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The two-dimensional van der Waals (vdW) materials MPS3 (M =Mn, Fe, Co, Ni) display an-
tiferromagnetic ordering of the magnetic moments at the transition metal ions. The possibility
to exfoliate thin layers that preserve the magnetic order makes these materials interesting for nu-
merous applications in devices that require integration of flexible patches of magnetic materials,
e.g. in antiferromagnetic spintronics. Hence, an improved understanding of their magnetic proper-
ties is desirable. Here, we parameterize spin Hamiltonians for a monolayer of all four materials of
this class using density functional theory plus Hubbard U calculations. We provide a step-by-step
guide for calculating the magnetic exchange interactions and magnetic anisotropy energy using the
(non-)collinear DFT+U (+ SOC) approach with a suitably chosen U for each material. It is found
that the biquadratic interactions gain in importance while moving through the 3d series. Retaining
the leading terms of a Holstein-Primakoff-transformed spin Hamiltonian, the magnon spectra are
calculated. While MnPS3 is found to be an almost isotropic antiferromagnet with a tiny gap, the
biquadratic interaction opens an increasingly wider gap for FePS3, CoPS3 and NiPS3. In line with
this observation, Monte Carlo simulations demonstrate that the biquadratic interactions contribute
to a systematic rise in the Néel temperature from FePS3 to NiPS3.

I. INTRODUCTION

Transition metal phosphorus trisulfides, denoted as
MPS3 where M can be Mn, Ni, Fe, or Co, rep-
resent a class of materials that have gained signifi-
cant attention1–3 for their remarkable electronic, mag-
netic, and optical characteristics. These materials are
particularly noted for their impressive optoelectronic
properties4, including strong absorption in the visible
to near-infrared spectrum and efficient charge separation
and transport5. They feature a layered structure similar
to graphene, which not only piques interest for funda-
mental research but also facilitates their exfoliation into
two-dimensional layers. These thin layers often exhibit
properties distinct from their bulk counterparts, offering
a rich avenue for investigating new physical phenomena
and potential technological applications.

Magnetism is a subtopic in the field of in 2D mate-
rials that has drawn significant interest recently6. The
magnetic nature of MPS3 is a key aspect that this arti-
cle aims to explore in depth. By calculating the spin
Hamiltonian and analyzing the magnon spectrum, we
seek to unravel the magnetic properties of these ma-
terials. The study of the magnon spectrum in MPS3
is not just a topic of fundamental interest; it also has
significant implications for the fields of spintronics7 and
magnonics8, where electron spins and magnons are uti-
lized for advanced information processing and storage.
The magnon spectrum plays a vital role in determining
the magnetic behavior of a material, such as its mag-
netic ordering temperature and characteristics crucial for
spintronic applications. The spin Hamiltonian, which
includes both isotropic and anisotropic exchange inter-
actions, provides insights into the interactions between
magnetic moments and their tendencies to align in spe-
cific directions. The unique layered structure and mag-
netic properties of MPS3 materials offer a template for

designing new materials with tailored properties. By un-
derstanding the interplay between structure, magnetism,
and electronic properties in these materials, researchers
can engineer new compounds with desired functionalities
for specific applications.

In the realm of 2D monolayer systems governed by a
Heisenberg Hamiltonian, which inherently encompasses
short-range magnetic interactions and preserves spin ro-
tational symmetry, a theorem proposed by Mermin and
Wagner9 precludes the establishment of long-range ferro-
magnetic (FM) or antiferromagnetic (AFM) ordering at
any finite temperature. This theorem’s foundation rests
on the inherent characteristics of the isotropic Heisenberg
Hamiltonian, notably its continuous symmetry, which
facilitates the existence of long-wavelength spin waves
without an energy gap. These spin waves, owing to their
gapless nature, are thermally excitable at any finite tem-
perature, posing a significant challenge to the sustenance
of long-range magnetic order in low-dimensional struc-
tures. In contrast, scenarios that involve a breach in
the spin rotational invariance, exemplified by anisotropic
magnetic interactions within the framework of a two-
dimensional Ising model, alter this paradigm. In such
cases, the introduction of anisotropy leads to the forma-
tion of an energy gap in the spin wave spectrum. This
gapped spin wave spectrum plays a crucial role in stabi-
lizing long-range magnetic order by diminishing the influ-
ence of thermal fluctuations. Such stabilization becomes
prominent below a specific transition temperature, mark-
ing a stark divergence from the behavior predicted by the
isotropic Heisenberg model in two-dimensional systems.
A principal objective of the research outlined in this doc-
ument is to examine the presence and implications of
anisotropic exchange interactions within MPS3 materi-
als, with specific focus on phenomena such as single-ion
anisotropy (SIA) and Dzyaloshinskii-Moriya interactions
(DMI)10. This investigation is crucial in resolving the key
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question of whether two-dimensional (2D) MPS3 materi-
als can retain their magnetic order during the transition
from bulk to monolayer structures. Additionally, in this
study, we are examining the impact of biquadratic inter-
actions in MPS3 materials. Since these materials have a
collinear magnetic order, we expect that the biquadratic
interaction parameter might have a negative value. This
prediction aligns with the theoretical framework outlined
in Eq. (1) of the paper. Understanding these biquadratic
interactions is crucial for gaining a deeper understand-
ing of the complex magnetic properties of these materi-
als, particularly as they are reduced to lower-dimensional
states.

In terms of its structural properties, MPS3 crystal-
lizes in a monoclinic structure characterized by the C2/m
space group. The material’s bulk structure is made up
of layers stacked together and held in place by van der
Waals forces. Within each layer, a transition metal ion
M is surrounded by six sulfur atoms, forming a distorted
octahedral structure that contributes to the formation
of a hexagonal lattice interconnected by S ions. Cen-
tral to these hexagonal arrangements are two phospho-
rus ions, each bonded to three sulfur ions. The mag-
netic moments in MPS3, originating from the unpaired
d-electrons of the M ions, interact with each other, lead-
ing to the emergence of magnetic order. This aspect of
magnetic interaction and order is a cornerstone of the
intriguing properties exhibited by MPS3 materials, un-
derlining their potential for a wide array of applications
in the field of materials science. The paper is structured
as follows: In Section II we provide details of the elec-
tronic structure calculations and Monte Carlo (MC) sim-
ulations. In Section III we first report on the structural
optimization and magnetic order. We then describe the
electronic structure before detailing the magnetic inter-
actions. Finally, in Section V we discuss the implications
of our results for MPS3 single-layers and in the broader
context of magnetic vdW layered materials.

