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Pion Valence Quark Distribution at Physical Pion mass of Nf = 2+1+1 Lattice QCD

Jack Holligan1, ∗ and Huey-Wen Lin1, †

1Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824

We present a state-of-the-art calculation of the unpolarized pion valence-quark distribution in
the framework of large-momentum effective theory (LaMET) with improved handling of systematic
errors as well as two-loop perturbative matching. We use lattice ensembles generated by the MILC
collaboration at lattice spacing a ≈ 0.09 fm, lattice volume 643×96, Nf = 2+1+1 flavors of highly-
improved staggered quarks and a physical pion mass. The LaMET matrix elements are calculated
with pions boosted to momentum Pz ≈ 1.72 GeV with high-statistics of O(106) measurements.
We study the pion PDF in both hybrid-ratio and hybrid-regularization-independent momentum
subtraction (hybrid-RI/MOM) schemes and also compare the systematic errors with and without
the addition of leading-renormalon resummation (LRR) and renormalization-group resummation
(RGR) in both the renormalization and lightcone matching. The final lightcone PDF results are
presented in the modified minimal-subtraction scheme at renormalization scale µ = 2.0 GeV. We
show that the x-dependent PDFs are compatible between the hybrid-ratio and hybrid-RI/MOM
renormalization with the same improvements. We also show that systematics are greatly reduced
by the simultaneous inclusion of RGR and LRR and that these methods are necessary if improved
precision is to be reached with higher-order terms in renormalization and matching.

PACS numbers: 12.38.-t, 11.15.Ha, 12.38.Gc

I. INTRODUCTION

Parton distribution functions (PDFs) were first intro-
duced by Feynman in 1969 [1] and describe the distribu-
tion of longitudinal momentum among a hadron’s con-
stituent quarks and gluons. They are of particular in-
terest due to their use as inputs for the computation of
scattering cross sections in high-energy hadron collisions,
since the sum of convolutions of PDFs with the cross
section of the corresponding parton produces a leading-
order approximation of the hadronic cross section in the
collinear framework [2]. In addition, they provide insight
into the internal structure of the corresponding hadron.
A great deal has been learned about nucleon PDFs from
analysis of hard-scattering experiments since the 1960s
(for reviews and latest results, see Refs. [3–7]), and these
measurements have provided a standard against which
theoretical calculations can be judged. Still greater ex-
perimental precision is anticipated at the future Electron-
Ion Collider [8–10]. The pion is the lightest hadron and is
of special interest due to its interpretation as a pseudo–
Nambu-Goldstone boson from the spontaneous breaking
of approximate chiral symmetry; hence, an understand-
ing of the pion PDF is of high value.

PDFs can be determined numerically (as well as from
experimental data) in lattice quantum chromodynamics
(QCD) with the current-current correlator method [11,
12], the pseudo-PDF method [13–15] or large-momentum
effective theory (LaMET) [16–18], the third of which we
use in this work. LaMET examines the behavior of equal-
time, spatially separated correlators on a Euclidean lat-
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tice and recovers the lightcone physics through perturba-
tive matching. A great deal has been achieved applying
the LaMET method to calculations of PDFs [19–45].

The x-dependent pion valence-quark PDF has been
studied on the lattice in recent years [42, 46–51], and
the field has matured to the point where it is impor-
tant to control sources of systematic errors. Improve-
ments have been made in the development of the hy-
brid renormalization scheme [52] (compared to the pure
ratio- or pure regularization-independent momentum-
subtraction (pure RI/MOM)-schemes), lightcone match-
ing up to two-loop order and the inclusion of Wilson-
line extrapolation in the renormalized matrix elements
which reduces the presence of unphysical oscillations in
the PDF. Two recent developments which we examine in
this paper are the presence of large logarithms and the
renormalon ambiguity both in the renormalization and
matching processes. The large logarithms are handled
with renormalization group resummation (RGR) [53] and
the renormalon ambiguity is handled with of leading
renormalon resummation (LRR) [54]. The RGR method
accounts for the fact that lightcone matching depends on
the longitudinal momentum of the parton as well as the
final renormalization scale, and the difference between
them results in large logarithms, which require resum-
mation. The RGR technique, as applied to the match-
ing process, chooses the renormalization scale such that
the logarithms vanish, and the result is evolved to the
final desired scale with the DGLAP (Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi) equation. The LRR method is
applied to the renormalization of the bare matrix ele-
ments by demanding that the short-distance behavior
agrees with the theoretical predictions of the operator
product expansion (OPE). These are known as Wilson
coefficients and are computed as a perturbation series
in the strong coupling; however, the series is not con-
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vergent due to the presence of an infrared renormalon
(IRR). The LRR method resums the terms due to the
IRR and improves the convergence of the perturbative
calculation. The two methods of RGR and LRR in
both the renormalization and matching processes per-
formed up to next-to-next-to-leading-order (NNLO) re-
sult in greatly reduced systematic uncertainties in the
computed PDF. The method of RGR in the matching
process has been applied to the pion PDF [53] as well as
the nucleon transversity PDF [55]. The RGR and LRR
methods were applied simultaneously to the pion PDF in
Ref. [54] for the renormalization and lightcone matching
processes; only the systematic errors were presented.

In this paper we apply both RGR and LRR methods
on top of different renormalization schemes to examine
their effects on the pion valence-quark PDFs and their
systematic errors. We use clover fermions at a lattice
spacing of a ≈ 0.09 fm and box length L = 64a ≈ 5.76 fm
with Nf = 2 + 1 + 1 flavors of highly-improved stag-
gered quarks. The parameters are tuned so as to pro-
duce a pion of mass mπ ≈ 130 MeV [56]. The lattice
configurations were generated by the MILC collabora-
tion [57–59]. The pion matrix elements is calculated with
a boosted momentum of Pz = 8 × 2π

L ≈ 1.72 GeV with
the number of measurements for each source-sink separa-
tion up to O(106). However, Ref. [56] only reports pion
valence-quark PDF using the hybrid-ratio renormaliza-
tion scheme with NNLO matching process; the large log-
arithms and the renormalon ambiguity were not included
in the systemics error estimation.

