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Abstract
Discovering an informative, or agent-centric, state
representation that encodes only the relevant in-
formation while discarding the irrelevant is a key
challenge towards scaling reinforcement learning
algorithms and efficiently applying them to down-
stream tasks. Prior works studied this problem in
high-dimensional Markovian environments, when
the current observation may be a complex object
but is sufficient to decode the informative state.
In this work, we consider the problem of discover-
ing the agent-centric state in the more challenging
high-dimensional non-Markovian setting, when
the state can be decoded from a sequence of past
observations. We establish that generalized in-
verse models can be adapted for learning agent-
centric state representation for this task. Our re-
sults include asymptotic theory in the determinis-
tic dynamics setting as well as counter-examples
for alternative intuitive algorithms. We comple-
ment these findings with a thorough empirical
study on the agent-centric state discovery abili-
ties of the different alternatives we put forward.
Particularly notable is our analysis of past actions,
where we show that these can be a double-edged
sword: making the algorithms more successful
when used correctly and causing dramatic failure
when used incorrectly.

1. Introduction
Reinforcement Learning (RL) and its associated tasks of
planning and exploration are dramatically easier in a small
Markovian state space than in a high-dimensional, Partially
Observed Markov Decision Process (POMDP). For example,
controlling a car from a set of coordinates and velocities is
much easier than controlling a car from first-person camera
images. Having access to the Markovian latent representa-
tion of an environment has many merits. It can allow faster
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adaptation for downstream tasks, it simplifies the debugging
of the learned representation, and it enables the use of large
corpuses of unsupervised datasets in an efficient manner.
Yet, learning to extract effective information in complex
control systems can be notoriously difficult in general.

In recent years, much effort has been devoted to tackling
this problem in high-dimensional and Markovian systems
in the RL community (Li et al., 2006; Nachum et al., 2018;
Misra et al., 2020; Zhang et al., 2020; Efroni et al., 2022d;
Wang et al., 2022b). For such systems, a prominent and
widespread technique to learn latent state representation is
the use of inverse models, also known as inverse kinemat-
ics (Pathak et al., 2017a). However, in many real-world
control and decision problems, the immediate observation
does not contain the complete relevant information required
for optimal behavior, and the environment may be non-
Markovian. Hence, in practice, an algorithm designer often
faces a double challenge: learning in the presence of both
high-dimensional and non-Markovian data. This motivates
us to study the following question:

How can we generalize inverse models to learn
agent-centric state representation of POMDPs?

In this work, we take a first step towards a solution for the
general problem by considering a special and prevalent class
of non-Markovian environments. We consider the class
of POMDPs with finite-memory, which we refer to as FM-
POMDPs, and design an inverse models based approach
to recover the informative state in a high-dimensional
setting. Intuitively, for an FM-POMDP, the state can be
decoded from a finite sequence of past observations and is
often encountered in control and decision problems (e.g.,
to decode the velocity or acceleration of an object, a few
previous observations are required). Due to the significance
of such a system, many past works have put forward
techniques for solving and learning in decision problems
with memory, both in practice and theory (Bakker, 2001;
Graves et al., 2016; Pritzel et al., 2017; Efroni et al., 2022b;
Liu et al., 2022; Zhan et al., 2022). Yet, none explicitly
focused on state discovery.

Provably capturing relevant information while discarding
distractors in high dimensional and Markovian environ-
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Methods Objective Correct Bayes
Optimal Classifier

Complete
Agent-Centric
State

Assumes
Past
Decodability

Assumes
Future
Decodability

Discards
Exogenous
Noise

AH Pπ(at|o1:t, o1:(t+k)) ✗ ✗ ✓ ✗ ✓
AH+A Pπ(at|õ1:t, õ1:(t+k)) ✗ ✗ ✓ ✗ ✓
FJ Pπ(at|oP(t,m), oP(t+k,m)) ✓ ✗ ✓ ✗ ✓
FJ+A Pπ(at|õP(t,m), õP(t+k,m)) ✓ ✗ ✓ ✗ ✓
MIK Pπ(at|oP(t,m), oF(t+k,n)) ✓ ✗ ✓ ✓ ✓
MIK+A Pπ(at|õP(t,m), õF(t+k,n)) ✓ ✓ ✓ ✓ ✓

Table 1. A summary of the baseline inverse kinematics approaches which we study. Our final proposed method Masked Inverse Kinematics
with actions (MIK+A) has a significant advantages over the alternatives: it can provably recover the agent centric state representation.

ments has become a widely studied problem in RL liter-
ature (Dietterich et al., 2018; Efroni et al., 2022d; Wang
et al., 2022b; Efroni et al., 2022a; Wang et al., 2022c; Lamb
et al., 2022; Islam et al., 2023). These works have demon-
strated the ability to discover an agent-centric state while
discarding exogenous noise. Namely, to capture relevant
information while filtering information that is unrelated to
the control of the agent.

In this work, we first show that naive approaches to general-
ize inverse kinematics to the FM-POMDP, non-Markovian,
setting can fail, both theoretically and empirically. For in-
stance, if a sequence is encoded using an RNN (or any
other directed sequence model) and the hidden states are
used to predict actions, we show that there is an “action
recorder” problem where the model can learn shortcuts to
representing the true state. Under assumptions of past and
future decodability, we generalize inverse models to the
high-dimensional FM-POMDP setting and establish, em-
pirically and theoretically, that it recovers the latent state.
Our results show that our variant of the multi-step inverse
model (Lamb et al., 2022) can indeed succeed in the FM-
POMDP setting. Experimentally, we validate recovery of
the agent-centric state on acceleration-control, information
masking, first-person perspective control, and delayed sig-
nal problems. Finally, we demonstrate the usefulness of the
proposed objectives in visual offline RL tasks in presence
of exogenous information, where we mask out randomly
stacked frames and add random masking of patches to learn
representations in a partially observable offline RL setting.

2. Background and Preliminaries
Agent-Centric FM-POMDP. We consider a finite-memory
episodic Partially Observable Markov Decision Pro-
cess (FM-POMDP), which can be specified by M =
(S,Ξ,O,A, H,P, q, r). Here S is the unobservable agent-
centric state space, Ξ is the unobservable exogenous state
space (for convenience, Z = S × Ξ), O is the observa-
tion space, A is the action space, and H is the horizon. P
is the unknown transition probability P(z′ | z, a) equal to
the probability of transitioning to z′ after taking action a
in state z. Let q be the unknown emission with q(o | z)

equal to probability that the environment emits observation
o when in state z. The block assumption holds if the support
of the emission distributions of any two states are disjoint,
supp(q(· | z1))∩ supp(q(·|z2)) = ∅ when z1 ̸= z2., where
supp(q(· | z)) = {o ∈ O | q(o | z) > 0} for any state z.
We assume our action space is finite and our agent-centric
state space is also finite.

