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Abstract

Imputation methods for dealing with incomplete data typically as-
sume that the missingness mechanism is at random (MAR). These
methods can also be applied to missing not at random (MNAR) sit-
uations, where the user specifies some adjustment parameters that
describe the degree of departure from MAR. The effect of different
pre-chosen values is then studied on the inferences. This paper pro-
poses a novel imputation method, the Random Indicator (RI) method,
which, in contrast to the current methodology, estimates these adjust-
ment parameters from the data. For an incomplete variable X, the RI
method assumes that the observed part of X is normal and the prob-
ability for X to be missing follows a logistic function. The idea is to
estimate the adjustment parameters by generating a pseudo response
indicator from this logistic function. Our method iteratively draws
imputations for X and the realization of the response indicator R, to
which we refer as Ṙ, for X. By cross-classifying X by R and Ṙ, we ob-
tain various properties on the distribution of the missing data. These
properties form the basis for estimating the degree of departure from
MAR. Our numerical simulations show that the RI method performs
very well across a variety of situations. We show how the method can
be used in a real life data set. The RI method is automatic and opens
up new ways to tackle the problem of MNAR data.
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1 Introduction

Missing values are a common problem in the statistical analysis of data in
all disciplines including medical or social studies. These may occur because
the intended measurements are not taken, lost, or unavailable. Two major
consequences of missing data are loss of precision and possibility of introduc-
ing bias. Statisticians can do little about the former while they can aim to
reduce the later by using an appropriate analysis.

Any missing data analysis makes assumptions about the mechanisms that
produce missing data. Rubin (1976) introduced taxonomy of the missingness
mechanisms: Missing Completely At Random (MCAR), Missing At Random
(MAR), and Missing Not At Random (MNAR). Methods for handling miss-
ing data often assume MCAR or MAR. The degree to which these assump-
tions are violated can have serious impact on the validity of the analysis. A
less restricted assumption is MNAR where the mechanism governing miss-
ingness depends on unobserved data (Little & Rubin, 2002). A variety of
statistical models has been developed for missing data under MNAR. For ex-
ample, Diggle and Kenward (1994) proposed a general framework based on
selection modeling approach, while Little (1993) adopted a pattern mixture
modeling approach. These models in general are highly dependent on uniden-
tified assumptions (Little, 1995; Kenward, 1998). As a result, statisticians
have been developing the sensitivity analysis, where unidentified parameters
are varied over a plausible range (Little, 1994; Rotnitzky et al., 1998; Scharf-
stein et al., 1999; Daniels & Hogan, 2000; Verbeke et al., 2001; Kenward et
al., 2001; Thijs et al., 2002).

Although advocating sensitivity analysis is a very useful strategy to eval-
uate the effect of departures from unidentified assumptions, it might be dis-
satisfactory for some researchers since no single summary is provided. In
this context, Bayesian approaches are appealing as they allow to formally
incorporate a priori knowledge about the unidentified parameters. For pat-
tern mixture models, the early publication of Rubin (1977) has provided a
general framework to express the assumptions about the differences between
respondents and nonrespondents as prior distributions. For selection mod-
els, a series of semiparametric methods has developed by Scharfstein et al.
(1999, 2003); Rotnitzky et al. (2001) that incorporate prior beliefs about the
selection mechanism. A general overview of methods is provided in Daniels
and Hogan (2008).

This paper presents a new approach that allows the researchers to draw
a ‘single’ conclusion using the observed data. We build our approach on the
basis of the proposed model by Rotnitzky et al. (2001) or Scharfstein et al.
(2003), where strong assumptions are placed on missingness mechanism as
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opposed to the distributional form of the outcome.
A starting point for analysis is to assume that the missingness mechanism

is MAR. to evaluate the effect of departures from these assumptions
Multiple Imputation (MI) is an accepted and effective way to deal with

missing data (see, for a general review, Kenward & Carpenter, 2007). Given
the complete data, MI assumes that the distribution of the missing part of
the incomplete variable is the same as the distribution of the observed part of
the incomplete variable, provided that the missingness mechanism is MAR.
Suppose we have an incomplete variable X and a fully observed variable Y .
Let Xobs be the observed part of X , and Xmis be the missing part. Given
Y , MI uses Xobs to determine the distribution from which imputations will
be drawn, and makes use of this distribution to draw imputation values.
This distribution, however, is not appropriate for drawing imputations un-
der MNAR. Distributions of Xobs and Xmis may have different locations or
dispersions under MNAR, and such differences need to be taken into account
in creating imputations. As the values of X , by definition, do not contain
appropriate information to estimate such differences, the amount of these
differences are not known. The state of the art is to choose different adjust-
ment values, i.e. to conduct a sensitivity analysis and study the effect of
different choices of the adjustment. Under MNAR, the values of X should
be a part of the missingness mechanism but, since X is partly missing, it is
difficult to create model for the missingness mechanism that includes X .

In this paper, we attempt to find a way out of this dilemma by itera-
tively imputing the incomplete variable X and remodeling the missingness
mechanism of X . We restrict our attention to distributions that change only
in location as a consequence of nonresponse. Specifically, we assume that
the observed and missing parts of X have similar variances but different
means. To develop this idea, it is useful to define a response indicator R
that represents whether or not a measurement is observed. The key point is
to generate a pseudo response indicator Ṙ by drawing random values from
the model for the missingness mechanism. As we will show, this additional
variable in combination with R provides important clues about the amount
of the adjustment needed.