This paper is organized as follows: in Sec. II we out-
line the methods of RGR and LRR applied both to the
renormalization method and the lightcone matching. In
Sec. III we display and discuss our results of the renor-
malized matrix elements and the x-dependent PDF, and
compare with previous results in the literature. We con-
clude our paper in Sec. IV.

II. METHODOLOGY

In this section we outline the method of hybrid renor-
malization [52] with the additions of RGR and LRR de-
scribed in Ref. [54] and with particular emphasis on the
linear divergence and renormalon ambiguity. We then
summarize the lightcone matching with both RGR and
LRR improvements [53, 54] which we will be used in
Sec. III.

A. Improved Hybrid Renormalization Scheme

The matrix elements used in LaMET require renormal-
ization to remove both ultraviolet (UV) and infrared (IR)
divergences. The bare matrix elements used in LaMET
are spatially separated correlators

hBπ (z, Pz) =
〈
π(Pz)

∣∣ψ(z)γtW (z, 0)ψ(0)
∣∣π(Pz)

〉
, (1)

where ψ, ψ are the bare quark field, |π(Pz)⟩ is the pion
state with boost momentum Pz in the z direction, γt is a
Dirac matrix and W (z, 0) = P̂ exp

(
−ig

∫ z

0
dz′Az(z

′)
)
is

the path-ordered Wilson line with gluon field Aµ(z) con-
necting the two spatially separated coordinates (0, 0, 0, 0)
and (0, 0, 0, z).

Early renormalization methods for LaMET ma-
trix elements used in lattice parton calculations were
the regularization-independent momentum-subtraction
(RI/MOM) scheme [60] in Refs. [21–23, 25–28, 35–45, 61–
63] and the ratio scheme similar to those used in the
pseudo-PDF methods [13, 15]. The ratio scheme renor-
malizes the non-zero momentum matrix elements by di-
viding by them by the equivalent zero-momentum matrix
element. The RI/MOM scheme divides the non-zero mo-
mentum matrix elements by the tree-level matrix element
at a given momentum and energy scale. Later, improved
renormalized schemes, such as hybrid-ratio and hybrid-
RI/MOM schemes [52], were proposed to use the ratio
and RI/MOM methods, respectively, up to a distance
zs ≈ 0.3 fm [19, 20, 52, 55], and for large distance, z > zs,
the bare matrix elements are instead multiplied by an ex-
ponential term designed to remove both the linear diver-
gence and the renormalon ambiguity. In such a scheme,
the hybrid renormalized matrix elements hRπ (z, Pz) are
given by

hRπ (z, Pz) =

N
hB
π (z,Pz)
Z(z) if z < zs

Ne(δm+m0)(z−zs) h
B
π (z,Pz)
Z(zs)

if z ⩾ zs
, (2)

where Z(z) can be the bare matrix element at zero mo-
mentum hBπ (z, Pz = 0) for the hybrid-ratio or RI/MOM
factor or ZRI/MOM(z, µRI, p

z
R = 0) for the hybrid-

RI/MOM scheme; δm and m0 are the linear divergence
and renormalon ambiguity, respectively; the normaliza-
tion N = Z(0)/hBπ (z = 0, Pz) sets the matrix element
hRπ (0, Pz) = 1, satisfying conservation of charge. The
constants Z(zs) and e−(δm+m0)zs enforce continuity at
z = zs.

The linear divergence arises from the self-energy of the
Wilson line [52, 64] and can be determined by fitting
Z(z) = Be−δmz, whether it is in the hybrid-ratio or
hybrid-RI/MOM scheme. The determination of the lin-
ear divergence would appear to be a source of systematic
errors; however, the renormalon ambiguity conspires to
cancel this error such that the sum δm + m0 that ap-
pears in Eq. (2) is fixed. To determine the renormalon
ambiguity, we demand that the renormalized matrix ele-
ments agree with the OPE at short distances, z ≲ 0.2 fm.
These are functions of the Wilson coefficients C0(z, µ),
which can be computed as a perturbation series in the
strong coupling. However, such series are, in general,
not convergent to all orders. The asymptotic nature of
the perturbation series results in an uncertainty known
as the “renormalon ambiguity” [65].

Having determined the linear divergence, we determine
the renormalon ambiguity by fitting the bare matrix ele-
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ments to

e(δm+m0)zhBπ (z, Pz) = C0(z, µ) +O
(
z2Λ2

QCD

)
(3)

at short distances as in Ref. [54]. The unpolarized Wilson
coefficient in Eq. (3) has been computed up to NNLO [66,
67] and can be improved with one or both of RGR and
LRR [54]. The different schemes result in different central
values and uncertainties for the renormalon ambiguity.
The unpolarized Wilson coefficients with Wilson length
z calculated in the modified minimal-subtraction (MS)
scheme at scale µ, are

CNLO
0 (z, µ) = 1 +

αs(µ)CF

2π

(
3

2
l(z, µ) +

5

2

)
(4)

at NLO [67] and

CNNLO
0 (z, µ) = CNLO

0 (z, µ) +

(
αs(µ)

2π

)2

×

[
l2(z, µ)

(
15

2
− nf

3

)
+ l(z, µ)

(
37.1731− 5

3
nf

)

− 4.34259nf + 51.836

]
(5)

at NNLO [66], where l(z, µ) = ln
(
z2µ2e2γE/4

)
, γE is the

Euler-Mascheroni constant, αs(µ) is the strong coupling
at energy scale µ, CF is the quadratic Casimir for the
fundamental representation of SU(3) and nf is the num-
ber of fermion flavors.