The agent-centric FM-POMDP is concerned with the struc-
ture of the state space Z . More concretely, the state space
Z = S × Ξ consists of an agent-centric state s ∈ S and
ξ ∈ Ξ, such that z = (s, ξ). The state dynamics are as-
sumed to factorize as P(s′, ξ′|s, ξ, a) = P(s′|s, a)P(ξ′|ξ),
where we refer to s and z as the agent-centric and exoge-
nous part of the state, respectively (Efroni et al., 2022d;
Lamb et al., 2022). We do not consider the episodic set-
ting, but only assume access to a single trajectory. The
agent interacts with the environment, generating an observa-
tion and action sequence, (z1, o1, a1, z2, o2, a2, · · · ) where
z1 ∼ µ(·). The latent dynamics follow zt+1 ∼ P(z′ | zt, at)
and observations are generated from the latent state at the
same time step: ot ∼ q(· | zt). The agent does not ob-
serve the latent states (z1, z2, · · · ), instead it receives only
the observations (o1, o2, · · · ). We use Õm to denote the
set of augmented observations of length m given by Õm =
(O×A)m×O. Moreover, we will introduce the notation that
õt = (ot, at−1), which can be seen as the observation aug-
mented with the previous action. Lastly, the agent chooses
actions using a policy which can most generally depend on
the entire t-step history of observations and previous actions
π : Õt → ∆(A), so that at ∼ π(·|õ1, ..., õt−1, õt).

We assume that the agent-centric dynamics are deterministic
and that the diameter of the control-endogenous part of the
state space is bounded. In other words, there is an optimal
policy to reach any state from any other state in a finite
number of steps: the length of the shortest path between any
s1 ∈ S to any s2 ∈ S is bounded by the unknown finite
diameter of the MDP D. These assumptions are required
for establishing the theoretical guarantees in (Lamb et al.,
2022), from which we built upon in this work.

Inverse Kinematics in Reinforcement Learning. We refer
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to inverse kinematics as a class of representation learning
techniques in RL. These techniques make use of action pre-
diction tasks, based on current and future observation, to
learn a useful and compressed representation of the obser-
vation. In the pioneering work of Pathak et al. (2017a) the
authors learned a decoder ϕ with a 1-step inverse kinematics
objective that allows to predict an action at from consecutive
observations ϕ(ot) and ϕ(ot+1). Lamb et al. (2022) recently
showed that, without additional assumptions, 1-step inverse
kinematics fails to recover the latent state. They designed
multi-step inverse kinematics objectives, a set of predictions
tasks that depends on k ≥ 1 of the action at from ϕ(ot)
and ϕ(ot+k) for large enough k, and showed it provably
learns the latent state. We note that all these objectives do
not require use of future state information in real-time, but
only make use of this information in the training procedure.
Indeed, the learned decoder ϕ only receives an observation
as its input.

Past and Future Decodability Assumptions. We now
present the key structural assumptions of this paper. We
assume that a prefix of length m of the history suffices to
decode the latent state and also that a suffix of length n of
the future suffices to decode the latent state.

Additionally, we will introduce some extra notation for con-
ditioning on either the past or future segments of a sequence.
Let õP(h,m) = õmax{1,h−m}:h be the past observations and
let õF(h,n) = õmin{h+n,H}:H refer to the future observa-
tions.

We will require that there are two separate encoders which
are used in the process of training. One encoder produces a
state to represent the past while a separate encoder produces
a state to represent the future. When the state is used for
some purpose (such as planning, exploration, or evaluation),
only the past encoder will be used. The future is privileged
information, and thus the future encoder is only used during
training.

Assumption 1 (m-step past decodability). There exists an
unknown decoder ϕf

⋆,s : Õm → S such that for every reach-
able trajectory τ = s1:H , we have sh = ϕf

⋆,s(õP(h,m)).

Assumption 2 (n-step future decodability). There exists
an unknown decoder ϕb

⋆,s : Õn → S such that for every
reachable trajectory τ = s1:H , we have sh = ϕb

⋆,s(õF(h,n)).

We note that the decodability assumption on the observation
and previous action sequence õ is more general than an anal-
ogous decodability assumption on the observations alone
o. Indeed, in practical applications it may be the case that
prior actions are required to decode the current state, and
hence we work with this more general assumption. In fact,
in the experimental section we will show that, empirically,
adding actions improves our algorithm’s performance.

3. Proposed Objectives
In this section, we describe in detail a set of possible
inverse kinematic based objectives for the FM-POMDP
setting. One is All History (AH), which involves using the
entire sequence of observations to predict actions. Another
is Forward Jump (FJ), in which a partial history of the
sequence is used from both the past and a number of steps
in the future. Finally, Masked Inverse Kinematics uses a
partial history of the sequence from the past and a partial
future of the sequence a number of steps in the future. For
all of these objectives, we will consider a variant which
augments each observation in the input sequence with the
previous action. These objectives are visualized in Figure 1
and summarized in Table 1.

Our high-level strategy will be to study which of these
objectives are sufficient to obtain a reduction to the analysis
in (Lamb et al., 2022), which guarantees recovery of the
true minimal agent-centric state. To do this, we will first
study the Bayes-optimal solution of each objective in terms
of the true agent-centric state (section 3.1). Following this,
we will study which of these Bayes-optimal solutions are
sufficient to complete the reduction in section 3.2.

3.1. The Bayes Optimal Classifier of Candidate
Objectives

We start by analyzing the Bayes optimal solution of few
inverse kinematics objectives, namely, objectives that
aim to predict an action from a sequence of observations.
These closed form solutions will later motivate the design
of the loss objectives, and guide us towards choosing
the proper way of implementing inverse kinematics for
the FM-POMDP setting. These results are proved in
Appendix A.2, A.3, A.4.

Proposed Masked-Inverse Kinematics (MIK+A). Masked
inverse kinematics with actions (MIK+A) achieves the
correct Bayes-optimal classifier for the multi-step inverse
model, with dependence on only the agent-centric part of
the state, i.e., st and st+k. Let st = ϕf

s (õP(t,m)), st+k =

ϕb
s(õF(t+k,n)), ξt = ϕξ(õ1:t), ξt+k = ϕξ(õ1:t+k), zt =

(st, ξt). Let k ∼ U(1, D) . The following result is proved
in the appendix for any agent-centric policy π:

∀k ≥ 1, Pπ(at|õP(t,m), õF(t+k,n)) = Pπ(at|st, st+k)

The MIK objective is essentially the same, ex-
cept that there is no conditioning on past actions:
Pπ(at|oP(t,m), oF(t+k,n)), and would have the same Bayes-
optimal classifier result if we relaxed the past and future
decodability assumptions to not require actions.

All History (AH) Objective. When we condition our en-
coder on the entire history, the Bayes-optimal multi-step
inverse model reduces to a one-step inverse model. Intu-
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Figure 1. We examine several objectives for generalizing inverse kinematics to FM-POMDPs. MIK+A uses past-decodability and
future-decodability with a gap of k masked steps, FJ+A uses past-decodability with a gap of k steps, while AH uses past-decodability
over the entire sequence.

itively, the optimal model could simulate an internal one-
step inverse model and store these predicted actions in
an internal buffer, and then retrieve them as necessary to
predict the true actions. The one-step inverse model fails
to learn the full agent-centric state, with counterexamples
given by (Efroni et al., 2022d; Lamb et al., 2022). Let
st = ϕs(o1:t), st+k = ϕs(o1:(t+k)), ξt = ϕξ(o1:t), ξt+k =
ϕξ(o1:t+k), zt = (st, ξt). Let k ∼ U(1, D). In Ap-
pendix A.3, we prove the following:

∀k ≥ 1, Pπ(at|o1:t, o1:(t+k)) = Pπ(at|st, st+1)

All History with actions (AH+A) Objective. If the
observations are augmented with the last action, then these
actions can simply be stored to a buffer and retrieved to
solve the multi-step inverse modeling problem. Thus the
Bayes optimal multi-step inverse model in this setting
can have no dependence on the state. In the appendix we
prove the following but note that it’s a straightforward
consequence of this objective conditioning on the action
at which is being predicted:

∀k ≥ 1, Pπ(at|õ1:t, õ1:(t+k)) = 1

Forward-Jump Inverse Kinematics (FJ) Objective. By an
almost identical proof as the above, this algorithm achieves
the correct Bayes optimal classifier.