II. METHODS

The present study employs Density Functional Theory
(DFT) to investigate the magnetic and structural prop-
erties of materials. DFT is a well-established computa-
tional approach for the evaluation of electronic properties
of materials. However, it may not accurately capture the
electronic structure of materials with strongly correlated
electrons, such as transition metal oxides or rare earth
magnets, using standard DFT. To address this issue, the
DFT+U method is commonly utilized, which incorpo-
rates an on-site Coulomb interaction term (U) to better
account for the electronic interactions within the mate-
rial. To apply the DFT+U method to investigate mag-
netic properties, the appropriate value of the U parame-
ter must first be determined. This value can be derived
experimentally or from previous theoretical studies. It is
crucial to choose the correct U value, as it directly af-

fects the computed magnetic properties of the material.
In this work, the DFT calculations were performed us-
ing the Quantum Espresso11 (QE) and the all-electron
FLEUR12,13 code. The wavefunctions and charge den-
sity were expanded in plane waves using a cutoff of 50
Ry and 550 Ry, respectively, in the QE calculations. The
present study utilized the FLEUR-based calculations to
investigate the noncollinear(+SOC) magnetic properties
of MPS3. The wave function expansion cutoff in the in-
terstitial region is set to kmax = 3.8 a.u.−1

Table I: Lattice constants of optimized geometry in GGA+U .
The optimum U values have been chosen through comparing
the calculated bandgap with its experimental values.

Material Ueff (eV) a (Å) b (Å) Eg (eV)

FePS3 2.22 6.017 6.052 1.23

FePS3 exp. 5.940 5.972 1.2316, 1.4417

MnPS3 3.0 6.193 6.193 2.0

MnPS3 exp. 6.076 6.076 2.941,18

CoPS3 3.0 5.954 5.954 1.35

CoPS3 exp. 5.901 5.901 1.519

NiPS3 5.7 5.828 5.829 1.89

NiPS3 exp. 5.812 5.813 1.61

Semicore states, specifically the 3s and 3p orbitals of
the transition metal, are included in the calculations. In
the selection of Muffin-tin radii for magnetic ions across
various systems, considerations are made regarding the
influence of semicore electrons and lattice constants. As
delineated in Tab. I, the lattice constants exhibit a decre-
mental trend from Mn to Ni. In alignment with this ob-
servation, the Muffin-tin radii for Mn, Fe, Co, and Ni
have been determined as 2.9, 2.8, 2.7, and 2.6 atomic
a.u., respectively. To enhance the precision in the com-
parative analysis of calculations, the Muffin-tin radii for
P and S have been consistently set at 1.90 a.u. and 1.49
a.u., respectively, across all studied materials. The spin
magnetic moments from DFT+U calculations by choos-
ing these values are found to be in reasonable agreement
with the values predicted by Hund’s rule. The exchange-
correlation energy is approximated using the generalized
gradient approximation (GGA) in the Perdew-Burke-
Ernzerhof parameterization PBE14. To account for the
strong electron-electron interactions in materials with
correlated electrons, the DFT+U approach is utilized.
For a better description of the low-temperature ground
state of MPS3, we employ the GGA+U approach, fol-
lowing Dudarev’s approach15, which includes a spheri-
cally symmetric effective on-site Coulomb repulsion Ueff

to correct for the on-site electron-electron interaction (U)
of the 3d orbitals of the Fe atoms.

To determine the type of magnetic order of the ground
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(a) (b)

Figure 1: (a) 2× 2× 1 supercell of a MPS3 monolayer. The purple, blue, and yellow spheres are transition metals, P and S
ions, respectively. The dashed line shows the primitive cell containing two M ions. (b) Schematics of exchange interactions for
different neighbors.

(a) (b) (c)

Figure 2: Different antiferromagnetic ground states: (a) Néel ground state of MnPS3 (b) Long-bond zigzag found in FePS3

(the vertical Fe – Fe spacing in the figure is the ’long’ one), and (c) Short-bond zigzag found in CoPS3 and NiPS3. It should
be noted that according to our GGA+U+SOC calculations, the spins prefer to align along the b-axis for Mn, Ni, and Co, but
along the c-axis for FePS3.

state, we define a model spin Hamiltonian :

Hspin = HHeis +
1

2
B
∑
n.n

(S⃗i · S⃗j)
2

+
1

2
D
∑
n.n

D̂ij · (S⃗i × S⃗j) + ∆
∑
i

(S⃗i · d⃗i)2 (1)

where S⃗i represents the direction of magnetic spins, HHeis

is the usual Heisenberg Hamiltonian, B, D and ∆ are
the strengths of bi-quadratic, DMI and SIA, respectively.

Moreover, unit vectors D̂ij and d⃗i show the direction of
the DMI and the easy axis of magnetization at each site i,
respectively. It should be noted that the direction of DMI
is determined by Moriya rules10. Due to the centrosym-
metric 2/m point group symmetry, the MPS3 monolayer
has a mirror plane perpendicular to the b-axis. Accord-
ing to the Moriya rules, when a mirror plane includes
two ions, the D vector should be perpendicular to the
mirror plane. Magnetic interactions were obtained by
fitting a model Hamiltonian to total energy calculations
for various magnetic configurations, as described in ap-

pendix A.The Heisenberg Hamiltonian is given by

HHeis = −1

2

∑
i̸=j

Jij(S⃗i · S⃗j) (2)

Motivated by our previous work on orbital ordering in
FePS3, we distinguish between ’close’ first neighbors with
exchange parameter J1a and ’long-bond’ first neighbors
with J1b if the distances between the M atoms differ by
more than 0.05Å. In addition, we include interactions
up to the forth-nearest neighbors to ascertain the con-
vergence of the expansion. Consequently, the calcula-
tions for determining the J parameters require a 2×2×1
cell (with 40 atoms), and we use a 10×10×1 Monkhorst-
Pack k-point mesh20. The other exchange parameters B,
D and ∆ were obtained from a primitive cell (with 10
atoms), and we used a 20×20×1 optimized Monkhorst-
Pack k-mesh.
We conduct Monte Carlo simulations, treating the spin

as a classical vector of unit length, using the replica ex-
change method on a 30×30×1 simulation cell containing
3600 spins. Each spin is subjected to 2×10 steps at each
temperature. To minimize the correlation between suc-
cessive data, we collect statistics every 10 MC steps. The
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crystal structure figures are generated using VESTA soft-
ware21.
Magnon spectra are calculated analytically by re-

writing the spin operators by bosonic operators using
the Holstein-Primakoff transformation22. More details
are given in appendix B.