The Wilson coefficients depend on the renormalization
scale µ, as well as the intrinsic physical scale, and the dif-
ference between them results in logarithmic terms that
need to be resummed. We perform the resummation us-
ing the renormalization-group equation (RGE)

dC0(z, µ)

dln(µ2)
= γ(µ)C0(z, µ) (6)

where γ(µ) is the anomalous dimension, which has been
calculated up to three loops [68]. We can set the energy
scale such that the logarithms vanish and then evolve the
Wilson coefficient to the desired energy scale by solving
Eq. (6):

C
(N)NLO×RGR
0 (z, µ) = C

(N)NLO
0 (z, z−1)× I(µ, z−1),

(7)

where z−1 ≡ 2e−γE/z, I(µ, z−1) is defined by

I(µ, z−1) = exp

(∫ αs(µ)

αs(z−1)

dα′ γ(α
′)

β(α′)

)
, (8)

β(αs) is the QCD β function, and γ must be computed
to the same order as C0(z, z

−1).
The Wilson coefficients themselves are determined by

a perturbation series in the strong coupling which, in

general, is not convergent to all orders resulting in the
renormalon ambiguity. We can account for this by im-
proving the Wilson coefficients with LRR. Reference [54]
(motivated by Refs. [69, 70]) suggests modifying the Wil-
son coefficient according to

CNkLO+LRR
0 (z, µ) = CNkLO

0 (z, µ)

+ zµ

(
CPV(z, µ)−

k−1∑
i=0

αi+1
s (µ)ri

)
(9)

where k = 1 for NLO, k = 2 for NNLO, and

CPV(z, µ) = Nm
4π

β0

∫ ∞

0,PV

du exp

(
− 4πu

αs(µ)β0

)
× 1

(1− 2u)b+1

(
1 + c1(1− 2u) + c2(1− 2u)2 + . . .

)
.

(10)

The subscript “PV” denotes the Cauchy principal value
to regulate the poles in the integrand, and the various
parameters are

b =
β1
2β0

c1 =
1

4b

β2
1 − β0β2
β4
0

c2 =
1

32β8
0b(b− 1)

(
β4
1 + 4β3

0β1β2 − 2β0β
2
1β2

+ β2
0(−2β3

1 + β2
2 − 2β4

0β3)
)

rn = Nm

(
β0
2π

)n
Γ(1 + n+ b)

Γ(1 + b)

×
(
1 +

c1b

b+ n
+

c2b(b− 1)

(n+ b)(n+ b− 1)

)

Nm =


0.5749687262865643 for nf = 3

0.5522713118193284 for nf = 4

0.5235323457364502 for nf = 5

,

where βn is the nth coefficient of the QCD beta function,
and Γ(n) is the Euler Gamma function. The expression
in Eq. (10) is applicable to all spin states at twist-two.
We can combine the two methods of RGR and LRR to
make the final high-quality Wilson coefficient

C
((N)NLO+LRR)×RGR
0 (z, µ) = C

(N)NLO+LRR
0 (z, z−1)

× I(µ, z−1). (11)

Having improved the Wilson coefficients with RGR and
LRR, we can determine the renormalon ambiguity m0

using Eq. (3) and fully renormalize the matrix elements
in the hybrid scheme using Eq. (2).
The lightcone PDF qvπ(x, µ) is obtained by applying

the perturbative matching to the quasi-PDF, q̃vπ(x, Pz)
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which is related to the coordinate space matrix elements
via a Fourier transform:

q̃vπ(x, Pz) =

∫ ∞

−∞

Pz dz

π
eixzPzhRπ (z, Pz). (12)

The variable x is Bjorken x, the fraction of the hadron’s
longitudinal momentum carried by the valence quark.
In order to prevent unphysical oscillations in the quasi-
PDF, we first extrapolate the renormalized matrix ele-
ment hR(z, Pz) to infinite distance before Fourier trans-
forming using the model proposed in Refs. [19, 20]:

hR(z, Pz) →
Ae−mz

|zPz|d
as z → ∞ (13)

where A, m and d are fitting parameters. This extrap-
olation model is inspired by the PDF having the func-
tional form qvπ(x, µ) ∼ xd−1 at small x values, which
corresponds to the anticipated large-distance behavior in
the renormalized matrix element in the above equation.
This was also applied to the nucleon in Ref. [20]. With
the renormalized coordinate-space matrix element com-
puted and extrapolated to infinite length of Wilson-line
displacement, we can then compute the quasi-PDF with
Eq. (12) and follow by performing the lightcone match-
ing.

B. Lightcone matching

The matching process aligns the UV behavior of the
quasi-PDF with that of the lightcone PDF qvπ(x, µ). The
two quantities are related through the matching formula

q̃vπ(x, Pz) =

∫ 1

−1

dy

|y|
K(x, y, µ, Pz, zs)q

v
π(y, µ)

+O

(
Λ2
QCD

P 2
z x

2(1− x)

)
, (14)

where K is the matching kernel. The corrections to the
matching process arise from the fact that the quasi-PDF
is computed at finite momentum, whereas the lightcone
PDF is defined at infinite momentum [19, 71]. The full
matching kernel is

K(x, y, µ, Pz, zs) = KH-ratio, H-RI/MOM +∆KLRR, (15)

depending on whether we renormalize in the hybrid-ratio
or hybrid-RI/MOM scheme. The matching kernel has
been computed up to NNLO for unpolarized quasi-PDFs
renormalized in the hybrid-ratio scheme with LRR [53,
66, 72] as well as to NLO in the RI/MOM scheme in
Refs. [63, 73].1

1 When the RI/MOM matrix elements are computed at momen-
tum pR = 0, the hybrid-ratio and hybrid-RI/MOM matching
kernels coincide at NLO as was shown in Ref. [73].