∀k, k > m, k ≥ 1,

Pπ(at|oP(t,m), oP(t+k,m)) = Pπ(at|st, st+k).

∀k, k ≤ m, k ≥ 1,

Pπ(at|oP(t,m), oP(t+k,m)) = Pπ(at|st, st+1).

Forward-Jump Inverse Kinematics with Actions (FJ+A)
Objective Likewise, when conditioning on actions we have:

∀k, k > m, k ≥ 1,

Pπ(at|õP(t,m), õP(t+k,m)) = Pπ(at|st, st+k).

∀k, k ≤ m, k ≥ 1,

Pπ(at|õP(t,m), õP(t+k,m)) = 1.

3.2. Discovering the Complete Agent-Centric State

In the previous section we described several inverse kine-
matic terms that may be useful for discovering the agent-
centric state representation of an FM-POMDP. We now
claim that among this set of inverse kinematics terms,
the MIK+A is the most favorable one: the main result
from (Lamb et al., 2022) (Theorem 5.1) implies that MIK+A
recovers the agent-centric state representation. Further, we
elaborate on the failure of the other inverse kinematic objec-
tives.

MIK+A Discovers the Full Agent-Centric State. Given
successful recovery of the Bayes optimal classifier for the
multi-step inverse model, with dependence on only st and
st+k, we can reuse the theory from (Lamb et al., 2022), with
slight modifications, as given in the appendix. The most
important modification is that we roll-out for m + n +D
steps, to ensure that we have enough steps to decode st and
st+k, where D is the diameter of the agent-centric state.
With the above, the reduction to Theorem 5.1 of (Lamb
et al., 2022) is natural. There, the authors showed that,
under proper assumptions, if an encoder ϕ can represent
inverse kinematic terms of the form Pπ(at|st, st+k) for all
k ∈ [D] then ϕ is the mapping from observations to the
agent-centric state.

Failure of All History (AH) for Discovering Agent-
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Figure 2. The Forward Jump objective fails in a counterexample
where the observation can only be seen once every m steps, pre-
venting the use of k ≤ m inverse kinematics examples, whereas
the inverse examples with k > m provide no signal for separating
the states.

Centric State Representation. We showed that the AH
objective can be satisfied by only solving the one-step
inverse objective p(at|st, st+1). It was shown in (Rakelly
et al., 2021; Lamb et al., 2022; Efroni et al., 2022d) that
the one-step inverse objective learns an undercomplete
representation. Intuitively, it may incorrectly merge states
which have locally similar dynamics but are actually far
apart in the environment.

Failure of Forward-Jump (FJ and FJ+A) for Discov-
ering Agent-Centric State Representation. Since the
Forward-Jump objectives only rely on past-decodability,
it does not have correct Bayes optimal classifiers for all
k ≤ m. Namely, it does not recover the inverse model
with k in this regime. This prevents us from applying the
result of Lamb et al. (2022), since it requires the set of
all inverse models k ∈ [D], wheres FJ only has access to
k ∈ {1,m,m+1, .., D} but not for k in intermediate values.

Nevertheless, this give rise on an intriguing question: is
there a counterexample that shows FJ or FJ+A does not
work? We establish a counterexample in which the k = 1
examples are insufficient to distinguish all of the states and
where the k > 3 examples are useless. We will then con-
struct an observation space for an FM-POMDP with m = 3,
which will then cause both the FJ and FJ+A objectives to
fail.

Consider the following agent-centric state with two compo-
nents s = (sA, sB). sA receives four values {0, 1, 2, 3} and
follows the dynamics sAt+1 = (sAt + at) mod 4, which is a
simple cycle with a period of 4, controlled by the action a ∈
{0, 1}. sB = at−1 simply records the previous action. We
have an exogenous periodic signal ct+1 = (ct + 1) mod 4.
This FM-POMDP’s agent-centric state has a diameter of
D = 3, and the true state can be recovered with k from 1 to
3. However, all multi-step inverse problems, under the ran-
dom policy, with k > 3 has the same probability of 0.5 for
both actions. Concretely, for any plan to reach a goal with
k > 3 steps, multiplying the actions by -1 will still yield
an equally optimal plan with respect to sA, while only the
last action taken has an effect on sB , so the distribution over
the first action will be uniform (MDP shown in appendix
figure 8). Now, let’s turn to the construction of the obser-
vation space of this FM-POMDP. We will use the counter

ct to control when the state can be seen in the observation,
so if ct = 0, we have ot = st, whereas if ct ̸= 0, we have
ot = −1 (blank observation). It is apparent that if ct ̸= 0,
that we can’t decode the state from the current observation.
However, with a history of m = 3 past observations, we
can decode the state by finding st when it is present in the
observation (i.e. when ot ̸= −1), and then simulate the last
m steps using the previous actions recorded in the observa-
tions. A simplified version of this construction (showing
only sA and with m = 2) is shown in Figure 2.

To reiterate the claim of the proof, we constructed a FM-
POMDP where it is necessary to use k = 2 and k = 3 multi-
step model examples to separate out the states correctly. Yet
the state can only be perfectly decoded with m = 3 steps of
history. Thus, the FJ and FJ+A objectives fail to learn the
correct representation in this FM-POMDP.

4. Experimental Results
We experimentally validate whether the set of inverse kine-
matic based objectives can recover the agent-centric state
in the FM-POMDP setting. To do this, we first evaluate
the objectives in a partially observable navigation environ-
ment (section 4.1) and then study whether these objectives
can learn useful representations, in presence of partially
observable offline datasets (section 4.2).

4.1. Discovering State from Partially-Observed
Navigation Environments

Experiment Setup We first consider the navigation environ-
ments in Figure 3, with other figures and details in Appendix
figures 9 and 10, and introduce partial observability in
these tasks. Details on experimental setup are provided
in appendix D.1. In this problem, m-step past decodability
is achieved with m=1. The n-step future decodability
assumption subtly violated in cases where the agent collides
into a wall and loses all of its velocity. The agent’s velocity
before hitting the wall is then not decodable from any
number of future observations. We also consider an optional
Self-Prediction (SP) objective ||sg(st+k) − f(st, k)||,
where sg refers to stopping gradients. This auxiliary
objective, inspired by (Guo et al., 2022; Tang et al., 2023)
can help to improve the quality of representations.

Experiment Results In the acceleration-control exper-

Figure 3. Visualization of the four navigation environments. From
left to right: no curtain, one curtain, three curtains, and first-person
environments. All include some degree of partial observability.

