Automation (ICRA), 2019,
pp. 2090–2096.

[27] J. Strohbeck, V. Belagiannis, J. Müller, M. Schreiber, M. Herrmann,
D. Wolf, and M. Buchholz, “Multiple trajectory prediction with deep
temporal and spatial convolutional neural networks,” in Proc. IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 1992–1998.

[28] W. Liu and Y. Shoji, “Edge-assisted vehicle mobility prediction to
support V2X communications,” IEEE Transactions on Vehicular Tech-
nology, vol. 68, no. 10, pp. 10 227–10 238, 2019.

[29] C.-M. Huang and S.-Y. Lin, “An advanced vehicle collision warning
algorithm over the DSRC communication environment: An advanced
vehicle collision warning algorithm,” in Proc. IEEE 27th International

Conference on Advanced Information Networking and Applications

(AINA), 2013, pp. 696–702.

[30] D. Katare and M. El-Sharkawy, “Embedded system enabled vehicle
collision detection: An ANN classifier,” in Proc. IEEE 9th Annual

Computing and Communication Workshop and Conference (CCWC),
2019, pp. 0284–0289.

[31] I. Elleuch, A. Makni, and R. Bouaziz, “Cooperative intersection collision
avoidance persistent system based on V2V communication and real-
time databases,” in Proc. IEEE/ACS 14th International Conference on

Computer Systems and Applications (AICCSA), 2017, pp. 1082–1089.

[32] M. R. Hafner, D. Cunningham, L. Caminiti, and D. Del Vecchio,
“Cooperative collision avoidance at intersections: Algorithms and ex-
periments,” IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 3, pp. 1162–1175, 2013.

[33] G. R. de Campos, A. H. Runarsson, F. Granum, P. Falcone, and
K. Alenljung, “Collision avoidance at intersections: A probabilistic
threat-assessment and decision-making system for safety interventions,”
in Proc. 17th International IEEE Conference on Intelligent Transporta-
tion Systems (ITSC), 2014, pp. 649–654.

[34] M. Brännström, F. Sandblom, and L. Hammarstrand, “A probabilistic
framework for decision-making in collision avoidance systems,” IEEE

Transactions on Intelligent Transportation Systems, vol. 14, no. 2, pp.
637–648, 2013.

[35] J. Ji, A. Khajepour, W. W. Melek, and Y. Huang, “Path planning and
tracking for vehicle collision avoidance based on model predictive con-
trol with multiconstraints,” IEEE Transactions on Vehicular Technology,
vol. 66, no. 2, pp. 952–964, 2017.

[36] K. Lee and D. Kum, “Collision avoidance/mitigation system: Motion
planning of autonomous vehicle via predictive occupancy map,” IEEE

Access, vol. 7, pp. 52 846–52 857, 2019.

[37] G. Avino, P. Bande, P. A. Frangoudis, C. Vitale, C. Casetti, C. F.
Chiasserini, K. Gebru, A. Ksentini, and G. Zennaro, “A MEC-based
extended virtual sensing for automotive services,” IEEE Trans. Netw.

Service Manag., vol. 16, no. 4, pp. 1450–1463, 2019.

[38] B. Brik and A. Ksentini, “Toward optimal MEC resource dimensioning
for a vehicle collision avoidance system: A deep learning approach,”
IEEE Network, vol. 35, no. 3, pp. 74–80, 2021.

[39] Y. Bengio, P. Simard, and F. P., “Learning long-term dependencies with
gradient descent is difficult,” IEEE Trans. Neural Net., vol. 5, no. 2, pp.
157–166, 1994.

[40] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” arXiv:1506.02142

[stat.ML], 2016.

[41] F. Rodrigues and F. Pereira, “Beyond expectation: Deep joint mean and
quantile regression for spatiotemporal problems,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 31, no. 9, pp. 5377–5389, 2020.

[42] R. Koenker, Fundamentals of Quantile Regression, ser. Econometric
Society Monographs. Cambridge University Press, 2005, p. 26–67.

[43] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 [cs.LG], 2014.

[45] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[46] G. Louppe, “Understanding random forests: From theory to practice,”
arXiv:1407.7502 [stat.ML], 2015.

[47] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 20, no. 8, pp. 832–844, 1998.

[48] M. I. Ribeiro, “Gaussian probability density functions: Properties
and error characterization,” Inst. for Syst. and Robotics,
Lisbon, Portugal, Tech. Rep., 2004. [Online]. Available:
http://users.isr.ist.utl.pt/∼mir/pub/probability.pdf
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