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DECOMPOSING ABELIAN VARIETIES INTO SIMPLE FACTORS:

ALGORITHMS AND APPLICATIONS.

RUBÍ E. RODRÍGUEZ AND ANITA M. ROJAS

Abstract. We give an effective procedure to explicitly find the decomposition of a polarized
abelian variety into its simple factors if a period matrix is known. Since finding this datum is
not easy, we also provide two methods to compute the period matrix for a polarized abelian
variety, depending on the given geometric information about it.

These results work particularly well in combination with our previous work on abelian vari-
eties with group actions, since they allow us to fully decompose such varieties by successively
decomposing their factor subvarieties, even when these no longer have a group action. We
highlight that we do not require to determine the full endomorphism algebra of any of the
(sub)varieties involved.

We illustrate the power of our algorithms with two byproducts: we find a completely de-
composable Jacobian variety of dimension 101, filling this Ekedahl-Serre gap, and we describe
a new completely decomposable Jacobian variety of CM type of dimension 11.

1. Introduction

A period matrix Π = (E Z) for a polarized abelian variety A, defining the relation between
the real and the complex coordinate functions of its lattice and of its vector space respectively,
captures deep geometric information about A. For instance, if A is defined over Q and has
dimension g, then Z is an algebraic point in the Siegel space Hg if and only if A is of CM
type; that is, if and only if the simple factors of A have complex multiplication, see [24]. As
a consequence, period matrices are useful tools to describe loci of moduli spaces of abelian
varieties with interesting geometric or arithmetic properties.
A criterion in terms of period matrices for a polarized abelian variety to be non-simple is

given in [1, Thm. 4.1]. This criterion can be roughly stated as A is not simple if and only if
there is a differential form ω ∈ H1,1(A) satisfying certain equations given in terms of the period
matrix Π = (E Z) of A; see Section 5 for details.
In this work we further improve this criterion, transforming it into an effective tool to de-

compose the variety A into a product of subvarieties, and ultimately to find the Poincaré
decomposition of A, in an inductive procedure using the results given here to find the period
matrices of abelian varieties.
Our main result (Theorem 5.2) in this regard can be summarized as follows.
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Main Theorem. Let A be a polarized abelian variety of dimension g with period matrix
Π = (E Z). Look for ω as in [1, Thm. 4.1]. If such an ω exists, then construct the cor-
responding subvarieties Aω and its complement Ac

ω according to Theorem 5.2, obtaining an
isogeny decomposition Aω × Ac

ω → A of A.
Next compute the period matrices of Aω and Ac

ω using Theorem 4.1, and apply the procedure
again to both subvarieties.
This algorithm stops when A is decomposed as a product of simple factors: in its Poincaré

decomposition.
Notice that from [1, Thm. 4.1 ], if there is no such differential form ω, then A is simple.

In general, it is not easy to find either the simple factors of A or to compute explicitly
the Riemann matrix for A. Apart from algorithms that are mostly applicable to the case of
Jacobian varieties of special curves, as in [9, 11, 19, 20, 6], and others that are usually based
on a numerical approach for compact Riemann surfaces given as plane algebraic curves over
number fields [17]. Precise results, like the outputs the algorithms given here produce, have
been only given for special families of curves, such as by Weil, who worked out the case of
Lefschetz surfaces yp = xa(1− x), for p prime and 1 ≤ a ≤ p− 1, and by Rohrlich, for the case
of Fermat’s curves xn + yn = 1.
In [3] we gave the theoretical basis and an algorithm to compute Riemann matrices for

Jacobian varieties of compact Riemann surfaces with automorphisms, here we extend that
algorithm to the case of polarized abelian varieties with a group action (Theorem 3.1).
We recall some motivating questions on the subject that can be tackled by decomposing

abelian varieties, or Jacobian varieties in particular. Ekedahl and Serre [10] studied completely
decomposable Jacobian varieties; that is, Jacobians which are isogenous to a product of elliptic
curves. In their theorem, they listed several genera in which there are completelly decomposable
Jacobians, the largest being 1297, but they left several gaps. Besides, they asked two questions
which remain open: Is it true that for every g > 0, there is a completely decomposable Jacobian
variety of dimension g?; Is there a bound for the genus of a curve with completely decomposable
Jacobian?. Currently, the smallest Ekedahl-Serre gap is g = 38, according to [23, 3.11] and [18],
and g = 101 is the first gap after 100; this gap is filled in Section 6.
On the other hand, Beauville [2] points out that few examples of curves with Jacobian variety

of maximal Picard number ρ = h1,1 are known. We recall [2, Prop. 3] this nice characterization
of ρ-maximal abelian varieties; an abelian variety X of dimension g is ρ-maximal if and only if
it is isogenous to Eg, with E an elliptic curve with complex multiplication. Moreover, this is
the case if and only if X is isomorphic to a product of mutually isogenous elliptic curves with
complex multiplication, and if and only if the rank of End(X) over the integers is 2g2.
Having in mind all these fundamental questions and problems, our original motivation for

the work in this manuscript was to compare the Group Algebra Decomposition (GAD)

A ∼ Bn1

1 × . . .× Bnr

r ,
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known to exist for any abelian variety A with the action of a group G, with the well known
Poincaré decomposition into simple factors

A ∼ Ck1
1 × . . .× Cms

s ,

valid for any polarized abelian variety. In general, there is no correspondence between them.
The factors in the Poincaré decomposition satisfy Hom(Ci, Cj) = 0, whereas in GAD they

satisfy HomG(B
ni

i , B
nj

j ) = 0, for i 6= j. Now we know that it may well happen that two different
primitive factors Bi and Bj are isogenous, or that a Bj is non-simple, as we will see in the
applications in Sections 6 and 7.
One typical application of our new results is to go beyond the GAD decomposition: given

a GAD for A, with Theorem 3.1 first compute the period matrices for the isotypical factors
Bni

i . Then, with Theorem 4.1, compute the period matrices of the primitive factors Bi. Finally,
with Theorem 5.2 sketched as Main Theorem above, find the Poincaré decomposition of every
primitive factor, hence fully decomposing the original variety A.
An interesting feature is that, as can be seen from what follows, a priori knowledge of EndQ(A)

is not required.
In particular, and as a way of illustrating the kind of results that can be found applying the

results presented here, we give the following applications.