5



Generalizing Inverse Kinematics for Representation Learning to Finite Memory POMDPs

SP No SP K=1 K=15

50

60

70

80

90

100

St
at

e 
Pr

ed
ic

tio
n 

A
cc

ur
ac

y

No-Curtain Task

No History
AH 
AH + A
FJ
FJ + A
MIK
MIK + A

SP No SP K=1 K=15

50

60

70

80

90

100

St
at

e 
Pr

ed
ic

tio
n 

A
cc

ur
ac

y

One-Curtain Task

No History
AH 
AH + A
FJ
FJ + A
MIK
MIK + A

SP No SP K=1 K=15

50

60

70

80

90

100

St
at

e 
Pr

ed
ic

tio
n 

A
cc

ur
ac

y

Three-Curtain Task

No History
AH 
AH + A
FJ
FJ + A
MIK
MIK + A

SP No SP K=1 K=15

50

60

70

80

90

100

St
at

e 
Pr

ed
ic

tio
n 

A
cc

ur
ac

y

First Person Task

No History
AH 
AH + A
FJ
FJ + A
MIK
MIK + A

Figure 4. We compare state estimation performance (higher is better) across our various proposed methods. We compare action-conditioned
and action-free variants while also considering a self-prediction auxiliary loss and the maximum prediction span K. We omit FJ and
FJ+A in the maximum K = 1 case because of equivalence to AH and AH+A with a shorter history.

Objective No
Curtain

Three
Curtains

No History 47.6 52.7
AH 9.9 13.2

AH+A 18.8 18.9
FJ 10.0 15.3

FJ+A 5.8 7.2
MIK 10.1 14.7

MIK+A 6.1 7.4

Table 2. State Estimation Errors (%) on various tasks with exoge-
nous noise.

iments (Figure 4, Table 2), we consistently found that
MIK+A has the best performance, which is aligned with
theory. The theory also suggests that AH+A has no state
dependence, and we indeed see that it has the worst perfor-
mance, when the maximum k is small. Another striking
result is that AH with any maximum k is theoretically
equivalent to AH with maximum k of 1, and these two
methods indeed have very similar errors experimentally.
Further evidence comes from investigating the action
prediction losses (Table 5), where we see that AH+A has
nearly zero error while AH has a very low loss, supporting
our claim that these objectives fail because they reduce
the bayes optimal predictor to an overly simple learning
objective. Another finding is that FJ+A and MIK+A
are fairly similar, which suggests that the theoretical
counterexample for FJ+A may not imply poor performance.
Extra experiment results of adding next-state prediction or
exogenous noise are provided in appendix D.1.

4.2. Visual Offline RL with Additional Partial
Observability

We validate the proposed objectives in challenging pixel-
based visual offline RL tasks, using the vd4rl benchmark
dataset (Lu et al., 2022). For our experiments, we follow
the same setup as (Islam et al., 2023), where we pre-train
the representations from the visual observations and then
perform fine-tuning on the fixed representations using the
TD3+BC offline RL algorithm. In our experiments, we
compare results using several variations of our proposed ob-
jectives, along with several other baselines. We mainly com-
pare with five other baselines, namely ACRO (Islam et al.,

2023), DRIML (Mazoure et al., 2020), HOMER (Misra
et al., 2020), CURL (Laskin et al., 2020) and 1-step inverse
action prediction (Pathak et al., 2017a).

Experiment Setup : We consider an offline RL setting
with partial observations, as illustrated in figure 5. To do
this, we use the existing vd4rl benchmark dataset (Lu et al.,
2022), and to turn it into a POMDP setting, we apply mask-
ing or patching on the observation space randomly. In other
words, for each batch of samples from the offline dataset,
we randomly patch each observation with a masking of size
16× 16 to make the observations partially observable to the
model. In addition to that, since existing (Lu et al., 2022)
setup uses pixel-based observations and uses a framestack-
ing of 3, to make the setting even more challenging, we
randomly zero out 2 out of 3 stacked frames. We do this
so that the model can only see both the stacked frames and
each frame partially; with the goal to see if our proposed
objectives using a forward and backward running sequence
model can be more robust with the learnt representations.

Experiment Results : Our experimental results show that
in presence of partial observability, most of the existing
baselines as in (Islam et al., 2023) can fail considerably,
for different domains and datasets. In contrast, when we
consider the history information and also additionally take
into account the action information, then performance of
the proposed models can improve significantly. Note that all
our experiments here only consider the pixel-based datasets
from (Lu et al., 2022) with only adding partial observability,
without considering any exogenous noise in the datasets
as in the setups in (Islam et al., 2023). Figure 6 shows
that in presence of partial observability, all the considered
baselines can fail considerably and performance degrades
significantly compared to what was reported in the fully ob-
served setting. In comparison, the proposed objectives can
be more robust in partial observability, and notably our key
objective (MIK+A) can perform significantly compared to
other model ablations. Experimental results show that MIK
+ A can perform significantly better comopared to baselines,
in almost all of the tasks. Figure 7 shows results for an
even more difficult experiment setup with randomly zero-
ing stacked frames. Experimental results show that MIK
+ A can still perform relatively better compared to other
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Figure 5. Illustration of the visual offline RL experiment setup, in presence of partial observability. We use a forward and backward
sequence model (RNN encoder) to handle past and future observation sequences, to achieve latent state discovery in FM-POMDPs.

baselines, in this difficult setting, since the forward and
backward sequence models capturing the past and future ob-
servations can better capture sufficient information from the
partial observations to fully recover the agent-centric state.

5. Related Work
Our work builds up on two closely related line of work :
(a) on short-term memory POMDPs and (b) learning agent-
centric latent states. We describe closely related work on
partially observable settings, both theoretical and empirical,
and discuss why existing works fail to fully recover the
agent-centric latent state in a partially observed setting.

Theoretical Research on FM-POMDPs. Efroni et al.
(2022b); Liu et al. (2022); Zhan et al. (2022); Wang et al.
(2022a) studied finite-sample guarantees under closely re-
lated m-step past and n-step future decodability assump-
tions. Nevertheless, their algorithms are currently impossi-
ble to scale and implement with standard oracles (such as
log-likelihood minimization) since it requires an optimistic
optimization over a set of functions .Further, unlike our
reward-free setting, their algorithm is dependent on having
a reward signal, whereas our work focuses on reward-free
representation learning. Lastly, these works did not con-
sidered the high-dimensional problem in the presence of
exogenous and time correlated noise.

Empirical Research on POMDPs. Partial observability
is a central challenge in practical RL settings and, as such,
it has been the focus of a large body of empirical work.
Seminal large scale empirical deep RL research has consid-
ered serious partial observability, such as the OpenAI Five
program for Dota 2 (OpenAI et al., 2019) and the Deep-
Mind AlphaStar system (Mathieu et al., 2023). Much of
this work has used a recurrent neural network or other se-
quence model to handle a state with history. While much of
this work is focused on directly learning a policy or value
function (Hausknecht & Stone, 2017), these approaches
will fail when reward is absent. Other work has learned
a recurrent forward model to predict observations as well

(Igl et al., 2018; Hafner et al., 2019; 2020), yet this will
fail when exogenous noise is dominant. To our knowledge,
none of these DeepRL POMDP works have considered our
proposed setting of learning agent-centric state with inverse
kinematics. (Ni et al., 2022) showed an extensive empirical
benchmark where recurrent online RL is used for POMDPs.
This differs from our work principally in that it’s empiri-
cal and focused on reward-signal, whereas our approach is
reward-free and the motivation for our loss objectives is a
consequence of asymptotic theory we develop.