III. RESULTS AND DISCUSSION

In this section, we present the results of our study and
provide a comprehensive discussion of their implications
for the field.

A. Electronic structure

In our study, we observe the progressive filling of the
d-shell across MnPS3, FePS3, CoPS3, and NiPS3. In
the context of our study, the spin and orbital magnetic
moments (Tab. II) are pivotal in understanding their
magnetic properties. For MnPS3, the Mn2+ ion with a
3d5 configuration exhibits a high spin state, in line with
Hund’s rule, leading to a spin moment of 5 µB and a neg-
ligible orbital moment. Moving to FePS3, the Fe2+ ions
with a 3d6 configuration show a spin moment of 4 µB,
consistent with Hund’s rule, and the largest orbital mo-
ment. In CoPS3, Co

2+ ions feature a 3d7 configuration,
resulting in a 3 µB spin moment. Finally, NiPS3, with
Ni2+ ions having a 3d8 configuration, shows a reduced
spin moment of 2 µB. These theoretical predictions,
based on the oxidation state and electron configurations,
provide a framework for understanding the magnetic be-
havior of these compounds, although experimental vali-
dation is crucial for a comprehensive understanding.

Table II: Spin and Orbital moments of MPS3 2D magnets.

Material Spin moment (µB) Orbital moment(µB)

MnPS3(3d
5) 4.68 0.02

FePS3(3d
6) 3.61 0.77

CoPS3(3d
7) 2.51 0.22

NiPS3(3d
8) 1.52 0.11

In this paper, we observe distinct structural and
magnetic properties across MnPS3, FePS3, CoPS3, and
NiPS3. These materials adhere to an ideal honeycomb
lattice structure, whereas FePS3 exhibits a notable devi-
ation with its distorted honeycomb lattice. This unique
distortion23 in FePS3 at low temperatures leads to a sig-
nificant difference between the long-bond and short-bond
in its zigzag ground state.24 Remarkably, MnPS3 ex-
hibits a Néel AFM ground state, contrasting with NiPS3
and CoPS3, which both display a zigzag AFM ground
state. For FePS3, the magnetic order at low tempera-
tures is characterized as a long-bond zigzag, highlighting
the impact of lattice distortion on its magnetic proper-
ties. These findings elucidate the complex relationship

between lattice structure and magnetic behavior in tran-
sition metal phosphosulfides. The different magnetic or-
ders are shown in Fig. 2.

Therefore, high-accuracy geometry optimization is cru-
cial, requiring careful selection of the U parameter and
accurate representation of the magnetic order. For
MnPS3, a primitive cell with two Mn ions is utilized,
aligning with its Néel ground state. In contrast, for
FePS3, CoPS3, and NiPS3, we employ both 2 × 1 × 1
and 1 × 2 × 1 supercells comprising four magnetic ions
to adequately represent short-bond and long-bond zigzag
states, respectively. The optimized lattice constants, pre-
sented in Tab. I, show excellent correlation with exper-
imental values. The U parameter is meticulously cho-
sen to enhance electron-electron correlation within the
d-shells. Determining the optimal U value proves chal-
lenging, as the value derived using the Density Functional
perturbation theory25 fails to reproduce the experimental
bandgap. Consequently, we adjusted the U parameter to
align with the experimental bandgap. This adjustment
also considers the variability in reported experimental
bandgaps for bulk materials, adding to the complexity of
accurately determining the U value. The final U param-
eters, which effectively describe the bandgap, structural
properties, and magnetic moments of the ions, are de-
tailed in Table I.

Fig. 3 in our study elucidates the contributions of p
and d orbitals from P, S, and M (Mn, Fe, Co, Ni) ions
in MPS3 materials. For FePS3, in the energy range ex-
tending from the Fermi level to −2 eV, the d orbitals of
Fe are predominantly influential, especially for the shal-
low states. In contrast, deeper energy bands demonstrate
a pronounced hybridization between Fe’s d-electrons and
the p-electrons of sulfur. For MnPS3, CoPS3, and NiPS3,
the p orbitals of sulfur exhibit a more pronounced effect
below the Fermi energy. This distinct behavior in FePS3
can be attributed to the crystal field effects arising from
its distorted honeycomb lattice, leading to orbital order-
ing where the in-plane dx2−y2 orbital plays a pivotal role.
This analysis underscores the significant impact of crys-
tal field and lattice structure on the electronic states of
these materials.

Fig. 4 depicts the orbital-resolved electronic density
of states for MnPS3, FePS3, CoPS3, and NiPS3 mono-
layers, provides key insights into how the crystal field
affects d-shell splitting. For MnPS3, CoPS3, and NiPS3,
the dzy and dzx orbitals are particularly influential near
the Fermi energy, a characteristic tied to t2g orbitals. In
contrast, for FePS3 with its distorted lattice, the dx2−y2

(eg) orbital becomes more significant. This difference
underscores the impact of lattice geometry on electronic
properties, particularly in how it influences the behav-
ior of d-sublevels in these materials. Since the magnetic
properties in MPS3 are governed by the super-exchange
mechanism, the p-orbital of S ions as intermediate be-
tween magnetic ions plays a crucial role. According to
Anderson’s rule26, when t term as kinetic energy in Hub-
bard Hamiltonian increases, the J value will get stronger.
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Figure 3: Electronic density of states (DOS) calculated with GGA+U at optimized lattice coordinates for various magnetic
orderings: (a) Néel-AFM (b) Long-bond zigzag (c) Short-bond zigzag. For these calculations, we consider one atom of each
species and plot the DOS for spin-up (up arrow) and spin-down (down arrow). The spin-up direction is defined by the majority
spin of the magnetic ion selected for the plot. According to Wyckoff’s positions, two types of S atoms have different distances
from magnetic ions. For Mn, the distances Mn-S1 and Mn-S2 are 2.690 and 2.687 Å, respectively. That’s why the DOS for
S-3p coincide with each other. For Fe, Fe-S1 and Fe-S2 are 2.616 and 2.609 Å, respectively. For Co, Co-S1 and Co-S2 are 2.523
and 2.520 Å, respectively. For Ni, Ni-S1 and Ni-S2 are 3.323 and 3.229 Å, respectively.

