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Abstract

We test the performance of the Polarizable Embedding Variational Quantum Eigensolver Self-
Consistent-Field (PE-VQE-SCF) model for computing electric field gradients with comparisons to
conventional complete active space self-consistent-field (CASSCF) calculations and experimental re-
sults. We compute quadrupole coupling constants for ice VIII and ice IX. We find that the inclusion
of the environment is crucial for obtaining results that match the experimental data. The calculations
for ice VIII are within the experimental uncertainty for both CASSCF and VQE-SCF for oxygen and
lie close to the experimental value for ice IX as well. With the VQE-SCF, which is based on an
Adaptive Derivative-Assembled Problem-Tailored (ADAPT) ansatz, we find that the inclusion of the
environment and the size of the different basis sets do not directly affect the gate counts. However,
by including an explicit environment, the wavefunction and, therefore, the optimization problem
becomes more complicated, which usually results in the need to include more operators from the
operator pool, thereby increasing the depth of the circuit.

Keywords: Ice IX; Ice VIII; Electric Field Gradient; Polarizable Embedding; ADAPT-VQE; VQE-SCF;
CASSCF; quantum simulator;

1 Introduction

In the realm of theoretical chemistry, limitations in the computational resources that classical computers
can provide often become a major bottleneck, that inhibits accurate calculations, even for medium-sized
molecules and systems. Quantum chemists have made huge efforts to develop different approximations
and more effective algorithms to reduce the computational cost while gaining accurate results. Therefore,
it is not surprising that the advance of quantum computers drew a lot of attention in life sciences and
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quantum chemistry. A number of different comprehensive reviews discuss the current state of develop-
ment of theories, methods, and algorithms that focus on performing quantum mechanical calculations on
near-term noisy intermediate-scale quantum (NISQ) devices and on far-future fault-tolerant ones [1–8].

To circumvent the noisy nature of the currently available quantum devices, hybrid quantum-classical al-
gorithms have been developed [9], where only certain parts of the calculation are executed on a quantum
computer. The remaining parts are carried out on classical CPU- or GPU-based computers. The tasks
that are executed on quantum computers are mostly expectation-value measurements of the Hamilto-
nian or other quantum mechanical operators. Within the field of chemistry applications, the Variational
Quantum Eigensolver (VQE) [1, 10–13] algorithm is one of the most popular choices.

Chemical experiments are rarely done on isolated molecules, so it can be crucial to include environmental
effects to obtain meaningful and reliable results that reproduce experiments. One of the most successful
and feasible approaches to model such effects describes the “active” part of a system with a quantum
mechanical method, while the environment is described in a more approximate manner. For classical
computers, many such hybrid methods have been developed and implemented, ranging from simple con-
tinuum solvent models like the Polarizable Continuum Model (PCM) [14] to the more accurate treatments
like the Polarizable Embedding (PE) model [15, 16].

The electric field gradient (EFG) is very sensitive to the charge distribution of the nucleus environment
due to its r−3 dependency [17], and therefore it is a challenging property to calculate accurately even
on a classical computer. The EFG is needed to calculate the nuclear coupling interaction (NQI) that
is important in the interpretation of different spectroscopic measurements such as perturbed angular
correlation (PAC) or Mössbauer spectroscopy [18–22].

In this paper, we will use an implementation of the PE model for quantum computers [23] in combina-
tion with the Adaptive Derivative-Assembled Problem-Tailored Ansatz Variational Quantum Eigensolver
self-consistent field approach (ADAPT-VQE-SCF) [24] and test its performance on calculating the EFGs
of ice VIII and ice IX. We aim to reproduce the experimental results with conventional CASSCF and the
ADAPT-VQE-SCF approach on a quantum simulator for ice VIII and ice IX.

2 Theory

In the following, we summarize the key ingredients of the theoretical background for this study. The
summary is divided into three parts: first, we define the electric field gradient; second, we introduce the
polarizable embedding model; and third, we describe the VQE-SCF scheme with the inclusion of the PE
model.

