
easter egg

Designing open quantum systemswith known steady
states: Davies generators and beyond

Jinkang Guo,a Oliver Hart,a Chi-Fang Chen,b Aaron J. Friedman,a and Andrew Lucasa

aDepartment of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, USA
bInstitute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, 91125 USA

jinkang.guo@colorado.edu

andrew.j.lucas@colorado.edu April 24, 2024

Abstract: We provide a systematic framework for constructing generic models of nonequilibrium quan-

tum dynamics with a target stationary (mixed) state. Our framework identifies (almost)

all combinations of Hamiltonian and dissipative dynamics that relax to a steady state of

interest, generalizing the Davies’ generator for dissipative relaxation at finite temperature to

nonequilibrium dynamics targeting arbitrary stationary states. We focus on Gibbs states of

stabilizer Hamiltonians, identifying local Lindbladians compatible therewith by constraining

the rates of dissipative and unitary processes. Moreover, given terms in the Lindbladian not

compatible with the target state, our formalism identifies the operations – including syndrome

measurements and local feedback – one must apply to correct these errors. Our methods also

reveal new models of quantum dynamics: for example, we provide a “measurement-induced

phase transition” where measurable two-point functions exhibit critical (power-law) scaling

with distance at a critical ratio of the transverse field and rate of measurement and feedback.

Time-reversal symmetry – defined naturally within our formalism – can be broken both in

effectively classical, and intrinsically quantum, ways. Our framework provides a systematic

starting point for exploring the landscape of quantum dynamical universality classes, as well

as identifying new protocols for quantum error correction.
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Introduction1

Over the past century, the laws of equilibrium statistical mechanics have been increasingly understood
and organized via a Wilsonian renormalization group [1, 2]. However, beyond the familiar setting of
equilibrium, new phenomena can arise—e.g., spontaneous symmetry breaking in models of flocks birds in
two spatial dimensions, which is not possible in equilibrium due to the Mermin-Wagner theorem. Such
classical systems fall under the umbrella of active matter [3–5]— i.e., systems whose constituent particles
are “self propelled” (i.e., contain internal sources of energy and entropy)—which has led to a significant
body of research into nonequilibrium classical phenomena.

Quantum systems may also be driven away from thermal equilibrium. Indeed, one may directly try to
add quantum fluctuations to a theory of classical active matter, such as flocking [6–8]. However, this is
certainly not the only setting in which nonequilibrium quantum systems may arise. For example, it is well
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established [9] that systems may tend towards entangled states in a driven-dissipative system, described in
terms of open quantum dynamics where a coherently driven system is coupled to an environment or bath.
But perhaps the most important example of a uniquely quantum system driven out of thermal equilibrium
would be a future quantum computer. If such a quantum computer is built out of, for example, surface
code qubits [10, 11], such a system will not store quantum information if it thermalizes – an analogue of a
“Mermin-Wagner theorem” forbids this in two spatial dimensions [12]. Therefore, the storage of quantum
information over long times (in a surface code) requires “activity,” namely being persistently driven out of
equilibrium.1

The purpose of this paper is to give a systematic framework for discovering and, just as importantly,
organizing our understanding of these “active” quantum systems. Inspired by recent work [13] in classical
statistical physics, which provides a framework for classifying systems based on their steady-state probability
distribution, here we provide an exhaustive classification of the most general local quantum many-body
system that protects a target stationary (mixed) state σ. When log σ is a sum of commuting operators
(i.e., σ is a “stabilizer state”), we can find (almost all) local many-body dynamics that protects the desired
state. An immediate, and sometimes useful, byproduct of this framework is a definition of time-reversal
symmetry for such open quantum systems; this definition has independently been identified in [14].

Solving this technical problem is rather useful, as it immediately provides us with new (and unifying!)
insight into a diverse array of problems from different subfields within physics.

In condensed matter and quantum statistical mechanics, there has been intense recent interest in
discovering uniquely quantum nonequilibrium phases in monitored quantum systems, in which unitary
dynamics is interrupted by measurements [15–20]. In order to avoid a postselection problem and realize
novel phases in the thermodynamic limit of any experiment, it is crucial to perform quantum error
correction (i.e., active feedback) based on the measurement outcomes to drive the system towards a
deterministic state whose properties can be measured in experiment [21–28]. However, it is not a priori
obvious whether such a phase realizes a uniquely quantum state of matter, or whether it is essentially
a classical phase that arises out of a microscopically quantum dynamical system. Although we do not
attempt to definitively answer such a large open question in this paper, we believe that the framework we
provide in this work is a well-defined starting point for addressing such questions systematically.

In quantum information sciences, it is often desirable to protect entangled states against decoherence or
other deleterious environmental effects. For example, we may wish to prepare an entangled GHZ state [29],
which is capable of performing quantum-enhanced sensing [30]. Alternatively, as highlighted previously,
we may want to protect a quantum error-correcting code [31, 32]. Usually, one devises some protocol
that relies on few-qubit measurements and operations in order to protect such a code state, and then
numerically simulates whether or not the protocol can protect against errors. The formalism that we
describe here is very well-suited for discovering fault-tolerant quantum error correcting protocols, and
gives a systematic way of building all possible driven-dissipative systems that protect a target state σ.

Lastly, one anticipated application of future quantum computers is to simulate properties of quantum
systems arising in physics, material science, and chemistry [33]. In many perceivable cases (such as
correlation functions or transport properties), preparing ground states or thermal states has been identified
as a key algorithmic subroutine. Nevertheless, the complexity of practically relevant low-energy states has
remained a debated topic, and thus far, there has not been a consensus on the “go-to” state preparation
algorithm [34] (see e.g., [35, Table 1] for a catalog). Recently, there is a new algorithmic family of quantum
Gibbs samplers [35–39] that attempts to model and simulate the thermalization process in Nature. The
challenge is that, in noncommuting Hamiltonian, the energy uncertainty, locality, and quantum detailed

1This analogy is imperfect since, after all, the decoders that work for the surface code collect global classical information
before decoding. Moreover, we are no longer guaranteed that the stationary state does not have complex long-range correlations
(which would invalidate any Mermin-Wagner-like result). Still, this analogy serves as a useful inspiration for developing the
theory in this work.
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balance appear to be in tension; the conventional Davies’ generator is inefficient in noncommuting many-
body systems, and only recently has this been reconciled [39–41]. Although we have mostly focused on
commuting Hamiltonians, the formalism described in this paper should, in principle, give an “exhaustive”
classification of all possible ways to find noncommutative Gibbs samplers. Since in classical statistical
physics, the convergence rate of such samplers is often increased by breaking time-reversal symmetry
[42, 43], it is natural to expect that a similar result also holds in quantum systems. Our framework explains
how to look for these T-broken samplers that still protect the same state.

Reversibility and effective theories of open systems2

We now review some preliminary facts about dissipative (open) systems in both the classical and quantum
settings. As previously emphasized, in both cases, we organize our approach around the identification of a
target stationary state, as in the related work [13] for classical systems. This section serves to explain
some of our physical motivations underlying this work, though readers primarily interested in the problem
of engineering open systems with known steady states may skip to the formalism in Sec. 3.

Because we assume that the open dynamics of interest are time-translation invariant, such a stationary
state always exists. The existence of this stationary state implies a reversibility transformation, which
we associate with microscopic time reversal. Precise definitions of reversibility can be found in later
subsections. One commonly defines a system to be in equilibrium if the dynamics is reversible; since our
framework is organized around a known steady state, it is straightforward to distinguish equilibrium versus
nonequilibrium phenomena. Generalizing this reversibility symmetry to include additional transformations
(e.g., spatial inversion) is straightforward. Given a target stationary state and any symmetries (especially
reversibility) that we wish to impose, we can work out the most general possible local unitary and
dissipative dynamics compatible therewith. This approach embodies the spirit of Wilson’s effective (field)
theory [1, 2, 13], and is central to our framework.

2.1 Classical systems

We begin by reviewing the Wilsonian approach [1, 2] for classical systems in the presence of dissipation
that relax to a known (or target) stationary state σ [13]. For simplicity, we focus on classical systems with
discrete state spaces (e.g., a collection of N Ising spins). The dynamics correspond to a continuous-time
Markov process captured by a master equation [44–48] – i.e., a discrete analogue of the Fokker-Planck
equation [48–51]. Denoting by Wba the rate at which state a transitions to state b ̸= a, we have that

Waa = −
∑
b,b ̸=a

Wba , (1)

is the rate at which the system remains in state a. The system evolves via the classical master equation,

∂tpa(t) =
∑
b

Wabpb(t) , (2)

where pa(t) is the probability to find the system in configuration a at time t. The stationary state σ is a
probability distribution (with probability σa for configuration a) such that

∂tσ =Wσ = 0 , (3)

where above, W is the rate matrix and σ is a vector whose components are the probabilities σa. We also
define the probability to go from the initial state a to the final state b in time t under W as

Pr [a(0) → b(t);W ] = ⟨b|etW |a⟩ , (4)
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since W is time independent; this quantity is also known as the “propagator” [13].
Importantly, the existence of a stationary distribution σ (3) – which need not correspond to thermal

equilibrium – implies the global balance condition [13, 52, 53]∑
b,b ̸=a

[σbWab −Wbaσa] = 0 , (5)

for any configuration a, so that the total probability to transition into configuration a in the stationary
state σ is equal to the total probability to transition out of configuration a. From the global balance
condition (5), we identify the time-reversed transition matrix

W̃ba = σbWab/σa ⇐⇒ W̃ = σ̂−1W T σ̂ , (6)

where σ̂ab = σaδab is the “stationary operator,” W and W̃ share the same stationary distribution σ (3),
and crucially, if the former generates the sequence of states a, b, . . . , y, z then the latter realizes the reversed
sequence of states z, y, . . . , b, a. Moreover, noting that ⟨b|W |a⟩ = ⟨a|W T |b⟩, we have that

Pr [a(0) → b(t);W ] = ⟨a|etWT |b⟩ = ⟨a|σ̂−1etW̃ σ̂|b⟩ = eΦ(a)−Φ(b) Pr
[
b(0) → a(t); W̃

]
, (7)

since the operator σ̂ acts as eΦ(b) on the configuration b, so that the probability to go from a→ b in time t
under W is related to the probability to go from b→ a in time t under the time-reversed generator W̃ , up
to the ratio of the probabilities for those configurations in the stationary distribution σ [13].

Accordingly, we associate the Z2 “reversibility” transformation,

T :W 7→ W̃ , (8)

with time reversal [13]. For discrete state spaces, T (8) corresponds exactly to time reversal, as it maps

the Markov generator W to its time-reversed partner W̃ . However, for continuous state spaces described
by the Fokker-Planck equation, we also combine T (8) with “microscopic” Z2 transformations on certain
variables (e.g., the momentum transforms as p → −p). Below, T is assumed to include any additional
required transformations. As a reminder, the existence of the stationary state σ implies the transformation
T (8) and time-reversed generator W̃ (6) [13, 52, 53].

We define a dynamical system as “equilibrium” dynamics when it is even under T – i.e., W = W̃ . One
often states that (6) implies that T-even systems obey detailed balance:

σbWab = σaWba (9)

if and only if W = W̃ . We emphasize, however, that detailed balance is not necessary for global balance.
There are many stochastic dynamical systems that break time-reversal symmetry T – i.e., for which
W ̸= W̃ , while maintaining the same stationary state σ. In many physical cases of interest, one can
identify an extra Z2 transformation g (e.g., parity, charge conjugation, etc.) such that the product of g
and T is a symmetry of the dynamics. We refer to this combined Z2 symmetry gT as generalized time
reversal, and in the classical setting, it is quite instructive to classify dynamics according to whether they
respect, explicitly (or spontaneously) break T and/or gT [13]. Finally, we comment that it is possible to
enforce generic (e.g., continuous) symmetries – in both a weak and strong sense – on the generator W [13].

2.2 Quantum systems

We now consider the quantum analogues to the discussion of open classical systems in Sec. 2.1. As before,
we require continuous time-translation symmetry. We also take the bath to be Markovian (i.e., memoryless),
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as is standard in the literature on open quantum systems [54–61]. Although we only explicitly consider
finite-dimensional quantum systems throughout, we see no conceptual barrier to extending the framework
to infinite-dimensional quantum systems, such as bosonic modes. A somewhat similar philosophy was
discussed in the context of noninteracting systems in [62].

The quantum analogue of the probability distribution p(t) is the reduced density matrix ρ(t), which
captures the (generically mixed) state of the quantum system at time t (e.g., after tracing over environmental
degrees of freedom). The set of allowed updates to a density matrix ρ correspond to completely positive
and trace-preserving (CPTP) maps [63]. The quantum analogue of the master equation (2) for classical
systems is the Lindblad master equation [54–61], which captures generic CPTP maps.2 Such dynamics are
generated by a “Lindbladian” (or “Liouvillian”) L of the general form

∂tρ = L(ρ) = −i[H, ρ] +
∑
i,j

γij

(
AiρA

†
j −

1

2
{A†

jAi, ρ}
)
, (10)

where γij is a positive-semidefinite matrix, the “jump operators” {Ai} form a complete basis for the
operators acting on the system’s Hilbert space, and the system Hamiltonian H is Hermitian, and may
differ from the näıve Hamiltonian H0 for the system in isolation (i.e., integrating over the bath degrees of
freedom to recover H may “renormalize” terms in H0 or generate new ones).

We also comment that the choice of H and the dissipative part γ is not unique. However, if we require
that H and the jump operators {Ai} are all traceless, then the Lindbladian (10) is unique, up to a change
of basis on the jump operators Ai. Due to time-translation symmetry of L (10), an initial density matrix
ρ at time t = 0 evolves under to the state ρ(t) = etLρ at time t.

As in the classical setting, we seek Lindbladians L that protect a target stationary density matrix σ,
which we assume is mixed. The stationarity condition (3) for the quantum case corresponds to

L(σ) = 0 , (11)

where we find it convenient to write the stationary state σ in the particular form

σ = e−Φ , (12)

where we stress the following points about the stationary state σ and the corresponding Φ:

1. We assume that σ (12) is full rank – and thus, invertible. However, our results also extend to pure
states upon writing Φ = βHeff and taking the limit β → ∞.3

2. We only require that σ > 0 is positive definite, which is guaranteed when Φ = Φ† is Hermitian and
bounded.

3. For convenience of presentation and without loss of generality, we neglect the overall normalization
of σ (12), which is unimportant to the linear functions of σ that we consider herein.

4. Most importantly, the operator Φ is generically unrelated to the Hamiltonian H that generates the
unitary part of the time evolution captured by L (10).

2One often interprets this as having “integrated out” [54–61, 63] the environment. However, from the perspective of
effective theory, it is more natural to build the dissipative effective theory directly.

3Lindbladians that capture relaxation to entangled dark states are useful in designing state-preparation protocols [9, 64, 65].
As the β → ∞ limit is singular, it does not necessarily provide all such local dynamics that protect a dark state. If L has a
pure stationary state |ψ⟩⟨ψ|, we can add arbitrary dynamics to L so long as it leaves |ψ⟩ unchanged. However if |ψ⟩ is the
ground state of Hamiltonian H and H has many eigenvalues, dynamics that protects Φ = βH for any β forbids adding generic
excited-state transitions, which are allowed if the only goal is to have a dark steady state.
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In Sec. 3.2, we build generic Lindbladians L that preserve a target stationary state σ (12). This is a
departure from the standard approach in the literature, in which one firsts postulate the form of H, Ai,
and γij based on microscopic, phenomenological assumptions about locality, symmetries, and the dominant
dynamical processes present in real experiments on a given system. As Ref. 13 argues in the context of
classical systems, it is often more instructive to take the “inverse perspective”: rather than try to deduce
σ from L (10), we instead identify all Lindbladians L compatible with a particular choice of σ (12).

As in the classical case, we also define a reversibility transformation (8) that we associate with a
time-reversal transformation with respect to a stationary density matrix σ of interest. Before making this
transformation precise, we first define several inner products, along with the adjoint Lindbladian L†.

First, consider the standard “Frobenius” operator inner product, defined by

⟨A,B⟩ ≡ 1

D
tr(A†B) , (13)

where D = tr(1) is the dimension of the underlying Hilbert space H. When D is finite, the space End(H)
of operators on H is itself a Hilbert space with dimension D2, since all operators on CD are bounded and
trace class. When H corresponds to a system of N qubits, the Pauli group – i.e., the set of all Kronecker
products of Pauli operators over N qubits – forms an orthonormal basis with respect to (13).

Importantly, the Frobenius inner product (13) defines the adjoint Lindbladian L† via

⟨A,LB⟩ = 1

D
tr[A†L(B)] =

1

D
tr[BL†(A†)] = tr[B†L†(A)]∗ = ⟨B,L†A⟩∗ = ⟨L†A,B⟩ , (14)

where ⟨A,B⟩∗ = ⟨B,A⟩ by skew symmetry of (13) under complex conjugation.
Physically, we interpret L (10) as the generator of time evolution of density matrices ρ in the

Schrödinger picture, and the adjoint Lindbladian L† (14) as the generator of time evolution of operators
in the Heisenberg picture. In particular, consider the time-dependent expectation value

⟨O(t)⟩ = tr[Oρ(t)] = tr[OetL(ρ)] ≡ tr[ρetL
†
(O)] = tr[ρO(t)] , (15)

where ρ(t) = etLρ and O(t) = etL
†
O in the Schrödinger and Heisenberg pictures, respectively. Just as the

Lindbladian L (10) annihilates the stationary state σ (11), the adjoint satisfies

L†(1) = 0 , (16)

as a result of L (10) being trace preserving – i.e., 1 = tr[ρ(t)] = tr[ρetL
†
(1)] for all times t ≥ 0.