The idea of drawing Ṙ is called the Random Indicator (RI) method for
imputing data under MNAR. An iterative algorithm successively generates
the pseudo response indicator Ṙ and imputations Ẋ for the missing values.
The RI method is automatic and provides a new approach to the data that
are MNAR.

This article is built up as follows. In the next section, we define the
models for the data that are MNAR. Section 3 proposes the RI method in
details. Section 4 reports a comprehensive simulation study to evaluate the
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performance of the proposed imputation method. Section 5 analyses our real
life data. Concluding remarks are given in the last section.

2 Model

We consider the case of univariate missing data in order to illustrate the
imputation process for nonignorable nonresponse. Let X = (X1, . . . , Xk)

′

denote a k−dimensional vector of variables, where X1 is subject to missing
data and X2, . . . , Xk are fully observed. Here, we do not distinguish between
the outcome and explanatory variables since any of them can be subject
to missing data. Our interest lies in estimating some parameter vector β,
e.g. coefficients in the Cox regression or linear regression model. Since the
parameter vector β may not necessarily completely specify the distribution
of X, we index the probability density function of X by θ, i.e. f(X; θ).

Suppose that the missingness of X depends on two types of variables:
the incomplete variable X and the complete variable Y . These make the
missingness mechanism MNAR. Let R denote a response indicator such that
R = 1 if X is observed, and R = 0 if it is missing. Let the logit of the
probability for X to be observed be as follows:

logit{P (R = 1|X, Y ;ψ)} = ψ0 + ψ1X + ψ2Y, (1)

where ψ = (ψ0, ψ1, ψ2)
′ are unknown parameters in the so-called nonresponse

model. Note that formulation (1) is sufficiently general to allow the depen-
dence of the probability of response on all information. If we set ψ1 = 0 in
model (1), the missingness mechanism is MAR. Reversely, if we set ψ2 = 0
in model (1), the nonresponse model is the most extreme form of MNAR as
the missingness depends on the incomplete variable X only.

Distributions of the observed part of X1 and the missing part of it are
not necessarily the same under MNAR. Define the observed part of X1 by
Xobs, and the missing part by Xmis, so that X1 = (Xobs, Xmis). As already
mentioned in the introduction, we consider a situation where Xobs and Xmis

have equal variances but unequal means. This allows missingness to affect
the location of the distribution of X1 only. The following proposition shows
how the distribution of Xmis relates to the distribution of Xobs.

Proposition 1 Let the logit of the probability for X1 to be observed be as
model (1). If Xobs conditional on Z is normally distributed with mean µz
and variance σ2, then

Xmis ∼ N(µz − δ, σ2),

where δ = ψ1σ
2.
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Proposition 1 implies that if we assume a logistic function for the probability
for X1 to be observed as model (1), the normality of Xobs results in the
normality of Xmis where the variances are the same, but the means are not
(see Appendix A.1 for proof).

The difference between the means of Xobs and Xmis, i.e. δ, plays an
important role in the imputation of missing data. Under MAR, ψ1 is equal
to zero in model (1), and as a result δ = 0. Different from MAR, we are
interested in MNAR cases where δ 6= 0. Because δ is unknown, the current
advice is to pre-choose different values for δ over a reasonable range, and
study the effect of pre-chosen values on the inferences (Van Buuren et al.,
1999; Carpenter et al., 2007; Pfeffermann & Sikov, 2011). As opposed to the
current advice, the RI method, as described in the next section, attempts to
estimate δ from the observed data.

It is worth mentioning that this way of modeling MNAR data is similar
to pattern-mixture models (Little, 1993) where the distribution of X1 is char-
acterized conditional on the response indicator R. But, it is different from
selection models (Diggle & Kenward, 1994) where the marginal distribution
of X1 is assumed to be normal.

3 Random Indicator Imputation

3.1 Ṙ given

To motivate our method under nonignorable nonresponse, we consider a sit-
uation where an independent realization of the response indicator R is avail-
able. This is to say that another realization of R, apart from R, is indepen-
dently generated from the nonresponse model (1). This realization is called
pseudo indicator Ṙ.

Note that R and Ṙ partition the incomplete variable X1 into four subsets.
The first subset, which we call the reference group, consists of measurements
where R = 1 and Ṙ = 1, the second subset consists of measurements where
R = 1 and Ṙ = 0, and so on. Let us define four means

µ11 = E(X1|R = 1, Ṙ = 1)

µ10 = E(X1|R = 1, Ṙ = 0)

µ01 = E(X1|R = 0, Ṙ = 1)

µ00 = E(X1|R = 0, Ṙ = 0),

where µ11 is the marginal expectation of X1 given R = 1 and Ṙ = 1 (the
reference group), and so on. Furthermore, we define

δR = µ11 − µ10
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δNR = µ01 − µ00,

where δR is the difference between the means of X1 when (R = 1, Ṙ = 1) and
(R = 1, Ṙ = 0) in the observed data, and δNR is the difference of X1’s means
when (R = 0, Ṙ = 1) and (R = 0, Ṙ = 0) in the missing data. For a given
Ṙ, δR can be calculated from the observed part of X1 while δNR depends on
the missing part of X1 and cannot be calculated.