2.1 The electric field gradient at the nucleus

The EFG can not be measured directly in experiments. To compare our calculations to experimental
results, we instead compare the calculated and measured nuclear quadrupole interactions (NQI). In the
following, we will briefly describe EFG and direct the reader to Ref. [17] (Chapter 4) for a more detailed
introduction to EFG.
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The NQI is defined by the coupling between the nuclear quadrupole moment and the EFG

χ = Q

2π
εzz , (1)

where χ is the NQI, Q is the electric quadrupole moment of the nucleus, and εii with i = x, y, z are the
eigenvalues of the EFG tensor, ordered such that |εzz| ≥ |εyy| ≥ |εxx|. We note that εzz = −(εxx + εyy),
since the EFG tensor is traceless. From the three eigenvalues, one can define an asymmetry parameter:

ηK = εxx − εyy

εzz
, (2)

at the position of nucleus K. The electric field gradient is the second derivative of the electrostatic
potential

εαβ(R0) = −∂2ϕε(r)
∂rα∂rβ

∣∣∣
r=R0

, (3)

where εαβ(R0) is the electric field gradient tensor evaluated at R0, ϕε(r) is the electrostatic potential,
α and β are Cartesian coordinates. The quantum mechanical expression for the electric field gradient
tensor at nucleus K is

εαβ(RK) =
〈

Ψ0

∣∣∣∣∣
N∑
i

[
3(ri,α − RK,α)(ri,β − RK,β)

|ri − RK |5
− δαβ

|ri − RK |3

]∣∣∣∣∣Ψ0

〉

−
∑

L̸=K

ZL

[
3(RL,α − RK,α)(RL,β − RK,β)

|RL − RK |5
− δαβ

|RL − RK |3

] , (4)

where ri are the positions of the electrons and RK are the positions of the nuclei, δαβ is the Kronecker
delta, and |Ψ0⟩ is the ground state wavefunction. The first term describes the EFG due to the electrons,
while the second describes the nuclear part of the EFG.
In second quantization, one can obtain the electric field gradient as the one-electron reduced density
matrix (1-RDM) of the system contracted with the one-electron integrals of the property, plus the nuclear
contribution:

εαβ(RK) = fαβ(RK)D −
∑

L̸=K

ZL

[
3(RL,α − RK,α)(RL,β − RK,β)

|RL − RK |5
− δαβ

|RL − RK |3

]
, (5)

where fαβ(RK) is the matrix of one-electron integrals of the property (αβ component thereof) evaluated
at the position of nuclei K and D is the reduced one-electron density matrix (1-RDM). The EFG has
been calculated from the optimized wavefunctions according to equation 5.

Since the electric field gradient has a r−3 dependence, it is a very local molecular property and highly
sensitive to the surrounding environment. Therefore, comparing our calculations to experimental results,
including the environmental contributions is crucial.

2.2 Polarizable Embedding

In the Polarizable Embedding [15, 16] (PE) model, a molecular system is divided into two parts: a core
region that is treated quantum mechanically (QM) and a surrounding environment, where the molecules
are treated semi-classically (MM) through a combination of atomically distributed point multipoles and
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an induced dipole model. In the following, we will briefly overview the PE model and refer the reader to
Refs. [23, 25] for further details.

The total PE energy of the system can be divided into

Eemb = Evac + EPE , (6)

where Evac stands for the energy of the core region in a vacuum, and EPE stands for the energy that
comes from the environment. The Hamiltonian of the whole system can be split into two parts:

Ĥemb = Ĥvac + υ̂PE , (7)

where Ĥvac represents the isolated Hamiltonian for the quantum region without the presence of the
environment. The υ̂PE operator can be written as the sum of an electrostatic operator (υ̂es) that describes
the potentials of the permanent charge distributions of the environment, and an induction operator (υ̂ind)

υ̂PE = υ̂es + υ̂ind . (8)

The electrostatic operator can be written as

υ̂es =
N∑

s=1

K∑
|k|=0

(−1)|k|

k! M (k)
s V̂

(k)
s,el , (9)

where M
(k)
s is the k’th Cartesian component of the multipoles on expansion site s, and V̂

(k)
s,el is the potential

derivative operator at site s. When truncating the multipole expansion to include up to quadrupoles, the
electrostatic operator is thus

υ̂es =
N∑

s=1

qsV̂s,el −
∑

α

µα
s V̂ α

s,el +
∑
αβ

Θαβ
s V̂ αβ

s,el

 , (10)

where α and β stand for Cartesian coordinates; qs, µα
s and Θαβ

s are atomic charges, static dipole, and
quadrupole moments, respectively. The V̂