Before considering the quantum analogue of the reversibility transformation (8), we define another
operator inner product. Physically, this inner product captures time-dependent correlation functions, i.e.,

⟨A(t), B⟩σ ≡ tr
[
A†(t)σ1/2Bσ1/2

]
= tr

[
etL

†
(A†)T (B)

]
, (17)

where we have implicitly defined the superoperator T via

T (ρ) = σ1/2ρσ1/2 and T −1(ρ) = σ−1/2ρσ−1/2 , (18)

where we have explicitly written the inverse T −1 for convenience. Applying the definition of the adjoint
Lindbladian L† (14) and other manipulations to the inner product (17) leads to

⟨A(t), B⟩σ ≡ tr
[
etL

†
(A†)T (B)

]
= tr

[
A† etL(T (B))

]
= tr

[
A†T

(
etT

−1LT (B)
)]
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= tr
[
etT

−1LT (B†)T (A)
]∗

≡ tr
[
etL̃

†
(B†)T (A)

]∗
= ⟨A, B̃(t)⟩σ , (19)

where, in the first line, we used the definition of the adjoint (14) to move the time evolution from A† to B;
in the second line, we pulled the superoperator T through the exponential of L (10); in the third line, we
used the facts that tr[AT (B)] = tr[Aσ1/2Bσ1/2] = tr[T (A)B] and tr[O†] = tr[O]∗; in the final line, we
defined a “reversed” Lindbladian L̃ as the adjoint with respect to the inner product (17), i.e.,

T : L 7→ L̃ ≡ T L†T −1 , (20)

so that B̃(t) ≡ etL̃
†
(B) in (19), and L̃ is analogous to the time-reversed generator W̃ in the classical case

(8). It is straightforward to verify that the transformation T (20) is Z2, as one expects of a time-reversal
operation; accordingly, we identify L̃ (20) as the time-reversed partner to L (10), where

L̃(ρ) = σ1/2L†(σ−1/2ρσ−1/2)σ1/2 , (21)

and we note that L̃(σ) = σ1/2L†(1)σ1/2 = 0 by the trace-preserving condition (16), so that the time-
reversed Lindbladian L̃ (20) has the same stationary state σ (12) as the original Lindbladian L (10).

We also comment that the particular definition of the correlation-function inner product (17) is required
for the time-reversed Lindbladian L̃ to be a valid CPTP map [66, 67]. More generally, one could instead
define a family of correlation-function inner products (17) given by

⟨A(t), B⟩σ,s ≡ tr
[
A†(t)σsBσ1−s

]
, (22)

where the choices s = 0 and s = 1/2 are the most common in the literature. Although one can, in principle,
define a time-reversal transformation T (20) with respect to the s-dependent inner product (22), it is only
for the symmetric choice s = 1/2 that L̃ is a valid Lindbladian [66–68]. For other choices of s ̸= 1/2, L̃
fails to be completely positive. We also note that the symmetric s = 1/2 correlation function is common
in the analysis of correlations, locality, and spectral properties in chaotic systems [27, 69, 70].

Importantly, the Z2 transformation T (20) defines the notion of quantum detailed balance [66, 67]. An
open quantum system with a Lindbladian L (10) is said to obey quantum detailed balance (QDB) if

L(ρ)− L̃(ρ) = −2i[Hσ, ρ] , (23)

for any ρ, where Hσ commutes with the stationary state σ (12) [66, 67]. Intuitively, open systems that
relax to thermal stationary states – where Φ = βH (12) – are expected to obey QDB (23); the time-reversal
operation T (20) flips the sign of the Hamiltonian term in L̃ compared to L (10), leading to (23) with
Hσ = H. However, this definition of detailed balance also extends to generic (i.e., possibly nonthermal)
stationary states σ upon replacing H with any Hσ satisfying [Hσ, σ] = 0 in (23). Systems that obey
QDB are straightforwardly described by the formalism we present in Sec. 3. In particular, the Lindblad
dynamics of systems that relax to thermal equilibrium – with σ ∝ exp(−βH) – is generically captured by
Davies’ generator [71, 72], which we discuss in Sec. 3.1.2. However, we stress that the framework detailed
in Sec. 3 extends beyond thermal systems, and even to those that break QDB (23).

Separately, we say that a Lindbladian L is T even if and only if

L = L̃ ⇐⇒ ⟨A(t), B⟩σ = ⟨A,B(t)⟩σ , (24)

which differs slightly from the definition of quantum detailed balance, except whenHσ = 0. Instead, being T
even (24) is related to the Kubo-Martin-Schwinger (KMS) invariance [73–76] of generic thermal systems. In
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fact, recent works extending the successes of thermal effective field theories (EFTs) [1, 2] to hydrodynamic
systems and even beyond equilibrium have been organized around KMS invariance [13, 77–83].

In the context of open classical systems [13], the classification of dynamical generators W (2) – and
even particular terms in the generator – is crucial to the diagnosis of the possible phases of matter
associated with a stationary distribution Φ. In the classical setting, all terms corresponding to Hamiltonian
dynamics (i.e., leading to equations of motion characterized by Poisson brackets) and all terms due to
dissipation (i.e., coming from stochastic noise sources) are guaranteed to be even under classical T (8).
Hence, (closed) Hamiltonian systems, those that relax to thermal stationary states σ ∝ exp(−βH), and
dissipative relaxation to thermal states are all T even. In the classical setting, these dynamics also
obey KMS invariance and detailed balance. However, nonreciprocal (and even active) dynamics require
the presence of terms in W (2) that are odd under T (8). Physically, these terms do not result from
integrating out degrees of freedom that are in thermal equilibrium with the system itself. In the context of
self-propelled particles (e.g., birds), these additional nonthermal degrees of freedom correspond to internal
“batteries,” which act as local sources and sinks of energy and entropy, potentially leading to nonthermal
dynamics and stationary states, and even violations [84] of the Mermin-Wagner theorem [85].

We expect a similar analysis of open quantum systems – described by a Lindbladian L (10) – to be
similarly fruitful. As in the classical setting, there are numerous definitions of T (20), detailed balance
(23), and KMS invariance (24), which we discuss further in Sec. 2.4. In fact, there are arguably even more
definitions for quantum systems. We also note that there are more ways to break these notions of T (and
also QDB and KMS) in quantum systems, as both the “Hamiltonian” term and the dissipative jump
operators in the Lindbladian (10) can be T odd, in contrast to the classical case. Moreover, as we discuss
in Sec. 5.2, one can break T in ways that have classical analogues, and also in ways that are unique to the
quantum setting. We relegate a classification of the nonequilibrium phases of open quantum systems and
their corresponding dynamics to future work, though we expect notions of T (20) to play a crucial role.

2.3 Incorporating symmetries

Before discussing generalizations of the time-reversal transformation T (20), we first briefly discuss the
notions of weak versus strong symmetries in open systems and the action of symmetry transformations on
the dynamical generator L (10). In the following discussion, we primarily highlight comparisons to the
effective theories of open classical systems [13] and the general action of symmetries on the Linbladian
L (10) in abstract terms. Although we expect that the existence – and possibly, spontaneous breaking –
of one or more symmetries is important to constructing effective theories of open quantum systems, in
the applications to quantum error correction that we consider herein, there is generally no symmetry
restriction on the terms in L (10). Hence, we only briefly discuss the constraints imposed by symmetries
on L (10) when discussing applications to quantum error correction in Sec. 4.5.

In the context of open systems – both classical and quantum – there are two distinct notions of
symmetries: weak and strong [13, 86, 87]. In the classical setting discussed in Sec. 2.1, symmetries are
defined with respect to the Fokker-Planck generator W (2). A strong symmetry of W is one that holds
on every stochastic trajectory, captured by the condition e−FW eF = W for some conserved “charge”
F (q), which is a functions of the coordinates q = {qa}.4 Conservation of F (in the strong sense) is
guaranteed provided that the operator W (2) is invariant under shifting the differential operator according
to ∂a → ∂a + [∂aF ] [13]. Conversely, a weak symmetry of W is one that only holds on average, meaning

that ∂t⟨F (q)⟩ = 0. This is guaranteed provided that W TF = 0 [13].
In open quantum systems, we again have both weak and strong notions of symmetries, which we now

define explicitly. In particular, consider a symmetry group G, whose elements g ∈ G have some unitary
representation U(g) acting on the Hilbert space H of interest. For each element g ∈ G, we define the left

4The operator W (2) may also depend on the coordinates {qa}, and generically involves differential operators ∂a = ∂/∂qa.
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(L) and right (R) action of g on a density operator ρ via the following pair of superoperators:

Ug,L(ρ) = U(g)ρ, (25a)

Ug,R(ρ) = ρU−1(g) = ρU(g−1) , (25b)

where the subscript refers to the side of ρ to which the unitary U(g) (or its inverse) is applied.
The group G is a strong symmetry of the Lindbladian L (10) if, for all g ∈ G, we have that

[L, Ug,L] = [L, Ug,R] = 0 , (26)

meaning that the commutator of superoperators L and Ug,L/R vanishes acting on any operator ρ.
The group G is a weak symmetry of the Lindbladian L (10) if we only have that

[L, Ug,L Ug,R] = 0 , (27)

meaning that only the combination of left and right action of g ∈ G commutes with L (10).
The distinction between weak and strong symmetries is important to, e.g., the application of our

methods to quantum error correction [87], which we discuss in Sec. 4.5. Note that even a weak symmetry
of the Lindbladian necessarily implies a symmetry of (at least one) stationary state σ, i.e.,

Ug,LUg,R(σ) = U(g)σU−1(g) = σ , (28)

though the converse is not true: Symmetries of the stationary state σ (12) do not imply weak or strong
symmetries of L (10). This is particularly relevant to the discussion of quantum error correction in Sec. 4.5.

2.4 Generalizations of time reversal

Even in the context of open classical systems, the definition of time reversal T (20) is not unique [13].
For example, one may associate the näıve “reversibility transformation” T (8) with time reversal, as is
common in systems with discrete state spaces. However, when working with continuous state spaces –
e.g., involving canonical positions xi and momenta pi – it is common to combine T (8) with another
“microscopic” Z2 transformation pi → −pi, which captures the fact that momentum coordinates are
expected to be odd under time reversal. Additionally, there are numerous classical systems for which
W (2) is not symmetric under T, but is instead invariant under a generalized time-reversal operation gT
that combines the transformation T (8) with another Z2 symmetry, such as a parity operation, spatial
inversion, or swapping the roles of “predator” and “prey” in nonreciprocal Kuramoto models [13, 88, 89].

Indeed, alternative definitions of T to (20) exist in the context of open quantum systems. As in the
classical case [13], we expect that certain definitions of T may be more illuminating or analytically useful
in the context of different physical systems.5 A particularly natural extension is to combine T (20) with
the microscopic implementation of time reversal on a generic operator O, given by

Õ = K(O) = UKOKU † , (29)

where we use a tilde to denote the time-reversed partner of a given operator O (including density matrices),
K is the antiunitary (and antilinear) operator that realizes complex conjugation, and U is a unitary
operator. The form of U depends on the physical nature of the underlying degrees of freedom: intrinsic
spins 1/2 have U = Y , so that K(σν) = −σν for any Pauli label ν = x, y, z; other systems may have U = 1.
The form of U is further constrained by the fact that, for the superoperator K (29) to realize time reversal,
it must be Z2 valued – i.e., an involution satisfying K2(O) = O for any operator O – to be Z2 valued.

5We expect such details to be more important to classifying phases of open quantum systems than to the engineering of
particular stationary states – and correction of generic errors – that we consider herein.
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For closed quantum systems, K (29) provides the only notion of time reversal, with

K[ρ(t)] = K
[
e−itHρ(0)eitH

]
= eitHρ(0)e−itH = ρ(−t) , (30)

assuming that the Hamiltonian H and initial state ρ(0) are T even (i.e., H̃ = K(H) = H, and likewise for
ρ). However, this need not be the case in general. The transformation K(O) (29) realizes time reversal
for any operator O to which it is applied, à la p→ −p in the classical case; when applied to the unitary
evolution operator, K sends t→ −t (and may modify H itself), as in (30).

To realize a version of T (20) incorporating the transformation K (29), we first define

⟨A(t), B⟩Kσ ≡ tr
[
et L̃

†
K (B̃†)T̃ (Ã)

]
, (31)

where L̃K is the analogue of L̃ for the version of T (20) that includes K (29), and all other tildes denote
the application of K (29). In particular, we have that

T̃ (Ã) ≡ σ̃1/2Ã σ̃1/2 = K (T (A)) , (32)

and we recover an expression for the time-reversed Lindbladian L̃K (31) by demanding that

⟨A(t), B⟩σ = ⟨A(t), B⟩Kσ , (33)

and manipulating both sides leads to

tr
[
etL

†
(A†)T (B)

]
= tr

[
et L̃

†
K

(
K(B†)

)
K (T (A))

]
tr
[
etT

−1LT (B)T (A†)
]
= tr

[
etKL̃†

K K(B)T (A†)
]
,

since K (29) is its own inverse and adjoint, and tr[K(A)K(B)] = tr[AB]∗ = tr[B†A†]. We then find that

gT : L 7→ L̃K ≡ KT L†T −1K , (34)

which is equivalent to the original transformation T (20) up to sandwiching L̃ with the superoperator K
(29) on both sides [66, 67]. The notions of being “T even” and of quantum detailed balance are the same
as before. We also note that the above follows automatically from the original definition of T when the
stationary state σ (12) commutes with K (29) [67].

In fact, this notion of gT (34) agrees with that of a recent series of papers on “hidden time-reversal
symmetry” [14, 90–93]. This generalized notion of time reversal gT can also be connected to a representation
of the dynamics generated by L (10) on a doubled Hilbert space. In these papers, the “hidden” notion
of time reversal is intimately connected to the ability to compute the stationary state σ for a given
gT-even Lindbladian L. These papers present a distinct but complementary physical motivation for the
construction of gT, which can play an important role in classifying universal dynamics and phase structure
in open quantum systems.

Finally, we comment that other choices of T (and gT) may be identified, and may be more appropriate
for particular open quantum systems. As in the classical case [13], it may be beneficial in certain contexts
to combine T with another Z2 symmetry (which may be a subgroup of a larger symmetry group) to obtain
a gT symmetry. In practice, this would manifest in a modification of unitary U in (29). Note that one
could, in principle, include only U (and not K) in a given definition of T, so long as U2 = 1. Because
the appropriate choice of T is likely to depend on the particular system of interest, we relegate elsewhere
further discussion of T, its variants, and their implications.
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Formalism3

3.1 Lindbladians consistent with stationarity

We now discuss how the existence of a target stationary state σ (12) constrains the form of the Lindbladian
L (10). We first detail the implications of the time-reversal transformation (20) on L (10), working in
the eigenbasis of σ. We explicitly consider the canonical example of Davies’ generator, which describes
relaxation to thermal states σ = exp(−βH). While this approach can be extended to nonequilibrium states
σ, and allows one to recover the most general family of Lindbladians consistent with a given stationarity
state σ, the corresponding dynamics are generically highly nonlocal. Deriving local Lindbladians consistent
with relaxation to arbitrary mixed states σ is the subject of Sec. 3.2.

3.1.1. General construction

Suppose that the full-rank stationary density matrix σ (12) has eigenstates {|a⟩} and corresponding
positive-semidefinite eigenvalues {σa}, which may be arbitrarily degenerate. In other words,

σ =
∑
a

σa |a⟩⟨a| , (35)

where the eigenvalues 0 ≤ σa ≤ 1 are interpreted as a probability distribution over eigenstates |a⟩ of σ.
Since we work in the eigenbasis of σ, a natural set of jump operators are those that induce transitions
between these eigenstates, such as |a⟩⟨b|. In this basis, we have that

L(ρ) = −i[H, ρ] +
∑
aa′bb′

Laa′
bb′

(
|a⟩⟨b| ρ

∣∣b′〉〈a′∣∣− δa,a′
1

2
{
∣∣b′〉〈b∣∣ , ρ}) , (36)

for some set of coefficients Laa′
bb′ that define a positive-semidefinite matrix when (ab) and (a′b′) are each

treated as a single index. Specifically, the coefficient Laa′
bb′ induces transitions between ρbb′ and ρaa′ .