Corollary 1.1. There is a curve of genus g = 101 with completely decomposable Jacobian
variety, thus filling an Ekedahl-Serre gap.
There is a curve of genus 11 isogenous to a product of elliptic curves with complex multipli-

cation.

Our methods can be translated into algorithms, one of which is presented in the Appendix,
while the rest are available at [21], together with all the codes and the full calculations for the
applications.

The structure of this work is as follows. After some preliminaries given in Section 2, in
Section 3 we give a method to compute a period matrix for any G-invariant subvariety B of an
abelian variety A with action of a group G, given the symplectic representation of the action
of G on A. First, we describe how to find the restriction of the action of G from A to B, and
then we use that action to find the period matrix for B. This result is applied to find the
period matrix of the isotypical factors; these are the subvarieties of A corresponding to images
of central idempotents in Q[G].
This algorithm can be used for A itself, but the computer runs out of memory very fast as

the dimension of A grows. So it is better to use it, as said, in combination with the isotypical
decomposition, since the isotypical factors Aj are G-invariant subvarieties of A. This algorithm
is an improvement of the one we developed in [3] for principally polarized abelian varieties.
Here we generalize it to any type of polarization, since the induced polarization on a subvariety
is not necessarily principal.
The second method is presented in Section 4, on how to compute a period matrix for the

subvariety Af = Im(f) of a polarized abelian variety (A = V/L,L) of dimension g, given a
period matrix Π = (E Z) for A (with respect to some bases α and β for V and L respectively),
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and f ∈ EndQ(A) represented in the basis β as a matrix inM2g(Q). Observe that any subvariety
of an abelian variety is the image of A under some endomorphism of A (for instance its norm
map), so this is a general procedure.
In Section 5, we recall from [1] a characterization for an abelian variety to be simple in terms

of its period matrix. In subsection 5.2 we put together all the results mentioned earlier with
this criterion to obtain the Main Theorem, there called Theorem 5.2, which may be thought
of as an algorithm to compute the Poincaré decomposition of an abelian variety into simple
factors given its period matrix.
Sections 6 and 7 contain the proof of Corollary 1.1, as a combined application of all the

results.
In Section 8 we outline one of the algorithms emerging from our results; the one for finding

the Poincaré decomposition of an abelian variety. The code for this algorithm and the others
in this work are in [21]; the reader can also find there more precise explanations on how to
actually implement them in Magma [5], as well as the calculations for our applications.

2. Preliminaries

We recall here some known results about decompositions of abelian varieties with a group
action; we refer to [13, 8], [4, Ch.13] and [14] for details. Let A = V/L be an abelian variety
with the action of a (finite) group G; this action induces an algebra homomorphism

ρ : Q[G] → EndQ(A).

The semi-simple algebra Q[G] decomposes as the product of unique simple algebras Q[G]ej ,
where each ej is the central idempotent corresponding to the rational irreducible representation
Wj of G, with j in 1, . . . , r indexing a full set of non-equivalent rational irreducible representa-
tions of G. This induces the so called isotypical decomposition of A, given by (unique) abelian
subvarieties A1, . . . , Ar of A, with G acting on Aj by (an appropriate multiple of) the rational
irreducible representation Wj of G, and such that the sum morphism is a G-equivariant isogeny:

A1 × . . .× Ar → A.

As each isotypical factor Aj is described explicitly as the image of A under ρ(ej) in EndQ(A),
we can compute the period matrix of each Aj if the rational representation of the action of
G on A is known, according to our second method described in Theorem 3.1, which includes
how to find the (restricted) action of G on Aj . If, on the other hand, the period matrix of A
is known, then the period matrix of each Aj may be computed using Theorem 4.1. The first
approach is more common, since the G-abelian subvarieties Aj are lower dimensional than A,
and hence computations are simpler.
Since each simple algebra Q[G]ej can in turn be decomposed as a sum of primitive left ideals,

another decomposition is obtained: a group algebra decomposition (GAD) of A. Its form is

(2.1) Bn1

1 × · · · × Bnr

r → A,

where each Bj is a subvariety of Aj and nj =
dimVj

mj
, with mj the Schur index of Vj (any complex

irreducible component of Wj⊗C). The factors Bj are called primitive factors in the GAD, since
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they correspond to images of primitive idempotents in Q[G]. Note that they are not uniquely
defined, and different choices for them correspond to different GAD’s of A having, for instance,
different isogeny degrees.
The starting point of this work is the method in [16], which allows the computation of the

polarization induced on the isotypical factors for the case when A is the Jacobian variety of
a curve with group action, if the rational representation ρr : G → Sp2g(Z) of the group G is
known. In [15], the method was extended to compute the induced polarization on any subvariety
of a polarized abelian variety A with group action (by a group G) given as the image of an
element of Q[G].
In this work we go further, obtaining the period matrices for any subvariety of A defined as

the image of an element f ∈ EndQ(A). In particular, for the primitive factors Bj . We explain
this in section 4.
We first recall some notation and well known facts, as described in [4]. Let (A = V/L, JE) be

a polarized abelian variety (pav in what follows), where JE denotes the polarization considered
as an integral alternating matrix on the lattice L. Let (d1, . . . , dg) be the type of the polarization
JE; a symplectic basis for this polarization is a basis β of L with respect to which the alternating
form is given by the matrix

JE :=

(
0 E

−E 0

)

with E = diag(d1, . . . , dg).
Given a polarized abelian variety (A = V/L, JE) of dimension g and bases α = {v1, . . . , vg}

of V and β = {λ1, . . . , λ2g} of L, the period matrix Π = (Πj,i) of A with respect to these bases
is a g × 2g complex matrix given by the coefficients of λi expressed in terms of the vj :

λi =

g∑

j=1

Πj,i vj , 1 ≤ i ≤ 2g.