Research on Agent-Centric States and Inverse Kine-
matics. The primary line of theoretical research on inverse
kinematics and agent-centric states is exclusively concerned
with the MDP setting (Lamb et al., 2022; Efroni et al.,
2022a;c;d; Islam et al., 2023; Mhammedi et al., 2023;
Hutter & Hansen, 2022). In particular, much of this work
has focused on analysis showing that the agent-centric state
can be provably recovered under some assumptions. The
PPE method (Efroni et al., 2022d) introduced multi-step
inverse kinematics in the deterministic dynamics, episodic
setting with fixed start states. (Lamb et al., 2022) extended
this to the non-episodic setting, while (Efroni et al., 2022a)
handles a stochastic dynamics setting. (Tomar et al., 2023;
Islam et al., 2023) considered multi-step inverse models for
offline-RL, while only considering the fully-observed set-
ting. While (Brandfonbrener et al., 2023) used pre-trained
multi-step and one-step inverse models for online RL, still in
the fully-observed setting. (Pathak et al., 2017b; Shelhamer
et al., 2017; Badia et al., 2020; Schmeckpeper et al., 2020;
Rakelly et al., 2021) all use one-step inverse objective in
fully-observed setting to improve empirical performance.
(Bharadhwaj et al., 2022) InfoPower used a one-step inverse
objective along with an RNN to encode the history. (Wang
et al., 2022c) showed discovery of agent-centric state
using causal independence tests and was restricted to the
fully-observed setting. (Wang et al., 2022b) studied learning
a recurrent forward model with a factorization of the
state space into agent-centric and exogenous components.
This method naturally handles POMDPs, but requires
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Figure 6. Visual offline datasets from (Lu et al., 2022) with patching (16× 16) to make the observations partially observable. We
compare several of the proposed objectives discussed earlier, along with few baselines, using the representation learning setup in (Islam
et al., 2023). Experimental results are compared across 3 different domains (Cheetah-Run, Walker-Walk and Humanoid-Walk) and 2
different datasets (Expert and Medium-Expert), across 5 different random seeds.
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Figure 7. A more challenging setting where in addition to the patching of observations, we further apply randomly zeroing of frame-
stacking. We apply framestacking for visual observations, where to make the task more difficult and partially observable, we randomly
zero out 2 out of 3 frames, on top of the masked observations.

learning both the agent-centric and exogenous states to
satisfy the future observation prediction objective, so differs
significantly from our algorithmic approach, that allows to
directly avoid learning information on the exogenous noise.

Work related to both POMDPs and Multi-step Inverse
Kinematics. To our knowledge, ours is the first work to
explicitly consider inverse kinematics for learning agent-
centric states in the POMDP setting. Our counter-examples
to AH and AH+A objectives, where the model can fail to
learn the state by memorizing actions, is reminiscent of
the causal confusion for imitation learning work (De Haan
et al., 2019) . (Baker et al., 2022) considers a one-step
inverse model using a transformer encoder, to learn an
action-labeling model. While this is equivalent to our
All History (AH) approach, the focus of that work was
not on learning representations. (Sun et al., 2023; Goyal
et al., 2022) consider a sequence learning setup where
a bidirectional sequence model masks observations and
actions in the input and predicts the masked actions. While
these approaches seem consistent with our theoretical
analysis, they use a bidirectional model and therefore
learn an entangled model of ϕf

s and ϕb
s in their internal

representations, where the correct usage for planning and
exploration is unclear. This makes their setting different
from our focus on learning an explicit state representation
and their work doesn’t provide a theoretical analysis.

6. Discussion
Partially observable settings in RL are often difficult to work
with, theoretically without strong assumptions, and empiri-
cally with a implementable algorithm, despite the generality
of non-Markovian observations that can arise naturally in
practice. To recover the agent-centric full latent state that
can be considered as an information state, is quite difficult in
the FM-POMDP setting. Several works using multi-step in-
verse kinematics has recently been proposed for latent state
discovery, in the theoretical and empirical RL communities.
However, despite the popularity, how to apply multi-step
inverse kinematics in the FM-POMDP setting has not been
previously studied. Our work shows that it’s possible to
succeed in discovering agent-centric states in FM-POMDPs
while many intuitive algorithms fail. We made the assump-
tions of past-decodability (Efroni et al., 2022b) while intro-
ducing a new future-decodability assumption. In this work,
we demonstrated several examples showing that the full
agent-centric state can be recovered from partially observ-
able, offline pre-collected data for acceleration and control.
Additionally, we showed that MIK+A, taking the action in-
formation from past and future into account, can be effective
for learning a latent representation that can improve perfor-
mance empirically on a challenging partially observable of-
fline RL task. A natural topic for future work is developing
an online algorithm which discovers a policy that achieves
these decodability properties rather than assuming them.
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7. Broader Impact
As this work is of a purely technical and somewhat theoret-
ical nature, we don’t foresee any direct ethical impacts of
this work, but we encourage further study along these lines.
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Appendix
In the appendix, we include proofs and counterexamples for our theoretical results, and environment details and additional
results for the experimental setup.

A. Theory Details
A.1. Structural Lemma

We now describe a structural result of the agent-centric FM-POMDP model, closely following the proof in (Efroni et al.,
2022d). We say that π is an agent-centric policy if it is not a function of the exogenous noise. Formally, for any history
of action-augmented observations o1 and o2, if ϕf

⋆,s(o1) = ϕf
⋆,s(o2) then π(· | o1) = π(· | ϕf

⋆,s(o2)). Let Pπ(s
′ | s, h)

be the probability to observe the control-endogenous latent state s = ϕf
⋆,s(õP(h,m)), h time steps after observing step t,

s′ = ϕb
⋆,s(õP(t+h,m)) and following policy π, starting with action a. Note that the claim will also hold if s or s′ use either

the forward or the backward encoder. Let the exogenous state be defined similarly as ξ = ϕ⋆
ξ(õ1:t) and ξ′ = ϕ⋆

ξ(õ1:t+h).
The following result shows that, when executing an endogenous policy, the future h time step distribution of the observation
process conditioning on any o has a decoupling property.

Lemma 1 (Decoupling property for endogenous policies (Efroni et al., 2022d)). Let µ be the initial distribution. Assume
that the agent-centric and exogenous part is decoupled for the initial distribution, µ(s, ξ) = µ(s)µ(ξ), and that π is an
endogenous policy. Then, for any t ≥ 1 it holds that Pπ(o

′ | o, a, h) = q(o′ | s′, ξ′)Pπ(s
′ | s, a, h)P(ξ′ | ξ, h).

This lemma is a key result for analyzing the Bayes optimal solution of the different inverse kinematic objectives described in
this work. We assume that the policy only depends on the state so that it rules out the known hard problems with unobserved
confounders. Some recent work in causal inference literature mitigate the unobserved confounding issue by integrating the
offline and online datasets (Wu & Yang, 2022; Cheng et al., 2023).
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A.2. Proof that the MIK+A objective has the right Bayes optimal classifier

We analyze the Bayes optimal classifier of the MIK+A objective, by first applying Bayes theorem on the action at and the
future observation sequence starting from t+ k. We then use the decodability assumption to introduce the latent variable
zt+k and then apply the Markov assumption on the latent space on step t+ k. We then cancel the probability over future
observations because it has no action dependence and also cancel the exogenous-noise part of the latent state.