(k)
s,el operator can be defined in second quantization as

V̂
(k)

s,el =
∑
pq

t(k)
pq (Rs)Êpq , (11)

where t
(k)
pq (Rs) are the potential derivative integrals over molecular orbitals ϕp(r), where k is the order

of the derivative

t(k)
pq (Rs) =

∫
ϕ∗

p(r)∇k

(
1

|r − Rs|

)
ϕq(r) dr , (12)

and Êpq = â†
pαâqα + â†

pβ âqβ are second quantization singlet one-electron excitation operators. ∇k is
defined as ∂|k|

∂xkx ∂yky ∂zkz
.
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The induction operator expresses the effect of a polarized charge distribution and can be defined as

υ̂ind = −
N∑

s=1
µind

s (Ftot)F̂s,el (13)

where F̂s,el is the operator that yields the electronic electric field at site s, and µind
s (Ftot) are the induced

dipole moments at site s. The induced dipoles depend on the total electric field and the polarizability
at polarizable site s. The total electric field comes from the field of the nuclei and electrons from the
quantum region, the permanent multipoles, and the induced dipoles from the environment.

To build the υ̂ind operator, we need the induced dipoles µind
s (Ftot). The induced dipoles satisfy

µind
s (Ftot) = αsFtot(Rs) = αs

F(Rs) +
∑
s′ ̸=s

T(2)
ss′ µ

ind
s′

 . (14)

In equation (14), F is the electric field at site s from the nuclei, electrons, and permanent multiple
moments, but without the induced dipoles, and T(2)

ss′ is the dipole-dipole interaction tensor [26]. For the
sake of clarity, we introduce a column vector containing the induced dipoles µind = (µind

1 ,µind
2 , ...,µind

N )T ,
and one containing the electric fields F = (F(R1), F(R2), ..., F(RN ))T . We can thus rewrite equation (14)
as

Bµind = F , (15)

where B is the (3N × 3N) classical response matrix

B =


α−1

1 −T(2)
12 · · · −T(2)

1N

−T(2)
21 α−1

2
. . .

...
...

. . . . . . −T(2)
(N−1)N

−T(2)
N1 · · · −T(2)

N(N−1) α−1
N

 . (16)

Since the induced dipoles depend on the electric field from the electron density of the quantum region,
and the electron density depends on the induced dipoles of the environment, equation (14) leads to a set
of coupled equations that can be solved in a dual self-consistent manner.

Including an environment in our calculations will change the wave function of the quantum region, which
will, in turn, lead to a change in the calculated molecular property. The inclusion of the environment also
leads to a direct contribution to the EFG since the permanent and induced charge distributions of the
environment also create electric field gradients themselves. The EFG contribution from the environment
at some point Rp is

εαβ(Rp) =
N∑

s=1

K∑
|k|=0

(−1)|k|

k! M (k)
s T

(k+2)
ps,αβ... + 1

2

N∑
s=1

∑
γ=x,y,z

µind
s,γ T

(3)
ps,αβγ , (17)

where the term due to the static multipoles is independent of the QM density, while the term due to the
induced dipoles depends on QM density.
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2.3 PE-VQE-SCF

In the following, we introduce the PE-VQE-SCF formalism, developed by Kjellgren et al. [23], which builds
upon the ADAPT-VQE-SCF originally developed by Fitzpatrick et al. [24]. Further information can also
be found in Ref. [23]. We begin by expressing the spin-free, non-relativistic, electronic Hamiltonian in
second quantization as

Ĥ =
∑
pq

hpqÊpq + 1
2

∑
pqrs

gqprs(ÊpqÊrs − δqrÊps) (18)

where Êpq is again a singlet one-electron excitation operator, and hpq and gpqrs are, respectively, the one-
and two-electron integrals over the molecular orbitals ϕp(r)

hpq =
∫

ϕ∗
p(r)ĥϕq(r) dr , (19)

gpqrs =
∫

ϕ∗
p(r1)ϕ∗

r(r2)r−1
12 ϕq(r1)ϕs(r2) dr1dr2 . (20)