Since both R and Ṙ are two realizations of the same nonresponse model,
it holds by definition that P (R = 1) = P (Ṙ = 1). If the realizations are
independent, it is not difficult to prove that the means of X1 when either
(R = 1, Ṙ = 0) or (R = 0, Ṙ = 1) are identical (the proof is given in
Appendix A.2):

µ10 = µ01.

δNR δR
←→ ←→

| | |
µ00 µ10 µ11

µ01

Figure 1: Graphical representation of the means and their differences

To clarify the notation, we represent the four means and their differences
in Figure 1 in the case that more missing data occur in the lower part of
the distribution of X1. As can be seen, µ10 equals µ01, and µ11 and µ00

are located in the same distance from the middle, i.e. µ10. It implies that
the middle serves as a pivot for µ11 and µ00. The question is how δR and
δNR are related. It can be shown that δR and δNR are identical in certain
circumstances. Proposition 2 provides a justification for equality of δR and
δNR.

Proposition 2 Let R and Ṙ be two independent draws from the nonresponse
model (1). If X1 given Z, R = 1 and Ṙ = 1 is normally distributed with mean
µz and variance σ2, then

X1|Z, R = r, Ṙ = ṙ ∼ N(µz + ψ1(r + ṙ − 2)σ2, σ2) r, ṙ = 0, 1,

and as a result

δR = E[X1|R = 1, Ṙ = 1]−E[X1|R = 1, Ṙ = 0] = ψ1σ
2

δNR = E[X1|R = 0, Ṙ = 1]−E[X1|R = 0, Ṙ = 0] = ψ1σ
2.
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Hence,
δR = δNR.

Proposition 2 implies that if we assume normality for X1 given Z, R = 1
and Ṙ = 1, we find δR = δNR (the proof is a direct extension of Proposition 1).

The idea is to calculate δR from the observed part of the data, and use it
as an adjustment to the missing part. Hence, one can impute the unobserved
data under the MAR assumption, and then correct for the imputations by
utilizing the amount of the estimated δR under the specified MNAR mecha-
nism. More specifically, we can impute missing data as follows. Let us define
δadj = δR = δNR for notation convenience. The amount of the adjustment,
i.e. δadj , can be estimated from the observed part of the data in the following
equation:

E(X1|Z, R = 1, Ṙ = ṙ) = Z′φ+ δadj(ṙ − 1), (2)

and then missing data are imputed using the imputation model

E(X1|Z, R = 0, Ṙ = ṙ) = Z′φ+ δadj(ṙ − 2), (3)

for ṙ = 0, 1 where φ (which is some function of θ) is the parameters corre-
sponding to complete covariate Z in the imputation model. The method as
developed thus far consists of a few simple steps that are summarized in the
following algorithm:

Algorithm 1 Imputation of Xmis for a given Ṙ

1. Calculate φ̂ and δ̂adj from the observed part of the data by equation (2).

2. Draw φ̇ from its posterior distribution for a given prior for φ.

3. Predict the missing data for the part (R = 0, Ṙ = 1) using Zφ̇− δ̂adj .

4. Predict the missing data for the part (R = 0, Ṙ = 0) using Zφ̇− 2δ̂adj .

5. Impute the missing data by adding an appropriate amount of noise to
the predicted values in steps 3 and 4 as usual.

3.2 Ṙ drawn

In practice, the missing part ofX1 is unknown. Consequently, the probability
of the response given X1 in model (1) is also unknown. Thus, in general, we
cannot generate the pseudo indicator variable Ṙ. However, we can generate
Ṙ in an algorithm that iterates over equations (1), (2) and (3).
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To develop this idea in the imputation framework, we start with the
posterior predictive distribution P (Xmis|Xobs, R). The notation is simplified
by suppressing the fully observed covariates Z. Embedding this posterior
predictive distribution into a model on a larger space such as below might
be useful. This is a key principle in computational methods. The posterior
predictive distribution P (Xmis|Xobs, R) can thus be written as:

P (Xmis|Xobs, R) =

∫ ∫
P (Xmis, Ṙ|Xobs, R, γ)P (γ|Xobs, R)∂γ∂Ṙ,

where γ = (θ, ψ). The above equation implies that the posterior predictive
distribution P (Xmis|Xobs, R) can be simulated by drawing a value of γ from
its posterior distribution, P (γ|Yobs, R), and then a value ofXmis and a pseudo
response indicator Ṙ are drawn from their joint conditional distribution,
P (Xmis, Ṙ|Xobs, R, γ).

Drawing a sample from the joint conditional distribution P (Xmis, Ṙ|Xobs, R)
is a challenging task. In the spirit of the Gibbs sampler, we use an iterative
algorithm which runs between the following two steps:

Xmis ∼ P (Xmis|Xobs, R, Ṙ)

Ṙ ∼ P (Ṙ|Xobs, R,Xmis).

The procedure is motivated by the fact that drawing from two univariate con-
ditional distributions is easier than drawing from a joint distribution. Using
univariate conditional distributions is quite popular in practice when draw-
ing from the joint distribution is difficult (White et al., 2011; Van Buuren et
al., 2006; Raghunathan et al., 2001). Here, we implicitly assume that draws
from the joint distribution are generated by successively drawing from each
univariate conditional distribution. Although there is no guarantee for the
existence of the joint distribution from which the values are drawn, experi-
ence has shown that it often leads to valid statistical inferences in a variety
of cases (Van Buuren, 2007).