If the basis β = {λ1, . . . , λ2g} is chosen as symplectic with E = diag(d1, . . . , dg), then α =
{v1 = 1

d1
λ1, . . . , vg =

1
dg
λg} is a basis for V , and the period matrix for A with respect to these

bases has the form Π = (E Z) , with Z in the Siegel space

Hg = {Z ∈ M(g × g,C) : tZ = Z,ℑZ >> 0};

in this case Z is called a Riemann matrix for A.
Given two polarized abelian varieties (A = V/L, JE) and (A′ = V ′/L′, JE′), of respective

dimensions g and g′, choose bases for V , L, V ′ and L′, and denote the respective period
matrices by Π and Π′. To any homomorphism f : A → A′ one can associate two matrices with
respect to the corresponding bases: the analytic representation ρa(f) : V → V ′ of f : a g′ × g
complex matrix, and the rational representation ρr(f) : L → L′ of f : a 2g′×2g integral matrix.
The fundamental relation (the Hurwitz relation) that connects them is given by

(2.2) ρa(f) Π = Π′ ρr(f).
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If f is biholomorphic, then g′ = g, ρa(f) is a nonsingular matrix, and ρr(f) is a unimodular
matrix. Conversely, if C and N are, respectively, nonsingular and unimodular g×g and 2g×2g
matrices satisfying C Π = Π′ N , then C is the matrix of an invertible linear map F : V → V ′

that satisfies F (L) = L′ and covers an isomorphism f : A → A′. More generally, an isogeny
f corresponds to a nonsingular ρa(f); the order of the kernel of f is called the degree of the
isogeny, and it equals | det(ρr(f))|.
Furthermore, if the bases are chosen so that the period matrices have the form Π = (E Z)

and Π′ = (E Z ′), then an isomorphism f preserves the polarization if and only if ρr(f) belongs
to

SpE(2g,Z) = {N ∈ M(2g × 2g,Z) : N t · JE ·N = JE}

with JE :=

(
0 E

−E 0

)
as before, where N t denotes the transpose of N .

For any f ∈ EndQ(A), the subspace of V and the sublattice of L defining the abelian
subvariety Af := Im(f) will be denoted by Vf and Lf respectively.
As mentioned before, we need to induce the polarization of A on the image of the endomor-

phism f . Although this was also discussed in [17, Prop. 3.9], they take a slightly different
approach. Since we have explicitly constructed the lattice of the subvariety corresponding to
the image of f (see Remark 2.1), there is no need to find it inside the lattice of A, as done in
[17, Section 2] (see their Remark 2.3).
For completeness and to fix notation, since it is the starting point of what we present in

section 4, we recall here briefly the method given in [16, 15] to find the induced polarization
and a symplectic basis of a subvariety Af of a pav A: ρr(f) is the rational representation
of the endomorphism f and JE the matrix of the polarization on A, both with respect to a
symplectic basis β of L; γ is a basis for Lf given in the form of a 2g × 2h integral matrix
Pf , whose columns are the coordinates of the elements in γ in the basis β; that is, Pf defines
the embedding Af →֒ A. Then the type of the induced polarization Df on Af is obtained by
computing the elementary divisors of P t

f ·JE ·Pf . Finally, a symplectic basis βf for Lf expressed
in terms of coordinates with respect to β is obtained by applying the Frobenius algorithm ([12,
VI.3. Lemma 1]) to γ. So βf is captured as a 2g × 2h matrix of coordinates with respect to
the symplectic basis β of L.
This method is implemented as an algorithm in [21]; will refer to it as Algorithm 2.1 in

this work; it corresponds to the function [21, InducedPolarization] in our code.

Remark 2.1. Note that the sublattice Lf of L corresponding to the subvariety Af is given
by the pure lattice generated by Im(ρr(f)); that is, Lf = (〈ρr(f)〉Z ⊗ Q) ∩ L, where 〈ρr(f)〉Z
denotes the lattice generated by the columns of ρr(f).
When f comes from an idempotent in Q[G], we can obtain ρr(f) from the rational (symplec-

tic) representation ρr(G) of G. See [3] in case the action of G on the Jacobian variety comes
from the action of G on a curve; the general result follows from this.
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3. First method: Period matrix for a G-stable abelian subvariety of an

abelian variety with the action of a group G

Our next results deals with finding the period matrix for a subvariety B of A with G-action,
given a symplectic representation of the G-action on A.

Let G be a group and (A = V/L, JE) be a pav with G-action, where JE =

(
0 E

−E 0

)
,

E = diag(d1, d2, . . . , dg). Assume the rational representation of G is known:

ρr(G) ≤ SpE(2g × 2g,Z),

where

SpE(2g × 2g,Z) = {N ∈ M(2g × 2g,Z) : N t · JE ·N = JE}.
Consider a subvariety B = VB/LB ⊂ A where G acts (by restriction of the action on A). For

instance, this is the case if B = Af = Im(f) where f is any of the central idempotents in Q[G].
Then a symplectic basis βB for LB can be computed as in Remark 2.1, and therefore the type

(n1, . . . , nh) of the induced polarization on B is known. Our next result provides an algorithm
to compute the symplectic representation of the action of G on B and a period matrix for B.

Theorem 3.1. Let A be a polarized abelian variety of dimension g with G action, and let β be a

symplectic basis for A with respect to which the polarization on A has matrix JE =

(
0 E

−E 0

)
.