We use the following notation for all t:

st = ϕf
s (õP(t,m))

st+k = ϕb
s(õF(t+k,n))

ξt = ϕξ(õ1:t)

ξt+k = ϕξ(õ1:t+k)

zt = (st, ξt).

We have that for all k > t:

Pπ(at|õP(t,m), õF(t+k,n)) =
Pπ(õF(t+k,n)|õP(t,m), at)π(at|õP(t,m))∑
a′ Pπ(õF(t+k,n)|õP(t,m), a′)π(a′|õP(t,m))

=
Pπ(õF(t+k,n)|zt, at)π(at|zt)∑
a′ Pπ(õF(t+k,n)|zt, a′)π(a′|zt)

=
Pπ(õF(t+k,n), zt+k|zt, at)π(at|zt)∑
a′ Pπ(õF(t+k,n), zt+k|zt, a′)π(a′|zt)

=
Pπ(õF(t+k,n)|zt+k)Pπ(zt+k|zt, at)π(at|zt)∑
a′ Pπ(õF(t+k,n)|zt+k)p(zt+k|zt, a′)π(a′|zt)

=
Pπ(zt+k|zt, at)π(at|zt)∑
a′ Pπ(zt+k|zt, a′)π(a′|zt)

=
Pπ(st+k|st, at)P(ξt+k|ξt)π(at|st)∑
a′ Pπ(st+k|st, a′)P(ξt+k|ξt)π(a′|st)

=
Pπ(st+k|st, at)π(at|st)∑
a′ Pπ(st+k|st, a′)π(a′|st)

= Pπ(at|st, st+k).

The first relation holds by Bayes rule. The third relation holds since zt+k is a deterministic function of õF(t+k,n) under
the future decodability assumption. The forth relation holds by Bayes rule, along with the assumption that the future
observations following t+ k are conditionally independent with (zt, at) given zt+k (since we assume π on time step t only
depends on st, since it’s an agent-centric policy). The sixth relation holds by the decoupling lemma, Lemma 1.

A.3. Proof that All-History (AH) reduces to one-step inverse model

We analyze the Bayes-optimal classifier of the AH objective. We first apply Bayes theorem between the observation
sequence and the predicted action at. We then use the past-decodability assumption to introduce latent variables zt and
zt+1. We apply the chain rule of probability and then markov independence of the observations given the latent states. The
observations conditioned on the latents then cancel, and then the exogenous noise dynamics also cancel, leaving the one-step
inverse model over the latent states.
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We use the following notation for all t.

st = ϕf
s (o1:t)

st+k = ϕf
s (o1:(t+k))

ξt = ϕξ(o1:t)

ξt+k = ϕξ(o1:t+k)

zt = (st, ξt)

The following relations hold.

P(at|o1:t, o1:t+k) = P(at|o1:t+k)

=
P(o1:t+k|at)P(at)∑
a′ P(o1:t+k|a′)P(a′)

=
P(o1:t, o(t+1):t+k, zt, zt+1|at)P(at)∑
a′ P(o1:t, o(t+1):t+k, zt, zt+1|a′)P(a′)

=
P(o1:t|at)P(zt|o1:t, at)P(zt+1|o1:t, zt, at)P(o(t+1):t+k|o1:t, zt, zt+1, at)P(at)∑
a′ P(o1:t|a′)P(zt|o1:t, a′)P(zt+1|o1:t, zt, a′)P(o(t+1):t+k|o1:t, zt, zt+1, a′)P(a′)

=
P(o1:t|at)P(zt|o1:t)P(zt+1|zt, at)P(o(t+1):t+k|zt+1)P(at)∑
a′ P(o1:t|a′)P(zt|o1:t)P(zt+1|zt, a′)P(o(t+1):t+k|zt+1)P(a′)

=
P(o1:t)P(zt|o1:t)P(zt+1|zt, at)P(o(t+1):t+k|zt+1)π(at|o1:t)∑
a′ P(o1:t)P(zt|o1:t)P(zt+1|zt, a′)P(o(t+1):t+k|zt+1)π(a′|o1:t)

=
P(o1:t)P(zt|o1:t)P(zt+1|zt, at)P(o(t+1):t+k|zt+1)π(at|st)∑
a′ P(o1:t)P(zt|o1:t)P(zt+1|zt, a′)P(o(t+1):t+k|zt+1)π(a′|st)

=
P(zt+1|zt, at)π(at|st)∑
a′ P(zt+1|zt, a′)π(a′|st)

=
P(st+1|st, at)P(ξt+1|ξt)π(at|st)∑
a′ P(st+1|st, a′)P(ξt+1|ξt)π(a′|st)

=
P(st+1|st, at)π(at|st)∑
a′ P(st+1|st, a′)π(a′|st)

= Pπ(at|st, st+1).

The second relation holds by Bayes rule. The third relation holds by since zt and zt+1 are deterministic functions of the
observation sequence by the decodability assumptions. The sixth relation holds by using:

P(o1:t | at)P(at) = P(o1:t)π(at | o1:t)

due to Bayes rule. The seventh relation holds by the fact we assume π is agent centric. The ninth relation holds by the
decoupling lemma, Lemma 1.

A.4. Proof that All-History with Actions (AH+A) has no State Dependence

The Bayes-optimal classifier for the AH+A objective can be perfectly satisfied without using the state, by simply memorizing
the sequence of actions and retrieving them. Note that in practice, this is easiest to achieve when the maximum K value is
small.

The following relations holds for all k > t since there is an explicit conditioning in the probability distribution.

P(at|x1:t, a1:t, x1:t+k, a1:t+k) = P(at|a1:t+k) = P(at|at) = 1.

This implies the AH+A Bayes solution erases the information on the agent-centric state, since the action can be directly
predicted.
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B. Forward Jump Counterexample
Figure 8 contains a counter-example for the forward-jump (FJ) objective, for why FJ fails to capture the agent-centric state
in partial observability.

Figure 8. The full underlying MDP of the counterexample for the Forward Jump objective. Each of the eight states shows (sA, sB), with
the coloring used to reflect sB and the action which can reach it. The special property of this MDP is that its multi-step inverse model
examples with k ≥ 4 are uninformative while its k = 1 examples are insufficient. This creates a counterexample for methods solely
relying on past-decodability, because the length of history required to decode the state may overlap and prevent access to the k = 2 and
k = 3 inverse kinematics examples.

With a small computer program we generated the inverse kinematics examples for this MDP from k = 1 to k = 10. First,
we generated the 16368 inverse kinematic examples and verified that examples with 4 ≤ k ≤ 10 have a uniform distribution
for the first action.