In this stage , we describe how Ṙ and Xmis can be drawn iteratively. We
first start with the initially completed-data Ẋ0

1 = (Xobs, Ẋ
0
mis) where Ẋ0

mis

is a random draw from Xobs. The parameters in the nonresponse model (1)
are estimated given Ẋ0. We then draw random values from the posterior
distributions of the parameters in the nonresponse model (1), i.e. ψ̇, and
calculate the probability of response given Ẋ0

1 . The initial pseudo response
indicator Ṙ is generated by a standard procedure for generating a binary
variable. The drawn values for Ṙ are used to estimate δadj by equation (2),
and the imputed values of the missing data are updated by equation (3).
These sequential steps are repeated consistently for a sufficient number of
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iterations. Finally, we summarize the whole procedure, i.e. the RI method,
in the following algorithm:

Algorithm 2 Imputation of Xmis in general

1. Draw initial values Ẋ0
mis randomly from Xobs.

2. Draw ψ̇ from its posterior distribution for a given prior for ψ.

3. Draw Ṙ from a Bernouli process given ψ = ψ̇

4. Impute Ẋmis by algorithm (1).

5. Return to step 2 to iterate the algorithm (2) for a few number of times.

It should be mentioned that this algorithm usually needs a few iterations.
It is common to iterate such an algorithm for a small number of times in
practice although there are a number of approaches to check the convergency
of the algorithm (El Adlouni et al., 2006). After iterating for a small number
of times, say 10 or 20, the last drawn values are treated as the imputed
values under MNAR. At this point, multiple imputations can be generated
by starting from different Ẋ0

mis.

4 Simulation Study

The RI method is evaluated by a comprehensive simulation study. For this
purpose, we define two versions of the complete data model and five versions
of the nonresponse model. We also consider two different sample sizes. The
quality of the method is evaluated in terms of bias and 95% coverage rate of
the estimated parameters of primary interest. Moreover, we perform com-
plete case analysis and the traditional multiple imputation to investigate the
effect of the underlying assumption of nonignorability.

4.1 Set-up

The simulation starts by defining a model of interest which is a linear re-
gression of X1 on covariates X2 and X3. We define the model of interest
as X1 = β1 + β2X2 + β3X3 + ε where β = (β1, β2, β3) are regression coeffi-
cients in which we are interested. Covariates X2 and X3 and the error term ε
are generated from independent normal random variables with the following
specifications: X2 ∼ N(2, 4), X3 ∼ N(−1, 1), and ε ∼ N(0, 1). We consider
two sets of coefficients in order to have a data set with strong and moderate
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Table 1: Setup values and the missing data percentages

β

mechanism ψ (1, 0.5, 1) (3,−0.25, 0.5)
MCAR (−0.75, 0.00, 0.00) 68 68
MAR (−2.00, 0.00, 0.50) 70 70
MNAR1 (−0.50, 0.50, 0.25) 41 28
MNAR2 (−1.00, 0.75,−0.50) 73 58
MNAR3 (−2.00, 1.50, 0.00) 57 35

associations between X1 and (X2, X3) (in terms of explained variance, R2).
For instance, β = (1, 0.5, 1) results in, on average, 65 percent of the associa-
tion (R2 = 0.65) whereas a weaker association, about 32 percent (R2 = 0.32),
can be achieved by a set of β = (3,−0.25, 0.5).

The probability of response, denoted by p, is measured by a logistic func-
tion. This function can take the form

logit(p) = ψ0 + ψ1X1 + ψ2Z

where Z = X2. The response indicator R is then generated from a Bernouli
process that corresponds to p. It is worth mentioning that, by utilizing the
response indicator R, the simulated complete variable X1 is partitioned into
the observed part and the missing part, and the mean of the missing part dif-
fers from the mean of the observed part. Similar to the regression coefficients
in the previous step, five scenarios are considered for the coefficients in the
nonresponse model, i.e. ψ = (ψ0, ψ1, ψ2). In total, there are two complete
data models that are combined with five nonresponse models. Table 1 shows
the missing data percentages for the setup values for the simulation study.

Different parameter choices correspond to different missingness rates and
different missingness mechanisms. The first scenario where ψ = (−0.75, 0.0, 0.0)
gives a constant probability of response to all observations, i.e. MCAR. The
second scenario gives the MAR mechanism where the response probabilities
does not depend on X1. The other three scenarios give different MNAR
mechanisms. MNAR1 and MNAR2 are moderate versions of nonignorable
missing data in the sense that the response probabilities depend on both
completely observed variable Z and incomplete variable X1. The last sce-
nario, i.e. MNAR3, describes the most extreme case of MNAR where the
response probabilities depend on X1 only.

Random samples of size n = 200 and n = 1000 were taken to investigate
the small and large sample properties of our proposed method. The number
of replications was 1000, and the number of the Gibbs sampler iterations was
set to 10. The number of imputed data sets was 5. All calculations were
done in R 11.2.1.
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The overall mean of the estimated regression coefficient for β1, β2 and β3
as well as the 95% coverage rate was calculated. We compared our method
(RI) with the complete case (CC) method where all missing data were ig-
nored. We also added the multiple imputation (MI) method under MAR to
the analysis. For this purpose, we used MICE (MICE, v 2.8; Van Buuren
and Groothuis-Oudshoorn (2011)).