The LRR modification [54] in the matching kernel can
be written down as

∆KLRR =

∫
yPz dz

2π
ei(x−y)zPz

× zµ

[
CPV(z, µ)−

k−1∑
i=0

αi+1
s (µ)ri

]
. (16)

with k = 1 for NLO and k = 2 for NNLO. Since the
matching process can be numerically expensive, we con-
vert the matching kernel K of Eq. (15) into a matrix in x
and y, Kxy, then multiply a vector of quasi-PDF values
by the inverse K−1

xy .
The method of RGR can also be applied to the match-

ing process; the algorithm has been derived in Ref. [53].
This time, the intrinsic physical scale is that of the par-
ton (∼ 2xPz). We perform the lightcone matching at
the scale µ = 2xPz so the logarithms vanish, and we
then evolve to the desired energy scale using the DGLAP
equation:

dqvπ(x, µ)

dln(µ2)
=

∫ 1

x

dz

|z|
P(z)qvπ

(x
z
, µ
)
, (17)

where P(z) is the DGLAP kernel, which has been cal-
culated up to three loops [74]. It should be noted that
the DGLAP evolution formula begins to break down at
x ≈ 0.2 where αs(µ = 2xPz) becomes nonperturbative.

III. RESULTS AND DISCUSSION

A. Renormalization Matrix Elements

The first stage in the calculation is to renormalize the
bare matrix elements according to Eq. (2). We determine
the linear divergence by fitting Z(z) of Eq. (2) to an ex-
ponential decay Be−δmz. Our calculation from examin-
ing the exponential decay of Z(z) yields δm = 0.713(13)
and δm = 0.668(10) GeV with Z(z) inputs from the
RI/MOM renormalization factors and the zero boost-
momentum bare pion matrix elements respectively. Our
δm parameter are of the same order of magnitude as
ANL/BNL’s [19] which was δm = 0.7439(59) GeV at
Nf = 2 + 1 a = 0.04 fm on 310-MeV ensemble. We then
proceed to determine the renormalon ambiguity from the
bare boosted-momentum pion matrix elements hBπ (z, Pz)
and Wilson coefficients as described in Eq. (3). The
renormalon ambiguity m0 is obtained by fitting to a lin-
ear function in z according to

ln

(
e−δmzC0(z, µ)

hBπ (z, Pz)

)
= m0z + c (18)

at the three z values {zc − 0.02 fm, zc, zc + 0.02 fm} for
different central values zc within the range of validity of
the OPE (zc ≲ 0.2 fm). The terms m0 and c are fitting
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parameters. The Wilson coefficient C0(z, µ) in the for-
mula can be determined to NLO or NNLO and may have
the improvements of LRR and/or RGR as detailed in
Sec. II A. The coefficient of z in the linear fit is the renor-
malon ambiguity m0 and the term c is the y-intercept,
which is irrelevant for this calculation.

We show the values of the renormalon ambiguity in
Fig. 1 with the Wilson coefficient determined to different
orders and in different fitting ranges. The error bars are
derived from “scale variation”. When we use the RGE,
we set the initial scale to µ = z−1 so as to eliminate the
logarithms and then evolve to the final desired energy
scale of µ = 2.0 GeV. Scale variation involves setting the
initial scale to c′ × z−1 for c′ = 0.75 and c′ = 1.5 as
was used in Ref. [54]. This corresponds to a variation
of approximately 15% either side of αs(µ = 2.0 GeV)
in the strong coupling. The central value corresponds
to c′ = 1.0. The numerical results for the renormalon
ambiguity with errors derived from scale variation are
shown in Tables I and II for the hybrid-ratio and hybrid-
RI/MOM renormalization scheme. The linear divergence
is included in each table for the corresponding scheme.
It can be seen from both the plots in Fig. 1 as well as
Tables I and II that the calculations with both the LRR
and RGR improvements are the most reliable due to their
nice plateau behavior in the region zc = [0.12, 0.2] fm
as well as their greatly reduced errors compared to the
other schemes. The improvement of RGR without LRR
causes the renormalon ambiguity to become quite unsta-
ble and the error bars are very large. This is an evi-
dence (also present in Ref. [54]) that the resummation
of large logarithms on its own results in the Wilson co-
efficient being dominated by the renormalon ambiguity.
The renormalon divergence begins to emerge at order
k; k ∼ 1/αs(µ). At an energy scale of µ = 2.0 GeV,
1/αs ≈ 3 and so the renormalon ambiguity will not begin
to emerge until N3LO. However, when RGR is used, the
energy scale is set to an initial value of µ = 2e−γE/z. At
short distances, this is a large energy, hence a small cou-
pling and the renormalon will not emerge at order NLO
or NNLO. However, the reverse is the case at large z for
which this is a small energy and the strong coupling is
large. The renormalon divergence can be significant even
at NLO in this region. This is the reason that the Wil-
son coefficients with RGR but not LRR have very large
systematic errors at z ≳ 0.2 fm. The renormalon diver-
gence must be included when RGR is used for a reliable
measurement.

The lattice data renormalized in the hybrid-ratio and
hybrid-RI/MOM schemes are shown in Fig. 2. The plot
shows data with the renormalon ambiguity omitted and
determined to (NLO+LRR)×RGR both in the hybrid-
ratio and hybrid-RI/MOM schemes. We show both sta-
tistical errors and, in the cases of (NLO+LRR)×RGR,
combined statistical and systematic errors. It is clear
from Fig. 2 that the central values between the hybrid-
ratio and hybrid-RI/MOMmethods to an otherwise fixed
order are compatible within statistical errors. The cen-

tral values of the δm matrix elements can differ by
up to 20% between the two renormalization schemes
but have very large statistical errors. By contrast, the
(NLO+LRR)×RGR results differ by no more than 7%
between the two schemes and have much smaller statis-
tical errors. The systematic errors are also very small in
the (NLO+LRR)×RGR case. For this reason, the sub-
sequent steps in the calculation of the pion PDF use the
hybrid-ratio scheme since the matching kernel has been
computed up to NNLO.