Substituting Eq. (35) into Eq. (36), we find that stationarity of σ requires that the Hamiltonian H and
the coefficients Laa′

bb′ be chosen in so as to satisfy

⟨a|L(σ)|b⟩ = −i(σb − σa)Hab +
∑
c

[
σcL

ab
cc −

1

2
(σa + σb)L

cc
ba

]
!
= 0 , (37)

for all eigenstates a and b of σ. Note that, if we fix all the coefficients Laa′
bb′ , the Hamiltonian matrix

elements Hab corresponding to nondegenerate eigenvalues σa ≠ σb are uniquely determined by (37). We
further observe that the diagonal elements Haa of the Hamiltonian do not contribute to stationarity, and
are thus arbitrary. On the other hand, to ensure stationarity, the coefficients Laa′

bb′ must satisfy∑
c

σcL
aa
cc − σaL

cc
aa

!
= 0 . (38)

We comment that the foregoing pair of equations are identical to the constraints required for stationarity
of a classical Markov process (5), and can therefore be satisfied by finding a solution thereof. Namely,
{σa} is the equilibrium probability distribution, and the coefficients Lcc

aa describe the rate of transitions
between diagonal density matrix elements. Finally, the matrix elements Hab corresponding to degenerate
eigenvalues σa = σb for a ̸= b once again do not affect stationarity of σ and can be chosen arbitrarily, but
the constraints satisfied by the coefficients Laa′

bb′ are significantly more involved.
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We now elucidate the effect of the time-reversal transformation T (20). The time-reversed Lindbladian
L̃ is parameterized6 in terms of a time-reversed system Hamiltonian H̃ and coefficients L̃aa′

bb′ according to

L̃(ρ) = −i[H̃, ρ] +
∑

a,a′,b,b′

L̃aa′
bb′

(
|a⟩⟨b| ρ

∣∣b′〉〈a′∣∣− δaa′
1

2
{
∣∣b′〉〈b∣∣ , ρ}) . (39)

As in the classical case [13], the appropriate notion of generalized time reversal depends on the steady
state. As a result, the Hamiltonian matrix elements and jump operator coefficients transform as

H̃ab = − 1√
σaσb

[
1

2
(σa + σb)Hab +

i

4
(σa − σb)

∑
c

Lcc
ba

]
(40a)

L̃aa′
bb′ =

√
σaσa′

σbσb′
Lb′b
a′a . (40b)

Note that we used the stationarity conditions (37) to derive the relation aboves. As a result, the
transformation T (40) can only be applied when L(σ) = 0. For the diagonal matrix elements (i.e., with
a′ = a and b′ = b), we have σbL̃

aa
bb = σaL

bb
aa. Consequently, if the dissipative part of the Lindbladian is

T even, then the quantum detailed balance condition reduces to classical detailed balance (9) for the
diagonal matrix elements. Moreover, if the dynamics is T even, then the Hamiltonian matrix elements
Hab corresponding to degenerate eigenvalues σa = σb are fixed to be zero. Hence, if L protects σ and is T
even, then the all the Hab are uniquely determined in terms of the coefficients Laa′

bb′ .

3.1.2. Davies’ generator as a special case

In certain limits, a system interacting weakly with a Markovian bath can be described by an effective
Lindbladian known as Davies’ generator [71, 72]. We now show how Davies’ generator naturally arises
when considering dynamics that are even under T (20). This serves as a useful point of reference for the
more general framework presented in Sec. 3.2.

Suppose that we wish to stabilize Φ = βH for some target Hamiltonian H =
∑

aEa |a⟩⟨a| and
temperature T = β−1. That is, we would like to find a family of Lindbladians whose steady states are the
Gibbs state ∝ e−βH . Consider the jump operators

Aω =
∑

Ea−Eb=ω

gab(ω) |a⟩⟨b| , (41)

where the sum is over all states a and b satisfying Ea = Eb+ω. As a result, the jump operator Aω leads to
transitions between eigenstates of σ separated in energy (with respect to H) by ω. These operators satisfy

A−ω =
∑

Ea−Eb=ω

gba(−ω)|b⟩⟨a| (42)

A†
ω =

∑
Ea−Eb=ω

g∗ab(ω)|b⟩⟨a| , (43)

where the star denotes complex conjugation. Comparing these two equations, we can ensure that A−ω = A†
ω

if the coefficients gab(ω) are chosen to such that they respect the constraint g∗ab(ω) = gba(−ω). Now
construct dynamics generated by these jump operators with positive semidefinite rates γ(ω)

L(ρ) =
∑
ω∈B

γ(ω)

[
AωρA

†
ω − 1

2
{A†

ωAω, ρ}
]
, (44)

6The jump operators |a⟩⟨b| are not traceless. However, having fixed a basis, the time reversal transformation T is still
uniquely determined, as is the reversed Lindbladian L̃.
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where the summation is over the Bohr frequencies, i.e., energy differences, B = {Ea−Eb |Ea, Eb ∈ spec(H)}.
Note that the dynamics in (44) is purely dissipative; since the Hamiltonian is diagonalized by the same
eigenbasis as σ, we could choose to include unitary dynamics generated by H in Eq. (44) without affecting
stationarity of σ. To apply the time-reversal transformation (39), we express the Lindbladian (44) in the
eigenbasis of σ. This leads to the coefficients

Laa′
bb′ = δ(ωab − ωa′b′)γ(ωab)gab(ωab)g

∗
a′b′(ωab) , (45)

where δ(ω) is the Kronecker delta. Using (39), we require that the dynamics be even under T (20),

Laa′
bb′

!
= L̃aa′

bb′ =

√
σaσa′

σbσb′
Lb′b
a′a = e−βωabδ(ωab − ωa′b′)γ(−ωab)g

∗
ba(−ωab)gb′a′(−ωab)

= e−βωabδ(ωab − ωa′b′)γ(−ωab)gab(ωab)g
∗
a′b′(ωab) . (46)

These equations can be satisfied if the decay rates are chosen to satisfy γ(ω) = e−βωγ(−ω), frequently
known as the Kubo-Martin-Schwinger (KMS) condition. Equation (44) supplemented by the KMS condition
is the well-known Davies’ generator. Absent any unitary Hamiltonian contribution to the dynamics, being
T even under (20) is equivalent to satisfying quantum detailed balance. Furthermore, it is straightforward
to verify, using (37), that Davies’ generator annihilates the Gibbs states e−βH , as required.

3.2 Local dynamics compatible with stationarity for stabilizer Φ

3.2.1. A convenient operator basis

For many-body systems, the Lindbladian in the form of (36) is, in general, not very useful for dissipative
state preparation. The reason is that the jump operators |a⟩⟨b| are highly nonlocal, even for simple
many-body steady states. In practice, to be able to implement the dynamics efficiently, we require local
Lindbladians, i.e., composed of local H and local jump operators. In this section, we show that, given a
stationary state σ = e−Φ in which Φ is a sum of commuting operators (defined explicitly in (53)), we can
write down a simple ansatz that is able to capture a large number of the possible (local) dynamics that
protect a target steady state σ. The remaining dynamics not captured by this ansatz can be generated
using the methods presented in Appendix A.

The first step of the construction is to find a convenient local basis for the jump operators that will
enter the Lindbladian. To construct the most convenient basis, consider how the transformation L → L̃
affects the Lindbladian in a generic basis of jump operators {Bi}. A Lindbladian of the form (10) is sent to

L̃(ρ) = i
[
S(H)ρ− ρS−1(H)

]
+
∑
ij

γij

[
S(B†

j )ρS−1(Bi)−
1

2

(
S(B†

j )S(Bi)ρ+ ρS−1(B†
j )S−1(Bi)

)]
. (47)

In order to rewrite the reversed operator L̃ in Lindblad form, we must complete the action of the
superoperator S on the jump operators Bi, where S is defined in terms of the steady state via

S(A) = σ1/2Aσ−1/2 , (48)

and we note the difference between the superoperator S and T introduced in (18). Since the basis is
assumed to be complete and orthonormal, we can rewrite the action of the map in terms of complex
coefficients sij satisfying

S(Bi) =
∑
j

sijBj , (49)
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where sij = Tr[B†
iS(Bj)], from which it follows that the matrix defined by sij is Hermitian. We can

therefore diagonalize sij to find a new operator basis {Ai} that satisfies

S(Ai) = ciAi . (50)

Since σ (12) is positive definite, the eigenvalues ci of the map (49) are also positive. Note that the operators

{A†
i} are also eigensolutions to (49), with S(A†

i ) = c−1
i A†

i . As a consequence, for any given i, A†
i is either

equal to or orthogonal to Ai. We therefore introduce the permutation π that describes the relationship
between the Ai and the A†

i operators, namely Aπ(i) = A†
i . Hermitian jump operators are mapped to

themselves, while other operators undergo a swap (transposition) with their corresponding Hermitian
conjugate, which implies that the corresponding permutation is an involution, i.e., satisfying π2(i) = i for
all i. Making use of this notation, if the unitary part of L is described by the Hamiltonian H =

∑
i hiAi,

the time-reversed Lindbladian L̃ (47) is written in the form (10) with

H̃ = −1

2

∑
i

(
ci +

1

ci

)
hiAi −

i

4

∑
ij

γij

(
ci
cj

− cj
ci

)
A†

jAi , (51a)

γ̃ij = γπ(j)π(i)cicj , (51b)

where, as in (40), we made use of stationarity of σ to derive these transformations. Explicitly, stationarity
of σ enforces that the coefficients hi and γij satisfy

T −1L(σ) = i
∑
i

(
ci −

1

ci

)
hiAi +

∑
ij

γij

[
1

cicj
AiA

†
j −

1

2

(
cj
ci

+
ci
cj

)
A†

jAi

]
!
= 0 . (52)

Note that H̃ (51a) is Hermitian and that the transformed γ̃ij (51b) remains Hermitian and positive

semidefinite, such that the resulting reversed Lindbladian L̃ is indeed CPTP, as required. The relationship
between the more general transformation (51) and the eigenbasis version presented in (39) can be understood
by noting that the jump operators |a⟩⟨b| are eigensolutions of S with cab =

√
σa/σb. However, we would

like to work with a local basis of jump operators that diagonalize S. In cases where the eigenvalues cab are
degenerate, we have freedom in which linear combinations we take, and this flexibility can be utilized to
construct a more local operator basis.

3.2.2. Local jump operators

We now introduce the family of steady states with which we work. These states admit simple, strictly
local eigensolutions of S defined in Eq. (48). Specifically, we work primarily with stabilizer steady states,
corresponding to finite-temperature stabilizer “Hamiltonians.” This choice not only allows us to make
considerable analytical progress, but also gives us access to states that are of interest experimentally, often
by virtue of their relevance to quantum error correction. We consider steady states σ = e−Φ with the
stationary distribution

Φ = −
∑
a

µaSa . (53)

The operators {Sa} are a set of mutually commuting Pauli strings, i.e., S2
a = 1 and [Sa, Sb] = 0 for all a, b,

and the µa are tunable chemical potentials. For our purposes, the stabilizer group G is a subgroup of the
Pauli group on N qubits that defines a codespace, which is spanned by states satisfying S|ψ⟩ = |ψ⟩ for all
S ∈ G. Importantly, we allow for any S ∈ G to appear in our steady state distribution Φ, as opposed to
restricting our attention to a minimal generating set for G, although we will care most about cases where
the Sa in Eq. (53) are local.
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To construct strictly local jump operators, consider a Pauli string P that is orthogonal to all Sa
in (53). The string P either commutes or anticommutes with each Sa; denote the set of a for which Sa
anticommutes with P by

AP ≡ {a |SaP + PSa = 0} . (54)

If P belongs to G, i.e. AP = ∅, then it will commute with the steady state and therefore corresponds to
an eigenoperator with eigenvalue c = 1. By “dressing” nontrivial P with a projection operator, we arrive
at the desired strictly local jump operators (see Sec. 4.2):

P (n) = PΠP (n) ≡ P

 ∏
a∈AP

1

2
(1+ naSa)

 , (55)

where n ≡ {na}a∈AP
, with na ∈ {−1,+1}, defines the projector ΠP (n) onto the na subspace of Sa for all

stabilizers that anticommute with P . By construction, these jump operators are eigenoperators of (48)
with the corresponding eigenvalues

cP (n) = exp

(
−1

2
∆ΦP

)
where

1

2
∆ΦP =

∑
a∈AP

naµa , (56)

where, physically, ∆ΦP is the change in the Φ induced by P . Note that any local operator O can be written
as a linear combination of finitely many eigenoperators of the form (55). This follows since any strictly
local O can be decomposed into a finite number of Pauli strings, each of which anticommutes with a finite
number of the Sa (which are also assumed local). We have therefore shown that, for stabilizer steady
states defined by (53), we are able to identify a family of strictly local jump operators that diagonalize the
superoperator S (48).

3.2.3. Local dynamics

Finally, we write down a simple ansatz for local dynamics generated by a Lindbladian L whose steady
state is σ. We revert to the notation {Ai} for a generic jump operator basis, but it should be understood
that the ansatz is most useful when the jump operators are local, e.g., belonging to the family identified in
the previous subsection. Consider the Lindbladian7

L = −
∑
ij

mijLiT L
†
jT −1 . (57)

We now explore its properties and its behavior under the time-reversal transformation (20). First, observe

that L(σ) = 0 if the superoperators Li are trace preserving, such that L†
i (1) = 0. This condition also

ensures that L is trace preserving, since L†
i (1) = 0 for all i implies that L†(1) = 0. A natural choice for

the Li is therefore
Li( · ) = [Ai, · ] , (58)

where the Ai satisfy S(Ai) = ciAi, with S defined in (48). With this choice for Li, one may verify that (57)
takes the form (10), with unitary and dissipative parts parameterized by

H =
i

2

∑
ij

(
mijcj −mπ(j)π(i)ci

)
A†

jAi , (59a)

γij = mijcj +mπ(j)π(i)ci , (59b)

7This choice is motivated by the decomposition of the Fokker-Planck generator in classical nonequilibrium dynamics [13].
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respectively. We therefore observe that the condition mij = m∗
π(i)π(j) is required to make γij and H

Hermitian. Positivity of γij can be enforced separately by making the diagonal matrix elements mii

sufficiently large and positive. We henceforth only consider mij satisfying these criteria. Next, we may see
how the Lindbladian defined by (57) transforms under T. The transformation rules laid out in (51) may
be applied directly to (59) to find that

H̃ =
i

2

∑
ij

(
m∗

jicj −mijci
)
A†

jAi , (60a)

γ̃ij = m∗
jicj +mijci (60b)

Comparing with (59), we observe that time reversal is implemented by sending the matrix m→ m†. As
a result, the Hermitian (anti-Hermitian) part of the matrix with coefficients mij corresponds to T-even
(T-odd) dynamics.

Observe that the Linbladian (57) contains Davies’ generator (Sec. 3.1.2) as a special case. In particular,
the operators Aω defined in (41) are eigenoperators of S satisfying S(Aω) = e−βω/2Aω. We may therefore
use them in (58), in conjunction with a real, nonnegative, diagonal m matrix, i.e., mij = miδij , which leads
to a diagonal γij and a vanishing Hamiltonian. Hermiticity of γij in (59b) is then guaranteed by choosing
m such that mi = mπ(i), which is equivalent to mω = m−ω. From (59b), we see that γ(ω) = 2mωcω, which

automatically satisfies the KMS condition γ(ω) = e−βωγ(−ω). Therefore, the ansatz (57) captures not
only Davies’ generator, but more general T-even dynamics, and some of the possible T-odd dynamics.

However, the ansatz (57) does not capture the most generic T-odd contributions to the dynamics. We
now discuss the additional types of dynamics needed to find the most general possible (local) L compatible
with stationarity. Using the definition of the permutation π, we deduce that the γij matrices produced
by (57) satisfy (

γij
γπ(j)π(i)

)
=

(
cj ci
c−1
j c−1

i

)(
mij

m∗
ji

)
. (61)

Hence, if the matrix in (61) is invertible, we can find mij that generate the corresponding γij . If ci = cj ,
then the matrix has zero determinant, and there exist γij that cannot be generated by mij . This can be
seen more transparently from (59b): if the eigenvalues are equal, then γij = ci(mij +m∗

ji), which projects

out the anti-Hermitian part of mij . As a result, the time-reversal transformation, which sends m→ m†,
gives γij = γ̃ij for degenerate indices (i, j). This implies that only T-even dynamics can be generated
for such pairs of indices. By similar reasoning, if ci = cj , then the corresponding contribution to H is

of the form ∝ ici(mij −m∗
ji), which is again even under the time-reversal transformation. Since A†

jAi

is an eigenoperator of S with eigenvalue ci/cj , we observe that the ansatz also fails to capture T-odd
contributions to Hamiltonian dynamics corresponding to operators Ak with eigenvalue c = 1.8 However,
this omission can easily be remedied: since the Hamiltonian terms

∑
k hkAk with ck = 1 do not contribute

to stationarity from (52), they can be freely added to (57) without affecting the steady state.
To summarize, the ansatz (57) captures all T-even γij , and all T-odd γij for nondegenerate indices

(i, j). The Hamiltonian contribution is essentially fixed by stationarity, up to the terms that correspond
to operators Ak with eigenvalue ck = 1, which can be varied freely without affecting stationarity. The
remaining T-odd contributions to γij are discussed in Appendix A. Specifically, we explain how to generate
all one-dimensional translationally invariant local classical dynamics that does not produce transitions
between different symmetry-broken states, and all local quantum dynamics for γij with ci = cj . The
distinction between “classical” and “quantum” dynamics is made more precise in Sec. 5.

8If we fix γij , the Hamiltonian terms with ck ̸= 1 are uniquely determined by stationarity of σ. Consequently, the only
freedom we have when constructing dynamics that protect σ is varying the coefficients of terms in H that correspond to jump
operators with eigenvalue ck = 1.
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3.2.4. Weak and strong symmetries

We next deduce the consequences of imposing a strong or weak symmetry on the form of L, which we
take to be of the form (57). It is natural to focus on steady states which are themselves symmetric:
Ug,Lσ = Ug,Rσ = σ. This implies that

0 = [Ug,L, T ] = [Ug,R, T ] , (62)

and a simple calculation shows that

Ug,LUg,RLi = Lg·iUg,LUg,R , (63)

where, using the decomposition (57), we have defined

Lg·i = [gAig
−1, ·], (64)

and from (63) we see that

LiUg−1,LUg−1,R = LiUg−1,LUg−1,R = Ug−1,LUg−1,RLg−1·i. (65)

It is also useful to define a g-dependent matrix a(g) such that

gAig
−1 =

∑
j

aij(g)Aj , (66)

and, combining these formulas together, we see that a weak G symmetry (27) requires that

mij =
∑
k,ℓ

mkℓaik(g)ajℓ(g
−1) , (67)

for all group elements g ∈ G. Importantly, Schur’s Lemma implies that the nonvanishing elements of mij

(57) must contain jump operators in the same irreducible representations of G. For example, with a single
qubit, SU(2) invariance requires that Φ = 0 and the only allowed nontrivial jump operator is the fully
depolarizing channel Φdp(ρ) = XρX + Y ρY + ZρZ − 3ρ, since the full set of possible jump operators
(X,Y, Z) forms a three-dimensional representation of SU(2).