In conventional CASSCF multi-configurational self-consistent field (MCSCF) methods [27], the wavefunc-
tion is parameterized by orbital rotation coefficients (κpq) and configurational interaction (CI) coefficients
(θi). The parameterized wavefunction can be written as:

|Ψ(κ,θ)⟩ = U(κ)U(θ)|0⟩ , (21)

where |0⟩ is the reference state. The orbital rotations are parametrized with

U(κ) = exp(κ̂), (22)

where κ̂ is the anti-hermitian orbital rotation operator that ensures orthonormal MOs during optimiza-
tion. It takes the form:

κ̂ =
∑
p>q

κpq

(
Êpq − Êqp

)
. (23)

The difference between classical MCSCF and VQE-SCF parameterization is in the description of CI coef-
ficients. In MCSCF, the wavefunction is expressed as a linear combination of different Slater determinants
with CI coefficients acting as weights. However, the CI expansion must be expressed as unitary qubit
rotations to target a quantum computer. In the VQE-SCF procedure, we optimize the CI coefficients on
the quantum computer and the orbital rotations on the classical computer. By having the CI coefficients
present only in the active space while the orbital rotations cover the remaining orbitals, we obtain a more
optimal way of dividing the tasks between the classical and quantum processors, which requires fewer
qubits.
In practice, this means that we only measure the active part of the 1- and 2-RDM on a quantum computer.
The whole 1-RDM therefore has to be built up by adding the inactive occupied and unoccupied parts to
the matrix.
The unitary qubit rotations are parameterized as
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U(θ) =
∏

i

exp(iθiP̂i) (24)

where P̂i are strings of Pauli operators. The optimization process occurs by minimizing some energy
expectation value

E = min
θ,κ

⟨0|U†(θ)U†(κ)ĤU(κ)U(θ)|0⟩ . (25)

with respect to the orbital rotation coefficients on the classical computer, and with respect to the unitary
qubit rotations on a quantum computer.
When we include a PE environment, we actually minimize the free energy in solution,

EFE = min
θ,κ

⟨0|U†(θ)U†(κ)ĤFEU(κ)U(θ)|0⟩, (26)

i.e., the expectation value of the free-energy Hamiltonian in solution,

ĤFE = Ĥemb − 1
2 υ̂ind , (27)

instead of the expectation value in equation (25) of the molecular hamiltonian in equation (18).

3 Computational details

The geometries utilized in all calculations are taken from Ref. [28], which are experimental geometries that
are relaxed with density functional theory (DFT) using the PBE0 [29] exchange-correlation functional,
keeping the experimental cell dimensions. The unit cell of ice VIII contains 8 water molecules, while ice
IX contains 12 water molecules. In both cases, we generated large supercells and included every unit cell
within 30 Å of the central one. Figure 1 shows an example of such a system. The ice VIII and ice IX
systems contain 5832 and 8748 water molecules, respectively. For the central unit cell of each ice form,
eight (ice VIII) and twelve (ice IX) calculations were performed where only one of the water molecules was
included in turn in the QM region. The cell’s EFG results were then obtained by averaging over the unit
cell’s 8 or 12 water molecules. The static multipoles and polarizabilities of the environmental waters were
calculated with the Dalton program package [30] at the CAM-B3LYP/loprop-aug-cc-pVTZ [31] level.
The QM calculations were carried out with the conventional CASSCF and with the VQE-SCF method.
The same active space was used for both methods, with six electrons in six orbitals. The CASSCF
calculations were carried out with PySCF [32, 33], and the VQE-SCF calculations were performed with
the Aurora program package [34], which uses PySCF as a backend. We utilized the CPPE [35] module
for the PE calculations. The fermionic ADAPT-VQE [36] ansatz was used to carry out all the quantum
computing simulations in the active space, including only single and double operators in the operator
pool, as implemented in the Aurora program package [34].
The QM calculations were carried out using the Dunning basis sets cc-pVXZ, aug-cc-pVXZ, cc-pCVXZ,
and aug-cc-pCVXZ, [37–39] with a cardinal number X = D, T and Q. A few representatives of the Pople
basis sets have also been used, namely 6-311++G and 6-311++G** [40, 41]. The wave function gradient
norm was converged to 8 × 10−5, and the energy to 10−6. These convergence parameters were chosen
arbitrarily based on a few sample calculations when we performed a hundred iterations and checked how
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Figure 1: The ice IX system used in the calculation. All cells included within 30 Å. Left: view along a cell
vector, right: rotated view.

much the energy and the gradient changed with each iteration. We used the L-BFGS-B optimizer for the
quantum simulations. The PE-VQE-SCF calculations included the effect of shot noise during both the
optimization and the measurement of the properties, using 105 shots for all calculations. To calculate
the NQIs from the EFG, we used the nuclear quadrupole moments Q of 0.0028578 · 10−28 for deuterium
and 0.0256 · 10−28 for O17 [42].
To show the contribution of the PE environment to the final results, we also carried out calculations for
single water molecules in a vacuum, without including any environment. Since the geometries are slightly
different for the different water molecules in the unit cell, we carried out calculations for each one of them
and took the average.