Assume the rational representation of G in the basis β is given by ρr : G → SpE(2g× 2g,Z).
Let B be a subvariety of A of dimension h to which the action of G on A restricts, and let

iB : B → A denote the natural inclusion. Denote by βB a symplectic basis for B for which the

induced polarization on B has the form JD :=

(
0 D

−D 0

)
, with D = diag(n1, n2, . . . , nh).

Then the rational representation of G in the basis βB is given by ρr,B : G → SpD(2h×2h,Z),
where, for every g ∈ G, ρr,B(g) is the unique matrix in SpD(2h× 2h,Z) satisfying

(3.1) ρr(g) · ρr(iB) = ρr(iB) · ρr,B(g),
where ρr(iB) ∈ M(2g × 2h,Z) is the rational representation of iB with respect to the bases βB

and β.
Furthermore, the period matrix for B = VB/LB with respect to the bases βB = {u1, . . . , u2h}

for LB and αB =
{

1
n1
u1, . . . ,

1
nh
uh

}
for VB is of the form

ΠB = (DZB),

where ZB ∈ Hh satisfies

(3.2) ZB γ D−1ZB +DαD−1ZB − ZB δ −Dµ = 0

for each g ∈ G, where ρr,B(g) =

(
α µ
γ δ

)
, with α, µ, γ and δ integral h× h matrices.



8 RUBÍ E. RODRÍGUEZ AND ANITA M. ROJAS

Also, the analytic representation of the action of g in G restricted to B is given by

ρa,B(g) = (Dα + ZB γ)D−1 .

Proof. Writing B = VB/LB, we observe that since the action of G on A restricts to B,
ρr(g)(LB) = LB and ρa(g)(VB) = VB for each g ∈ G. Therefore, denoting by gB the auto-
morphism of B obtained by restricting g to B, we clearly have

g ◦ iB = iB ◦ gB.
Now (3.1) is the matrix translation of this last equality, where ρr,B(g) is the 2h× 2h rational

representation of gB with respect to the basis βB. To verify that ρr,B(g) ∈ SpD(2h × 2h,Z),
observe that

ρr(iB)
t · JE · ρr(iB) = JD ,

and hence

ρr,B(g)
t · JD · ρr,B(g) = ρr,B(g)

t ·
(
ρr(iB)

t · JE · ρr(iB)
)
· ρr,B(g)

= ρr(iB)
t · ρr(g)t · JE · ρr(g) · ρr(iB)

= JD .

It is clear that the period matrix for B with respect to the bases βB = {u1, . . . , u2h} for LB

and αB =
{

1
n1
u1, . . . ,

1
nh
uh

}
for VB is of the form

ΠB = (DZB),

where ZB ∈ Hh. Since for each g ∈ G its restriction gB to B is an automorphism of the
polarized abelian variety (B, JD), the period matrix ΠB satisfies

(3.3) ρa,B(g) ΠB = ΠB ρr,B(g).

Writing ρr,B(g) =

(
α µ
γ δ

)
, with α, µ, γ and δ integral h×h matrices, and comparing both

sides of (3.3), we see that

ρa,B(g) = (Dα + ZB γ)D−1.

and that (3.2) holds. �

Clearly, Theorem 3.1 leads to an algorithm, whose code can be found at [21, ActionGSub-
variety.mgm]. It includes first to restrict the action from the ambient pav A to a G-invariant
subvariety B, with the function ActionGSubvariety, and then to use this restricted represen-
tation of G to find the fixed Riemann matrices by this action. This last part is an upgrade of
our algorithm in [3], where we found the set of Riemann matrices of ppav of dimension g fixed
by the action of G represented in Sp(2g,Z), now with the function MoebiusInvariantDZ in [21,
polyDZ.m].
We use this result to find the period matrices of the isotypical factors in Sections 6 and 7.
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Remark 3.2. In some cases, a family Zλ of fixed matrices under the action of a given group
will be found, with λ in a set of complex parameters. Each element of Zλ corresponds to a
pav that shares the same action with the one we start with; that is, admitting the same ρr(G)
action. To determine explicitly the parameters λ corresponding to the precise Jacobian or pav
or family under study is in general difficult, as this is closely related to the Schottky problem;
sometimes this can be achieved by using some extra known geometrical properties of the given
variety. This is certainly a complication that cannot be avoided, but, as a compensation, our
methods can produce numerical approximations as well as algebraic numbers, depending on
the geometry of the variety and the action. They are effective methods to find period matrices
that work in many cases in the context we are interested in: completely decomposable Jacobian
varieties, CM-varieties, and others.

Of course the result on Theorem 3.1 applies to the computation of a period matrix for the
ambient abelian variety A itself, but in practice the algorithm may fail computationally for A
if the dimension of A is large, and still work for a G-invariant subvariety of lower dimension;
as is the case in our examples, in Sections 6 and 7.

4. Second method: find a period matrix for the image of f ∈ EndQ(A), given
ΠA = (E Z)

In order to obtain the period matrix of the subvariety Af = Im(f), in this section we extend
the method in [16, 15], whose outputs are:
- a symplectic basis βf for the lattice Lf of Af ,
- the rational representation Pf of the inclusion if : Af → A, and
- the induced polarization Df in Af ,
Recall that its input is a period matrix ΠA = (E Z) for the ambient polarized abelian variety

A. See Remark 2.1 and what we call Algorithm 2.1.

Theorem 4.1. Let (A = V/L, JE) be a pav with period matrix ΠA = (E Z) ∈ M(g × 2g,C)

in suitable bases α for V and β for L, where JE =

(
0 E

−E 0

)
, E = diag(d1, d2, . . . , dg), and

Z ∈ Hg is the Riemann matrix of A.
For f ∈ EndQ(A), consider the subvariety Af := Im(f) = Vf/Lf of dimension h and a

symplectic basis βf for its lattice Lf .
Denote by if : Af → A the natural inclusion, by Pf := ρr(if ) ∈ M(2g × 2h,Z) the matrix of

the rational representation of if with respect to the symplectic bases βf and β, and the induced
polarization on Af by D = diag(n1, n2, . . . , nh), with (n1, . . . , nh) its type. Then

(1) If the symplectic basis for Lf is βf = {u1, . . . , u2h}, then αf =
{

1
n1
u1, . . . ,

1
nh
uh

}
is

a basis for the complex vector space Vf , and the matriz ρa(if ) ∈ M(g × h,C) for the
analytic representation of if with respect to the bases αf and α is given by

ρa(if ) = (E Z) βf1 D
−1,

where βf1, βf2 ∈ M(2g × h,Z) are the two matrices such that ρr(if ) = (βf1 βf2).
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(2) The period matrix of Af with respect to the bases αf and βf is given by

ΠAf
= (D W ),

where W ∈ Hh is the unique solution to

(E Z) βf1 D
−1W = (E Z) βf2.