Table III: Calculated Heisenberg couplings Ji(meV) up to the forth neighbors, bi-quadratic exchange interaction B(meV),
Dzyaloshinskii-Moriya exchange interaction D(meV) and single ion anisotropy ∆(meV) for different Ueff(eV) parameters. Neg-
ative and positive value denotes AFM and FM exchange interaction, respectively. Note that |S| = 1 has been used in the
definition of the spin Hamiltonian. By using the obtained couplings, we perform MC simulations to find the Néel (TN) tem-
perature (K).The temperature value in parenthesis would result if the biquadratic couplings were neglected.

Material Ueff J1a J1b J2 J3 J4 ∆ D B TN

MnPS3 3.00 −7.89 −7.89 −0.21 −3.47 0.02 −0.025 0.00 −0.95 76.2 (73.0)

FePS3 2.22 −3.26 4.01 −1.24 −5.71 1.50 −0.89 −0.34 −2.10 70.0 (66.9)

CoPS3 3.00 3.47 3.47 0.64 −10.85 0.06 −0.14 0.00 −5.53 86.5 (67.7)

NiPS3 5.70 2.46 2.46 0.14 −11.58 0.06 −0.22 0.00 −6.91 94.0 (70.6)
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Figure 4: Orbital-resolved electronic density of states for (a) MnPS3, (b) FePS3, (c) CoPS3 and (d) NiPS3 monolayers. We
consider the ground-state spin pattern for each material. For these calculations, we consider one atom of each species and plot
the DOS for spin-up (up arrow) and spin-down (down arrow). The spin-up direction is defined by the majority spin of the
magnetic ion selected for the plot.

(a)

0 50 100 150 200
T (K)

0.0

0.2

0.4

0.6

0.8

1.0

Or
de

r p
ar

am
et

er

Δ = 0.025 (meV)
Δ = 0.25 (meV)

(b)

0 50 100 150 200
T (K)

0.0

0.2

0.4

0.6

0.8

1.0

Or
de

r p
ar

am
et

er

(c)

Figure 5: Order parameter versus temperature (a,b) with, and (c) without bi-quadratic exchange interaction. Without the
B-term, the critical temperature is by 73, 67.7, and 70.6 K for Mn, Co, and Ni, respectively. (b) shows the effect of increasing
∆ on the order parameter of MnPS3.
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In addition, the t term is controlled by the level of hy-
bridization. For MnPS3, the hybridization is stronger as
compared to other materials, that’s why J1 is larger than
other materials (Tab. III).

Here, we study the effective spin Hamiltonian for
MPS3 monolayers. In our investigation, we calculate the
effective spin Hamiltonian, aiming to identify the ground
state in large simulation cells and to analyze the finite-
temperature properties of M (= Mn, Fe, Co, Ni)PS3
monolayers. Fig. 1 illustrates the various exchange in-
teractions according to distances between magnetic ions
and Tab. III reports their values (in meV, for |S| = 1),
as well as the optimum value of Ueff (effective Coulomb
interaction) in eV used for each compound. Notably,
the geometry optimization performed at the start of our
calculations shows that the distances between neighbor-
ing M atoms are sufficiently distinct only in the case
of FePS3. This is why distinct first-neighbor interac-
tions (J1a and J1b) are determined only for Fe, whereas
Mn, Co, and Ni can be described with one unique first
nearest-neighbor exchange interaction. Since J4 is found
to be considerably smaller than the other interactions, we
can assume that the Heisenberg Hamiltonian is converged
with respect to the interaction range considered. Inter-
estingly, the parameter J3 that connects parallel chains
of the honeycomb lattice is always negative, i.e. AFM
exchange is preferred. The absolute value of J3 increases
when going from Mn over Fe and Co to Ni, as already
noticed earlier27. Thus, the tendency to AFM chain in-
teractions is found to increase with d-band filling. The
same trend is observed for the biquadratic coupling; it
increases toward the end of the transition metal series.
However, the values reported in Tab. III refer to effective
spins normalized to |S| = 1, while the size of the mag-
netic moment decreases along the transition metal series
from Mn to Ni. Therefore, the single-ion anisotropy is
found to be the largest for Fe. As we pointed out earlier,
we attribute this finding to the unusually large orbital
magnetic moment in Fe24.

MnPS3 emerges as an almost ideal antiferromagnetic
(AFM) monolayer. This is concluded from J1 and J3
being both negative, a characteristic of the Néel-type an-
tiferromagnetism. In absolute terms, J1 is significantly
larger for MnPS3 than the more long-ranged interactions.
Thus, the behavior of MnPS3 is in line with the general
expectations for magnetic insulators and makes this ma-
terial distinct from the others. The small next-nearest
neighbor interaction J2 would prefer antiparallel cou-
pling, but is frustrated in the Néel-type ground state. In
the remaining three materials, FePS3, CoPS3 and NiPS3,
the dominant role of J3 results in a magnetic ground state
formed by zig-zag chains that are coupled antiferromag-
netically to each other. The spins along the chains are
aligned ferromagnetically, which is favorable due to the
positive values of J1 for Co and Ni. While in CoPS3
and NiPS3 the spin chains may run in any of the three
directions compatible with the honeycomb lattice, two
specific directions of the spin chain relative to the crystal

lattice are selected by the distinct values of J1a and J1b:
the ’long bond’ between two neighbor Fe atoms is part
of the FM chain, as J1b favors FM interaction. The spin
orientation alternates from one chain to the next (as in
CoPS3 and NiPS3) to satisfy the antiparallel inter-chain
coupling dictated by J3 in all transition metal phospho-
sulfides considered here.

It is widely recognized that the mere consideration of
bilinear Heisenberg exchange interactions falls short in
accurately describing the magnetic behavior of complex
materials28. In scenarios devoid of spin-orbit coupling,
the most consequential higher-order term emerges as the
bi-quadratic term, delineated as the fourth-order pertur-
bation within the framework of the Hubbard model29.
Notably, a positive B term predominantly facilitates
the emergence of noncollinear spin configurations; con-
versely, a negative B value is instrumental in engendering
collinear ground states. For the family of MPS3 materi-
als, empirical evidence substantiates the collinear nature
of the magnetic ground states, corroborated by the ob-
servation of negative B terms. These findings are sys-
tematically documented in Tab. III. Specific attention
is bestowed upon FePS3, owing to the proximal spa-
tial arrangement of its first nearest neighbors, necessi-
tating the calculation of both (B1a = −2.10 meV) and
(B1b = −1.22 meV). To elucidate the influence of the B
term on the critical temperature and order parameter of
MPS3 materials, MC simulations were meticulously con-
ducted withB set to zero. The resultant critical tempera-
tures, adjusted in light of the removal of B, are presented
in parentheses in Tab. III. The omission of the B term
precipitates a diminution in the critical temperature, at-
tributable to the attenuation of exchange coupling’s ca-
pacity to counterbalance thermal fluctuations.