4.2 Result

Table 2 shows the results of the simulation study in the large sample (n =
1000). In the first and second scenarios, all methods worked alike, and the

Table 2: Estimates of the regression coefficients β and coverage probabilities
of 95% (in parentheses) for sample size n = 1000.

Mechanism Strong Association Moderate Association
β1 β2 β3 β1 β2 β3

True 1.000 0.500 1.000 3.000 -0.250 0.500
CC 1.001(95) 0.500(97) 1.003(95) 3.000(94) -0.250(96) 0.499(96)

MCAR MI 1.003(94) 0.501(94) 1.004(93) 3.003(94) -0.249(94) 0.504(93)
RI 1.004(95) 0.500(92) 1.004(92) 3.005(96) -0.250(93) 0.504(91)

CC 0.998(95) 0.500(96) 0.998(95) 2.998(95) -0.250(96) 0.498(95)
MAR MI 0.998(93) 0.500(95) 0.998(94) 2.997(93) -0.250(95) 0.498(94)

RI 0.998(95) 0.500(95) 0.997(92) 2.989(97) -0.249(95) 0.497(92)

CC 1.230(17) 0.458(55) 0.958(84) 3.137(44) -0.262(91) 0.478(91)
MNAR1 MI 1.230(26) 0.458(63) 0.958(86) 3.137(47) -0.262(90) 0.477(88)

RI 0.993(94) 0.504(93) 1.004(96) 3.021(95) -0.251(95) 0.500(95)

CC 1.370(01) 0.518(92) 0.899(68) 3.191(23) -0.167(15) 0.457(88)
MNAR2 MI 1.370(05) 0.517(92) 0.899(72) 3.192(26) -0.167(29) 0.457(87)

RI 0.971(95) 0.506(92) 0.964(90) 3.039(95) -0.225(90) 0.489(94)

CC 1.617(00) 0.390(01) 0.778(00) 3.155(30) -0.196(22) 0.392(20)
MNAR3 MI 1.620(00) 0.390(04) 0.777(04) 3.154(26) -0.196(21) 0.391(22)

RI 1.066(87) 0.481(89) 0.959(88) 3.049(86) -0.251(96) 0.501(95)

Note: Given are complete case analysis (CC), multiple imputation under MAR (MI), and multiple
imputation under MNAR (RI).

parameters and coverage rates were accurately estimated. Apparently, in the
second scenario where MAR holds, CC and MI were equal. This is not sur-
prising because, here, we have a special situation where missing data occur in
the outcome variable X1 only, and the complete data model is correct. Thus,
CC and MI are equivalent here, and produce the same results (see, (Van Bu-
uren, 2018) and references on it). In the MNAR scenarios, CC and MI
(which assume ignorability) went far off. In particular, when the associa-
tion was strong, and the scenario MNAR3 holds, the coverage probabilities
dramatically dropped to zero. The results of CC and MI were similar, but
coverage of MI was often better. In contrast, RI provided essentially correct
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results in all cases. The relative bias, (
¯̂
β − β)/β, was less than 8% of the

true value for the regression coefficients, and the coverage rates were in an
acceptable range. In rare cases, we saw coverage rates around 88% especially
in strong association, which is presumably due to the extreme probability of
nonresponse.

Table 3: Estimates of the regression coefficients β and coverage probabilities
of 95% (in parentheses) for sample size n = 200.

Mechanism Strong Association Moderate Association
β1 β2 β3 β1 β2 β3

True 1.000 0.500 1.000 3.000 -0.250 0.500
CC 1.016(96) 0.498(95) 1.005(97) 2.999(95) -0.250(95) 0.503(95)

MCAR MI 1.018(95) 0.497(93) 1.005(96) 3.002(94) -0.250(94) 0.504(95)
RI 1.023(95) 0.500(93) 1.010(94) 2.997(97) -0.253(93) 0.504(93)

CC 1.000(95) 0.504(96) 1.008(95) 3.000(95) -0.246(96) 0.508(95)
MAR MI 0.995(94) 0.505(94) 1.008(92) 2.995(94) -0.245(94) 0.508(92)

RI 1.003(96) 0.502(94) 1.011(91) 2.973(96) -0.245(94) 0.509(91)

CC 1.230(76) 0.459(89) 0.961(95) 3.137(86) -0.261(96) 0.478(96)
MNAR1 MI 1.228(78) 0.459(88) 0.962(92) 3.136(86) -0.260(94) 0.479(95)

RI 0.998(95) 0.505(95) 1.013(94) 3.032(96) -0.251(94) 0.509(95)

CC 1.371(59) 0.518(98) 0.906(93) 3.186(81) -0.168(78) 0.458(95)
MNAR2 MI 1.369(65) 0.519(94) 0.906(91) 3.186(79) -0.168(79) 0.458(93)

RI 0.982(95) 0.507(94) 0.973(93) 3.056(95) -0.226(94) 0.492(94)

CC 1.621(14) 0.390(58) 0.774(57) 3.155(83) -0.195(80) 0.391(81)
MNAR3 MI 1.622(20) 0.390(59) 0.772(60) 3.154(77) -0.195(75) 0.391(74)

RI 1.077(92) 0.478(93) 0.952(94) 3.058(94) -0.250(94) 0.502(94)

Note: Given are complete case analysis (CC), multiple imputation under MAR (MI), and multiple
imputation under MNAR (RI).