A strong symmetry (26) is more constraining. In particular, we note that if Ug,LL = LUg,L, then

(Ug,LL)† (1) = L†[U(g−1)] = 0 (68)

for all g ∈ G. This condition holds if and only if [Ai, g] = 0 for all mij ̸= 0 (57). Hence, with a strong
symmetry, only singlet operators (in the trivial representation of G) can be included in the Lindbladian
(57).

3.2.5. Generalized time reversal

Here we briefly discuss how the derivations and results of Sec. 3.2.1 onward are modified upon replacing
the transformation T (20) with the generalized transformation gT (34). If we write L̃K in the form

L̃(ρ) = −i[H̃, ρ] +
∑
i,j

γ̃ij

(
ÃiρÃ

†
j −

1

2
{Ã†

jÃi, ρ}
)
, (69)

where H̃ = K(H) (29) – and likewise for Aj – and we still require that the jump operators satisfy
S(Ai) = ciAi (50) [see also (48)], which translates to the condition that

S̃(Ãi) = σ̃1/2 Ãiσ̃
−1/2 = ciÃi (70)
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in the time-reversed language – i.e., after transforming all terms under K (29).
As a result, (51) need only be modified slightly, according to

H̃ =
1

2

∑
i

(
ci +

1

ci

)
h∗i Ãi −

i

4

∑
ij

γ∗ij

(
ci
cj

− cj
ci

)
Ã†

jÃi , (71a)

γ̃ij = γ∗π(j)π(i)cicj , (71b)

then using a decomposition of the form (57), applying time reversal leads to

L̃K = −
∑
ij

m̃ijL̃iT̃ L̃
†
j T̃ −1 = −

∑
ij

m̃ijKLiT L
†
jT −1K , (72)

where m̃ = mT and L̃i = KLiK. The superoperator Li (57) is the same, so that (58) and (60) become

H̃ =
i

2

∑
ij

(
mjicj −m∗

ijci
)
Ã†

jÃi , (73a)

γ̃ij = mjicj +m∗
ijci . (73b)

To generate T-even dynamics – for which σ̃ = σ – we simply modify (57) to

L = −
∑
ij

mijLiT L̃
†
jT −1 , (74)

where we still have that mij = m∗
π(i)π(j) (57) to make γ and H Hermitian, and the time-reversal trans-

formation sends m→ mT , so that the symmetric part of m is T even and the anti-symmetric part is T
odd.

Finally, the gT analogue of (47) is given by

L̃K(ρ) = −i
[
S̃(H̃)ρ− ρS̃−1(H̃)

]
+
∑
ij

γ∗ij

[
S̃(B̃j

†
)ρS̃−1(B̃i)−

1

2

(
S̃(B̃j

†
)S̃(B̃i)ρ+ ρS̃−1(B̃j

†
)S̃−1(B̃i)

)]
, (75)

where it is straightforward to check that L̃ is a CPTP map satisfying (33), and L̃(σ̃) = 0. The derivation
of the above follows those of Sec. 3.2.1 up to the inclusion of tildes, which represent K (29).

Steering towards stabilizer steady states4

As highlighted in the previous section, our framework is particularly powerful when we wish to protect σ =
e−Φ, where Φ is a sum of commuting terms. This section aims to classify exhaustively all possible Lindblad
dynamics that flow towards such stabilizer steady states, and, moreover, to give physical interpretations of
such dynamics. In many cases of interest, such interpretations suggest natural experimental protocols,
even in “digital” quantum settings where discrete gates are more natural than continuous time evolution.

4.1 Warm-up: single qubit

As an elementary example of these ideas, let us begin with a single qubit, whose Hilbert space is spanned
by the states |b⟩ ∈ {|0⟩, |1⟩}, satisfying Z|b⟩ = (−1)b|b⟩. Suppose that the stationary state we wish to
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target is of the form σ = eµZ , i.e., Φ = −µZ. To find the appropriate jump operators that will steer us
towards the state σ, we are required to find the eigensolutions of the map S(ρ) = σ1/2ρσ−1/2 defined in
Eq. (49). First, observe that the projectors Π± ≡ (1± Z)/2, being functions of Z alone, commute with
the steady state σ and are therefore eigenoperators with unit eigenvalues: S(Π±) = Π±. Additionally, the
action of S on the operators X and Y remains closed. Explicitly, we have

S
(
X
Y

)
=

(
coshµ −i sinhµ
i sinhµ coshµ

)(
X
Y

)
. (76)

The eigenvectors are of the form (X ± iY )/2 with the µ-dependent eigenvalues e±µ. The eigenvectors of S
are therefore projectors onto states belonging to the computational basis, Π±, and the spin raising and
lowering operators. Together, these eigensolutions form a basis for all operators on the single-qubit Hilbert
space. For µ≫ 1, such that the ground state |0⟩ is being targeted (up to an exponentially small statistical
admixture of |1⟩), the eigenvalue of the spin raising operator |0⟩⟨1| (i.e., c = eµ) is exponentially enhanced
with respect to the lowering operator |1⟩⟨0| (i.e., c = e−µ). To summarize, the complete basis of jump
operators for the single-qubit system can be written

Π± ≡ 1

2
(1± Z) with c = 1 , (77a)

X∓ ≡ 1

2
X(1± Z) with c = e∓µ , (77b)

when targeting a steady state of the form σ = eµZ . Given this simple eigenbasis, we can utilize the
ansatz (57) to deduce minimal Lindbladians that flow towards the desired steady state σ. Note that

the permutation π describing the relationship between jump operators {Ai} and {A†
i} swaps the jump

operators in (77b) but acts trivially on (77a). In particular, for diagonal m, one could write down

L(ρ) = γ
(
ZρZ − 1

2
{Z, ρ}

)
+
∑
n=±

Γe−nµ

(
XΠnρΠnX − 1

2
{Πn, ρ}

)
. (78)

The first term recovers familiar “phase damping” dynamics [58], which kills off off-diagonal matrix elements
in the computational basis. The second term corresponds to generalized (i.e., finite-temperature) amplitude
damping (spontaneous emission) [58], and is responsible for stabilizing the correct populations of the two
levels at late times. In addition to these familiar contributions, one can consider m matrices (57) with
off-diagonal contributions. For instance, adding off-diagonal terms between the operators in (77b):

L → L+∆coshµX+ρX+ +∆∗ coshµX−ρX− , (79)

which has the effect of modifying the transient relaxation dynamics without modifying the steady state
(since X± |b⟩⟨b|X± = 0). There are also off-diagonal terms that give rise to a nontrivial Hamiltonian
contribution, such as off-diagonal terms between Z and X±. These produce, e.g.,

H = −h coshµX (80a)

γZX± = ±ihe±µ , γX±Z = γ∗ZX± (80b)

The dynamics due to the X magnetic field are compensated for by the dissipative contribution at the level
of the the steady state. Notice that we will also need to introduce diagonal dephasing terms γZZ and
γX±X± such that γij as a whole is positive semidefinite. We show later in Sec. 4.4.1 that there exists a
general correction procedure for compensating arbitrary Hamiltonian terms using jump operators.
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4.2 Generic stabilizer steady states

Now consider a system composed of N qubits, and suppose that we target the “stabilizer” steady states
introduced in Sec. 3.2.2. That is, the steady state is of the form σ = e−Φ, with Φ = −∑a µaSa, with each
Sa a Pauli string. To identify the eigenoperators of the map S (48), consider the action of S on some
Pauli string P that is orthogonal to all Pauli strings in the stabilizer group. Such a string then either
commutes or anticommutes with each Sa; as in (54) we denote the set of a for which Sa anticommutes
with P by AP . Since all Sa mutually commute,

eΦ/2 =
∏
a

exp

(
1

2
µaSa

)
≡
∏
a

eΦa/2 , (81)

and we can consider conjugation by each eΦa/2 separately:

eΦa/2P e−Φa/2 = cosh(µa)1− sinh(µa)PSa . (82)

Consequently, the action of Sa( · ) = eΦa/2 · e−Φa/2 on the two strings P and PSa remains closed, and the
system of equations essentially reduces to the eigenproblem for the two-level system (76). Specifically,
the generalization of the spin lowering and raising operators are P 1

2(1 ± Sa), with eigenvalues e∓µa .
This procedure of reducing to a 2×2 eigenproblem can be iterated for all elements of AP to arrive at
eigenoperators of the form

P (n) = PΠP (n) ≡ P

 ∏
a∈AP

1

2
(1+ naSa)

 , (83)

as stated previously in Eq. (55). The operator P (n) projects onto a state with definite stabilizer eigenvalues
n (which one may regard as the post-measurement state if measurement outcomes n were obtained), then
P flips the eigenvalues of these stabilizers. Alternatively, Eq. (83) can be regarded as a controlled P
operation. The corresponding eigenvalues are

cP (n) = exp

(
−1

2
∆ΦP

)
where

1

2
∆ΦP =

∑
a∈AP

naµa . (84)

The generalization of phase-damping contributions from Eq. (78) are elements of the stabilizer group.
Since these operators commute with Φ, they have eigenvalue c = 1.

This procedure also allows us to decompose any strictly local operator O in terms of a finite number
of eigenoperators of the form given in Eq. (83). Without loss of generality, we write some local operator
O as O =

∑
k ckPk, where every Pk is a Pauli string whose nonidentity content is contained within a

finite (fixed) region and ck = 2−N tr(OPk). From Eq. (83), each Pk can be decomposed as Pk =
∑

n Pk(n),
where n runs over the measurement outcomes of the stabilizers Sa that anticommute with Pk. If the
stabilizers Sa are also local, each Pk only anticommutes with a finite number (|APk

|) of stabilizers, since
their support must overlap in order to anticommute. Each Pk can therefore be written in terms of 2|APk

|

jump operators, and hence, any strictly local operator O can be decomposed in terms of a finite number of
jump operators.

4.3 Interpretation: Measurements and feedback

4.3.1. Projective measurement

We now show how the dynamics we have derived can – in certain cases – be interpreted in terms of
projective measurements of stabilizer operators and subsequent unitary feedback. For the purposes of this
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discussion, consider a Lindbladian that is diagonal in the jump operators derived in Secs. 4.1 and 4.2.

L(ρ) = −i[H, ρ] +
∑
i≥1

γi

(
LiρL

†
i −

1

2
{L†

iLi, ρ}
)
, (85)

which describes time evolution of the state ρ(t). This scenario will be of interest for correcting a large
family of Hamiltonian and dissipative errors, see Secs. 4.4.1 and 4.4.2, respectively. The time evolution (85)
can alternatively be interpreted in terms of Kraus operators Ki that map the state ρ(t) → ρ(t+ dt) over

the time interval dt via the operator sum decomposition ρ(t+ dt) =
∑

i≥0Kiρ(t)K
†
i . The Kraus operators

that achieve this decomposition are

K0 = 1−

iH +
1

2

∑
i≥1

γiL
†
iLi

 dt , (86a)

Ki = Li

√
γidt , for i ≥ 1, (86b)

where the Kraus operators satisfy the completeness relation
∑

i≥0K
†
iKi = 1, andK0 describes deterministic

evolution according to the effective (non-Hermitian) Hamiltonian defined by the terms in the parentheses
in Eq. (86a), while the operators Ki for i ≥ 1 correspond to discontinuous “jumps.”

For the single-qubit example of Sec. 4.1, the formalism presented in Sec. 3.2 gives rise to the dissipative
contribution (i.e., absent any Hamiltonian evolution),

L(ρ) ⊃
∑
n=±1

Γe−nµ

(
XΠnρΠnX − 1

2
{Πn, ρ}

)
+ γn

(
ΠnρΠn − 1

2
{Πn, ρ}

)
(87)

with Γ and γn undetermined (nonnegative) constants that follow from mij via Eq. (59b). As discussed in
Sec. 4.1, the first term corresponds to generalized amplitude damping [58]. The second term corresponds
to measurements in the Z basis (at least when γn are independent of n). To derive an exact equivalence
between the Kraus operators (86) and measurements followed by unitary feedback, we are free to choose
specific values for the γn constants. Recall that the γn coefficients can be varied freely without affecting
stationarity of σ = eµZ since the projectors Πn commute with the steady state. Specifically, we take9

γn = Γ(e|µ| − e−nµ), allowing us to write the contribution from (86a) and (86b) as

dρ ⊃
∑
n=±

dtΓe|µ| tr[ΠnρΠn]

{
pf(n)

XΠnρΠnX

tr[ΠnρΠn]
+ [1− pf(n)]

ΠnρΠn

tr[ΠnρΠn]

}
− ρdtΓe|µ| , (88)

in a time interval dt, where pf(n) = e−(1+n sgnµ)|µ| is the probability that the unitary feedback X is
applied to the post-measurement state ∝ ΠnρΠn. That is, during a time interval dt, there is a probability
dtΓe|µ| that the system is measured in the Z basis. If the system is measured, tr[ΠnρΠn] represents
the Born probability for measurement outcome n = ±1. Finally, the operator X is applied with the
outcome-dependent probability pf(n). For our choice of γn, we have pf(n) = 1 for n = − sgnµ; for µ≫ 1,
the state |0⟩ is being targeted, so feedback X is applied with unit probability when the state |1⟩ is obtained
(and with exponentially small probability when |0⟩ is obtained). Note that the probability of applying
feedback is precisely the acceptance probability of the Metropolis-Hastings algorithm [94].

This interpretation can also be generalized to the case of generic stabilizer steady states studied in
Sec. 4.2. For the contribution from jump operators that correspond to the dressing of a particular Pauli

9Taking γn = C − Γe−nµ for some C > Γe|µ| would also work, although the probability of applying feedback will be
correspondingly diminished.
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string P [see Eq. (55)], we write

L(ρ) ⊃
∑
n

ΓncP (n)

(
PΠP (n)ρΠP (n)P − 1

2
{ΠP (n), ρ}

)
+ γn

(
ΠP (n)ρΠP (n)−

1

2
{ΠP (n), ρ}

)
(89)

where the coefficients Γn satisfy Γn = Γ−n and are related to mij via (59b). Denoting the outcomes n for
which the coefficient ΓncP (n) is maximal by n⋆, we can choose γn = Γn⋆cP (n⋆)− ΓncP (n) to write

dρ ⊃
∑
n

dtΓn⋆cP (n⋆) {pf(n)PΠP (n)ρΠP (n)P + [1− pf(n)]ΠP (n)ρΠP (n)} − ρdtΓn⋆cP (n⋆) , (90)

where pf(n) = ΓncP (n)/[Γn⋆cP (n⋆)]. The interpretation is analogous to (89): During a time interval dt,
there is a probability dtΓn⋆cP (n⋆) that all stabilizers that anticommute with P are measured. If the
system is measured, tr[ΠP (n)ρΠP (n)] equals the Born probability for the set of outcomes n. Finally, the
Pauli string P is applied with the outcome-dependent probability pf(n), where the feedback probability is
maximal for the measurement outcomes n⋆.

4.3.2. Generalized measurement

In the most general setting, we also encounter corrections that cannot be implemented using only projective
measurement and unitary feedback. Corrections requiring such an interpretation are discussed in Sec. 4.4.3.
However, we may always view Lindbladian time evolution as generalized measurement. Consider a
Lindbladian of the form

L(ρ) =
∑
n

Λn

(
LnρL

†
n − 1

2
{L†

nLn, ρ}
)

(91)

A concrete protocol for implementing (91) is made clear by applying a singular value decomposition (SVD):

Ln = UnΣnV
†
n = UnEn =

∑
a|uan⟩⟨van|

∑
b σbn|vnb⟩⟨vnb|, where |una⟩ and |vna⟩ are the left and right

singular vectors, respectively, and σbn ≥ 0 are the singular values. To interpret this situation physically, we
return to the Kraus representation of Eq. (86) with Kraus operators Ki. We interpret the infinitesimal time
evolution as a positive operator-valued measurement (POVM) [58]. The state |ψ⟩ of the system is sent to

∝ Ki|ψ⟩ with probability ⟨ψ|K†
iKi|ψ⟩. This can be achieved using only unitary operations and protective

measurements by considering an ancilla that contains as many states as there are measurement outcomes
n plus the default state |0⟩. The unitary U on the enlarged Hilbert space takes U |ψ⟩|0⟩ =∑i≥0Ki|ψ⟩|i⟩.
A subsequent projective measurement of the ancilla returns the correct states of the system with the
appropriate probabilities. The Kraus operators in (86b) are then just En

√
gc2ndt, and, if a nondefault

measurement outcome n is obtained when measuring the ancilla, subsequent unitary feedback Un is applied
to system. Note that, if the En operators are just projectors, then the protocol can be replaced by a
projective measurement of the system.

In this way, all of our correction procedures may be implemented by utilizing generalized measurement
(optionally followed by unitary feedback). However, we stress that there can be other physical interpretations
for a given L, which may be more convenient for designing protocols for particular experimental systems.