The presentation of the results concerning the order
parameters of Néel and short-bond zigzag orders, as de-
rived from the spin Hamiltonian (Eq. (1)), is illustrated
in Fig. 5. It is noted that the definition of the order
parameter for long-bond zigzag order in FePS3 is not
feasible through classical MC simulations without incor-
porating spin-phonon coupling24. For the elements Mn,
Co, and Ni, the observed transitions exhibit characteris-
tics akin to those of the Kosterlitz-Thouless transition,
attributed to the relatively weak single-ion anisotropy.
Conversely, FePS3 demonstrates a strong out-of-plane
easy-axis anisotropy, aligning its behavior more closely
with that predicted by the Ising model. The Monte Carlo
simulations underscore the insufficiency of the B-term
alone to significantly alter the order parameter (or the
magnetic ground state spin pattern). However, they do
indicate a significant increase of the critical temperature
if the B-term is included.

Regarding the calculated values for single-ion
anisotropy, these are detailed in Tab. III. The necessity
of employing GGA+U+SOC for these calculations
is highlighted, emphasizing the pivotal role of the
orbital moment. As summarized in Tab. II, which
categorizes each system’s spin and orbital moments as
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per GGA+U+SOC calculations, Fe exhibits the largest
orbital moment, thus signifying considerable ∆. This is
plausible given Fe’s electronic configuration ending at
3d6. Conversely, Mn, with a closed-shell configuration
(3d5), exhibits an almost negligible orbital moment. The
smallness of the energy scale associated with ∆ is also
evidenced by the possibility of a spin-flop transition30,31

in this material. To elucidate the orientation of the
easy-axis for each material, we analyze the lattice vec-
tors as depicted in Fig. 1, calculating the total energies
utilizing the GGA+U+SOC method. Our calculations
confirm that for Fe-based systems, the easy-axis aligns
with the c-direction, perpendicular to the a− b plane. In
contrast, for Co and Ni, the easy-axes are oriented along
the b and a directions, respectively. In the case of Mn,
the a − b plane emerges as the easy plane, evidenced
by the equal total energies for both a and b directions.
Another consequence of SOC is the Dzyaloshinskii-
Moriya interaction. As indicated in Tab. III, the D
term is nonzero exclusively for Fe. This is attributed to
the non-ideal honeycomb lattice structure of Fe-based
systems, which lack inversion symmetry. Conversely, the
other materials, characterized by an ideal honeycomb
lattice, exhibit inversion symmetry, resulting in a zero
D term.

Table III also includes the calculated critical temper-
atures (in K) obtained from Monte Carlo simulations.
At low temperatures, these simulations converge to the
AFM ground state of the respective material, i.e. Néel
in MnPS3 and chain-like in the other three compounds.
From FePS3 over CoPS3 to NiPS3, we find a trend to-
wards increasing ordering temperature TN . Fig. 5 illus-
trates the order parameter of the magnetic ground state
for MPS3. Following the Mermin-Wagner theorem9, the
absence of anisotropic exchange interactions precludes
the possibility of a thermodynamically stable phase tran-
sition and enduring magnetic order in two-dimensional
systems. However, in this instance, the order parame-
ter asymptotically approaches unity at low temperatures,
yet exhibits an abrupt decline to zero, indicating a lack
of well-defined stability. To address this, the strength
of single-ion anisotropy of MnPS3 was incrementally in-
creased from 0.025 to 0.25 meV (Fig. 5b), analogous to
the application of a magnetic field along the easy-axis di-
rection. Consequently, it can be inferred that MnPS3, in
its two-dimensional form, maintains a stable Néel ground
state at low temperatures. To enhance this stability at
elevated temperatures, the application of a magnetic field
or an increase in the influence of single-ion anisotropy is
necessitated.

IV. MAGNON SPECTRA

Starting from the spin Hamiltonian, Eq. (1), we calcu-
lated magnon spectra using the Holstein-Primakoff trans-
formation and linearizing around the magnetic ground
state of each compound. In this procedure, the bi-

quadratic term in the Hamiltonian is considered approx-
imately via a renormalization of the nearest-neighbor
Heisenberg couplings and the on-site anisotropy constant.
More details of the calculations can be found in the ap-
pendix.

Results for MnPS3 are shown in Fig. 6. For the Néel
ground state, the crystallographic and the magnetic unit
cell are identical (both hexagonal honeycomb lattice),
and magnon dispersions are shown along the ΓK and
ΓM path. Since both the single-ion anisotropy and the
biquadratic term are small for this material, the zero-
energy gap in the magnon spectrum is tiny (barely visi-
ble in the plot). Our result for the magnon spectrum of
MnPS3 can be compared with the spectra calculated by
Olsen32 and by Bezazzadeh et al.33. In their calculations,
the magnon spectra reach their maxima at about 8 cm−1

if Ueff = 5eV is used32,33, and about 13 cm−132, similar
to ours, using Ueff = 3eV. This confirms the commonly
observed trend that large Ueff leads to weaker magnetic
interaction, and hence softer magnon spectra.

For FePS3, CoPS3 and NiPS3 that possess zig-zag
chains as their magnetic ground state the magnetic unit
cell is twice as larger as the crystallographic unit cell, i.e.,
it contains four transition metal atoms. Consequently,
the magnon spectra of these materials, shown in Fig. 7,
develop two branches. The lower branch does not reach
zero at the small wavevector, as one would expect for
’acoustic’ FM magnons; the sizeable gap in the magnon
spectra at Γ even increases in size when going from Fe to
Co to Ni. From our calculated exchange interactions, we
conclude that the increasing biquadratic coupling term
is mostly responsible for opening this gap. We note that
such a gap is known to give rise to a logarithmic correc-
tion to the magnetic ordering temperature, see e.g. Ref.
28. The upper and the lower magnon branches show
large splitting along ΓY which increases from Fe to Ni.
This dispersion reflects the AFM coupling between the
chains of parallel spin; its size is mostly governed by the
exchange constant J3 that increases along the transition
metal sequence, as evidenced by the data in Tab. III.
The direction ΓX in the spectra reflects the dispersion
along the chains of parallel spin. The spectra for FePS3,
the material with the ’long-bond’ zigzag ground state,
shows marked difference to CoPS3 and NiPS3 that have
isotropic nearest-neighbor exchange J1a = J1b. In FePS3,
one observes an avoided crossing of the two magnon
branches along ΓX. This occurs because the interactions
J1a and J1b that couple the parallel spins in the zig-zag
chain have opposite sign. As a consequence, the energy
of the upper branch at Γ goes below the lower branch
when reaching X, and vice versa for the lower branch
starting at Γ that rises in energy.