4 Results

4.1 Ice VIII

In this section, we start by looking at the results obtained for the ice VIII system with the different basis
sets. Because of its r−3 dependency, the EFG is a challenging property to calculate accurately, since it is
hard to converge it to the basis set limit even when using larger basis sets [43]. In other works [43, 44],
the most accurate results have been obtained when using core-valence basis sets such as cc-pCVXZ and
aug-cc-pCVXZ.

In our calculations, we find that diffuse basis functions play a crucial role in reproducing the experimental
results. As shown in Table 1, by adding diffuse functions to the cc-pCVDZ basis set, we get closer to
the desired experimental values of the NQI by 1525.02 kHz for oxygen and 6.23 kHz for hydrogen in the
classical case, and by 1634.76 kHz for oxygen and 6.23 kHz for hydrogen using a simulator. A similar
trend is observed when the basis set changes from cc-pCVTZ to aug-cc-pCVTZ. We obtain the best
results using either the aug-cc-pVDZ or aug-cc-pCVDZ basis sets, where the predicted results are in both
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Table 1: Ice VIII. Deviations of the calculated NQI from the experimental results in kHz as a function of the
basis set and with the inclusion of the environment. The experimental values used as reference are (7140 ±
100) kHz for oxygen and (236.2 ± 0.3) kHz for hydrogen [45]. The calculated NQI values can be found in the
Supplementary Information, Tables S3–??.

Classical Simulator Classical Simulator
Basis Oxygen Oxygen Hydrogen Hydrogen
6-311++G 1220 1216 58.51 58.51
6-311++G** 432.6 425.7 37.18 37.11
aug-cc-pVDZ −43.91 - 34.11 -
aug-cc-pVTZ 292.9 - 34.83 -
aug-cc-pVQZ 373.2 - 19.89 -
cc-pCVDZ 1570 1666 40.72 40.70
cc-pCVTZ 874.2 901.0 35.91 35.66
aug-cc-pCVDZ 44.98 31.24 34.49 33.84
aug-cc-pCVTZ 183.6 191.8 34.57 34.44

cases within the experimental uncertainty for oxygen (±100 kHz). When using very large basis sets, the
quality of the results worsens. This could be due to several factors; for example, the smaller basis sets
may benefit from fortuitous error cancellation, compensate for errors in the wave-function model, the
employed geometries, and the environment description, among others.

As shown in Figure 2 (which is based on the results in Tables S3–??), the inclusion of the environment
considerably improves the results of our calculations toward the experimental values for both hydrogen
and oxygen. The average overall improvement is 2779.70 kHz for oxygen and 34.72 kHz for hydrogen,
which is 38.9% and 14.7% of the experimental result for oxygen and hydrogen, respectively. The inclusion
of the environment without the direct contribution to the EFG adds 2610.69 kHz for oxygen and 17.86
kHz for hydrogen; the average direct contribution is 169.02 kHz and 16.85 kHz for oxygen and hydrogen,
respectively, which is the 6.08% and 48.5% of the overall improvement. Here the direct contribution
refers to the classically calculated contribution to the EFG arising directly from the presence of the sol-
vent molecules.

The effect of the inclusion of the environment differs for different basis sets for oxygen, whereas for hydro-
gen it is between 16–20 kHz for every basis set, which corresponds to 6.7−8.4% of the experimental value.
For oxygen, the largest difference is found with the 6-311++G and 6-311++G** basis sets: 3086.9 kHz
and 2950.6 kHz, that is 43.2% and 41.3% of the experimental value, respectively. The smallest differences
are with the cc-pCVTZ, aug-cc-pCVDZ, and aug-cc-pCVTZ basis sets: 2241.2 kHz (31.4%), 2349.5 kHz
(32.9%), and 2264.9 kHz (31.7%), respectively. The direct contribution to the EFG tensor from the PE
environment gives a smaller but not negligible improvement. It varies between 168–172 kHz for oxygen
(2.3–2.4%), and 16–17 kHz for hydrogen (6.7–7.2%) for each basis set.