4.4 Correcting for errors

Next, we show how our formalism can be used to correct for erroneous terms in the Hamiltonian
(“Hamiltonian” or “unitary” errors) and in the jump operators (“incoherent” errors) which, absent any
corrective terms, would violate stationarity of the desired steady state σ. Namely, for stabilizer steady
states, we explicitly construct the jump operators and/or Hamiltonian terms that can be added to the
Lindbladian to maintain stationarity of σ in the presence of these erroneous terms. In this way, we provide
simple probabilistic protocols that are able to correct for both Hamiltonian errors and incoherent errors in
a Lindbladian that protects an arbitrary stabilizer steady state.
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Consider the scenario introduced in Sec. 4.2: The desired steady state is of the form σ = e−Φ with
Φ = −∑a µaSa, where the Sa are mutually commuting Pauli strings. We will first consider the case in
which the Hamiltonian contains a term ∝ P , where P is a Pauli string that does not commute with all the
Sa, thereby violating stationarity of σ without additional corrective terms. Second, we consider incoherent
Pauli errors arising from multiplication by some Pauli string at some rate. Finally, we look at the most
general case in which the incoherent non-Pauli errors correspond to generic linear combinations of Pauli
strings.

4.4.1. Hamiltonian errors

Suppose that we have some Lindbladian L that protects σ, i.e., L[σ] = 0, which may be obtained using
the methods presented in Sec. 3. This Lindbladian is then modified by adding a term

H → H − gP , (92)

in the Hamiltonian, where P is a Pauli string that does not commute with all the stabilizers Sa. If P
were to commute with all Sa, then it could be added to the Hamiltonian H freely without affecting
stationarity of σ. Since any Hamiltonian can be decomposed in terms of a sum of Pauli strings, the
following discussion is able to correct for arbitrary errors in the unitary evolution (each term in the sum
can be treated separately in the manner described below). Note that, obviously, we do not consider the
trivial error correcting scheme of just “modifying H → H + gP” to cancel the unwanted offset.

The first step towards correcting for the presence of P is to decompose P in terms of eigenoperators (55)
of S. This is achieved by resolving the identity:

P =
∑
n

PΠP (n) =
∑
n

B†
1nB2n =

1

2

∑
n

(
B†

1nB2n +B†
2nB1n

)
=

1

2

∑
n

∑
αβ

B†
αnσ

x
αβBβn . (93)

where σx is the x Pauli matrix. In the first equality, we write the identity as a sum over projectors ΠP (n)
onto measurement outcomes n that correspond to measuring all stabilizers Sa that anticommute with
P (denoted by a ∈ AP ). In the second equality, each term in the summation over n has been written in

terms of the jump operators B†
1n = B1−n = PΠP (n) and B2n = B†

2n = ΠP (n). In this section, it turns

out to be much more notationally convenient to work with the operators B†
1n and B2n in place of the

operators A1n = PΠP (n) and A2n = ΠP (n) used elsewhere. The Bαn operators are eigenoperators of the
superoperator S with eigenvalues c1−n = exp(

∑
a∈AP

naµa) and c2n = 1, respectively. For a Hamiltonian

parameterized by H =
∑

ij hijA
†
jAi, with {Ai} eigenoperators of S with eigenvalues {ci}, stationarity of σ

is then implemented by enforcing:

L[σ] = √
σ
∑
ij

{
−i

(
cj
ci

− ci
cj

)
hij + γπ(j)π(i)cicj −

1

2
γij

(
cj
ci

+
ci
cj

)}
A†

jAi

√
σ

!
= 0 , (94)

interpreted as a constraint on the dissipative part of the dynamics γij . Hence, if the Hamiltonian is
modified according to (92), its effect can, in principle, be compensated for by adjusting either γij or
γπ(j)π(i). Compensating for the change using the γπ(j)π(i) coefficients, we arrive at

δγπ(βn)π(αn) =
i

cαncβn

(
cβn
cαn

− cαn
cβn

)
δhαβ(n) , (95)

for the stationarity of σ to be maintained, where δhαβ(n) corresponds to the change in hij induced by (92).
Note that the indices i and j in (94) run over all jump operators, whereas α, β ∈ {1, 2}, and n capture
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the jump operators that are “perturbed” according to Eq. (93). The nonzero matrix elements, all of which
are off diagonal, are

δγπ(1n)π(2n) = δγ∗π(2n)π(1n) =
i

2
gc1n

(
c1n − c−1

1n

)
≡ i

2
snΛn , (96)

where Λn/2 equals the modulus of (96), and sn contains the phase, s2n = 1. While the modification (95)
will preserve stationarity of σ, it must be the case that L remains a valid Lindbladian, i.e., the matrix
γij must remain both Hermitian and positive semidefinite. Hermiticity is inherited from δhαβ(n) in (95),
while positivity can be ensured by additionally modifying the diagonal elements γπ(αn)π(αn) in such a way
as to maintain protection of σ. Note that the diagonal terms have not already been modified by (95),
since σxαβ is purely off diagonal. Taking

δγπ(1n)π(1n) = δγπ(2n)π(2n) =
1

2
c1n|g(c1n − c−1

1n )| =
1

2
Λn , (97)

we observe that (i) positivity of γij is enforced, and (ii) the coefficients automatically satisfy c21−nδγπ(1n)π(1n) =
δγ(1n)(1n), which implies that the modification of the diagonal elements will not affect the stationarity of
σ. Hence, the corrective part of L may be written

L(ρ) ⊃
∑
n

Λn

(
LnρL

†
n − 1

2
{L†

nLn, ρ}
)
, (98)

where we defined the diagonal jump operators Ln = 1√
2
(B†

1n − isnB
†
2n) = 1√

2
(P − isn1)ΠP (n) =

e−iπsnP/4PΠP (n). Utilizing the interpretation of (98) from Sec. 4.3, we find that the following pro-
tocol will correct for the presence of a Pauli string P in the Hamiltonian. Let n⋆ be the measurement
outcomes for which Λn is maximized. In time interval δt

1. with probability δtΛn⋆ measure the stabilizers Sa that anticommute with the perturbation P ,

2. if the system was measured during the time interval, apply unitary feedback Un = 1√
2
(P − isn1)

with probability Λn/Λn⋆ .

If the stabilizers that anticommute with P are measured at a rate Λ̃ that exceeds Λn⋆ , the probability of
applying unitary feedback must correspondingly be reduced to Λn/Λ̃ in order to protect σ. We emphasize
that the corrective procedure described above is sufficient to remove Hamiltonian perturbations of the
form (92), but it is not unique. For instance, making the diagonal entries unequal in (97) (while maintaining
positivity of γ) can give rise to a different unitary feedback operator of the form Un ∝ (P − iαsn1) for
α ∈ R. This freedom may permit improved thresholds when we discuss measurement errors in Sec. 4.4.5.

The minimal dynamics we have described herein is not T-even. While it is possible to write down local
dynamics that is T-even, the construction is not particularly illuminating, so we have chosen to omit it.

4.4.2. Incoherent Pauli errors

Consider now the case where there is an erroneous term in the dissipative part of the Lindbladian. Such
terms may arise when considering bit-flip or phase-flip errors in quantum error-correcting codes. Specifically,
we take the incoherent Pauli error to be of the form

L(ρ) → L(ρ) + g (PρP − ρ) , (99)

for some Pauli string P that does not commute with all the stabilizers Sa defining the steady state, and for
some g > 0. That is, at some rate, the system is subjected to “P errors,” corresponding to multiplication
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of the state by the operator P . To correct for such errors, we again decompose the Pauli string P into
eigenoperators of S by resolving the identity, P =

∑
n PΠP (n) =

∑
nAn:

g (PρP − ρ) = g
∑
m,n

(
AmρA

†
n − 1

2
{A†

nAm, ρ}
)
, (100)

where An = PΠP (n) (note that we have dropped the ‘1’ label with respect to Sec. 4.4.1 for simplicity of

notation. Note that, since A†
mAn = δmnΠP (n), only the diagonal terms in (100) contribute to stationarity

and need to be compensated for. The dissipative part of L can be used to compensate for the diagonal
terms by taking

δγnn = gc2n . (101)

Since δγπ(n)π(n) = δγ−n−n = gc−2
n , we obtain (g+ gc−2

n )c2n − (g+ gc2n) = 0 for the diagonal contribution to
(94), as required. Hence, P errors may be corrected using the following protocol. Let n⋆ be the set of
measurement outcomes for which c2n is maximal. Then, in time interval δt,

1. with probability δtgc2n⋆
, measure the stabilizers that satisfy {Sa, P} = 0,

2. if the system was measured, apply unitary feedback P with probability (cn/cn⋆)
2.

Again, one can trade off the rate at which the anticommuting stabilizers are measured with the probability
of unitary feedback P begin applied. While this procedure appears similar in spirit to error-mitigation
techniques such as probabilistic error cancellation (PCE) [95], we emphasize that the correction protocol
genuinely (re-)steers the system into the stationary state σ with no classical post-processing of the data,
as opposed to reproducing its correlations on average once the results have been reweighted according to
some quasiprobability distribution.

This scheme is extremely similar to the standard quantum error correcting scheme involving measurment
and feedback: see Sec. 4.5.

Note that (101) is a particularly simple choice, but it is not the only way to correct for the error whilst
maintaining stationarity. More precisely, any δγ that satisfies the stationarity condition

(g + δγπ(n)π(n))c
−1
π(n)

!
= (g + δγnn)c

−1
n (102)

will suffice. Sending n → π(n) reveals that this set of equations can be highly underdetermined. Another
particularly convenient solution is to set δγnn = 0 for all n such that cn ≤ 1. Then, for all remaining n,

δγnn = g(c2n − 1) for cn > 1 . (103)

This redundancy is analogous to the different update rules that satisfy detailed balance in Markov-chain
Monte Carlo, such as Metropolis-Hastings, Glauber, and heatbath dynamics.

4.4.3. Incoherent non-Pauli errors

Finally, we consider the most general class of incoherent errors, namely those in which the error in (99) is
generalized from a single Pauli string P to some generic linear combination of Pauli strings, P →∑

q aqPq,
with complex coefficients aq. As before, these Pauli strings can always be written in terms of the
eigenoperators Ai by decomposing the identity as 1 =

∑
nΠ(n), i.e., we can write Pq =

∑
n PqΠ(n) ≡∑

nAqn. Note that the various Pauli strings may commute with different numbers of stabilizers; we take
n to be the measurement outcomes for the union of all stabilizers that anticommute with {Ps}. The
perturbation to L can then be written

L(ρ) → L(ρ) + g
∑
qr,mn

aqār

(
AqmρA

†
rn − 1

2

{
A†

rnAqm, ρ
})

. (104)
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The effects of the diagonal contributions (q = r) can be removed using the results of the previous subsection
using only stabilizer measurements and unitary feedback. Here, we remove the effects of the off-diagonal
terms – when possible – by modifying the Hamiltonian. Specifically, if the eigenvalues crn and cqm are
nondegenerate, we are able to modify the Hamiltonian according to

δhqm,rn = ig

[
1

2
aqār

(
c2rn + c2qm
c2rn − c2qm

)
− arāq

c2qmc
2
rn

c2rn − c2qm

]
. (105)

The term in the square brackets is anti-Hermitian, leading to Hermiticity of the matrix δh. The case of
degenerate eigenvalues will be dealt with shortly. Recall that the Hamiltonian defined by the matrix hij is

H =
∑

ij hijA
†
jAi , and that the operators A†

jAi are not linearly independent from the operators Ai, which

form a complete basis. Indeed, we have A†
rnAqm = Π(n)PrPqΠ(m), which is only nonzero for measurement

outcomes that satisfy φr(n) = φq(m), where the function φq flips the sign of measurement outcomes of
stabilizers that anticommute with Pq, i.e., PqΠ(n)Pq = Π(φq(n)). For such m, n, the jump opearators

satisfy A†
rnAqm = PrPqΠ(m), which is just another jump operator that diagonalizes S. Furthermore, since

Pq and Pr either commute or anticommute, the operator A†
qnArm also contributes to the coefficient for

the jump operator PrPqΠ(m) in the Hamiltonian H.
Next, consider what happens if the two (or more) jump operators have identical eigenvalues. In this

case, the Hamiltonian cannot be used to compensate for such terms, since the contribution from hij
is projected out in the stationarity condition (94). Hence, we must instead modify γij to mitigate the
effects of these terms. Consider the case in which both Pq and Pr anticommute with the same set of
stabilizers. Consequently, φq(n) = φr(n) for all n, and therefore only measurement outcomes satisfying
m = n contribute nontrivially to the stationarity condition. Restricting to measurements on the stabilizers
that anticommute with {Pq} belonging to the degenerate block, stationarity requires that

γrq−n,−nc
2
n − γqrn,n ±

[
γqr−n,−nc

2
n − γrqn,n

]
= 0 , (106)

for all q and r belonging to the degenerate block. The ± sign follows from whether Pq and Pr commute
(+) or anticommute (−). It will be most convenient to choose γ such that the two terms (i.e., inside and
outside of the square brackets) both vanish separately. This occurs if we modify γ → γ + δγ such that

δγqrn,n = āqargc
2
n . (107)

The diagonal elements are clearly positive, and Eq. (107) generically produces a positive semidefinite
matrix. Furthermore, note that the correction to the diagonal elements matches the correction (101)
obtained previously. Note that (106) is highly underdetermined and, hence, we emphasize that (107)
is merely a particularly simple choice for the correction. Since the correction δγ (107) factorizes, we
immediately identify that the additional jump operators required to correct the erroneous terms in Eq. (104)
are Ln ∝∑q āqAqn. This correction can be implemented microscopically using the interpretation given in
Sec. 4.3.2.

Finally, we consider the most challenging case to correct: when two (or more) of the constituent jump
operators have degenerate eigenvalues, but anticommute with different stabilizers. Specifically, consider two
jump operators Aqn and Arn that anticommute with different stabilizers; the two sets could be completely
disjoint, or have some (but not full) overlap. While only m, n satisfying φq(n) = φr(n) contribute to
stationarity [see the discussion below (105)], we find it more convenient to satisfy the equations

γrqφr(n)φq(m)cqmcrn − γqrmn
!
= 0 (108)

for all qm and rn satisfying the degeneracy condition cqm = crn. These equations can easily be satisfied
by modifying γqrmn according to

δγqrmn = gāqarcqmcrn , ∀ (qm), (rn) s.t. cqm = crn . (109)
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Now consider all (qm), (rn) such that cqm = crn = c for some c. Also denote the set of jump operator
indices qm that contribute to this degenerate block by qm ∈ c. Hence, for each degenerate block, we
have the diagonal jump operator Lc =

∑
qm∈c āqAqm, which appears in the Lindbladian with the rate gc2.

Essentially, the condition cqm = crn breaks up the jump operators Aqm into equivalence classes where
qm ∼ rn if the eigenvalues satisfy cqm = crn. The jump operators that we add to restore stationarity then
correspond to a linear combination of all jump operators in an equivalence class. The interpretation of
these jump operators is analogous to the simpler case of degeneracy considered above: For each degenerate
block, the jump operator Lc can be decomposed using an SVD. This provides us with a Kraus operator
for each degenerate block, and a generalized measurement in which the system is coupled to an ancillary
degree of freedom that is subsequently measured can correspondingly be constructed.

4.4.4. “Rydberg” errors

Given the abstract nature of the correction procedure for general “degenerate” errors, we provide here an
explicit example for “Rydberg errors.” This example is motivated by the prospect of neutral-atom-based
quantum computation [96–99]; in such a platform, a two-qubit gate arises from a Rydberg blockade
whereby two nearby neutral atoms interact via a Hamiltonian of the form

Hint,12 = V0
(1−X1)(1−X2)

4
, (110)

where V0 is some constant. The atoms are moved by trapping them in optical tweezer arrays, with the
light beams readily adjusted by moving mirrors. To apply the correct two-qubit gate, therefore, one needs
to bring the atoms together for a specific length of time, and any uncertainty in the time in which the
atoms are nearby causes a correlated one- and two-qubit error. Averaging over this uncertainty, leads to∫

dθ w(θ)e−iθHρeiθH = (1− p)ρ+ pLRρL
†
R , (111)

where w(θ) = w(−θ) is the probability density function for the random variable θ, the jump operator
LR = 1

2(1+X1+X2−X1X2) is just the CZ gate written in the X basis, and p = ⟨sin2(2θ)⟩w(θ). If p = γδt,
then we obtain Lindbladian time evolution with

L(ρ) ⊃ γ

[
LRρL

†
R − 1

2
{L†

RLR, ρ}
]
, (112)

Suppose, for concreteness, that we wish to stabilize the simple paramagnetic stationary state with
Φ = −µ∑i Zi, and let {Pq} = {1, X1, X2, X1X2} for q = 0, . . . , 3 label the Pauli strings that contribute
to the jump operator LR. The operator basis Aqm is then Aqm = PqΠ(m), where m = {m1,m2} is the set
of measurement outcomes for the operators Z1 and Z2. The operators Aqm exhibit degeneracy of their
eigenvalues for certain measurement outcomes, which complicates the correction procedure and means
that we must consider the most general case presented in Sec. 4.4.3. Specifically, the eigenvalues satisfy

c0m = c3n for n1 + n2 = 0 , (113)

c1m = c2n for m1 − n2 = 0 . (114)

The diagonal jump operators that we need to add to L in order to correct the error in (112) are
1
2 [1 −X1X2

∑
n1+n2=0Π(n)] corresponding to the c = 1 block, and 1

2 [X1Π(n1 = ±1) +X2Π(n2 = ±1)]
corresponding to the c = e∓µ block. The nondegenerate diagonal elements are corrected for using simple
projective measurements and feedback as described in Sec. 4.4.2. The nondegenerate off-diagonal terms
are compensated for using a Hamiltonian correction

δhqm,rn =
i

2

(
c2rn + c2qm − 2c2qmc

2
rn

c2rn − c2qm

)
, (115)
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which multiplies the operator A†
rnAqm. Since the operators Pq for q = 1, 2, 3 commute with P0, the

correction terms δh0m,1n = δh0m,2n = δh0m,3n = 0, as well as their Hermitian conjugates, may be taken
to be zero. The other (nondegenerate) matrix elements, however, do produce a nonzero contribution.