Recently Yan et al.34 calculated magnon spectra in
bulk samples for all four compounds studied here on the
basis of a bi-linear Hamiltonian with exchange interac-
tions up to the third neighbor shell. This means the
forth neighbor interactions were not taken into consid-
eration; moreover, they found a relatively large single-
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Figure 6: Magnon spectrum for MnPS3 in the Néel state.
To the right, the path in the Brillouin zone is shown both for
the zig-zag chain (top) and the Néel (bottom) structure.

ion anisotropy but ignored biquadratic interactions. The
range of dispersion of the magnons predicted by them
is in reasonable agreement with our magnon spectra, al-
though details are different. This could be due to the dif-
ference in the magnetic ground state used as the starting
point (Yan et al. did not distinguish between ’long-bond’
and ’short-bond’ zig-zag chains), or due to differences be-
tween the bulk and the monolayer.

Finally, we compare our calculated magnon spectra of
monolayers to experimentally observed spectra from neu-
tron diffraction at bulk materials. For MnPS3, we find
overall good agreement with the experimental spin wave
dispersion published in Ref. 35. In this neutron diffrac-
tion study, the spin waves reach their maximum energy
at 11.5 meV, very close to our result of 12 meV. The
observed magnon gap at the Γ-point is small, less than
0.5 meV, thus confirming the very small value of the mag-
netic anisotropy found in our calculations. Moreover,
a recent neutron spectroscopy study36 showed that the
DMI in this material is negligibly small, which matches
with our calculations.

For FePS3, the neutron diffraction data23 shows a
magnon branch starting at 17 meV dispersing downward
to about 15 meV and then bending up again. Because of
the incipient downward dispersion, we believe that this
is the upper branch in our calculated spectrum. The
lower branch may have escaped detection because the
time-of-flight detection of the neutrons has a cut-off at
low energy. In a later analysis of the experimental data
by the same group37, an improved fit of the data has
been obtained by invoking a biquadratic coupling, al-
beit with a smaller exchange constant K than calculated
by us. The experimental fit resulted in a very large
single-ion anisotropy of about 2.5 meV to explain the
magnon gap, whereas our theoretical description works
with a much smaller ∆ = −0.89meV and explains the
magnon gap by a relatively large value of K which effec-
tively renormalizes the anisotropy. Moreover, we specu-
late that the branches at higher energy (up to 40 meV)
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Figure 7: Magnon spectra for (a) FePS3 in the long-zigzag
chain AFM state, (b) CoPS3 in the short-zigzag chain AFM
state, (c) NiPS3 in the short-zigzag chain AFM state. For all
materials, zig-zag chains of parallel spins run along ΓX.

detected in the neutron scattering experiment are mixed
phonon-magnon branches with a small magnon admix-
ture, since according to our calculations FePS3 does not
support such hard pure magnon modes. A hybridization
of magnon and phonon excitations in FePS3 has been
proposed recently38–40 on theoretical grounds.
For CoPS3, inelastic neutron scattering41,42 detected

magnonic losses at 15 meV and 33 meV. The lower
value is in the range where our calculation predicts a
magnon branch. The experimentally observed upper
branch might again result from a hybridization with
phonons.
For NiPS3, inelastic neutron scattering43 detected

losses both below 10 meV and in the 40 to 50 meV range.
A magnon model fitted to experimental neutron diffrac-
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tion data43 placed the magnon bands in the range of
8 meV, dispersing up to 50 meV. This is rather different
from the magnon spectra presented here, which start at
higher energy (18 meV) but then show less dispersion,
reaching up to 28 meV. The reason for the disagreement
is presently not understood.

V. CONCLUSION

In conclusion, this study offers a detailed examina-
tion of the magnetic properties of MPS3 2D materi-
als, utilizing the DFT+U+SOC approach and Monte
Carlo simulations. It highlights significant findings in
the understanding of Heisenberg couplings, biquadratic
and Dzyaloshinskii-Moriya interactions, and single ion
anisotropy across various MPS3 compounds. Since these
materials are 3D magnetic semiconductors, applying the
Hubbard parameter is essential to enhance the electron-
electron correlations. The optimum U parameters have
been chosen as 3.0 eV for Mn, 2.22 eV for Fe, 3.0 eV for
Co, and 5.57 eV for Ni, respectively. Although magnetic
ions form a hexagonal lattice in all materials, the way
electrons fill the d shells of these ions results in different
spin patterns in the ground state. The geometry opti-
mization reveals that only in the case of FePS3, there
is a distortion from the ideal hexagonal lattice configu-
ration. Specifically, the Fe-Fe distances between nearest
neighbors vary by 0.14Å. Due to this distortion, we cal-
culate two different biquadratic exchange terms along the
longer and shorter bond distances.