In Fig. 3, we show the pion matrix elements renor-
malized in the hybrid-ratio scheme with δm only (red)
and with the renormalon ambiguity determined to NLO
(blue), NLO×RGR (green) and (NLO+LRR)×RGR
(purple). We can see that the systematic errors are min-
imized when both RGR and LRR improvements are ap-
plied simultaneously. In addition, the statistical and sys-
tematic errors are very large when RGR is applied on its
own due to the RGR process enhancing the presence of
the renormalon ambiguity. Between the results at NLO
and those at (NLO+LRR)×RGR, the central values are
compatible within statistical errors but the latter have
much smaller systematic errors compared to the former.
The overall z-behavior changes among the four schemes
due to m0 in the exponential term that renormalizes the
matrix elements for z > zs in Eq. (2). Only NLO×RGR
has a positive m0 value; hence, the corresponding renor-
malized matrix elements have the largest central values.
By contrast, m0 at (NLO+LRR)×RGR is negative and
NLO is even smaller. Hence, the (NLO+LRR)×RGR
renormalized matrix elements are smaller than the δm
terms and the NLO are smaller still. A greater suppres-
sion in z results in less pronounced oscillations in the
Fourier transform (i.e. the quasi-PDF), so the NLO and
(NLO+LRR)×RGR x-dependent PDFs are more steady.

We then compare the renormalized matrix ele-
ments at orders NLO, (NLO+LRR)×RGR, NNLO and
(NNLO+LRR)×RGR in Fig. 4. While the lower system-
atic errors are insignificant with relative to the statistical
errors, the upper systematic errors increase from 0.13 to
0.21 at z = 0.36 fm and from 1.5 to 3.4 at z = 0.99 fm
from NLO to NNLO. However, the same errors decrease
to 0.08 at z = 0.36 fm and 0.8 at z = 0.99 fm from
NNLO to (NNLO+LRR)×RGR. In addition, the rela-
tive systematic errors decrease from (NLO+LRR)×RGR
to (NNLO+LRR)×RGR. Not only does this reaffirm the
benefits of including RGR and LRR in our calculations,
but it also shows that if one wishes to renormalize to or-
der NNLO or higher, it is necessary to account for both
large logarithms and the renormalon ambiguity. In other
words, handling of the systematic errors must improve in
parallel with higher order terms in the renormalization
process. If systematics are not accounted for in the calcu-
lations, the results will deteriorate at higher orders. This
demonstrates the need to account for the large logarithms
and the renormalon divergence in the renormalization of
LaMET matrix elements.
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FIG. 1: Renormalon ambiguity determined in the hybrid-ratio scheme in multiple z ranges. The value m0(z) is determined by
fitting Eq. (18) to the z values {z−0.02 fm, z, z+0.02 fm}. The vertical width of each band corresponds to the systematic error
derived from scale variation described in Sec. III A. We show m0(z) determined at NLO, NLO×RGR, (NLO+LRR)×RGR (left
figure), NNLO, NNLO×RGR and (NNLO+LRR)×RGR (right figure) in blue, green, red, orange, cyan and purple, respectively.
Note that the errors are minimized in the two cases in which RGR and LRR are applied simultaneously.

Order m0 (GeV)

δm only 0.0

NLO −0.197+0.22
−0.029

NNLO −0.05+0.4
−0.05

NLO×RGR 0.08+0.19
−0.10

NNLO×RGR 0.25+0.30
−0.14

(NLO+LRR)×RGR −0.118+0.07
−0.009

(NNLO+LRR)×RGR −0.123+0.07
−0.014

TABLE I: Renormalon ambiguity m0 for hybrid-ratio scheme
determined in the fitting range z ∈ [0.14, 0.18] fm. The errors
in m0 are derived from scale variation described in Sec. IIIA.
Each m0 is added to the linear divergence δm = 0.668(10)
GeV in the hybrid-ratio scheme for z > zs. Note the greatly
reduced errors in m0 when RGR and LRR are applied simul-
taneously.

Order m0 (GeV)

δm only 0.0

NLO −0.230+0.22
−0.029

NLO×RGR 0.05+0.19
−0.10

(NLO+LRR)×RGR −0.151+0.07
−0.009

TABLE II: Renormalon ambiguity m0 for hybrid-RI/MOM
scheme determined in the fitting range z ∈ [0.14, 0.18] fm.
The errors in m0 are derived from scale variation described
in Sec. IIIA. Each m0 is added to the linear divergence δm =
0.713(13) GeV in the hybrid-RI/MOM scheme for z > zs.
Note the greatly reduced errors in m0 when RGR and LRR
are applied simultaneously.

B. Parton Distribution Functions

To obtain the pion quasi-PDF, we first need to extrap-
olate the renormalized matrix elements at large Wilson-

H-Ratio: δm only

H-RI/MOM: δm only

H-Ratio: (NLO+LRR)×RGR

H-RI/MOM: (NLO+LRR)×RGR

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

z (fm)

h πR
(z
,P
z)

FIG. 2: δm only renormalized matrix elements in the
hybrid-ratio (red) and hybrid-RI/MOM (blue) schemes;
(NLO+LRR)×RGR renormalized matrix elements in the
hybrid-ratio (green) and the hybrid-RI/MOM (purple)
schemes. In the two cases of (NLO+LRR)×RGR, the solid
error bars are statistical and the dashed error bars are com-
bined statistical and systematic, the latter arising from the
scale variation. Except for the δm-only calculation in the
hybrid-ratio scheme, the plotted data have been offset from
their exact z value to allow for readability.