Proof. According to Remark 2.1, we can find a basis γ for Lf in terms of β, use it to determine
the type of the polarization D of Af obtained by restriction of the polarization E of A to Af ,
and then apply the Frobenius algorithm to γ to obtain a symplectic basis βf = {u1, . . . , u2h}
for Lf .
It follows that the rational representation ρr(if ) of the inclusion map if : Af → A with

respect to the bases βf and β is the matrix in M(2g×2h,Z) whose j-th column is given by the
coordinates of uj with respect to β, for 1 ≤ j ≤ 2h, and the equality

(4.1) tρr(if ) JE ρr(if) =

(
0 D

−D 0

)

is the matrix translation of the equality i∗f(E) = îf ◦ λE ◦ if , where λE : A → Â is the isogeny
associated to E.
Since D = diag(n1, n2, . . . , nh), with (n1, . . . , nh) the type of Af , it follows that taking αf ={
1
n1
u1, . . . ,

1
nh
uh

}
we obtain a basis for the complex vector space Vf , and that the period matrix

for Af with respect to the bases αf and βf has the form ΠAf
= (D W ), where W ∈ Hh.

The Hurwitz relation (2.2) then implies that

(4.2) ρa(if ) (D W ) = (E Z) ρr(if ),

where ρa(if) is the g × h matrix of the analytic representation of if with respect to the bases
αf and α for Vf and V respectively.
Writing the matrix ρr(if) = (βf1 βf2), with βf1 , βf2 ∈ M(2g × h,Z), we see that (4.2) is

equivalent to
ρa(if)D = (E Z) βf1 and ρa(if)W = (E Z) βf2,

from where it follows that ρa(if ) = (E Z) βf1 D
−1, and that W may be found from

(E Z) βf1 D
−1W = (E Z) βf2

follows, since ρa(if ) = (E Z) βf1 D
−1 has maximal rank h. �

Remark 4.2. Theorem 4.1 leads to Algorithm 4.1, which can be found with code at [21,
ActionGSubvariety.mgm] (functions IsotypicalFactorsAll and Subvariety). We use it combining
resources from Magma [5] and Sagemath [25] in Section 7 to find the period matrices of the
primitive factors.

We point out that, once the period matrices for a set of subvarieties (fully) decomposing
A and the rational representation of the decomposing isogeny are known, it is possible to
recover the period matrix for A from these data. This is the case for the isotypical or GAD
decompositions of A, for instance. Nevertheless, it is a technical result that is not actually
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needed for the purposes of this work, which is to decompose A into simple factors. So for the
sake of the length of this article, we decided not to include it here. It will be reported in a
forthcoming work.

5. Beyond the group algebra decomposition

Let (A = V/L,L0) be a polarized abelian variety with the action of a (finite) group G. From
the results in Sections 4 and 3, we can compute the period matrices for the isotypical factors
Aj and the primitive factors Bj decomposing A as follows:
To obtain the period matrices for the Aj : if the rational representation for the action of G on

L is given, apply Theorem 3.1; if the Riemann matrix for A is known, apply Theorem 4.1. Recall
from Section 2 that each Aj is the image of an explicit central idempotent ej ∈ Q[G] ⊂ EndQ(A).
Once the period matrix for Aj has been found, since for each Bj one can find fj ∈ Q[G] ⊂

EndQ(A) whose image is Bj (see [7]), the period matrix for Bj may be found by applying
Theorem 4.1 to Bj ⊂ Aj.
As we mentioned in the Introduction, a natural question is the comparison between the

Group Algebra decomposition (2.1) of A

A ∼ Bn1

1 × . . .× Bnr

r

and its Poincaré decomposition in terms of simple factors

A ∼ Ck1
1 × . . .× Cms

s .

The factors in the first one satisfy HomG(B
ni

i , B
nj

j ) = 0, whereas Hom(Ci, Cj) = 0 for i 6= j.
It may well happen that two different Bj are isogenous, or that a Bj is non-simple, as we will
see in the examples.
In the next subsection 5.1 we recall some known results about the relation between subva-

rieties, idempotents, and the Neron-Severi group of a polarized abelian variety A, including a
criterion to decide whether A is simple in terms of its period matrix from [1]. We omit details
and proofs, and refer to [1] and [4] for details.
Then, in subsection 5.2, we present a new technique to actually decompose a polarized abelian

variety into its simple factors.
In particular, this technique applies to the primitive factors Bj in the GAD decomposition

of a polarized abelian variety with the action of a (finite) group G, since we can compute their
period matrices as described above, and then apply the method to effectively decompose Bj if
it is non simple. In this way we effectively go beyond the information that the group action
gives.
We point out that the results in 5.1 allow us to determine whether a pav is simple or not,

by a necessary and sufficient criterion. We worked out throughout the details and developed
the effective method to decompose we present here. It corresponds to actually computing the
period matrix of the subvariety if the criterion says it exists.
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5.1. Known results about subvarieties. Let (A = V/L,L0) be a polarized abelian variety
of type (d1, . . . , dg), and consider a symplectic basis {λ1, . . . , λ2g} for L and a basis for V such
that with respect to these bases the period matrix of A is (E Z), where E = diag(d1, . . . , dg).
If x1, . . . , x2g are the real coordinate functions of L ⊗ R associated to the given basis of L

and z1, . . . , zg are the complex coordinate functions with respect to the given basis of V , these
functions are related by the equation

(5.1)



z1
...
zg


 = (E Z)




x1

...
x2g


 .