All of the inverse kinematics examples up to k = 6 are included in a text file in the supplementary materials. A subset
where the initial state is either (0,−1) or (0, 1) is shown below to give a flavor of the structure, in which k = 4 has uniform
probability over the first action whereas k = 2 has more useful inverse kinematic examples:

k = 2 examples:
(0,−1) → (0,−1) via a : (1,−1)
(0,−1) → (0, 1) via a : (−1, 1)
(0,−1) → (2,−1) via a : (−1,−1)
(0,−1) → (2, 1) via a : (1, 1)
(0, 1) → (0,−1) via a : (1,−1)
(0, 1) → (0, 1) via a : (−1, 1)
(0, 1) → (2,−1) via a : (−1,−1)
(0, 1) → (2, 1) via a : (1, 1)

k = 4 examples:
(0,−1) → (0,−1) via a : (−1,−1,−1,−1)
(0,−1) → (0,−1) via a : (−1, 1, 1,−1)
(0,−1) → (0,−1) via a : (1,−1, 1,−1)
(0,−1) → (0,−1) via a : (1, 1,−1,−1)

15



Generalizing Inverse Kinematics for Representation Learning to Finite Memory POMDPs

(0,−1) → (0, 1) via a : (−1,−1, 1, 1)
(0,−1) → (0, 1) via a : (−1, 1,−1, 1)
(0,−1) → (0, 1) via a : (1,−1,−1, 1)
(0,−1) → (0, 1) via a : (1, 1, 1, 1)
(0,−1) → (2,−1) via a : (−1,−1, 1,−1)
(0,−1) → (2,−1) via a : (−1, 1,−1,−1)
(0,−1) → (2,−1) via a : (1,−1,−1,−1)
(0,−1) → (2,−1) via a : (1, 1, 1,−1)
(0,−1) → (2, 1) via a : (−1,−1,−1, 1)
(0,−1) → (2, 1) via a : (−1, 1, 1, 1)
(0,−1) → (2, 1) via a : (1,−1, 1, 1)
(0,−1) → (2, 1) via a : (1, 1,−1, 1)
(0, 1) → (0,−1) via a : (−1,−1,−1,−1)
(0, 1) → (0,−1) via a : (−1, 1, 1,−1)
(0, 1) → (0,−1) via a : (1,−1, 1,−1)
(0, 1) → (0,−1) via a : (1, 1,−1,−1)
(0, 1) → (0, 1) via a : (−1,−1, 1, 1)
(0, 1) → (0, 1) via a : (−1, 1,−1, 1)
(0, 1) → (0, 1) via a : (1,−1,−1, 1)
(0, 1) → (0, 1) via a : (1, 1, 1, 1)
(0, 1) → (2,−1) via a : (−1,−1, 1,−1)
(0, 1) → (2,−1) via a : (−1, 1,−1,−1)
(0, 1) → (2,−1) via a : (1,−1,−1,−1)
(0, 1) → (2,−1) via a : (1, 1, 1,−1)
(0, 1) → (2, 1) via a : (−1,−1,−1, 1)
(0, 1) → (2, 1) via a : (−1, 1, 1, 1)
(0, 1) → (2, 1) via a : (1,−1, 1, 1)
(0, 1) → (2, 1) via a : (1, 1,−1, 1)

C. Proof that MIK+A Recovers the full Agent-Centric State
The result in (Lamb et al., 2022) showed that given all examples of the multi-step inverse model from 1 to the diameter of
the MDP, achieves the full agent-centric state in a deterministic MDP. Our claim is a reduction to this proof.

D. Additional Experimental Details and Environment Details
D.1. Pointmass Environment Details

D.1.1. TOP VIEW

The navigation environments were based on maze2d-umaze from D4RL (Fu et al., 2020). The state of the navigation is
four-dimensional, including the pointmass’ position x, y and velocities vx, vy. The action space is acceleration in each
dimension, ax, ay . For our observation, we disable rendering of the goal in the environment, render images from a camera
at the top of the maze, and down-scale them to 100x100. For the curtain experiments, the environment was modified to
include both one and three visual occlusions. Environments are visualized in Figure 3.

The data is collected using the built-in planner with Gaussian noise added to the actions. Rather than sampling goals from
the fixed set of goals in D4RL, we allow goals to be sampled uniformly at random inside of the maze. The data is collected
with no resets, and goals are re-sampled when the pointmass is sufficiently close to the target position.

The original environment is partially observable because it cannot capture the velocity of the pointmass in a single frame. In
addition to lacking velocity, the curtain environments also contain regions where the pointmass is partially or fully occluded,
and thus the position of the pointmass is not observed. With three curtains, there is additional uncertainty in the position of
the pointmass with a single frame, as the pointmass could be under any of the three different curtains. A trajectory can be
seen in Figure 10.
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Figure 9. Observations from the first person view environment. Unlike the top view, the global position of the pointmass cannot always be
directly inferred from a single observation. Additionally, the maze has many different states with similar looking observations.

D.1.2. FIRST PERSON VIEW

In addition to the original D4RL environment, we create a new environment that navigates the maze from a first person view
(FPV). To do this, we add an angle, θ and angular velocity, vθ to the pointmass’ state and change the action space to angular
velocity, vθ̃ and acceleration along the axis the pointmass is facing, ax. The Cartesian velocities vx, vy , are computed as:

vx += ax · cos θ ·∆t, vy += ax · sin θ ·∆t

where ∆t the angular velocity is set to vθ̃ and the MuJoCo simulator is stepped for frame_skip timesteps. We render images
from a camera on the pointmass facing the same direction as the axis of acceleration and use that as our observation.

Since the action space has changed, we train a policy to navigate to goals using PPO (Schulman et al., 2017) and use the
resulting policy to collect our dataset. Goals and images are modified the same as in the top view environment.

The FPV environment is partially observable for a number of reasons. Like the top view, the velocities cannot be inferred
from a single observation. In this environment, however, the global location is not necessarily inferable from any one frame.
As can be seen in Figure 9, there are a number of different states in the maze with a similar observation. Having a history of
previous observations is required to keep track of the position. Figure 10 shows four frames from the environment.
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Figure 10. Trajectories from the three curtain and first person environments.

D.1.3. EXPERIMENT IMPLEMENTATION DETAILS AND EXTRA EXPERIMENT RESULTS

The total sample size of the offline data for training is 500k for each navigation environment, where each sample is a
(100× 100× 3)-dimensional image. At each training iteration, we randomly sample 16 batches with time horizon 64 in each
batch. The total number of iterations of training is 200k. All the numbers presented in the tables and Figure 4 is the average
over the last 10k iterations of the training process. The state estimation errors are the average absolute errors between the
true states and the estimated states. The results across different baselines and different navigation environments are provided
in Table 3. Since all the numbers is bounded by 1, for better visualization, we provide a barplot of state prediction accuracy
(defined as (1− state estimate error)× 100) in Figure 4. With decomposing the state error into the position (observable)
and velocity (observable) errors, the results are provided in Table 4.

Objective Kmax No-Curtain One-Curtain Three-Curtains First Person
No History 1 49.3 49.9 53.7 11.8
No History 15 46.8 49.1 52.6 11.4

AH 1 8.6 12.7 12.8 5.3
AH 15 8.9 12.0 11.8 4.6

AH+A 1 44.3 45.6 46.8 25.3
AH+A 15 19.1 20.0 18.7 18.3

FJ 15 7.3 12.9 13.6 5.3
FJ+A 15 3.7 5.4 6.2 5.4
MIK 1 15.3 16.4 16.2 6.0
MIK 15 6.6 12.3 13.1 4.9

MIK+A 1 12.5 8.1 8.0 6.0
MIK+A 15 3.4 4.7 6.0 4.8

Table 3. State Estimation Errors (%) on various tasks with maxk=1 vs. maxk=15, with SP=False, no-exo.

In terms of the optimizer, we use Adam optimizer to optimize the losses with learning rate 1e-4. To avoid overfitting, we add
L2 regularization on forward-running states with the decaying regularization amount. In terms of the neural networks we
are training on, there are three neural networks (Encoder, Probe, Action Prediction) with details provided in the following.