line displacement to infinity. The Wilson-line displace-
ment must be large enough (≳ 0.5 fm) that we can real-
istically use the small-x model corresponding to the large
distance behavior; in this work, we choose the fitting
range [8a, 14a] ≈ [0.72, 1.26] fm. Several extrapolation
models were tested by the ANL/BNL collaboration in
Ref. [19] for the pion matrix elements and the final one
used was that of Eq. (13) with the constraints A > 0,
d > 0 and m > 0.1 GeV; the last two constraints en-
sure that the large distance behavior decays sufficiently
quickly to obtain a convergent Fourier transform. Once
we obtain quasi-PDF, the final step is to apply the match-
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δm only

NLO

NLO×RGR

(NLO+LRR)×RGR

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

z (fm)

h πR
(z
,P
z)

FIG. 3: δm-only (red), NLO (blue), NLO×RGR (green) and
(NLO+LRR)×RGR (purple) matrix elements renormalized
in the hybrid-ratio scheme. In the cases of NLO, NLO×RGR
and (NLO+LRR)×RGR, the solid error bars are statistical
and the dashed error bars are combined statistical and sys-
tematic errors, the latter arising from the scale variation. The
same three sets of plotted data have been offset from their ex-
act z values to allow for readability.

NLO

(NLO+LRR)×RGR

NNLO

(NNLO+LRR)×RGR

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

z (fm)

h πR
(z
,P
z)

FIG. 4: NLO (blue), (NLO+LRR)×RGR (purple), NNLO
(magenta) and (NNLO+LRR)×RGR (orange) matrix ele-
ments renormalized in the hybrid ratio scheme. The solid
error bars are statistical and the dashed error bars are com-
bined statistical and systematic errors, the latter arising from
the scale variation. All plotted data except for NLO have
been offset from their exact z values to allow for readability.

ing process, Eq. (14), to recover the lightcone PDF.

Before we study the full statistical and system-
atic errors of pion valence-quark PDF, we first ex-
amine their x-dependent NLO, NNLO, NLO×RGR,
(NLO+LRR)×RGR and (NNLO+LRR)×RGR system-
atic errors in Fig. 5. We see that the lower systematic er-
rors are larger for the two orders NNLO and NLO×RGR
than they are at NLO, which was also found by Ref. [54].
In addition, the systematic errors decrease significantly
from NLO, to (NLO+LRR)×RGR, and further reduction
from (NLO+LRR)×RGR to (NNLO+LRR)×RGR. We
also observe the central values for (NLO+LRR)×RGR
and (NNLO+LRR)×RGR are much closer to each other

FIG. 5: NLO (cyan), NNLO (dashed orange), NLO×RGR
(dotted green), (NLO+LRR)×RGR (hatched blue) and
(NNLO+LRR)×RGR (hatched red) systematic errors of the
lightcone pion valence-quark PDFs. Statistical errors are neg-
ligible here.

than those for NLO to NNLO showing better conver-
gence going to higher order with LRR and RGR improve-
ments. These qualitative behaviors are also consistent
with what was found in the earlier pion-PDF study [54].
We compare the pion PDFs from hybrid-RI/MOM and

hybrid-ratio in Fig. 6; the renormalized matrix elements
can be found in Fig. 2. The RGR matching process be-
gins to break down at small-x, where the strong cou-
pling becomes nonperturbative at energy scale µ = 2xPz.
For this reason, we do not plot the PDF for x ≲ 0.22.
We noted that the two (NLO+LRR)×RGR renormal-
ization schemes PDFs produce very similar central val-
ues, while the PDFs from the two δm-only renormaliza-
tion schemes differ noticeably. This is understandable,
since the PDFs from the δm-only schemes have different
linear-divergence contributions, as discussed in Sec. III A.
Furthermore, the two corresponding (NLO+LRR)×RGR
renormalized matrix elements have very similar central
values, as shown in Fig. 2. In addition, the lightcone
matching is the same for the two schemes when the
RI/MOM matrix elements are evaluated at pzR = 0, as
was demonstrated in Ref. [73] at NLO, so the match-
ing process does not cause a further differences in the x-
dependent results for hybrid-ratio and hybrid-RI/MOM
schemes. Overall, we found the pion valence-quark
PDF to be consistent between the hybrid-RI/MOM and
hybrid-ratio renormalization schemes. For the rest of this
work, we will focus on the pion valence-quark PDF re-
sults with hybrid-ratio renormalization scheme.
We compare x-dependent PDFs in the hybrid-

ratio scheme with δm-only, NLO, NLO×RGR and
(NLO+LRR)×RGR improvement in Fig. 7. Going from
NLO to NLO×RGR, the relative systematic errors in-
crease by as much as 40%, showing that the RGR pro-
cess on its own can enhance the presence of the infrared
renormalon. However, the relative systematic errors are
reduced by as much as a factor of two when going from
NLO×RGR to (NLO+LRR)×RGR, demonstrating that
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FIG. 6: The lightcone PDFs renormalized in hybrid-ratio
and hybrid-RI/MOM schemes with δm only (dotted cyan and
dashed orange) and at (NLO+LRR)×RGR (hatched blue and
hatched red). In each PDF, the inner darker bands show sta-
tistical error, while the outer lighter bands show combined
statistical and systematic errors (due to scale variation). The
dark-gray region is where the LaMET calculation begins to
break down, and the light-gray region is where the RGR
matching begins to break down.

it is necessary to include the LRR method when RGR is
used. We also see that the central values of the two RGR
plots (NLO×RGR and (NLO+LRR)×RGR) are lower
than those of NLO in the region x ≲ 0.6. This is to be
expected, since the logarithmic terms that are resummed
in the RGR matching process are ln

(
µ2/4x2P 2

z

)
, which

become larger as x decreases. Thus, their effect is more
significant at small x, and the effect of resumming them
is to lower the central value.