Considering {dxi ∧ dxj | 1 ≤ i < j ≤ 2g} as the canonical basis of H2(A,Q) = ∧2Q2g,
NSQ(A) can be identified with

(5.2) NSQ(A) = {ω ∈ ∧2Q2g : ω ∧ dz1 ∧ · · · ∧ dzg = 0},

given by the image of the map

(5.3)
γ : NSQ(A) → H2(A,Q)

µ 7→ −
∑

i<j µ(λi, λj)dxi ∧ dxj

We also recall from [4, Proposition 5.2.1] the following isomorphism of Q-vector spaces

(5.4) ϕ : NSQ(A) → EndQ(A)
s

defined by ϕ(L) = φ−1
L0
φL for L ∈ NSQ(A), where φL : A → Â is the isogeny induced by L.

In [1, Theorem 4.1] a necessary and sufficient criterion for the simplicity of A in terms of
its period matrix is given. Using the above identifications, the criterion is translated into the
existence of a tuple of rationals satisfying some nonlinear equations. In [1], the corresponding
equations for dimensions two and three are derived. Just for the sake of completeness we include
here the equations for A of dimension two. A similar system of non-linear equations arises in
the higher dimensional situation.

Corollary 5.1. [1, Prop. 4.4] Let (A,L) be a polarized abelian surface with period matrix

Z =

(
1 0 z11 z12
0 d z12 z22

)
. Then A admits a sub-elliptic curve if and only if there exists a vector

(a12, a13, a14, a23, a24, a34) ∈ Q6 satisfying

−d = da13 + a24,

0 = (z11z22 − z212)a12 − da14z11 + da13z12 − a24z12 + a23z22 + da34 and

0 = a14a23 − a13a24 + a12a34.
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5.2. Decomposing A given its period matrix Π = (E Z). As announced in the introduc-
tion (Section 1), in this work we push forward this result and, by pursuing the identifications
in the previous subsection, we actually find the subvariety corresponding to the tuple solving
the equations, so that we can explicitly decompose the variety A in this way. In fact, we find
the following procedure to decompose a pav A given its period matrix; it actually describes
simple subvarieties decomposing it and the corresponding isogeny, without computing the full
endomorphism algebra.

Theorem 5.2. Let A be a polarized abelian variety of dimension g with period matrix Π =
(E Z). The following procedure yields a decomposition of A into simple factors.

(1) For a given n ∈ {1, . . . , [g+1

2
]}, look for ω =

∑
i<j aijdxi ∧ dxj, with aij ∈ Q satisfying

all the equations in Theorem 4.1 in [1] (such as those in Corollary 5.1 for g = 2).
(2) If such an ω exists, find Eω = γ−1(ω) ∈ NSQ(A) from (5.3) and continue with (3)

below. Otherwise, try with a different n. If there is no such w for all 1 ≤ n ≤ [g+1

2
],

then A is simple and we are done.
(3) Find the symmetric idempotents fω = ϕ(Eω) and 1−fω in EndQ(A)

s described in (5.4).
(4) Find symplectic bases for the lattices of the subvarieties Aω := Im(fω) and Ac

ω :=
Im(1− fω), and their induced polarizations, using Algorithm 2.1.

(5) Find the period matrices for Aω and Ac
ω using Theorem 4.1.

(6) Repeat the procedure for these subvarieties, using the corresponding period matrices ob-
tained in the previous step, until all the simple factors have been found.

Proof. Steps (1), (2), (3) are straightforward from the theory exposed earlier. Step (4) gives
complementary subvarieties of A, according to [15, Prop. 2.3]. Using Algorithm 2.1, one obtains
bases for both subvarieties. Since the period matrix for A is given, using the coordinates of the
bases in (4) one computes the period matrices for these two subvarieties. Finally, this procedure
stops because A is of finite dimension. �

This Theorem also leads to an algorithm, which is included in the Appendix as Algorithm
5.2. It allows us to decompose varieties without the knowledge of its endomorphism algebra,
and without considering a group action on them, or even without having one, provided its
period matrix is known. We use it in the proof of Corollary 1.1 stated in the introduction,
which illustrates how to apply our methods, see Sections 6 and 7.

6. Application 1: A genus 101 curve with completely decomposable Jacobian

variety

In this section we prove the first statement of Corollary 1.1 presented in the Introduction.
In [18], there is an example of a curve X of genus 101 such that the GAD for its Jacobian

variety JX has the form S × E1 × E2
2 × E8

3 × · · · × E8
14 → JX, where E1, . . . , E14 are elliptic

curves and S is an abelian surface. Since 101 is an Ekedahl-Serre gap, it is of interest to find
out if S decomposes further.
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We apply the results in this work to find a period matrix for S, and show that S indeed
decomposes further. Hence, by going beyond GAD, we show that JX is completely decompos-
able.

6.1. A Riemann matrix for S. Consider the group G := 〈a, b〉, where
a := (1, 16, 6, 11)(2, 18, 8, 15, 5, 19, 9, 12)(3, 20, 10, 14, 4, 17, 7, 13) ,

b := (1, 20)(2, 19, 4, 17, 5, 16, 3, 18)(6, 15)(7, 14, 9, 12, 10, 11, 8, 13).