4.4.5. Measurement errors

When using measurements and feedback to correct errors, we can also account for the possibility of
“readout errors” in the measurement itself – i.e., that the eigenvalue recorded by the apparatus differs
from the true measurement outcome. It turns out, such errors are correctable; one need only modify the
projection operators:

ΠP (n) ρΠP (n) →
∑
n′

p(n′|n)ΠP (n
′) ρΠP (n

′), (116)

where p(n′|n) is the probability of getting states in subspace n′ when we want to project onto the n
subspace.

When correcting incoherent Pauli errors, if we evolve under LP (n)(ρ) ≡ PΠP (n) ρΠP (n)P−1
2{ΠP (n), ρ},

we end up getting
∑

n′ p(n′|n)LP (n′). From (94), we know that the dynamics LP (n) + c2nLP (−n) can keep
σ stationary . From the perspective of stationarity, we can say LP (n) and c

2
nLP (−n) effectively cancel each

other out. Similarly, for Hamiltonian errors we find that applying Un = 1√
2
(P − isn1) after the projection

ΠP (n) can cancel out the effect of applying Un after the projection ΠP (−n). Therefore, to implement
the dynamics generated by Eq. (98) or (101), as long as the probability of measurement readout errors is
below a certain threshold, one simply modifies the rates of the measurements and feedback such that with
the measurement errors and the cancellation of some part of the errors, the resulting dynamics can be the
same as in Eqs. (98) or (101).

As a simple example, consider a pair of qubits where Φ = −µZ1Z2, and suppose that the measurement
of a singular stabilizer Z1Z2 returns the wrong outcome with probability q. We then have that p(+|+) =
p(−|−) = 1− q and p(+|−) = p(−|+) = q, where n = ±1 labels the two outcomes. Now if we try to add
the following dynamics by measurement and feedback,

L(ρ) → L(ρ) +X1
1

2
(1− Z1Z2) ρ

1

2
(1− Z1Z2)X1 −

1

2

{
1

2
(1− Z1Z2), ρ

}
, (117)

we end up getting

L(ρ) → L(ρ) + p(−|−)

[
X1

1

2
(1− Z1Z2) ρ

1

2
(1− Z1Z2)X1 −

1

2

{
1

2
(1− Z1Z2), ρ

}]
+ p(+|−)

[
X1

1

2
(1+ Z1Z2) ρ

1

2
(1+ Z1Z2)X1 −

1

2

{
1

2
(1+ Z1Z2), ρ

}]
. (118)

If we effectively want to reproduce Eq. (117), we need q/(1 − q) < e−2µ, as we now explain. From the
perspective of the stationary state, we know the two terms in Eq. (118) could cancel out. If p(−|−) >
e2µ p(+|−), after the cancelation, we effectively only get the first term with coefficient p(−|−)− e2µ p(+|−).
If p(−|−) < e2µ p(+|−), we get the second term with coefficient p(+|−)− e−2µ p(−|−). Therefore, if we
want Eq. (117), we need p(−|−) > e2µ p(+|−), which means q/(1 − q) < e−2µ. Similar analysis can be
applied to more complicated systems.

4.5 Application to error correction

The formalism above has a natural application to the theory of quantum error correction. In this paper, we
will discuss this application in rather abstract terms, and will discuss specific applications in other papers.

The most common kind of quantum error correcting code is a Calderbank-Shor-Steane (CSS) code
[31, 32]. In such a code, the physical Hilbert space has n qubits, and stores k logical qubits. More precisely,
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we define k logical X operators XL,1, . . . , XL,k and k logical Z operators ZL,1, . . . , ZL,k, such that each
XL,i is a product of physical X Paulis, and each ZL,i is a product of physical Z Paulis. These logical
operators obey

XL,iZL,j = (1− 2δi,j)ZL,j XL,i . (119)

The products of arbitrary logical Paulis generate a group SU(2k), corresponding to logical gates on the
code.

If, by some miracle of nature, our open dynamics has a strong SU(2k) symmetry, then it perfectly
protects a logical qubit stored in the system.

The theory of error correction has been developed to try and protect information in systems where such
a strong symmetry does not exist. Indeed, we will use the remaining n− k “effective qubits” in the system
to detect errors as follows: pick a set of n− k commuting Pauli strings {Sa}, which are either products of
physical X or Z Paulis. These are called the stabilizers of the code. We choose these stabilizers so that

[Sa, XL,i] = [Sa, ZL,i] = 0 , (120)

while ideally, single qubit Paulis all anticommute with at least one Sa. Quantum error correction then
typically proceeds by measuring stabilizers Sa, attempting to locate the physical errors that occurred
based on the measurement outcomes, and applying the error a second time to undo it. Note that during
this measurement process, the wavefunction collapse effectively converts generic errors into either X or Z
type errors, which we attempt to correct.

The crudest possible kind of quantum “error correcting protocol” corresponds to a classical “Gibbs
sampler.” We desire to drive the system towards a steady state

Φ = −
∑
a

µaSa, (121)

precisely of the form studied in this paper. Using the protocol of Sec. 4.4.2 corresponds to measuring
syndromes and introducing local errors in such a way as to drive the system towards the steady state e−Φ.
Such a protocol is rather similar in spirit to the typical error correction scheme, which also proceeds by
measuring stabilizers; however, the vast majority of error correction schemes studied in the literature then
rely on “active” decoding, where global information about the measurement outcomes is used to infer the
locations of errors. In contrast, the scheme based on Sec. 4.4.2 will only apply correcting feedback on the
system based on local measurement outcomes, and thus represents a passive “decoding” scheme.

The passive decoder obtained in our framework will drive the system to the steady state e−Φ; however,
for many of the simplest error correcting codes such as the surface code [10, 11], such a steady state is
not useful. The reason is that logical errors can easily proliferate in this thermal ensemble, somewhat
analogously to how a domain wall can propagate easily in the one-dimensional Ising model (thus preventing
any finite temperature phase transition to an ordered state). What is instead often desired is a thermal
phase transition where, upon making the chemical potentials {µa} large enough, the steady state e−Φ

condenses onto a small fraction of Hilbert space (with overwhelming probability in the thermodynamic
limit, the system is found “close” to a logical state, and any residual errors are easily decoded). Such a
phase transition would be to a topologically ordered phase: the simplest known example corresponds to
the four-dimensional toric code [100, 101].

There are then two natural ways to use the framework described above to engineer passive decoders
that actually protect against information. (1 ) We can choose Φ to be a more complicated sum over
products of stabilizers, such that Φ exhibits a finite temperature phase transition. (2 ) More directly, we
observe that the crucial property of the phase transition is not, per se, the existence of a thermodynamic
ordered phase itself, but rather that the mixing time in which a logical qubit can be corrupted is long. We
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can instead therefore aim to directly build open quantum dynamics with slow mixing times. Ordinarily,
this proceeds by also looking for phase transitions, but the two phenomena can be distinct [102].

Lastly, a crucial aspect of quantum error correction in experiments is the imperfections in the
measurement and feedback used to detect and correct errors. We already illustrated how to incorporate
imperfect stabilizer measurement in Sec. 4.4.5. Again, the simplest surface code is quite vulnerable to such
measurement errors, and a “spacetime history” of stabilizer measurement outcomes is needed to accurately
detect and correct errors [11]. There is, therefore, significant interest in models that can achieve single-shot
error correction, where measuring stabilizers once is sufficient to accurately correct for any errors [103].
A passive decoder with a slow mixing time is even more desirable than single-shot error correction; not
only will it accurately protect against all kinds of errors, but it also is amenable to implementation via
“measurement-free” quantum error correction [104], as discussed in Ref. 102.

Quantum error correction and the repetition code5

The manipulations up to this point have all been rather formal. We now present an explicit illustration of
(i) how to construct nontrivial dynamics that protect a particular stationary state σ in the presence of both
unitary dynamics and measurement and feedback, and (ii) how to correct for errors – both Hamiltonian
errors and incoherent errors – that occur at a known rate in the familiar context of the repetition code.

Specifically, we consider a system composed of spin-1/2 degrees of freedom arranged on a square lattice
in two spatial dimensions. Suppose that we wish to protect the steady state σ = e−Φ where Φ takes the
form of an Ising interactions between neighboring vertices of the square lattice

Φ = −µ
∑
⟨x,y⟩

ZxZy , (122)

where the sum runs over neighboring sites x and y. Note that µ thus plays the role of an inverse temperature
for the discussion that follows. Using the procedure outlined in Sec. 4.2, we are able to find a convenient
basis for jump operators. This basis corresponds to the eigensolutions of the map S (49), using which we
can construct a family of dynamics that protects σ defined by (122). The most local possible nontrivial
choices of these jump operators can be found by “dressing” the single-site operator Xx. Specifically, from
Sec. 4.2, we deduce that jump operators take the form of conditional spin flips:

Ax(n) = XxΠx(n) = Xx

∏
y:⟨xy⟩

1

2
(1 + nxyZxZy) , (123)

where the product is over the edges emanating from vertex x, since only the stabilizers on edges touching
x anticommute with Xx. nxy = ±1 corresponds to the tentative measurement outcomes that would occur
if ZxZy were measured – namely, (123) corresponds to an operator that applies Xx after projecting onto
certain stabilizer eigenvalues. The operator (123) is an eigenvector of S with eigenvalue

cx(n) = exp

−µ ∑
y:⟨xy⟩

nxy

 = exp [−2µ (2− |n|)] = exp

(
−1

2
∆Φx

)
, (124)

where we defined |n| as the number of −1 in the stabilizer eigenvalues n and ∆Φx is the change in
Φ (122) induced by flipping the spin on site x. If |n| = 2, then flipping the spin on site x does not change
the number of antiferromagnetic bonds (i.e., leaving Φ unchanged). This is reflected in the fact that
cx = 1 for such configurations of {n}; diagonal terms composed of such operators, which locally rearrange
domain wall configurations when acting on computational basis states, can be added freely to L without
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affecting stationarity of σ. On the other hand, if |n| = 0 or 4 (all bonds are either ferromagnetic or
antiferromagnetic), then ci will lead to an exponential suppression or enhancement of the rate at which such
processes occur for µ≫ 1. Configurations with an unequal mixture of ferromagnetic and antiferromagnetic
bonds will also be suppressed or enhanced, but to a lesser degree. Considering jump operators that flip
spins belonging to some connected cluster of sites on the lattice leads to similar conclusions: only the
edges ⟨xy⟩ at the boundary of the cluster are (1 ) projected out in the generalization of (123), and (2 )
contribute to the eigenvalues via nxy, since Φ is locally unchanged in the interior of the cluster.

5.1 Correcting for errors

5.1.1. Incoherent Pauli errors

To gain some intuition, we now outline the simplest class of (T-even) dynamics compatible with stationary
of σ that can be deduced from the framework presented in Sec. 3.2. Recall that all T-even dynamics
derive from a Hermitian matrix m, which gives rise to γxy = mxy(cx + cy). The simplest dynamics that
protects σ follows from taking mxy to be a real, diagonal matrix with nonnegative entries. In this case,
the Hamiltonian term vanishes in L, and the dissipative part of L has a simple interpretation. Indexing
sites with x and measurement outcomes for the stabilizers along edges emanating from x by n

L =
∑
x,n

γx(n)D [Ax(n)] , (125)

where we introduced the “dissipator” D via

D [A] (ρ) ≡ AρA† − 1

2
{A†A, ρ} , (126)

we observe that at position x, spin flips conditioned on stabilizer eigenvalues n occur at rate γx(n).
While there is much freedom in how the diagonal matrix elements mx(n) are chosen, the constraint
mπ(x)π(y) = m∗

xy – required to ensure Hermiticity of γxy – reduces to mx(n) = mx(−n). This constraint
guarantees that a conditional spin flip and the reversed process occur at the rates appropriate to stabilize σ:
γx(n)/cx(n) = γx(−n)/cx(−n). In the basis of stabilizer eigenstates, the dynamics (125) can be mapped
to classical dynamics and the constraints of the ratio between γx(n) and γx(−n) is equivalent to the
classical detailed balance condition (9).

One of the simplest possible solutions to the above conditions on γxy is given by

γx(n) = γ (|n|) =


γ4 e

∓4µ if 2− |n| = ±2,

γ2 e
∓2µ if 2− |n| = ±1,

0 otherwise,

(127)

where γ2 and γ4 are nonnegative constants. Such dynamics corresponds to a canonical (continuous-time)
Gibbs sampler, along the lines of, e.g., the classic Metropolis algorithm [94].

A slightly more interesting scenario arises if we consider that the system is instead subject to incoherent
X errors, which occur at some rate g0. At the level of the Lindbladian description, L in Eq. (125) is
modified to

L(ρ) → L(ρ) + g0
∑
x

(XxρXx − ρ) . (128)

If this perturbation is not corrected, the stationarity of σ is broken. To maintain the stationarity of σ, we
can perform measurements and feedback designed to perfectly cancel the effects of the perturbation (128).
In other words, we can add some dynamics to (128) by measurements and feedback so that the dynamics
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Figure 1: Schematic illustration of the measurement and feedback protocol for correcting
incoherent errors in the Lindbladian that take the form of a Pauli X operator. The desired
steady state is σ = e−Φ, where Φ corresponds to a 2D classical Ising model. In the presence
of stray transverse fields, this state is no longer the steady state of the Lindbladian, L[σ] ̸= 0.
By performing measurements of the stabilizers and probabilistic unitary feedback, the desired
steady state σ can be restabilized. The measurements occur at a rate that is proportional to the
strength of the stray fields.

become (125) with coefficients given by (127). Using the results of Sec. 4.4.2, we can perform the following
protocol. For each site x, in a time step δt, measure the stabilizers on edges connecting to site x with
probability g0

(
e8µ − 1

)
δt. After we get the measurement result nxy for each neighboring site y, apply

Xx with probability Λn, where Λn||n|=3 =
(
e4µ − 1

)
/
(
e8µ − 1

)
, Λn||n|=4 = 1 and all other Λn = 0. The

resulting dynamics is

L → L+ g0
∑
x

D [Xx] +
∑
x,n

g0
(
e8µ − 1

)
(ΛnD [XxΠx(n)] + (1− Λn)D [Πx(n)]) . (129)

Recall that projector Πx(n) is defined in (123). This amounts to measurements that are Poisson distributed
in time, with a probability of applying feedback that depends on the outcomes of the measurements. The
method is summarized in Table 1 and Figure 1. Mathematically, we have simply adjusted the choice of
γ2,4 in the Gibbs sampler (127) to be compatible with the presence of the unwanted error (128). This
choice is not unique; here we have made the choice that leads to the smallest possible γ2,4.

If we think of the repetition code as storing a logical qubit, notice that a single Z is a logical operator;
therefore, in the presence of single-Z errors, no quantum error correcting code exists. After all, in our
formalism, adding Z errors does not modify the steady state at all! We take this moment to remind the
reader that protecting a steady state is not equivalent to protecting quantum information, as discussed in
Sec. 4.5. To build a quantum error correcting code using this framework, one must also look for dynamics
that “slowly mixes” between different sectors of logical operators.

5.1.2. Hamiltonian errors

If the Hamiltonian of the system is subjected to an X field

H → H − h0
∑
x

Xx , (130)

an analogous sequence of measurements and unitary feedback can be applied to maintain stationarity of σ.
We assume that h0 > 0. According to Sec. 4.4.1, we can easily get the modifications we need to make
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Measurement result
incoherent Pauli errors Hamiltonian errors

Probability Feedback Probability Feedback

|n| = 0 0 N/A e−8µ 1√
2
(iXx − 1)

|n| = 1 0 N/A (1− e−4µ)/(e8µ − 1) 1√
2
(iXx − 1)

|n| = 2 0 N/A 0 N/A

|n| = 3 (e4µ − 1)/(e8µ − 1) Xx (e4µ − 1)/(e8µ − 1) 1√
2
(iXx + 1)

|n| = 4 1 Xx 1 1√
2
(iXx + 1)

Table 1: Summary of protocols for correcting incoherent Pauli errors and Hamiltonian errors,
discussed in Secs. 5.1.1 and 5.1.2, respectively: for each site x, in a time step δt, measure the 4
stabilizers that touch x with probability g0

(
e8µ − 1

)
δt or h0

(
e8µ − 1

)
δt. Next, apply feedback

based on the measurement results as described in the table. The probability of applying feedback
and the operators that need to be applied only depends on the number of −1 in the measurement
results of the stabilizers |n|.