Next, we compare the NQI results obtained with the different methods and the inclusion of the PE envi-
ronment. Generally, the NQI results obtained with a simulator are close to the CASSCF results (within
50 kHz). There is a larger difference upon the use of the cc-pCVDZ basis set due to two outliers, where
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Figure 2: Ice VIII. NQI results calculated with the VQE-SCF method. Left: oxygen results; Right: hydrogen
results. Blue: calculations carried out in vacuum; Green: calculations carried out in a PE environment; Red:
including the direct contribution of the PE environment to the EFG; Yellow: experimental results.

there is a larger difference in energy and in NQC from the other 6 calculations. The calculated energies
can be found in the Supplementary Information [46], see Tables S21–S26. Excluding these two results
from the average, the obtained deviation from the experimental NQI is 1571 kHz for oxygen and 40.37
kHz for hydrogen, which lies very close to the classically obtained deviations, which is 1570 kHz for oxygen
and 40.70 kHz for hydrogen. There are two further outliers with the cc-pCVTZ basis. Excluding these
two calculations from the average, we get 879.2 kHz and 35.56 kHz as a deviation from the experiment
for oxygen and hydrogen, respectively. This brings the average for oxygen even closer to the CASSCF
calculation (874.2 kHz). The experimental results could be reproduced with the aug-cc-pVDZ and the
aug-cc-pCVDZ basis sets for oxygen.

Since we only include the most important excitations in our ADAPT-VQE simulation originating from a
pool of single- and double excitation operators, we do not have exactly the same wavefunction as in the
case of conventional CASSCF calculation, where we instead include every excitation in the active space.
Furthermore, during the simulations, we also included shot noise. Therefore, in principle, we expect
slightly worse results for the simulations. However, with some error cancellation, it is possible to obtain
better results that lie closer to the experimental results than with the conventional method.

Not surprisingly, also in the case of the asymmetry parameters (cf. Tables S12–??), the inclusion of
diffuse functions plays an important role. The addition of these functions improves the results for oxygen
and hydrogen for both methods.

The inclusion of an environment contributes to the parameters by −0.108 for oxygen and 0.027 for hy-
drogen on average, which corresponds to 11.1% and 26.5% of the experimental value, respectively. This
improvement is different for the different basis sets, and a trend similar to the one observed in the case of
NQI contributions can be seen. The largest improvements for oxygen occur using the 6-311++G (−0.124)
and 6-311++G** (−0.130) basis sets, the smallest ones are found using the cc-pCVTZ (−0.085) and aug-
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cc-pCVTZ (−0.097) basis sets. For hydrogen, the trend is different, here the largest changes are for
aug-cc-pCVDZ (0.035) and aug-cc-pCVTZ (0.030), and the smallest is for cc-pCVTZ (0.021).

In general, the results obtained from the quantum simulations are close to the CASSCF results, as
shown in Table 2. The parameters for oxygen lie outside the experimental uncertainty except for the
6-311++G** basis set. There is a 0.047 and 0.041 deviation from the experimental value with aug-cc-
pCVDZ for the classical calculation and the quantum simulation, respectively. For hydrogen, only the
6-311++G and the aug-cc-pCVTZ results reproduce the experimental results; in the aug-cc-pCVDZ basis,
the deviations from the experiment are 0.007 and 0.006, for the CASSCF and the VQE-SCF, respectively.

Table 2: Ice VIII. Asymmetry parameters ηK calculated using different basis sets with the inclusion of the
environment, and comparison with experimental values from Ref. [45].