The pion valence-quark PDFs for one- and two-loop
treatments are compared in Fig. 8: NLO (dotted cyan),
(NLO+LRR)×RGR (solid blue), NNLO (dashed or-
ange) and (NNLO+LRR)×RGR (solid red) improve-
ments. We would normally expect a calculation to yield
more precise results as we go to higher order (e.g. NLO
to NNLO). However, this is not the case in Fig. 8;
the systematic errors increase from NLO to NNLO. It
is necessary to account for the effects of large loga-
rithms and the renormalon divergence with the meth-
ods of RGR and LRR, respectively. We can see that the
systematic errors decrease from (NLO+LRR)×RGR to
(NNLO+LRR)×RGR, showing that, in this case, the cal-
culation becomes more precise. Figure 8 is a demonstra-
tion that it is necessary to control the sources of system-
atic errors if higher-order terms are to be included in the
lightcone matching. Since the systematic errors decrease
from (NLO+LRR)×RGR to (NNLO+LRR)×RGR by
10% to 15%, we see the benefits of including higher-order
terms in the matching and renormalization. This demon-
strates that it is necessary to include both RGR and LRR
if we wish to renormalize and match to two-loop level.

We compare our numerical results with those of global
fits performed by the JAM [75] and the xFitter [76] col-

FIG. 7: The lightcone pion valence-quark PDFs as a function
of x renormalized in hybrid-ratio schemes with δm only (dot-
ted cyan), NLO (dashed orange), NLO×RGR (hatched blue)
and (NLO+LRR)×RGR (hatched red) improvement. In each
PDF, the inner darker bands show statistical error, while the
outer lighter bands show combined statistical and systematic
errors (due to scale variation). The dark-gray region is where
the LaMET calculation begins to break down, and the light-
gray region is where the RGR matching begins to break down.

laborations in Fig. 9. We scale the results of the xFitter
collaboration to match our convention of valence quark
number conservation:∫ 1

0

dxqvπ(x, µ) = 1. (19)

This is also the same convention that the JAM collab-
oration uses. We focus on the JAM results with next-
to-leading logs (NLL) since they offer a better system-
atic improvement of the valence quark PDF. Our re-
sults include both statistical errors and combined sta-
tistical and systematic errors. We show our results at
NNLO and (NNLO+LRR)×RGR to show the difference
between two-loop matching with and without RGR and
LRR improvements. Our (NNLO+LRR)×RGR results
agree within two sigma with the JAM results in the inter-
val x ≈ [0.24, 0.83] and with the xFitter results in the in-
terval x ≈ [0.35, 0.95]. The difference we see in the mid-x
region is likely due to the different levels of improvement.
Note that the JAM results [75] computed with and with-
out NLL also shows 1-2 sigmas difference within the same
analysis frame; the latter one has better agreement with
the xFitter results. Likely we are seeing difference due to
the different systematic improvements from NLL, RGR
and LRR. In the large-x region, our results are larger
than those of JAM and xFitter who use the parametriza-
tion form of xa(1 − x)b to ensure the PDF goes to 0 at
x = 1, while ours does not. This same behavior has
occurred in other LaMET framework calculations of the
valence-quark pion PDF done by ANL/BNL group [77]
at NNLO level. Overall, there is reasonable agreement
between our numerical results, previous LaMET calcula-
tions and the global fits of JAM and xFitter.
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FIG. 8: The lightcone pion valence-quark PDFs as a function
of x renormalized in hybrid-ratio scheme with NLO (dotted
cyan), (NLO+LRR)×RGR (hatched blue), NNLO (dashed
orange) and (NNLO+LRR)×RGR (hatched red) improve-
ment. In each PDF, the inner darker band shows statistical
error, while the outer lighter band shows combined statistical
and systematic errors (due to scale variation). The dark-gray
region is where the LaMET calculation begins to break down,
and the light-gray region is where the RGR matching begins
to break down.

FIG. 9: Comparison of our x-dependent PDFs
(“MSULat’24”) at NNLO (hatched green) and
(NNLO+LRR)×RGR (hatched red) with global fits com-
puted in Refs. [76] (“xFitter’20”) at NLO (dotted orange)
and [75] (“JAM’21”) at NLO with next-to-leading logarithms
(dashed blue). The xFitter’20 results have been scaled so
as to satisfy Eq. (19).

IV. CONCLUSION

In this paper we have computed the pion valence-
quark PDF with physical quark mass at boost mo-
mentum 1.72 GeV with the improvements of RGR and
LRR. We use a physical pion mass ensemble generated
by the MILC collaboration [57–59] with lattice spacing
a ≈ 0.09 fm, and 2+1+1 flavors of highly improved
staggered quarks in the sea and clover fermion for the

valence sector. We compute and compare the LaMET
matrix elements renormalized in the hybrid-ratio and
hybrid-RI/MOM schemes as well as the corresponding x-
dependent PDFs with matching performed at both one-
and two-loops levels.
We report the impacts of different levels of improve-

ment in the renormalization and matching from δm-only
to implementation of RGR and LRR. We found that
the renormalized matrix elements in both the hybrid-
RI/MOM and hybrid-ratio scheme are consistent with
each other within the statistical errors, but the former
have slightly higher central value across all the Wilson-
line displacements we studied. The systematic errors
from scale variation in the renormalized matrix elements
in the hybrid-RI/MOM and hybrid-ratio schemes are
greatly reduced by the simultaneous application of RGR
and LRR at one- and two-loop level respectively. How-
ever, the application of RGR on its own at either level
increases the systematic errors, due to its enhancement
of the renormalon ambiguity. We found our pion valence-
quark PDF in hybrid-RI/MOM and hybrid-ratio scheme
to be consistent with each other within one sigma, both
in the case of δm only and with RGR and LRR im-
provement. Unfortunately, there are no results in the
literature with which we can compare directly, since
the only previously calculated NNLO pion valence-quark
PDF was given by Ref. [56], renormalized in the hybrid-
ratio scheme, but these LaMET systematics were not in-
cluded. In studying the x-dependent PDFs, we also show
that there is an increase in systematic errors between
NLO and NNLO but a decrease in systematic errors
from (NLO+LRR)×RGR to (NNLO+LRR)×RGR and
better convergence of the central values. This demon-
strates that the inclusion of higher orders in both the
renormalization and matching processes must be supple-
mented with an improved handling of the systematic er-
rors if the results are to be made more precise. Our
(NNLO+LRR)×RGR result is the most reliable, since
it includes the highest-order lightcone matching and ac-
counts for both the large logarithms and the renormalon
ambiguity. We also compare our results to global fits per-
formed by the JAM and xFitter collaborations. Overall,
we have reasonable agreement up to differences due to
improvements from RGR and LRR.
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[48] B. Joó, J. Karpie, K. Orginos, A. V. Radyushkin, D. G.
Richards, R. S. Sufian, and S. Zafeiropoulos, Phys. Rev.
D 100, 114512 (2019), 1909.08517.