σ = e−Φ stationary:

L(ρ) → L(ρ) + ih0
∑
x

[Xx, ρ] + h0
(
e8µ − 1

) ∑
x,|n|̸=2

(ΛnD [Ux(n)Πx(n)] (ρ) + (1− Λn)D [Πx(n)] (ρ)) ,

(131)

where

Λn =
∣∣∣1− e−4µ(2−|n|)

∣∣∣ / (e8µ − 1
)
, (132a)

Ux(n) =
1√
2
(Xx − sgn (2− |n|) i1) . (132b)

The dissipative part can be generated by measurements and feedback: in time interval δt, measure the
stabilizers with probability h0

(
e8µ − 1

)
δt, then apply Ux(n) with probability Λn based on the measurement

result n. The protocol is also summarized in Table 1.
One desirable property of our construction is that it, at least naively, gives rise to an experimentally

detectable measurement-induced phase transition. To understand why, suppose that we study the dynamics
on a square lattice at µ = µc, where µc is the (inverse) critical temperature of the 2D Ising model. At
h = h0 the dynamics sample from the Ising critical point, and thus result in critical fluctuations; at h = ∞
we do not detect long-range order. At h = 0, where we only apply measurement and feedback, notice
that the gate Ux is Clifford. One picture for the dynamics comes from considering an initial product
state in the Z basis; the ensuing time evolution alternates between measurements of syndromes of the
form ZxZy and the unitary gates Ux. However, because the syndromes are measured between pairs of
qubits before any Us are applied, it is never possible for the set of qubits that are not in Z eigenstates
to be adjacent. Therefore, the system remains in a product state, albeit not necessarily in the Z-basis.
As a consequence, all ZZ correlation functions are effectively modeled by approximating that the state
stays in a product state for all times, but after syndromes are measured there is only a 50% chance of
modifying the state (via Pauli X) on that site. This adjustment does not change expectation values
of the (products of) Zs. Hence ⟨ZxZy⟩ must be identical at late times if h = 0 and h = h0. For other
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Figure 2: We numerically simulate dynamics analogous to (131) for 1D systems of size L =
11 sites and µ = 1

4 log 2 and change the Hamiltonian error to h
∑

xXx. The change of the
correlation function ⟨ZxZx+r⟩ for different h/h0 with respect to its value at h = h0, denoted
⟨ZxZx+r⟩0. The absolute values of the correlator ⟨ZxZx+r⟩0 for r = 1, 2, 3, 4 are, respectively,
0.172, 0.030, 0.005, 0.001.

values of h, the most plausible scenario is therefore one in which there is criticality or long-range order for
h ∈ [0, h0], and not outside of this domain. While we cannot exactly simulate this open system in 2D,
direct application of time-evolution superoperator eLt on very small 1D systems suggests that this picture
is correct: see Fig. 2. We therefore conjecture that our construction leads to an experimentally observable
measurement-induced phase transition at h = h0, where the experimentalist can simply measure the
criticality in ⟨ZZ⟩ correlators to detect the transition. This statement holds assuming that the feedback
rate is always the same; one can also simply tune through the thermal phase transition in the steady state,
but in this situation the relative rates of error correction depending on the number of flipped syndromes
change in a “complicated way,” such that the phase diagram is not a simple function of h/h0.

Lastly, we remark that, although the feedback scheme in this problem is Clifford, and (at discrete time
steps) the continuous Hamiltonian evolution also generates Clifford gates, it does not appear to be the
case that classical simulations of a circuit approximation to our model could accurately reproduce the
dynamics. Indeed, note that already when h = 0, the Clifford feedback on its own prepares a critical state.
Introducing any additional X-type errors on top of this dynamics should lead to a short-range-correlated
phase in classical simulations, and yet we see that the critical state is also robust at h = h0. The reason
appears to be that the relative phases in the Clifford error correction tend to cancel the phases accumulated
via continuous time evolution under the transverse field; this is precisely the kind of quantum effect that
cannot be captured via Clifford simulation.

5.1.3. Measurement errors

In the previous example, where we corrected for Hamiltonian errors that took the form of a transverse
field, we assumed that the syndromes can be measured perfectly. If the syndrome measurements are
imperfect (intuitively because the experimenter reads out an incorrect syndrome measurement outcome,
with a known error rate for such measurements), it is still possible to exactly identify the location of a
measurement-induced phase transition by specifying Φ to be the critical Ising model. Such a construction
can be thought of as a toy model for fault-tolerant passive error correction using memoryless local decoding.

Following Sec. 4.4.5, we can account for the imperfect syndrome measurements by modifying the
effective Lindblad operator to be∑

∑
n̸=0

ΛnD [Ux(n)Πx(n)] →
∑

n′,
∑

n̸=0

Λn p(n
′|n)D

[
Ux(n)Πx(n

′)
]

– 35 –



0.1 0.2 0.3 0.4

q

-1

0

1

2

3

 (
|n

|)

(0)
(1)
(3)
(4)

0.1 0.2 0.3 0.4

q

-2

0

2

4

6

8

 (
|n

|)

(0)
(1)
(3)
(4)

(a) (b)

Figure 3: (a) The coefficients Λ(|n|) as functions of measurement error rate q for Hamiltonian
error correction (131) for 2D Ising model. We choose µ = 1

4 log 2. (b) The coefficients Λ (|n|)
as functions of error rate q for incoherent Pauli error correction (129) for 2D Ising model. We
choose γ4 = 2, γ2 = e−2µ and µ = 1

4 log 2.

→
∑

∑
n̸=0

Λ′
nD [Ux(n)Πx(n)] , (133)

where p(n′|n) = q∆n (1 − q)4−∆n, q is the error rate when measuring a single stabilizer and ∆n is the
number of measurement results that differ between n and n′. The second line of (133) comes after the
cancellation of dynamics described in Sec. 4.4.5. In order to keep σ stationary, we need to modify Λn to
make the coefficient Λ′

n match (132a). The modified coefficients Λn, which represent the rate we apply
feedback after measurements in the experiments, can be easily calculated numerically. For example, if we
choose µ = 1

4 log 2, demand that Λn = Λ(|n|), and keep Ux(n) fixed, Λ(|n|) as functions of q is shown in
Fig. 3(a), from which we observe that we need q ≲ 0.3 to be able to fix the errors, otherwise some of the Λ
must be negative to maintain stationarity.

Note that from Fig. 3(a), we have maxn Λn > 1 for nonzero q. Since the interpretation of Λ is
the probability of applying feedback, we can modify (131) by replacing Λn with Λn/maxnΛn and
correspondingly rescale the measurement rate.

Similarly, when we correct incoherent Pauli errors with (129), if we include the measurement errors,
we can follow the same analysis as (133) to modify Λn. If we simply require that Λ′

n to be the same as
(129), we find that Λ (|n| > 2) we need would be the same as Λ (|n| > 2) in Fig. 3(a). It seems that we
again need q ≲ 0.3 to fix the error for µ = 1

4 log 2. However, since we can always add T-even dynamics
(125) without changing the stationary state, it turns out that we can choose some nonzero γ4 and γ2 to
increase the threshold of q. One example is shown in Fig. 3(b), from which we can see that the critical
value of q can be slightly greater than 0.3.

5.2 Biased quantum walks

The error correction scheme for the Hamiltonian errors breaks time-reversal symmetry, as one can explicitly
check. However, it is also of interest to break time-reversal symmetry in more “intuitive ways”: for
example, breaking T but preserving PT, where P is spatial inversion symmetry. A simple motivating
example already at the classical level is the addition of bias to the motion of a collection of particles (whose
number is conserved) in one dimension: in this setting, the classical effective theory for particle density ρ
is modified from ∂tρ = D∂2xρ+ · · · to ∂tρ = ∂x

(
aρ+ bρ2 + · · ·+D∂xρ+ · · ·

)
. Here the coefficients a and

b break T, but preserve PT [13]. To achieve this type of qualitative correction to the long wavelength
dynamics in a quantum setting, we must consider additional T-breaking modifications to the Lindblad
operators of the previous subsection.
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In the discussion that follows, we focus on one-dimensional spin-1/2 chains of length L satisfying periodic
boundary conditions. The stationary state σ = e−Φ with Φ = −µ∑x ZxZx+1. We use configurations
{s1, . . . , sL} to represent eigenstates of σ, where sx ∈ {◦, •}, which correspond to the eigenvalues {+1,−1}
of the stabilizer ZxZx+1, respectively. Each stabilizer configuration corresponds to two spin configurations
related by the Ising symmetry

∏
xXx. For simplicity, we project onto the subspace in which

∏
xXx = +1

and consider dynamics that remains in this subspace. We remark that the only states in this “Hilbert
space” are those where the total number of • is even.

5.2.1. Classical T-odd dynamics

We first consider effectively classical T-odd dynamics that protect our desired steady state. Intuitively, one
of the simplest T-odd classical dynamics is to transform states | · · ·◦• · · · ⟩ → | · · ·•◦ · · · ⟩ in a translationally
invariant way. Such dynamics will produce a biased drift of domain walls, and is exactly analogous to the
classical biased random walk described in the introduction to this subsection. The density matrix σ is still
stationary because for each specific stabilizer configuration {s1, . . . , sL}, the number of ◦• motifs is always
the same as the number of •◦ [81], so the rate of probability outflow from a particular configuration is
always equal to the rate of probability inflow. In Appendix A, we show how to systematically construct all
translational invariant classical T-odd dynamics for 1D systems.

The Lindbladian of such dynamics realized exclusively by measurements and feedback can be

L = γ0
∑
x

D (|•◦x⟩⟨◦•x|) +D (|•◦x⟩⟨•◦x|) +D (|••x⟩⟨••x|)D (|◦◦x⟩⟨◦◦x|) , (134)

where

|•◦x⟩⟨◦•x| =
1

4
Xx (1+ Zx−1Zx) (1− ZxZx+1) , (135a)

|•◦x⟩⟨•◦x| =
1

4
(1− Zx−1Zx) (1+ ZxZx+1) , (135b)

|◦◦x⟩⟨◦◦x| =
1

4
(1+ Zx−1Zx) (1+ ZxZx+1) , (135c)

|••x⟩⟨••x| =
1

4
(1− Zx−1Zx) (1− ZxZx+1) . (135d)

Note that this dynamics does protect quantum coherence between |000⟩ and |111⟩, since the measurements
and feedback only detect and correct relative bit flips between sites. However, because the quantum
dynamics looks strictly classical in the basis of stabilizer eigenstates, we refer to it as classical T-odd
dynamics. We identify any dynamics of stabilizer eigenvalues that cannot be mapped to classical Markov
chains as quantum dynamics.

5.2.2. Quantum T-odd dynamics

Next, we consider quantum T-breaking dynamics that can produce a biased drift of domain walls across
the system in a purely quantum manner; we also show that there is no classical model that captures the
resulting drift of domain walls. For simplicity, we use |αx⟩ to represent states |· · ·α · · ·⟩, where the “motif”
α is the local configuration at position x. The dynamics produced by local jump operators with coefficient

γα
′β′

αβ is represented by |α⟩⟨β| → |α′⟩⟨β′|, where the order of indices of γ is the same as (36) and the index

of position is neglected for now. We say state |α⟩⟨β| and |α′⟩⟨β′| are coupled if both γα
′β′

αβ and γαβα′β′ are
nonzero, which is represented by |α⟩⟨β| ⇌ |α′⟩⟨β′|. The rough picture of the dynamics is that terms of the
form |◦ ◦ •⟩⟨◦ • ◦| → |◦ • ◦⟩⟨• ◦ ◦| can move domain walls to the left, thus producing the biased drift of
domain walls.
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A schematic diagram of the dynamics is shown in Fig. 4: we first couple diagonal states with some
off-diagonal states |◦ ◦•⟩⟨◦•◦| ⇌ |◦ ◦•⟩⟨◦◦•| ⇌ |◦ •◦⟩⟨◦◦•| and |◦ •◦⟩⟨•◦◦| ⇌ |• ◦◦⟩⟨•◦◦| ⇌ |• ◦◦⟩⟨◦•◦|.
We then add the dynamics |◦ ◦ •⟩⟨◦ • ◦| → |◦ • ◦⟩⟨• ◦ ◦| and |◦ • ◦⟩⟨◦ ◦ •| → |• ◦ ◦⟩⟨◦ • ◦| so that the domain
walls are moving to the left. We also need to add some additional jump operators (diagonal terms to
γij) to keep the dynamics completely positive. The result is translationally invariant dynamics, all of
which is moreover T-even with the crucial exception of the superposition drift. The transitions between
the off-diagonal states effectively produce the classical dynamics |◦ ◦ •⟩⟨◦ ◦ •| → |• ◦ ◦⟩⟨• ◦ ◦| in a purely
quantum way.

In order to keep σ stationary, we can use the formalism developed in Appendix A to see that γααββ = γββαα

and γαβαα = γααβα should hold for any α and β. One example is:

LQ(ρ) =
∑
x

LQ
x (ρ) =

∑
x

D [|◦ ◦ •x⟩ (⟨◦ ◦ •x|+ ⟨◦ • ◦x|)] (ρ) +D [(|◦ ◦ •x⟩+ |◦ • ◦x⟩) ⟨◦ ◦ •x|] (ρ)

+D [|• ◦ ◦x⟩ (⟨• ◦ ◦x|+ ⟨◦ • ◦x|)] (ρ) +D [(|• ◦ ◦x⟩+ |◦ • ◦x⟩) ⟨• ◦ ◦x|] (ρ)
+D [|• ◦ ◦x⟩⟨• ◦ ◦x|] (ρ) +D [|◦ ◦ •x⟩⟨◦ ◦ •x|] (ρ)

+
1

2
(|◦ • ◦x⟩⟨◦ ◦ •x| ρ |◦ • ◦x⟩⟨• ◦ ◦x|+ |• ◦ ◦x⟩⟨◦ • ◦x| ρ |◦ ◦ •x⟩⟨◦ • ◦x|) , (136)

where we can express the domain-wall basis states above via

|◦ • ◦x⟩⟨◦ ◦ •x| =
1

8
Xx+2 (1+ ZxZx+1) (1+ Zx+1Zx+2) (1− Zx+2Zx+3) (137a)

|• ◦ ◦x⟩⟨◦ • ◦x| =
1

8
Xx+1 (1+ ZxZx+1) (1− Zx+1Zx+2) (1+ Zx+2Zx+3) (137b)

|◦ ◦ •x⟩⟨◦ ◦ •x| =
1

8
(1+ ZxZx+1) (1+ Zx+1Zx+2) (1− Zx+2Zx+3) (137c)

|• ◦ ◦x⟩⟨• ◦ ◦x| =
1

8
(1− ZxZx+1) (1+ Zx+1Zx+2) (1+ Zx+2Zx+3) . (137d)

Note that in (136), the first two lines produce the couplings between diagonal states and off-diagonal states,
while the last line produces the dynamics |◦ ◦ •⟩⟨◦ • ◦| → |◦ • ◦⟩⟨• ◦ ◦| and |◦ • ◦⟩⟨◦ ◦ •| → |• ◦ ◦⟩⟨◦ • ◦|,
which is the only T-breaking part.

The effects of the quantum biased drift are shown in Fig. 4 (solid blue line): we numerically simulated
this model in small one-dimensional systems with µ = 1

4 log 2, and calculated correlation functions
⟨Sx−1(t)Sx(0)⟩ − ⟨Sx+1(t)Sx(0)⟩ and ⟨Ox−2(t)Ox(0)⟩ − ⟨Ox+2(t)Ox(0)⟩ for the dynamics (136), where

Sx = ZxZx+1 is the stabilizer, Ox = |•◦x⟩⟨◦•x| + |◦•x⟩⟨•◦x| and ⟨A(t)B(0)⟩ ≡ Tr
[
eL

†t(A)Bσ
]
.10 Both

correlation functions are nonzero for the quantum dynamics.
We now argue that the dynamical system (136) is intrinsically quantum: namely, the T-odd part of

this dynamics cannot be mapped to an effective classical dynamics even if we change the basis of the
system.11 We can show, at a minimum, that if such a basis change exists, the basis change is nonlocal.
This is because the T-odd Lindbladian in (136) locally protects σ: dynamics at any position x. Translation
invariance is not needed for stationarity; indeed,

LQ
x (σ) = 0 (138)

10Note that both operators Sx and Ox commute with σ, so subtleties about the precise time-dependent correlation function
of interest are unimportant here.

11Since Φ is proportional to the number of domain walls in the system, it is hugely degenerate; thus, basis changes that
preserve σ do exist.
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(a) (b) (c)

Figure 4: (a) The dynamics of the biased quantum walks in the density matrix: the blue
arrows represent the coupling between diagonal elements with off-diagonal elements; the yellow
arrows represent the T-breaking dynamics between off-diagonal elements. (b) Plot of the
correlation function ⟨Sx−1(t)Sx(0)⟩ − ⟨Sx+1(t)Sx(0)⟩ for biased quantum walks (136) (solid blue
line), where Sx = ZxZx+1 denotes the stabilizer at position x. We plot the same correlation
function for the corresponding classical dynamics (139) (orange line). We also plot the correlation
function for dynamics with more phase damping (140). The correlation functions for quantum
dynamics with α = 2 (dashed blue line) and α = 4 (dotted blue line) are reduced in magnitude
and the classical dynamics (orange line) are not affected. (c) We plot a different correlation
function ⟨Ox−2(t)Ox(0)⟩ − ⟨Ox+2(t)Ox(0)⟩ for the biased quantum walks (136) (blue line) and
the corresponding classical dynamics (139) (orange line), where Ox = |•◦x⟩⟨◦•x| + |◦•x⟩⟨•◦x|.
The function ⟨O(t)O(0)⟩ captures the drift in domain wall superposition. Therefore, it vanishes
identically for the classical dynamics.

for arbitrary position x. For classical dynamics, T-odd terms cannot be added locally in this manner while
preserving stationarity, since T-odd classical dynamics only respect stationarity when they lead to biased
flows around closed cycles in state space. More physically, if domain walls drift to the right only locally in
region R, then they must “pile up” on the right-hand side of region R, in contradiction with the assertion
that the same translation-invariant σ exists for the locally modified chain. Therefore, if there exists a
change of basis that would make the dynamics classical, L cannot be transformed to any local dynamics,
and the classical dynamics would be highly nonlocal.