Classical Simulator Classical Simulator
Basis Oxygen Oxygen Hydrogen Hydrogen
6-311++G 0.926 0.927 0.103 0.103
6-311++G** 0.941 0.942 0.114 0.114
cc-pCVDZ 0.882 0.877 0.117 0.116
cc-pCVTZ 0.899 0.901 0.114 0.113
aug-cc-pCVDZ 0.923 0.930 0.109 0.108
aug-cc-pCVTZ 0.924 0.927 0.107 0.106
Experimental 0.97±0.03 0.97±0.03 0.102±0.005 0.102±0.005

4.2 Ice IX

The results for the NQI deviations from the experiment of ice IX are collected in Table 3. The full set of
computed values can be found in Tables S27– ??.
In the case of ice IX, both diffuse and core-valence correlated functions seem to play an important role
in reproducing the experimental NQI results. We get the best results when using the aug-cc-pCVDZ and
aug-cc-pCVTZ basis sets. The measurement uncertainty on the NQI of ice IX is ±10 kHz for oxygen and
±3 kHz for hydrogen. Even though our calculations could not reach this, the computed results lie even
closer to the experimental results than in the case of ice VIII. When using the aug-cc-pVQZ basis set, we
observe a reduction in the quality of our predictions compared to the experiment values.

As can be seen in Figure 3, and as shown previously for ice VIII, the inclusion of the environment is cru-
cial to reproduce the experimental data for the NQI. Here, the overall contribution of the environment is
even larger than for ice VIII; 3456 kHz for oxygen and 55.81 kHz for hydrogen which correspond to 51.1%
and 25.4% of the experimental result. The inclusion of the environment without the direct contribution
improves the NQI by 3264 kHz and 27.46 kHz on average for oxygen and hydrogen, respectively, which is
the 94.4% and the 49.2% of the overall contribution of the environment. The average direct contribution
adds 191.5 kHz for oxygen and 28.35 kHz for hydrogen, which is 5.54% and 50.8% of the overall improve-
ment. The indirect contributions from the environment vary for oxygen with the different basis sets,
the largest change can be noticed with the 6-311++G (3920 kHz) and cc-pCVDZ (3532 kHz) basis sets.
The smallest change can be observed with the aug-cc-pCVDZ (2889 kHz) and aug-cc-pCVTZ (29.07 kHz)
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basis sets, similar to the case of ice VIII. The overall contribution for hydrogen varies between 54–58 kHz,
where the direct and indirect contribution is around 50–50% of the overall environmental contribution
for all basis sets.

Figure 3: Ice IX. NQI results obtained with the VQE-SCF method and different basis sets. Left: results for
oxygen, right: results for hydrogen. Blue: calculations carried out in vacuum; green: calculations carried out in a
PE environment; red: including the direct contribution of the PE environment to the EFG; yellow: experimental
results.

In general, there is a larger difference between the CASSCF and ADAPT-VQE calculations in the obtained
energies as compared to ice VIII, where the energy difference was within chemical accuracy for most of
the calculations. These results can be found in the Supplementary Information [46], Tables S44–S49.
The NQI results, on the other hand, lie close to the CASSCF results in almost all cases. We obtained
the best results using the aug-cc-pCVDZ or aug-cc-pCVTZ basis sets.

Table 3: Ice IX. Deviations of the calculated NQI from the experimental results in kHz as a function of the basis
set and with the inclusion of the environment. The experimental values used as reference are (6766 ± 10) kHz
for oxygen and (220 ± 3) kHz for hydrogen [45]. The calculated NQI values can be found in the Supplementary
Information, Tables S27–??.

Classical Simulator Classical Simulator
Basis Oxygen Oxygen Hydrogen Hydrogen
6-311++G 1090 1088 −38.34 −38.36
6-311++G** 419.4 393.7 −17.29 −17.11
aug-cc-pVDZ −125.3 - −13.24 -
aug-cc-pVTZ 120.4 - −13.64 -
aug-cc-pVQZ 212.9 - 0.691 -
cc-pCVDZ 1260 1263 −20.57 −20.36
cc-pCVTZ 664.1 646.8 −15.09 −15.01
aug-cc-pCVDZ −34.91 −44.00 −13.60 −12.86
aug-cc-pCVTZ 32.47 51.36 −13.46 −13.33
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The usage of diffuse functions brings us closer to the desired experimental asymmetry parameters for
both methods similarly as we could see it at the ice VIII system as well.
The inclusion of the environment improved our results here as well. The average improvement for oxygen
is −0.030, and for hydrogen, it is 0.013 that is the %3.3 and 10.8%. For oxygen, the largest improvement
occurred for the cc-pCVDZ basis (−0.041), the smallest for the 6-311++G** (−0.024) and the 6-311++G
(0.027) basis sets. There is a different trend for hydrogen where the largest change occurs with the aug-
cc-pCVDZ (0.020) basis, and the smallest with the cc-pCVTZ (0.008) basis set.
The asymmetry parameters for hydrogen, see Table 4 as well as Tables S35–??, are within the experi-
mental accuracy for each basis set we used. For oxygen, it is quite the opposite. There is a 0.064 and
0.071 difference upon using the aug-cc-pCVTZ basis for conventional CASSCF and VQE-SCF, that is,
7.1% and 7.9% of the experimental result, respectively. For the aug-cc-pCVDZ basis set, this difference
is 0.07 for both methods.