The simulation results in small sample (n = 200) are illustrated in Ta-
ble 3. Overall, the results are similar to those in Table 2. All methods
performed equally under MCAR and MAR. In different cases of MNAR, CC
and MI were not as accurate as RI, in particular when the nonresponse prob-
abilities were in the most extreme scenario MNAR3. Large relative biases
were found in the estimates of the intercept β0 in both CC and MI, and also
the coverage rates were low. In contrast, RI performed successfully. Esti-
mates of the parameters were essentially unbiased with high coverage rates.
The relative bias was not more than 8%.

The appropriateness of the RI method was also investigated by comparing
the original and imputed data. Figure 2 illustrates kernel density estimates
for the original data (top) and the imputed data (bottom). The solid line
refers to the density of the observed data, which is essentially the same in
the original and imputed data. The dashed line refers to the density of the
values before creating missing data (top) and the density of the imputed data
(bottom). In general, the dashed lines in the bottom line are close to the top
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line. This implies that the RI method imputes missing values pretty close
to the original ones. Under MCAR, the observed and missing parts of the
original data were distributed identically (top left). Likewise, the imputed
and observed data were similar in the completed-data (bottom left). In other
scenarios and for the original data, we observed that the missing part of the
data are separated from the observed part of the data. The same holds
for the completed-data (after imputation). The last scenario is the most
extreme case where they are mainly separated (top right). The same pattern
also observes for the completed-data (bottom right).
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Figure 2: Density plot of the original (top) and imputed (bottom) data. The
solid line refers to the observed data, and the dashed line refers to the original
values before creating missingness (top) and after imputing them (bottom)
for different scenarios by the RI method.

To more closely investigate the performance of the RI method, we further
considered the most extreme case of MNAR where the response probabilities
depend on the incomplete variable X1 only. Three different conditions of the
MNAR mechanism were considered to produce different patterns of missing-
ness. These conditions represent situations where the response probabilities
are symmetrically distributed (MNAR4), have skewed pattern (MNAR5), or
are more likely in both tails (MNAR6). Figure 3 shows histograms of the ob-
served probability (p) for scenarios MNAR4 - MNAR6. By these, we can test
the RI method under different patterns of p when the missingness mechanism
is the most extreme case of MNAR.

Table 4 shows only the simulation results for the large sample size because
of space limitation. As can be seen, CC and MI gave biased results in all
conditions, and coverage rates marginally declined, particularly for the esti-
mate of θ1. Interestingly, under the strong association, coverage rates rapidly
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Figure 3: Histogram of the probability of being observed with a kernel density
estimate

fell to zero in MNAR6. The RI method, on the other hand, performed very
well. Biases were negligible, and coverage rates achieved the nominal level.

Table 4: Estimates of the regression coefficients β and coverage probabilities
of 95% (in parentheses) for the most extreme nonresponse model for sample
size n = 1000.

Mechanism Strong Association Moderate Association
β1 β2 β3 β1 β2 β3

True 1.000 0.500 1.000 3.000 -0.250 0.250
CC 1.258(14) 0.475(82) 0.949(83) 3.159(35) -0.238(92) 0.473(91)

MNAR4 MI 1.263(23) 0.474(84) 0.949(86) 3.156(43) -0.236(90) 0.474(91)
RI 0.996(95) 0.499(96) 0.998(93) 3.008(96) -0.249(94) 0.501(94)

CC 1.361(11) 0.477(89) 0.955(88) 3.265(10) -0.237(94) 0.473(94)
MNAR5 MI 1.363(28) 0.476(90) 0.955(90) 3.264(25) -0.237(92) 0.475(93)

RI 1.014(95) 0.493(91) 0.988(91) 3.003(94) -0.247(92) 0.496(94)

CC 1.426(00) 0.409(01) 0.816(01) 3.051(87) -0.211(40) 0.420(39)
MNAR6 MI 1.424(00) 0.408(03) 0.815(03) 3.055(83) -0.212(38) 0.424(41)

RI 1.025(94) 0.505(94) 1.009(95) 3.041(90) -0.255(94) 0.510(96)

Note: Given are complete case method (CC), multiple imputation under MAR (MI), and multiple
imputation under MNAR (RI).

We have seen that, based on the simulation results, the RI method per-
formed very well in all situations. To summarize, it appears that the RI
method performs better than the other methods, both with and without
covariate information.
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5 Application

5.1 The Leiden 85+ cohort

We analyse the blood pressure (BP) data that have previously been studied
in Van Buuren et al. (1999). It has been found that the mortality of elderly
people aged 85 and older is increased among those with lower BP (Glynn
et al., 1995). The idea of the cohort study was to determine whether this
inverse association between BP and mortality could be explained by the
health measurements in this age group. The number of people in the cohort
was 1236 of which 956 were interviewed. A detailed description of the cohort
study was reported elsewhere (Lagaay, 1991; Lagaay et al., 1992).

The relation between mortality and BP is investigated by a Cox regression
model adjusted for sex, age, and health measurements such as hypertension,
haemoglobin, and serum cholesterol. This analysis is confronted by miss-
ing data. About 12.5 per cent of the individuals had missing observations
for the BP. It was suspected that the missing values had happened among
individuals with lower BP (Van Buuren et al., 1999). For instance, if the
respondent used any anti-hypertension drugs, the BP was measured less fre-
quently. Van Buuren et al. (1999) argued that the unobserved BP might be
MNAR and conducted a simple adaptation method to adjust for the impu-
tations that were created under MAR. Then, the sensitivity of the inferences
was investigated against violations from MAR by choosing different adjust-
ment values. We here use the RI method to handle this problem.