The difference between quantum and classical dynamics is also reflected in certain correlation functions.
In Fig. 4, we depict the correlation function for classical dynamics (orange line)

Lc(ρ) =
∑
x

D [|• ◦ ◦x⟩⟨◦ ◦ •x|] (ρ) +D [|• • ◦x⟩⟨◦ • •x|] (ρ) , (139)

which also has the effect of moving domain walls to the left. The last term of the classical dynamics
is needed to keep σ stationary. From Fig. 4(b), the drifting for classical dynamics is much stronger
than the quantum dynamics. However, in Fig. 4(c), as a correlation function that captures quantum
effect, the correlation function ⟨Ox−2(t)Ox(0)−Ox+2(t)Ox(0)⟩, which captures the drift in domain wall
superpositions, and hence vanishes identically for the classical dynamics. This constitutes additional
evidence that the dynamics (136) is intrinsically quantum.

We can also demonstrate a quantum Zeno effect [105], in which rapidly increasing the rate of measure-
ment will freeze out the bias in the quantum random walk dynamics. This is an intrinsically quantum
phenomenon, so it will only exist for the quantum dynamics (136). We model a Zeno effect by increasing
the coefficients of terms in the third line of the last equation in (136) by introducing the parameter α,
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leading to

L → L+ α (D [|• ◦ ◦x⟩⟨• ◦ ◦x|] +D [|◦ ◦ •x⟩⟨◦ ◦ •x|]) . (140)

For the quantum dynamics, since the biased motion only comes from the last line of (136), which only
couples off-diagonal terms, the motion of domain walls can be reduced in magnitude by the additional
phase damping caused by (140). As shown in Fig. 4(b), We numerically simulated (140) with α = 2 or 4
and calculated the correlation function ⟨Sx−1(t)Sx(0)⟩ − ⟨Sx+1(t)Sx(0)⟩ for both classical (orange line)
and quantum dynamics (dashed blue line). The correlation function for quantum dynamics decreases when
we increase α, while for classical dynamics, the correlation function remains the same. This is further
evidence that the α-dependent term serves to suppress a fundamentally quantum-mechanical T-odd effect.

Conclusion6

In this paper, we have described a systematic classification of the possible quantum open dynamical
systems that protect a steady state σ = e−Φ. When Φ could be expressed as a sum over commuting
operators, we could further classify all possible few-body Lindbladians that protect σ in a many-body
setting, up to a handful of exceptions related to the classification of classical Markov chains with known
steady state.

At the most mathematical level, our construction provides a significant generalization of the Davies
Lindbladian, which drives a quantum system towards a Gibbs state (Φ = βH). Unlike Davies’ Lindbladian,
our protocols do not require that the system be driven by the same Hamiltonian as the steady state
itself: this enables uniquely quantum mechanical phenomena in which the “drive” is counteracted by
measurement and feedback. It is quite likely that, as in classical systems [42, 43], the non-Davies quantum
Lindbladians discussed in this paper have a larger spectral gap, and thus prepare the desired state more
quickly: indeed, recent work has used this idea [39–41].

At a slightly more practical level, our framework is naturally suited towards the problem of designing
passive error correcting quantum codes; preliminary work along these lines is found in [102]. As we
illustrated at length, our framework can describe the feedback schemes needed to stabilize a target state
in the presence of quite generic errors. It is therefore possible to design targeted error-correcting protocols
that are tuned towards hardware-specific error models and rates, including the highly-biased noise [106]
that characterizes superconducting qubits, among other platforms. Using this framework, it may be
possible to more systematically optimize over the space of possible code modifications to protect against
biased error models, following [107]. Our approach naturally handles coherent noise as well, and may
provide more optimized error correcting protocols than a general-purpose decoder. Such coherent noise is
possible in both transmon qubits [108] as well as neutral atom qubits [109, 110].

At a more physical level, the methods developed in this paper represent a promising route towards
engineering experimentally-detectable measurement-induced phase transitions, by designing particular
feedback schemes that precisely compensate for known Hamiltonian “errors.” We have already presented
one such example in Sec. 5, though we suspect that many more exist. Moreover, the formalism of this work
may help to more systematically classify the possible phases of “active” quantum systems. For example,
Ref. 111 argued that using measurement and feedback, it was possible to spontaneously break a continuous
symmetry in one dimension, albeit with a protocol that was sensitive to noise. Intuitively, their protocol
can be understood in our framework as the β → ∞ limit of dynamics that protects the steady state

Φ ∼ −β
∑
i

Si · Si+1. (141)

Since this Heisenberg model does not have long-range order in one spatial dimension, the conclusions
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of Ref. 111 are consistent with our framework’s expectations, in which adding a small amount of noise
(taking β finite) destabilizes the long-range order.

We should stress, at the same time, that while our methods are quite powerful at preparing desired
quantum states, certain simple models of local classical or quantum dynamics are believed to have quite
complex Φ [14, 112]. Our methods are effectively designed for models with simple Φ. We cannot rule out
the possibility that some quantum dynamical universality classes lie beyond the purview of our methods,
precisely because they admit local Lindbladians with highly nonlocal Φ. It remains an interesting problem
to understand whether such models still admit some reasonable notion of a stable “phase of matter” [113],
as well as to understand whether or not models with nonlocal Φ that do represent novel universality classes
might be describable in our framework using a new set of degrees of freedom.

Lastly, we note that when Φ = βH, a very powerful effective field theory based on a Schwinger-Keldysh
path integral [77–80] has been developed for studying quantum dissipative effective field theories. It
would be fascinating if these methods can be generalized to the nonthermal dynamics described in this
paper. One possible difficulty in achieving this goal will be that in any saddle point limit where such path
integrals can be readily analyzed, nonthermal dynamics may already be largely, if not entirely, captured
by a classical effective field theory developed in [13]. Such classical methods seem unlikely to capture all
of the quantum coherent phenomena described in this work.
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Generating T-odd γab with ca = cbA

Here we show how to generate T-odd dynamics of γab with ca = cb. For a general open quantum system,
one can choose a basis {|a⟩} that diagonalizes the stationary state σ =

∑
a σa |a⟩⟨a|. Using jump operators

Fab = |a⟩⟨b|, the Lindbladian can be written as

L(ρ) =−
∑
ab

ihab [Fab, ρ] +
∑
abcd

γacbd

(
FabρF

†
cd −

1

2

{
F †
cdFab, ρ

})
. (142)

In this language, the constraints imposed by stationarity can be separated into two parts,

⟨a|L[σ]|a⟩ =
∑
c

(σcγ
aa
cc − σaγ

cc
aa) = 0, (143a)

⟨a|L[σ]|b⟩ = −i(σb − σa)hab +
∑
c

[
σcγ

ab
cc − 1

2
(σa + σb)γ

cc
ba

]
= 0, a ̸= b. (143b)

In (143a), the diagonal part of the γ matrix, γaacc represents the transition rate of |c⟩⟨c| → |a⟩⟨a|, which
include all the dynamics between the diagonal part of σ. This part of dynamics can be mapped to
classical Markov chains, so we will refer to them as the classical part of dynamics. The off-diagonal part
of the γ matrix that appears in (143b), γabcc and γccba can be roughly understood as the transition rate of
|c⟩⟨c| → |a⟩⟨b| and |b⟩⟨a| → |c⟩⟨c|, which will be referred to as the quantum part of dynamics. Note that
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the coefficients γabcd , where all the indices are different, are also in the quantum part. These coefficients are
not constrained by the stationarity of σ. The only constraint for them is the positivity of γ.

The constraints of the classical dynamics (143a) seem hard to solve in complete generality. Each
variable γaacc appears in two different equations which cannot be neatly decoupled from the rest. It can
formally be solved by finding all cycles in the state space and attempting to add nonzero transition rates
that cause the system to flow around each cycle in a biased way. However, such biased “random walks”
are directly in the many-body state space, so they do not generically correspond to local Lindbladians.
However, as we will show shortly, we know how to generate 1D translationally invariant local classical
dynamics for systems with σ = e−Φ in the form of Eq. (53) [114].

The quantum part of the constraints is easier: each variable only appears once. For many-body systems,
even with the constraints of locality, we only need to solve a finite number of equations for each variable,
so a complete solution can be found, including when restricting to local dynamics.

In summary, therefore, we will systematically show in this appendix how to classify all 1D translationally
invariant classical T-odd dynamics and all quantum dynamics.

We now explicitly show how to generate these dynamics, starting with a simple example before moving
on to the general case. Consider a 1D spin-1/2 chain with length L and periodic boundary conditions
(PBCs) x+L ∼= x for any site x. We take the stationary state σ ∝ exp (µ

∑
x Zx), and use |s⟩ to represent

a configuration {s1, . . . , sL}, where sx ∈ {−1, 1} is the eigenvalue of the stabilizer Zx. σ = σss′ |s⟩⟨s′| is
diagonal with the basis {|s⟩}, so (as above) the transitions between density matrices |s⟩⟨s| and |s′⟩⟨s′| is
defined to be the classical dynamics. Since we want local dynamics, we only consider q-body spatially local
jump operators, namely transitions that take |s⟩⟨s| to |s′⟩⟨s′| when s and s′ differ on at most q adjacent
sites, e.g. s = s1···x−1 ⊗ αx···x+q−1 ⊗ sx+q···L and s′ = s1···x−1 ⊗ α′

x···x+q−1 ⊗ sx+q···L. In the remainder of
this appendix, we will use “α” to denote the motif (of length ≤ q) sites on which two related microstates
differ. Similar to (55), we choose the jump operators to be

Aβα,x = 11···x−1 ⊗ |β⟩⟨α|x···x+q−1 ⊗ 1x+q···L. (144)

where we remind the reader that α, β denote motifs of q adjacent stabilizer eigenvalues in the local 1D
chain. In this appendix, the αβ notation will be easier to understand than the notation in (55). We define

cβα,x = exp

[
µ

x+q−1∑
y=x

βy − αy

2

]
(145)

for use in what follows. With these jump operators, a general q-local Lindbladian can be written as

L(ρ) =− i [H, ρ] +
∑

αβα′β′,x

γαα
′

ββ′,x

(
|αx⟩⟨βx| ρ |β′x⟩⟨α′x| − 1

2

{
⟨α′x|αx⟩ |β′x⟩⟨βx|, ρ

})
. (146)

We now discuss the “classical part of dynamics”, which was defined to only depend on coefficients
γααββ,x which takes a diagonal density matrix to another one. Strictly speaking, there can also be “quantum”
dynamics if the dots in the kets and bras are (not) the same: namely, the classical dynamics will always
be accompanied by some quantum dynamics because of locality. However, since these quantum dynamics
would not affect the stationarity criterion, we will not discuss them further, and focus on the truly classical
dynamics which is constrained by stationarity.

Let us assume translation invariance, so that γααββ,x = γααββ is independent of the position x. We
will shortly see why this restriction is very helpful. Then the stationarity of σ requires that for each
configuration |s⟩,

dσss
dt

= σss

∑
βα

N s
β c

2
βαγ

ββ
αα −

∑
βα

N s
βγ

αα
ββ

 = σss
∑
α

N s
βfβ = 0, (147)
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where N s
β is the number of motif β in the microstate s. In the second equation above, the first term

denotes the number of classical configurations entering |s⟩⟨s| and the second term denotes the rate at
which the system decays out of |s⟩⟨s|. The function f is defined as

fβ =
∑
α

(
c2βαγ

ββ
αα − γααββ

)
, (148)

which is a function that only depends on the motif β. If we can find all possible functions f that satisfy∑
α

N s
αfα = 0 (149)

for all configurations, we can then solve for all possible γββαα out of the function f , which include all classical
dynamics.

One can prove [114] that all solutions f to (149) can be written as

fα = g (α1, . . . , αq−1)− g (α2, . . . , αq) , (150)

where g is an arbitrary function and {α1, · · · , αq} is the motif α, and that there are 2q−1 − 1 nontrivial
linearly independent choices of function g. The latter claim follows transparently from counting all possible
linearly independent functions on Zq−1

2 (noting that g = 1 does not contribute to fα); the former claim
follows, in part, from the observation that the linear relation (149) fails in generality if fα has any term
proportional to α1αq. From (150), we can get all possible f functions and all possible classical dynamics.
Note that this part of the dynamics can always be generated by measuring stabilizers and applying
feedback, possibly after adding additional dissipative terms to the Lindbladian (that protect σ).

These dynamics can be generalized to systems with stationary states σ ∝ exp (
∑

x µxZx). In (148), if
we take into account the position of the coefficients γPᾱ

P ᾱ,x and γPα
Pα,x, we find that coefficients with different

x don’t appear in the same equation. Therefore, we can keep function f unchanged and demand that for
every x,

fβ =
∑
α

(
c2βα,xγ

ββ
αα,x − γααββ,x

)
. (151)

Unfortunately, we have found it very challenging to generalize this method beyond one dimensional
lattice graphs. We do remark, however, that the above method easily generalizes to models where the
stabilizers act on multiple sites, as in Section 5.2.2.

Now we discuss the quantum part of the constraints. Here, we will not need to assume that some aspect
of the dynamics is translationally invariant. Still, for simplicity we will mainly focus on σ ∝ exp (µ

∑
x Zx),

as the generalization is direct. The constraints of quantum dynamics come from (143b), where we can
regard |a⟩ and |b⟩ as specific configurations. From (94), we can always find a Hamiltonian to counteract
the effects of γab whenever ca ̸= cb, and so the classification problem becomes trivial: ⟨a|H|b⟩ is whatever
is needed to obey (94). Notice that as discussed in the main text, locality will be respected. Hence, we
only need to focus on the case where ca = cb. With q-local dynamics, only when |a⟩ and |b⟩ differ by ≤ q
adjacent sites:

|a⟩ = |s⟩1···x−1 ⊗ |α⟩x···x+q−1−n ⊗ |s′⟩x+q−n···L (152a)

|b⟩ = |s⟩1···x−1 ⊗ |β⟩x···x+q−1−n ⊗ |s′⟩x+q−n···L, (152b)

can the coefficients on the RHS of (143b) can be nonzero. Notice that we can take 0 ≤ n ≤ q − 1. For
each pair of n, x, α and β, we obtain a decoupled set of 4n equations to solve (this counting assumes the
stabilizers take values ±1). For the simplest case of n = 0, we get a single equation to solve:

dσab
dt

=
∑
s

(
σssγ

ab
ss −

1

2
(σaa + σbb)γ

ss
ba

)
= σaa

∑
γ

(
c2γα γ

αβ
γγ,x − γγγβα,x

)
= 0. (153)
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Note that σaa = σbb because we only discuss dynamics of γab with ca = cb. Due to spatial locality, this
constraint does not depend on |s⟩ or |s′⟩ in (152). Lastly, there is no other equation that constrains γαβγγ,x

or γγγβα,x: the sole constraint on these matrix elements is (153).
If n > 0, things are a little more complicated: the q-site jump operator can be of the form Aγδ,y for

x− n ≤ y ≤ x. We can solve for the resulting constraints on γs as follows: consider the states:

|ã(r, r′)⟩ = |s⟩1···x−1−n ⊗ |r⟩x−n···x−1 ⊗ |α⟩x···x+q−1−n ⊗ |r′⟩x+q−n···x+q−1 ⊗ |s′⟩x+q···L (154a)

|b̃(r, r′)⟩ = |s⟩1···x−1−n ⊗ |r⟩x−n···x−1 ⊗ |β⟩x···x+q−1−n ⊗ |r′⟩x+q−n···x+q−1 ⊗ |s′⟩x+q···L, (154b)

where here |r⟩ and |r′⟩ are again identical between |ã⟩ and |b̃⟩. We must now consider the 4n equations
that arise from evaluating ⟨ã(r, r′)|L[σ]|b̃(r, r′)⟩. There is not an elegant notation to express the general
form of these constraints, but we can illustrate their form with a simple example that straightforwardly
generalizes. Consider the simplest nontrivial case of q = 2 and n = 1, where |α⟩ = |0⟩ and |β⟩ = |1⟩, and
x = 2. Analogous to (153), we find a set of 4 constraints:∑

k,k′=0,1

[
c2(kk′)(r0),1γ

(r0)(r1)
(kk′)(kk′),1 − γ

(kk′)(kk′)
(r1)(r0),1 + c2(kk′)(0r′),2γ

(0r′)(1r′)
(kk′)(kk′),2 − γ

(kk′)(kk′)
(1r′)(0r′),2

]
= 0 (155)

for r, r′ = 0, 1. Notice that these equations are not all independent, since e.g. the last term in the above
equation is independent of the value of r. It is tedious, but straightforward, to generalize this construction
to general n and q.

For systems with stabilizers that introduce degeneracy, so long as the operators that transition between
such states (e.g. logical operators in an error correcting code) are nonlocal, the existence of such degeneracy
does not modify the discussion above. Therefore, for systems with stationary states σ = exp (−Φ) in the
form of (53), we can get all possible quantum dynamics of γab with ca = cb by solving the generalizations
of (153) and (155). In contrast, for the dynamics of γab with ca = cb, we can only classify 1D classical
T-odd dynamics with translation invariance.
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[65] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli and P. Zoller, Preparation of entangled states
by quantum Markov processes, Phys. Rev. A 78, 042307 (2008), doi:10.1103/PhysRevA.78.042307.
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