Table 4: Ice IX. Asymmetry parameters ηK calculated with the inclusion of the environment, using different
basis sets, and comparison with experimental values from Ref. [45].

Classical Simulator Classical Simulator
Basis Oxygen Oxygen Hydrogen Hydrogen
6-311++G 0.802 0.803 0.119 0.119
6-311++G** 0.822 0.824 0.136 0.136
cc-pCVDZ 0.800 0.800 0.137 0.136
cc-pCVTZ 0.806 0.812 0.133 0.132
aug-cc-pCVDZ 0.819 0.825 0.129 0.129
aug-cc-pCVTZ 0.832 0.825 0.126 0.127
Experimental 0.896 ± 0.007 0.896 ± 0.007 0.12 ± 0.03 0.12 ± 0.03

4.3 Computational cost estimation on noisy hardware

Finally, we consider the cost and the noise-resilience of our calculations via CNOT gate count.

The average CNOT count as a function of the averaged iterations for the different basis sets can be seen
in Figure 4 and 5 (numerical values are in Tables S1 and S2). Within the ADAPT-VQE method, in every
iteration, we add a new single or double excitation operator to the ansatz, so from the number of itera-
tions, we know the number of operators that we have added. In both systems, the CNOT count seems to
depend linearly on the number of iterations, regardless of the basis set or the addition of the environment.
As it has been found before [23], adding an environment to the calculation does not necessarily increase
the CNOT count. However, it makes the wavefunction harder to converge. Therefore, it requires more
terms in the ADAPT expansion and more CNOT gates. The addition of polarized or zeta functions
to our basis set increased the number of iterations needed for convergence. However, the addition of
diffuse functions did the opposite and lowered the computational cost upon using aug-cc-pCVDZ and
aug-cc-pCVTZ basis sets. The previously mentioned most successful aug-cc-pCVDZ basis set needed the
least terms to converge in both cases.
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Figure 4: The final CNOT count of the ansatz as a function of the iterations needed for convergence for the ice
VIII system.

Figure 5: The final CNOT count of the ansatz as a function of the iterations needed for convergence for the ice
IX system.
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5 Conclusions

In this work, NQI results have been calculated for ice VIII and IX with the classical CASSCF method
and with a quantum simulator using ADAPT-VQE with a (6,6) active space in a polarizable embedding
environment simulating 5832 or 8748 water molecules in the environment aiming to reach the experimen-
tal accuracy. In the case of ice VIII using the aug-cc-pCVDZ basis set, the results of the calculations
are within the experiment’s uncertainty (±100 kHz for O and ±0.3 kHz for H) for oxygen for both con-
ventional CASSCF and VQE-SCF method. For ice IX, the aug-cc-pCVDZ and aug-cc-pCVTZ basis sets
performed similarly well. In this case, the experimental uncertainty is much smaller (±10 kHz for O and
±3kHz for H) then for ice VIII and therefore has not been reached, but the calculated results lie even
closer to the experimental results than in the case of ice VIII.

In both systems, we observe a significant improvement in the results when a PE environment is applied.
In the case of ice VIII with the inclusion of the environment, on average, we could recover an additional
2779 kHz of the NQI (which is 38.9% of the experimental result) for oxygen and 34.71 kHz (which is
14.7%) for hydrogen. For ice IX on average, we recovered an additional 3456 kHz for oxygen and 55.81
kHz for hydrogen, that is, 51.1% and 25.4% of the experimental NQI. This shows the importance of the
inclusion of an environmental model.

The CNOT counts as the function of iterations have also been analyzed, which showed that neither the
size of the basis sets nor the inclusion of an environment increased the CNOT count directly. Including an
environment in the calculations makes the wavefunction harder to converge, and therefore, more operators
need to be added from the operator pool, which, however, results in a higher CNOT count in general.
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