The BP was measured by systolic and diastolic pressure. We use the
systolic BP (SBP) for the analysis only. Our strategy is to impute the missing
values in the SBP using the newly developed imputation method, and then
investigate the relation between mortality and SBP using a Cox regression
model adjusted for the other risk factors.

The data contained a lot of covariates (351 variables). For the imputation,
we used 10 covariates that had correlations with SBP (above 0.15). These
covariates were sex, age, serum albumin, Cognition (mini-mental-state ex-
amination), current hypertension, serum cholesterol, fraction erythrocytes,
haemoglobin, haematocrit, and treated by specialist. For the nonresponse
model, in addition to SBP, we included extra covariates that were poten-
tially related to the nonresponse such as year of interview, activities of daily
living, and so on. It should be noted that few covariates were incomplete,
and accounting for them would introduce additional complexity into the im-
putation algorithm because of the multivariate nature. As a temporary fix,
we separately imputed the missing values in the covariates and considered
them as if they were real.
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5.2 Result

Figure 4 compares the distribution of SBP for the observed and imputed
data where the MI and RI methods are used. We observe that the imputed
values under MAR have almost the same distribution as the observed values
do (top). This is because the imputation method under MAR assumes an
identical distribution for the missing and observed parts of the SBP given
the other variables. On the other hand, the RI method allows for systematic
differences between the missing and observed parts beyond MAR. As can be
seen from the bottom of the graph, the density function of the SBP for the
imputed values is quite different from that of the observed values. Interest-
ingly, this result agrees with Table IV of Van Buuren et al. (1999) where they
presented a numerical example of a rather extreme MNAR mechanism with
more missing values for lower SBP.
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Figure 4: Density plot of the observed (solid) and imputed (dashed) systolic
blood pressure under MAR (MI method) and NMAR (the RI method)

Table 5 shows the mean of the SBP together with its standard error for
the whole sample (the observed and imputed values of the SBP). The mean
of the imputed values for the SBP (with its standard error) is also presented
separately. We compare three methods: CC, MI, and RI. As we expected, the
total mean of the SBP is lower in the RI than the other methods. Moreover,
comparing the mean of the imputed values indicates that 10 mmHg difference
(149.5 - 139.1 ≈ 10 mmHg) is caused by the nonignorable aspect. It confirms
what we know about the collection process. The average amount of the
adjustment used by the RI method can be calculated by δ = 152.9 - 139.1 =
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13.8 mmHg. This adjustment is similar to the amount of the adjustment in
Van Buuren et al. (1999) based on a numerical example. This results suggest
that the CC and MI overestimate the mean of the SBP.

Table 5: Mean and standard error (SE) for the systolic blood pressure using
CC, MI and RI methods.

Total Imputed
Method Mean SE Mean SE
CC 152.893 0.892 - -
MI 152.473 0.924 149.47 2.409
RI 151.075 1.109 139.06 2.438

After imputing the missing values in the SBP, we fit a Cox regression of
mortality on the SBP adjusted for age, sex, and health measurements. As
we are only interested in the effect of the SBP on the survival time, the raw
estimate of its coefficient, which represents the effect of a unit difference in
SBP on log hazard function, is shown here. Since a unit difference is not
meaningful because of very small raw estimate, we use a standard deviation
unit difference (standard deviation = 25.76). The estimated coefficient of
SBP (and its standard error in parentheses) by the RI method is -0.050
(0.047) which is slightly different from -0.041 (0.044) by MI and -0.039 (0.045)
by CC. Although we might have expected that the RI method would give
different results than the CC, the differences turned to be small for several
reasons. First, the prediction of the SBP was relatively poor (R2 = 0.17), so
the imputations contain considerable residual noise. Also, the missingness
rate was small (12.5%).

In sum, it appears that the RI method behaves as intended. It is worth
noting that the SBP was suspicious of being MNAR, so the RI method has a
potential advantage by allowing a systematic difference between the missing
part of SBP and the observed part of it.

6 Discussion

The current implementations of MI assume MAR, though it can be used in
combination with sensitivity analysis for MNAR data. Under MNAR, MI
requires the user to specify parameters that cannot be tested on the data.
The RI method, in contrast, estimates these parameters from the data, and
is thus automatic without requiring user intervention. Our new method is a
natural and general extension of the class of imputation methods to data that
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are MNAR. Drawing random indicators is general, and easy to implement in
existing software.

The results of this study suggest that the RI method can be a good
alternative of dealing with MNAR data, both when the nonresponse model
is related exclusively to X1, and in combination with a complete covariate Z.
Of course, when the complete covariate Z is available, it is wise to include
this information to imputation model.

The price of the RI method is an increase in standard error. The method
provides slightly larger standard errors than the complete case method. Also
note that the variances of the observed and missing parts of the incomplete
variable are assumed to be equal. This assumption is needed in order to
be able to estimate a shift in the mean of the missing data. Though this
assumption is a usual one in statistics, we should be cautious in using the RI
method if the variances are clearly different.

The RI method assumes a parametric model for the missingness mech-
anism, as a logistic link for the response process. Other types of modeling
of the missingness mechanism such as semi-parametric and non-parametric
methods can also be used within the RI framework to draw imputations
under MNAR. Unfortunately, these modeling assumptions cannot fully be
verified from the data because of the missing values. Thus, further research
is needed to check the sensitivity of the results on the different models for
the missingness mechanism.