Then G is the group labeled as (800, 980) in the SmallGroup Database of [5], and it acts on a
curve X of genus 101 with signature (0; 8, 8, 2) and monodromy (a, b, ab). We use the algorithm
from [3] to find the symplectic representation ρr(G) of G associated to this action; it is stored
in [21, Grupo800-980.mgm].
Using [7], we identify that S is isogenous to the Jacobian variety of X/H for H the unique

(up to conjugacy) abelian subgroup of order 100 of G. Therefore, S corresponds to the image
of JX under the idempotent

pH =
1

|H|
∑

h∈H

ρr(h).

We use Algorithm 2.1 to describe the embedding ipH : S → JX , and the induced polarization
on S. Thus we obtain a symplectic basis βH of S in the coordinates of the symplectic basis of
JX in which ρr(G) is given; that is, we have a matrix ρr(ipH) in M4×202(Z). Since the induced
polarization on pH(S) is of type (10, 10), it is a ppav.
Now, we follow Algorithm 4.1 to find the rational representation ρr,S of the restricted action

of G on S. Since ρr(a), ρr(b) ∈ Sp(202,Z), ρr,S(a) and ρr,S(b) are found by solving the linear
systems

ρr(a) · ρr(ipH) = ρr(ipH) · ρr,S(a), and ρr(b) · ρr(ipH) = ρr(ipH) · ρr,S(b).
We obtain

ρr,S(a) =




0 0 1 1
1 −1 −1 1

−1 0 1 0
1 −1 −1 0




t

and

ρr,S(b) =




−1 1 1 −1
0 0 1 1

−1 1 0 −1
0 −1 0 1




t

,

and check that ρr,S(a), ρr,S(b) ∈ Sp(4,Z). The Riemann matrix ZS ∈ H2 fixed by these matrices
is given by

ZS =

(
1+i

√
2

2
−1

2

−1
2

1+i
√
2

2

)
.
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6.2. Elliptic curves on S. Since S is a ppav, we consider the following period matrix for the
abelian surface S

ΠS =

(
1 0 1+i

√
2

2
−1

2

0 1 −1
2

1+i
√
2

2

)
,

and use Algorithm 5.2 to decompose S further. For this period matrix we use Corollary 5.1.
Hence we look for a vector (a12, a13, a14, a23, a24, a34) ∈ Q6 satisfying

−1 = a13 + a24,

0 =

(
−1 + i

√
2

2

)
a12 −

(
1 + i

√
2

2

)
a14 −

a13
2

+
a24
2

+

(
1 + i

√
2

2

)
a23 + a34

0 = a14a23 − a13a24 + a12a34.

One solution is (a12 =
1
2
, a13 = −1

2
, a14 =

1
2
, a23 = 0, a24 = −1

2
, a34 =

1
2
).

It corresponds to the form

ω =
1

2
dx1 ∧ dx2 −

1

2
dx1 ∧ dx3 +

1

2
dx1 ∧ dx4 −

1

2
dx2 ∧ dx4 +

1

2
dx3 ∧ dx4.

The corresponding element in NSQ(S) is

Eω =
1

2




0 −1 1 −1
1 0 0 1

−1 0 0 −1
1 −1 1 0


 .

The period matrix ΠS of S is given in a symplectic basis, therefore its polarization is given
by the matrix

E0 =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 .

The corresponding idempotent is fω = E−1
0 Eω, and its complement is 1 − fω. We obtain the

following idempotents

fω =
1

2




1 0 0 1
−1 1 −1 0
0 −1 1 −1
1 0 0 1


 .
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1− fω =
1

2




1 0 0 −1
1 1 1 0
0 1 1 1

−1 0 0 1


 .

Denote by Lω and LC
ω the lattice of Im(fω) and its complement, respectively. Lω ⊗Q is the

pure lattice generated by the columns of fω. Therefore we have as basis {u1 = (1,−1, 0, 1), u2 =
(0,−1, 1, 0)}. Analogously, for LC

ω we obtain {v1 = (1, 1, 0,−1), v2 = (0, 1, 1, 0)}.
To obtain the period matrices of Im(fω) and its complement, we need to translate from

coordinates to elements of the lattice. For this we multiply ΠSα for α in the corresponding
basis.
For instance for Im(fω) we have

u1 =

(
1 0 1+i

√
2

2
−1

2

0 1 −1
2

1+i
√
2

2

)



1
−1
0
1


 =

(
1
2

−1+i
√
2

2

)
,

and

u2 =

(
1 0 1+i

√
2

2
−1

2

0 1 −1
2

1+i
√
2

2

)



0
−1
1
0


 =

(
1+i

√
2

2

−3
2

)
.

Since (1 + i
√
2)u1 = u2, we have that Im(fω) is the elliptic curve with lattice generated by

{1, 1 + i
√
2}. Similarly, its complementary abelian subvariety is the elliptic curve with lattice

generated by {1, 1+i
√
2

3
}. Therefore, we have the sum isogeny

s : E1+i
√
2 × E 1+i

√
2

3

→ S.

The matrix P = (u1, v1, u2, v2) corresponds to the rational representation of s, which is

P =




1 1 0 0
−1 1 −1 1
0 0 1 1
1 −1 0 0


 ;

it has determinant 4, which corresponds to the degree of s.
The Hurwitz’s equation satisfied by s is

(
1
2

3
2

−1+i
√
2

2
1−i

√
2

2

)(
1 0 1 + i

√
2 0

0 1 0 1+i
√
2

3

)
=

(
1 0 1+i

√
2

2
−1

2

0 1 −1
2

1+i
√
2

2

)
P,
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where the matrix corresponding to the analytic representation of s is

(
1
2

3
2

−1+i
√
2

2
1−i

√
2

2

)
.

Summarizing, there is an isogeny

E1+i
√
2 ×E 1+i

√
2

3

× E1 ×E2
2 × E8

3 × · · · × E8
14 → JX,

finding in this way a completely decomposable Jacobian variety of dimension 101 and filling up
this Ekedahl-Serre gap.