[49] T. Izubuchi, L. Jin, C. Kallidonis, N. Karthik, S. Mukher-
jee, P. Petreczky, C. Shugert, and S. Syritsyn, Phys. Rev.
D 100, 034516 (2019), 1905.06349.

[50] R. S. Sufian, J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu,
and D. G. Richards, Phys. Rev. D 99, 074507 (2019),
1901.03921.

[51] X. Gao, K. Lee, S. Mukherjee, C. Shugert, and Y. Zhao,
Phys. Rev. D 103, 094504 (2021), 2102.01101.

[52] X. Ji, Y. Liu, A. Schäfer, W. Wang, Y.-B. Yang, J.-H.
Zhang, and Y. Zhao, Nucl. Phys. B 964, 115311 (2021),
2008.03886.

[53] Y. Su, J. Holligan, X. Ji, F. Yao, J.-H. Zhang, and
R. Zhang, Nucl. Phys. B 991, 116201 (2023), 2209.01236.

[54] R. Zhang, J. Holligan, X. Ji, and Y. Su, Phys. Lett. B
844, 138081 (2023), 2305.05212.

[55] F. Yao et al. (Lattice Parton) (2022), 2208.08008.
[56] H.-W. Lin, Phys. Lett. B 846, 138181 (2023), 2310.10579.
[57] A. Bazavov et al. (MILC), Phys. Rev. D 87, 054505

(2013), 1212.4768.
[58] A. Bazavov et al. (MILC), Phys. Rev. D 82, 074501

(2010), 1004.0342.
[59] A. Bazavov et al. (MILC), Phys. Rev. D 93, 094510

(2016), 1503.02769.
[60] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa,

and A. Vladikas, Nucl. Phys. B 445, 81 (1995), hep-
lat/9411010.

[61] R. Zhang, C. Honkala, H.-W. Lin, and J.-W. Chen, Phys.
Rev. D 102, 094519 (2020), 2005.13955.

[62] M. Constantinou and H. Panagopoulos, Phys. Rev. D 96,
054506 (2017), 1705.11193.

[63] I. W. Stewart and Y. Zhao, Phys. Rev. D 97, 054512
(2018), 1709.04933.

[64] Y.-K. Huo et al. (Lattice Parton Collaboration (LPC)),
Nucl. Phys. B 969, 115443 (2021), 2103.02965.

[65] J. Fischer, Rept. Math. Phys. 43, 109 (1999).
[66] Z.-Y. Li, Y.-Q. Ma, and J.-W. Qiu, Phys. Rev. Lett. 126,

072001 (2021), 2006.12370.
[67] T. Izubuchi, X. Ji, L. Jin, I. W. Stewart, and Y. Zhao,

Phys. Rev. D 98, 056004 (2018), 1801.03917.
[68] V. M. Braun, K. G. Chetyrkin, and B. A. Kniehl, JHEP

07, 161 (2020), 2004.01043.
[69] G. S. Bali, C. Bauer, A. Pineda, and C. Torrero, Phys.

Rev. D 87, 094517 (2013), 1303.3279.
[70] A. Pineda, JHEP 06, 022 (2001), hep-ph/0105008.
[71] V. M. Braun, A. Vladimirov, and J.-H. Zhang, Phys.

Rev. D 99, 014013 (2019), 1810.00048.
[72] L.-B. Chen, W. Wang, and R. Zhu, Phys. Rev. Lett. 126,

072002 (2021), 2006.14825.
[73] C.-Y. Chou and J.-W. Chen, Phys. Rev. D 106, 014507

(2022), 2204.08343.
[74] S. Moch, J. A. M. Vermaseren, and A. Vogt, Nucl. Phys.

B 688, 101 (2004), hep-ph/0403192.
[75] P. C. Barry, C.-R. Ji, N. Sato, and W. Melnitchouk (Jef-

ferson Lab Angular Momentum (JAM)), Phys. Rev. Lett.
127, 232001 (2021), 2108.05822.

[76] I. Novikov et al., Phys. Rev. D 102, 014040 (2020),
2002.02902.

[77] X. Gao, A. D. Hanlon, N. Karthik, S. Mukherjee, P. Pe-
treczky, P. Scior, S. Shi, S. Syritsyn, Y. Zhao, and
K. Zhou, Phys. Rev. D 106, 114510 (2022), 2208.02297.

[78] R. G. Edwards and B. Joo (SciDAC, LHPC, UKQCD),
Nucl. Phys. B Proc. Suppl. 140, 832 (2005), hep-
lat/0409003.

[79] T. J. Boerner, S. Deems, T. R. Furlani, S. L. Knuth,
and J. Towns, in Practice and Experience in Advanced
Research Computing (2023), pp. 173–176.

[80] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D.
Peterson, et al., Computing in science & engineering 16,
62 (2014).


	Introduction
	Methodology
	Improved Hybrid Renormalization Scheme
	Lightcone matching

	Results and Discussion
	Renormalization Matrix Elements
	Parton Distribution Functions

	Conclusion
	Acknowledgments
	References