The RI technique can be refined in various ways. This study was re-
stricted to univariate missing data. A logical extension of the RI method is
the analysis of multivariate missing data where several variables have miss-
ing values. This multivariate extension can be done by two general strategies
for imputing multivariate missing data: joint modeling and fully conditional
specification (Van Buuren et al., 2006). Another extension would be to in-
crease the number of draws from the nonresponse model. Here, we generated
one realization of the response indicator. Using multiple realizations of the
response indicator yields a more refined way to decompose the missing part
of the incomplete variable. Such an extension allows for a much closer mod-
eling of the probabilities of the nonresponse mechanism. Generalizations like
these will contribute to a fruitful line of imputation methods for data that
are missing not at random.
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Appendix A

.1 Proof of Proposition 1

The density function of R given x1 and z is defined by

f(R|x1, z) =
eR(ψ0+ψ1x1+ψ2z)

1 + eψ0+ψ1x1+ψ2z
R = 0, 1.

By substituting R = 1 in the above equation, we have

f(R = 1|x1, z) =
e(ψ0+ψ1x1+ψ2z)

1 + eψ0+ψ1x1+ψ2z
.

Thus, we can rewrite the density function f(R|x1, z) by

f(R|x1, z) = e(ψ0+ψ1x1+ψ2z)(R−1)f(R = 1|x1, z) R = 0, 1. (4)

The marginal distribution function f(R|z) is obtained as follows:

f(R|z) =

∫
f(R, x1|z)∂x1

=

∫
f(R|x1, z)f(x1|z)∂x1

=

∫
e(ψ0+ψ1x1+ψ2z)(R−1)f(R− 1|x1, z)f(x1|z)∂x1

= f(R = 1|z)
∫
e(ψ0+ψ1x1+ψ2z)(R−1) f(R = 1|x1, z)f(x1|z)

f(R = 1|z) ∂x1

= f(R = 1|z)
∫
e(ψ0+ψ1x1+ψ2z)(R−1)f(x1|z, R = 1)∂x1

= f(R = 1|z)e(ψ0+ψ2z)(R−1)

∫
eψ1(R−1)x1f(x1|z, R = 1)∂x1

= f(R = 1|z)e(ψ0+ψ2z)(R−1)M x1|z,R=1[ψ1(R− 1)]
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where M is the moment generating function of x1 given z and R = 1. Sup-
pose f(x1|z, R = 1) ∼ N(µz, σ

2), then we can define the marginal distribu-
tion function of R by

f(R|z) = f(R = 1|z)e(ψ0+ψ2z)(R−1)eµψ1(R−1)+ 1

2
ψ2

1
(R−1)2σ2 (5)

for R = 0, 1. Now, by using Equation 4, the joint distribution function of
(R, x1|z) is given by

f(R, x1|z) = f(R|x1, z)f(x1|z)
= e(ψ0+ψ1x1+ψ2z)(R−1)f(R = 1|x1, z)f(x1|z)
= f(R = 1|z)e(ψ0+ψ1x1+ψ2z)(R−1)f(x1|z, R = 1).

Finally, the conditional distribution function x1 given R and z is defined
by dividing the joint distribution function of (R, x1|z) by the marginal dis-
tribution function of (R|z) (Equation 5), that is,

f(x1|z, R) =
f(R, x1|z)
f(R|z)

= f(x1|z, R = 1)e(x1−µz)ψ1(R−1)− 1

2
ψ2

1
(R−1)2σ2 .

We emphasize that ψ2 is canceled out by dividing f(R, x1|z) by f(R|z). For
normal x1 we have f(x1|z, R = 1) = 1√

2πσ2
e−

1

2σ2
(x1−µz)2 . It is easy to see

f(x1|z, R) =
1√
2πσ2

e−
1

2σ2
[x1−(µ+ψ1(R−1)σ2)]2 R = 0, 1,

so that
X1|Z,R ∼ N(µ + ψ1(R− 1)σ2, σ2) R,= 0, 1,

and the proof is complete. N

.2 Equivalence between µ10 and µ01

Assume X1 is a random variable and R and Ṙ are two independent Bernoulli
variables. We start by the definition of µ10:

µ10 = E(X1|R = 1, Ṙ = 0) =

∫
x1P (x1|R = 1, Ṙ = 0)∂x1

=

∫
x1
P (R = 1, Ṙ = 0|x1)P (x1)

P (R = 1, Ṙ = 0)
∂x1

=

∫
x1
P (R = 1|x1)P (Ṙ = 0|x1)P (x1)

P (R = 1)P (Ṙ = 0)
∂x1
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Because R and Ṙ have the same probability function, it is obvious that
P (R = 1) = P (Ṙ = 1) and P (R = 1|x1) = P (Ṙ = 1|x1). Consequently,

E(X1|R = 1, Ṙ = 0) =

∫
x1
P (Ṙ = 1|x1)P (R = 0|x1)P (x1)

P (Ṙ = 1)P (R = 0)
∂x1

=

∫
x1
P (Ṙ = 1, R = 0|x1)P (x1)

P (Ṙ = 1, R = 0)
∂x1

=

∫
x1P (x1|Ṙ = 1, R = 0)∂x1

= E(x1|Ṙ = 1, R = 0) = µ01

and the proof is complete. N
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