To clarify the importance of the biquadratic exchange
for these materials, we conduct Monte Carlo simulations
both with and without the biquadratic term. Our re-
sults indicate that the absence of the biquadratic term
leads to a reduction in the Néel temperature and alters
the order parameter, which signifies the spin-spin cor-
relation. Specifically, the order parameter undergoes a
transitions from 1 (indicating long-range order) to 0 (in-
dicating a paramagnetic phase) at lower temperatures.
In MnPS3, this effect is less pronounced due to a smaller
biquadratic term. MnPS3, with its Néel ground state,
behaves like a typical magnetic semiconductor where the
exchange interaction parameters (J) decrease with in-
creasing distances. Additionally, the Néel temperature
obtained from MC simulations is 73.6 K, which closely
aligns with the experimental value of 78 K observed in
the bulk system. However, for other materials that fea-
ture AFM zigzag chains, the third-nearest-neighbor ex-
change interaction (J3), which connects these chains, is
crucial for stabilizing the zigzag ground state, especially
in the case of NiPS3. Spin-orbit coupling effects, par-
ticularly single-ion anisotropy and Dzyaloshinskii-Moriya
interactions, along with orbital moment (0.77 µB), are
most pronounced in Fe due to the electronic configura-
tion of Fe2+ which ends up as 3d6. For other materials,
the Dzyaloshinskii-Moriya interaction values are nearly
zero, and the orbital moments are 0.02, 0.11, and 0.22

µB for Mn, Ni, and Co, respectively. Consequently, the
strength of the single-ion anisotropy in these materials
follows a trend similar to that of the orbital moments.
Moreover, the biquadratic interactions significantly en-
hance the gaps in the magnon spectra of Fe, Co and Ni
compounds.
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Appendix A: Derivation of the spin Hamiltonian

a. Derivation of the Heisenberg term The exchange
parameters of the Heisenberg model as detailed in Eq. (2)
are determined by fitting to total energies obtained for
the ions fixed at their previously determined, materials-
specific ground state positions, but varying collinear spin
configurations, similar to our previous work24. We ana-
lyze a supercell configuration of dimensions 2×2×1, com-
prising 40 ions that include 8 magnetic atoms, along-
side 8 phosphorus and 24 sulfur ions. Analytical cal-
culations permit the determination of distances between
magnetic atoms extending to the fourth-nearest neigh-
bors. Each category of nearest neighbor interaction is
associated with a corresponding exchange coupling con-
stant, denoted as J . It is pertinent to mention that in our
analytical derivations, the magnitude of the spin, |S|, is
set to 1, which simplifies the calculation of the exchange
parameter J .
Prior to conducting Density Functional Theory aug-

mented with Hubbard U (DFT+U) calculations, up to
15 collinear spin configurations are postulated, and their
total energies are computed analytically. Here, ferro-
magnetic (FM) interactions among nearest neighbors
contribute a value of +1/2, whereas antiferromagnetic
(AFM) interactions contribute a value of −1/2. Subse-
quently, the total energies for these configurations are
quantitatively assessed using the DFT+U method. By
employing a least-squares fitting technique, the low-lying
energies are mapped onto the previously derived analyti-
cal expressions, thereby facilitating the extraction of the
J parameters.
b. Derivation of the biquadratic term To derive the

biquadratic exchange term, B, it is necessary to analyze
noncollinear configurations where the contributions from
the Heisenberg exchange term in the total energy dif-
ferences are degenerate. To achieve this, we consider a
2×1×1 supercell configuration, comprising 20 atoms with
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4 magnetic ions. The spins of the first and last magnetic
ions are held fixed, while the orientations of the spins
of the intervening magnetic ions are rotated such that
the sum of their spins equals zero, i.e., Si + Sj = 0.
This configuration ensures that the observed variations
in total energy are solely attributable to the biquadratic
term, B. For the specific case of FePS3, to calculate
the biquadratic term B1b, we adopt a similar strategy
but utilize a 1×2×1 supercell. Here, the spatial arrange-
ment of the atoms within the supercell is designed such
that the distances between the intermediate atoms corre-
spond to d1b. This approach enables the isolation of the
biquadratic exchange contributions from other magnetic
interactions within the system.

HB = B
∑
n.n

(S⃗i · S⃗j)
2 (A1)

c. Derivation of the anisotropic terms For the eval-
uation of anisotropic terms, all calculations are con-
ducted using the primitive cell, which comprises 10 atoms
with 2 magnetic ions. To deduce the strength of the
Dzyaloshinskii-Moriya interaction (DMI), it is essential
to consider the influence of spin-orbit coupling (SOC).
The computational framework utilized for these calcula-
tions is GGA+U+SOC. Within this framework, we need
to select magnetic configurations in such a way that the
differences in total energies primarily reflect the effects of
SOC, while the contributions from single-ion anisotropy
after SOC and other interactions before SOC are ren-
dered degenerate. We examine two distinct magnetic
configurations. In the first configuration, the orienta-
tions of the spins are aligned along the a-axis and the
negative b-axis. In the second configuration, the spins
are aligned along the a-axis and the positive b-axis. The
total energy differences of these two configurations can
be attributed to DMI.

For the determination of single-ion anisotropy (SIA),
we analyze a pair of magnetic configurations wherein all
spins are aligned with either the easy-axis or the hard-
axis. These orientations are strategically chosen to en-
sure the cancellation of the DMI within the framework
of GGA+U+SOC calculations. Consequently, the differ-
ences in total energies observed between these configura-
tions can be exclusively attributed to the effects of SIA. It
should be noted that the total energies of the two config-
urations are the same before considering SOC, indicating
the degeneracy of isotropic terms.

Haniso = D
∑
n.n

D̂ij · (S⃗i × S⃗j) + ∆
∑
i

(S⃗i · d⃗i)2 (A2)

Appendix B: Calculation of magnon spectra

a. Bosonisation We define spin operators Ŝ =
(Ŝx, Ŝy, Ŝz) =

(
1
2 (Ŝ

+ + Ŝ−), 1
2 (Ŝ

+ − Ŝ−), Ŝz
)
at lattice

site j via bosonic creation and annihilation operators

Ŝ+
j =

√
2S −

b̂†j b̂j

2S
b̂j ,

Ŝ−
j = b̂†j

√
2S −

b̂†j b̂j

2S
,

Ŝz
j = S − b̂†j b̂j

For sufficiently large |S|, it is sufficiently accurate to use
a Taylor expansion of the square root to lowest order,
yielding

Ŝ+
j ≈

√
2S b̂j ,

Ŝ−
j ≈ b̂†j

√
2S ,

Ŝz
j = S − b̂†j b̂j .

For a detailed calculation of the Hamiltonian in terms of
the b̂ and b̂† operators, we refer to Kartsev et al., Ref. 28,
supplementary section 15. A Fourier transformation of

the operators b̂ and b̂† is performed for each inequivalent
lattice site, and consequently the operators acquire an
additional index k.

Figure 8: Supercell used to calculate magnons of materials
with ferromagnetic zigzag chains as ground state. There are
two chains, 1–4–1–4 . . . and 2–3–2–3 . . . , that are antiparallel
to one another.