Encoder The images are encoded using MLP-Mixer (Tolstikhin et al., 2021) with 8 layers and patch size 10, and GRU
(Chung et al., 2014) with 2 layers and hidden size 256 is used as the sequence model. For MIK and MIK+A, there is a 2nd
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Objective P/V No-Curtain One-Curtain Three-Curtains First Person
No History P 2.2 6.5 13.3 7.7

AH P 7.5 7.1 5.6 5.0
AH+A P 22.9 24.0 22.4 25.1

FJ P 3.2 7.1 7.1 5.0
FJ+A P 2.2 5.1 6.4 5.5
MIK P 2.5 6.1 6.5 4.7

MIK+A P 1.7 3.7 6.2 4.9
No History V 91.5 91.7 91.9 15.2

AH V 10.0 16.9 18.1 4.3
AH+A V 15.2 16.0 15.0 11.5

FJ V 11.3 18.6 20.1 5.7
FJ+A V 5.2 5.8 6.0 5.4
MIK V 10.7 18.1 19.5 5.0

MIK+A V 5.0 5.6 5.7 4.7

Table 4. Position and Velocity Estimation Errors (%) on various tasks with no exogenous noise, with no self-prediction loss, and with
maxk=15.

GRU network which runs backwards for decoding the future. Alternatively, using a bidirectional RNN for the future works
roughly equally well but requires a slightly more involved implementation.

Probe We use a 2-hidden layer MLP with hidden size 256 aiming to train a mapping from the latent states to the true states,
which in our case is a 4-dimensional vector containing the position and velocity of the agent. The loss for the probe is square
loss, and no gradients pass from the probe to the representation, such that the use of the probe does not affect the learned
representation.

Action Prediction To train a mapping from the current and next latent state to the current action, we use an embedding
layer to embed the discrete variable, and then apply a 2-hidden layer MLP with hidden size 256 with the cross entropy loss.
In processing the sequence, we compute the action prediction loss for all pairs of time-steps in parallel, thus covering all k
values up to a hyperparameter maxk. Experimentally we investigated both maxk=1 and maxk=15. Action prediction losses
are provided in Table 5. AH+A contains all the history which is a trivial question for action prediction so that it has almost 0
loss. One optional extra step is to add Self-Prediction (SP) here, by doing this, we use a 3-layer MLP with hidden size 512.
The self-prediction objective allows gradients to flow into st but blocks gradients into st+k. Adding self-prediction leading
to improvement as shown in Table 6. Importantly, it somewhat reduces the degree of difference seen between the various
objectives but the overall ordering of results is similar to when self-prediction is not used.

Objective No-Curtain One-Curtain Three-Curtains First Person
No History 230.8 266.9 281.0 75.4

AH 9.2 54.9 61.7 12.4
AH+A 0.5 0.5 0.5 0.4

FJ 143.4 182.7 191.5 57.8
FJ+A 123.7 134.6 136.9 57.9
MIK 118.5 162.3 171.4 46.4

MIK+A 99.6 112.5 114.1 37.4

Table 5. Action-Prediction Loss (%) with Various Objectives.

Exogenous Noise To construct exogenous noise, we randomly sample images from the CIFAR-10 dataset (Krizhevsky
et al., 2014) as the exogenous noise and add them to the original images. Some examples of the no-curtain navigation
environment with exogenous noise are provided in Figure 11 as an illustration. The results are provided in Table 7.
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Objective Self-Prediction No-Curtain One-Curtain Three-Curtains First Person
No History N 46.8 49.1 52.6 11.4
No History Y 46.9 48.4 52.3 11.3

AH N 8.9 12.0 11.8 4.6
AH Y 4.1 7.9 9.2 9.9

AH+A N 19.1 20.0 18.7 18.3
AH+A Y 18.7 17.9 19.4 11.5

FJ N 7.3 12.9 13.6 5.3
FJ Y 6.2 10.1 10.9 3.8

FJ+A N 3.7 5.4 6.2 5.4
FJ+A Y 3.3 3.6 3.8 4.1
MIK N 6.6 12.3 13.1 4.9
MIK Y 6.0 9.9 10.7 3.7

MIK+A N 3.4 4.7 6.0 4.8
MIK+A Y 3.3 3.5 3.8 3.8

Table 6. State Estimation Errors (%) on various tasks without exogenous noise and with maxk=15, where we show the effect of adding the
self-prediction objective, which generally improves the quality of results but leaves the ordering of the methods’ performance mostly
unchanged.

Figure 11. No-curtain navigation environment with exogenous noise.

Objective No-Curtain One-Curtain Three-Curtains First Person
No History 47.6 49.2 52.7 12.1

AH 9.9 13.3 13.2 4.9
AH+A 18.8 18.8 18.9 18.3

FJ 10.0 14.7 15.3 5.5
FJ+A 5.8 7.1 7.2 5.6
MIK 10.1 14.4 14.7 5.1

MIK+A 6.1 7.1 7.4 4.9

Table 7. State Estimation Errors (%) on various tasks with exogenous noise, and with no-SP, with maxk=15.

D.2. Offline RL Experiment Details and Setup

We include details on our offline RL experiments including partial observability in the datasets. Figure 12 shows few sample
observations from the Cheeta-Run domain when adding random patches to each observation. For our experiments, we use
the visual dataset v-d4rl (Lu et al., 2022) and to make it partially observable, we randomly add patches of size (16× 16) to
each observation. This makes the observations non-Markovian in general, such that it is difficult to learn the agent-centric
state directly from the observations.

For the experimental setup, we follow the same pre-training of representations procedure from (Islam et al., 2023), where
we train the encoders learning latent space during pre-training. We then follow the fine-tuning procedure using the fixed
representations from the encoders (keep them frozen) and then do offline RL (specifically TD3 + BC) on top of the learnt
representations. We use TD3 + BC since it has been already shown to be a minimalistically useful algorithm to learn from
offline datasets. We do not use any other offline RL algorithm since in this work, we mainly prioritize on the ability of the
encoders to be able to recover the agent-centric state.
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Our results show that the inverse kinematics based objectives can be quite useful for recovering the agent-centric state, as
stated and justified from our theoretical results; and experimental results show that by using a forward-backward sequence
model to handle past and future observations, such inverse kinematics based objectives can be useful especially in presence
of non-Markovian observation spaces. Our expeirmental results are indeed quite better compared to the recently proposed
ACRO method (Islam et al., 2023) on such visual offline datasets. We study the ability of the learnt encoders to be able to
learn robust representations from partially observable offline datasets.

Figure 12. Illustration of patched observations from the visual offline datasets, adapted from (Lu et al., 2022). In addition, during
frame-stacking when learning from pixel-based observations, we also randomly add zero padding to 2 out of 3 of the stacked frames, to
make the pixel-based offline RL setting even more challenging.
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Figure 13. Patching of Observations : Full of Experimental Results comparing All the Inverse Kinematics based objectives to other
baselines on the 16× 16 patched observation setup.
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Figure 14. Random-Zeroing of FrameStacks : Full of Experimental Results comparing All the Inverse Kinematics based objectives to
other baselines on the randomly zeroing of framestacks setup, where in addition to this, we also apply patching of size 16× 16.
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