In a honeycomb lattice, there are two inequivalent lat-
tice sites, and if the Neel ground state is considered, these
two sites are sufficient. For those systems that display
zig-zag chains as their ground state, we use a supercell
containing four transition metal atoms, as shown in Fig.
S1. The Hilbert space of the spins of the four atoms is
spanned by the vector

Ψk =
(
b1,k, b

†
3,−k, b4,k, b

†
2,−k, b

†
1,−k, b3,−k, b

†
4,−k, b2,k

)
The first indices of the operators refer to the atoms num-
bered in Fig. S1. Note that, in case of FePS3, the long
bond (with interaction J1b) is between atoms 2 and 3.
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b. Renormalization of interactions due to biquadratic
term The biquadratic term, coupling two neighboring
atomic sites i and j, is approximated by

(Si ·Sj)
2 ≈ 2S3(b†i bj + bib

†
j − 3b†i bi − 3b†jbj)+S4 , (B1)

retaining the highest powers in |S|.
The Hamiltonian Hspin in Eq. (1) has on-site and

nearest-neighbor terms, in addition to the more long-
ranged terms in the Heisenberg Hamiltonian. The
Dzyaloshinskii-Moriya interaction between nearest neigh-
bors is very small; in fact it vanishes due to symmetry if
all nearest neighbor bonds have the same length. There-
fore we can disregard the canting of spins.

Both the biquadratic term and the Heisenberg terms
J1a and J1b run over nearest neighbors; using the ap-
proximation (B1) it is therefore possible to merge them
by introducing

J̃1a = J1a +BS2

J̃1b = J1b +BS2

∆̃ = ∆+ 3BS2

Note that Ŝz invokes an on-site operator product b†i bi;
this is why the on-site anisotropy ∆ needs to be renormal-
ized, too. The factor 3 appearing in the above equation
stems from the 3 nearest neighbors.

With these transformations, the Hamiltonian is
brought to the bilinear form

Hspin = −1

2

∑
k

Ψ†
kH(k)Ψk +H0 (B2)

c. Holstein-Primakoff Hamiltonian In the follow-
ing, we refer to the renormalized case with |S| = 1,
as in the main text of the manuscript. For zig-zag
chains, a supercell containing four magnetic ions, Fig.
S1, is used. For notational brevity, we rescaled the k-
vector to match the square-shaped Brillouin zone, kxa 7→
kx, kya

√
(3) 7→ ky with a being the lattice constant.

After the bosonisation of the four spin operators, the
Hamiltonian can be expressed by a (8 × 8) matrix (see
Ref.44)

H(k) =

(
h(k) 0

0 hT (−k)

)
(B3)

The two blocks on the diagonal are given by (4× 4) ma-
trices h(k) with

h(k) =

(
d(k) γ(k)

γ†(k) d(−k)

)
(B4)

For the long zig-zag phase, e.g. in FePS3, the entries
are expressed using Pauli’s (2× 2)σ-matrices

d(k) = σ0(∆̃− J̃1b + 2J2 + 3J3 − 2J4 − 2D sin kx + 2J2 cos kx)

+ σ1 [4 cos(ky/2)(D sin(kx/2) + J2 cos(kx/2))]

γ(k) = σ0

[
(J̃1a + J̃1b)e

iky/6 cos(kx/2) + 2J4
(
e−5iky/6 cos(kx/2) + eiky/6 cos(3kx/2)

)]
+ σ1

[
2J3 cos kx + J3e

iky + 2J4e
iky cos kx + J̃1a

]
e−iky/3

For the short zig-zag phase, e.g. in CoPS3 and NiPS3, we have

d(k) = σ0(∆̃− 2J̃1a + J̃1b + 2J2 + 3J3 − 2J4 − 2D sin kx + 2J2 cos kx)

+ σ1 [4 cos(ky/2)(D sin(kx/2) + J2 cos(kx/2))]

γ(k) = σ0

[
2J̃1ae

iky/6 cos(kx/2) + 2J4
(
e−5iky/6 cos(kx/2) + eiky/6 cos(3kx/2)

)]
+ σ1

[
2J3 cos kx + J3e

iky + 2J4e
iky cos kx − J̃1b

]
e−iky/3

To calculate the magnon spectrum, we use the method
described in Ref. 33: First, we calculate the Cholevsky
decomposition of h(k), i.e. we calculate the square ma-
trix R(k) with the property h(k) = R†(k)R(k). A ma-
trix with both positive and negative eigenvalues is con-

structed by X(k) = R(k)ϕ̂R†(k), where ϕ̂ is the so-called
para-unitary matrix, i.e., a diagonal matrix with alter-

nating entries of 1 and −1, (ϕ̂)ij = (−1)jδij . The pos-
itive eigenvalues ε(k) of X(k) can be interpreted as the
frequencies of the magnon branches; the spin pattern be-
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longing to the modes can be obtained from

Ψk = R−1(k)U(k)(ϕ̂L(k))1/2

Here L is a diagonal matrix obtained as L(k) =
U†(k)X(k)U(k) with the unitary matrix U . Hereby, the
columns and row of U should be arranged in such a way
that the sign of the eigenvalues alternates, in the same

way as the diagonal elements of ϕ̂ alternate in sign.
d. Neel antiferromagnet In this case, that applies

to MnPS3, the calculation of the magnon modes is much
simpler. Only two magnetic ions per unit cell are re-
quired. The unitary transformation U(k) can be written
down explicitly. Alternatively, one may skip the para-
unitary matrix, and use a Bogoliubov transform combin-

ing the operators b̂ and b̂† of the two sublattices (instead
of a unitary transform), see e.g. Ref. 32, appendix. The
final expression for the magnon mode reads in this case

ε(k) =

= −S
[(
−∆̃ + 3J̃1 + (γ2(k)− 6)J2 + 3J3

)√
1− |γ̃(k)|2

]

with

γ̃(k) =
J̃1γ1(k) + J3γ3(k)

3J̃1 + (γ2(k)− 6)J2 + 3J3 + (γ4(k)− 6)J4

and

γj =

NN(j)∑
j=1

eik·Rj

Here NN(j) is the number of neighboring magnetic ions
in the jth neighbor shell, and the Rj are the positions of
these atoms.
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29 M. Hoffmann and S. Blügel, Phys. Rev. B 101, 024418
(2020).

30 G. Long, H. Henck, M. Gibertini, D. Dumcenco, Z. Wang,
T. Taniguchi, K. Watanabe, E. Giannini, , and A. F.
Morpurgo, Nano Lett. 20, 2452 (2020).

31 M. Matthiesen, J. R. Hortensius, S. Mañas-Valero,
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