7. Application 2: A completely decomposable Jacobian variety of dimension

11

In this section we prove the second claim in Corollary 1.1. This is, we exhibit here a new
example of a completely decomposable Jacobian of a curve of genus 11 finding its Riemann
matrix explicitly, hence proving it is of CM-type since each elliptic curves in its decomposition
has complex multiplication.
Let G = 〈a, b〉 be the group labeled as (96, 28) in the SmallGroup Database of [5] with
a :=(1,48,23,28,6,44,19,27,2,46,24,29,4,45,20,25,3,47,22,30,5,43,2 1,26)

(7,42,17,34,12,38,13,33,8,40,18,35,10,39,14,31,9,41,16,36,11,37,15,32),

b :=(1,34,10,25)(2,36,11,27)(3,35,12,26)(4,31,7,28)(5,33,8,30) (6,32,9,29)
(13,43,22,40)(14,45,23,42)(15,44,24,41)(16,46,19,37)(17,48,20,39) (18,47,21,38).

It acts on a curve X of genus 11 with signature (0; 24, 4, 2) and monodromy (a, b, ab). We
use the algorithm in [3] to obtain the associated rational representation ρr : G → Sp(22,Z); it
is stored in [21, Grupo98-28.mgm].
However, a direct application of Theorem 3.1 to compute the Riemann matrix Z ∈ H11 for

JX by finding the fixed matrix under the action of ρr(G) fails computationally; so we take the
approach of computing the period matrices of its decomposition into simple factors.
The isotypical decomposition of the Jacobian variety JX corresponds to the following (sum)

isogeny :

(7.1) s : A1 × A2 ×A3 × A4 × A5 → JX,

where the Aj are the isotypical factors. Using Theorem 3.1, actually the corresponding Algo-
rithm coded in Magma in [32], we find period matrices for them.
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ΠA1
=
(
6 6i

)
,

ΠA2
=

(
4 0 2i

√
3 −2

0 4 −2 2i
√
3

)
,

ΠA3
=

(
4 0 8i −12i
0 12 −12i 24i

)
,

ΠA4
=

(
3 0 3i

√
2

2
−3

0 6 −3 3i
√
2

)
,

ΠA5
=




2 0 0 0 2i
√
6 0 3i

√
6 −i

√
6

0 2 0 0 0 2i
√
6 i

√
6 −3i

√
6

0 0 6 0 3i
√
6 i

√
6 6i

√
6 −3i

√
6

0 0 0 6 −i
√
6 −3i

√
6 −3i

√
6 6i

√
6


 .

(7.2)

See a further description of the rational representation ρr(s) of the isogeny s in Remark 7.1.
Moreover, since the monodromy of this action is known, by [22] we obtain that each isotypical

factor decomposes further as A1 ∼ E1, A2 ∼ E2
2 , A3 ∼ E2

3 , A4 ∼ E2
4 and A5 ∼ S2, with Ej

elliptic curves and S an abelian surfce. Therefore a GAD for JX is

(7.3) E1 × E2
2 × E2

3 × E2
4 × S2 → JX,

The geometry of this action allows us to say that every Ej in this GAD is isogenous to a
Jacobian variety J(X/Hj) of some intermediate curve X/Hj for specific Hj ≤ G. So we use
Theorem 4.1 (with Ej = Im(pHj

)) finding

ΠE1
=
(
6 6i

)
,

ΠE2
=
(
8 4 + 4i

√
3
)
,

ΠE3
=
(
8 8i

)
,

ΠE4
=
(

3 3i
√
2

2

)
,

For S, we use that there is a subgroup K ≤ G such that J(X/K) ∼ E4 × S, hence S
corresponds to the image of the idempotent fS := pKe5 where e5 is the central idempotent
corresponding to the isotypical factor A5. We use Theorem 4.1 applied to fS and find

ΠS = 4

(
1 0 3i

√
6

2
2i
√
6

0 3 2i
√
6 3i

√
6

)
.

We then apply Corollary 5.1 and look for (a12, a13, a14, a23, a24, a34) ∈ Q6 such that
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0 = −48a12 −
9i
√
6

2
a14 + 2i

√
6(3a13 − a24) + 3i

√
6a23 + 3a34,

−3 = 3a13 + a24, and

0 = a14a23 − a13a24 + a12a34.

One solution is (a12 = 0, a13 = −1, a14 =
−4
3
, a23 = 0, a24 = 0, a34 = 0), which corresponds to

ω = −dx1∧dx3− 4
3
dx1∧dx4. Now we follow the steps on Theorem 5.2 to effectively decompose

S further, as we did in Section 6.

We obtain the period matrix of fω(S): (1 i
√
6

6
), and hence the decomposition of JX into

simple factors is

(7.4) JX ∼ E3
i × E2

i
√

2

2

×E2
1+i

√
3

2

× E4
i
√

6

6

;

thus showing that JX is of CM type. Notice that they are not isogenous elliptic curves, hence
this is the Poincaré decomposition of JX .
Comparing (7.3) and (7.4), we notice that the primitive factors decomposing the isotypical

factors A1 and A3 turn out to be isogenous. As said, in the isotypical decomposition of A,
HomG(Ai, Aj) = {0} but not necessarily HomG(Ai, Aj) = {0} for i 6= j. Besides, the primitive
factor S in the isotypical factor A5 is not simple.

Remark 7.1. Finally, we point out two interesting facts about the isogeny s on (7.1). First,
the determinant of ρr(s) is the degree of the isogeny decomposition. In this case it is equal to
(3456)2 = 11943936 = 21436.
Secondly, ρr(s) satisfies ρr(s)

t · JE · ρr(s) = Jdiag, where JE corresponds to the principal
polarization on JX and Jdiag collects all the induced polarizations on the isotypical factors in
(7.1) or (7.2). So

Jdiag =

(
0 D

−D 0

)
,

with D = diag(6, 4, 4, 4, 12, 3, 6, 2, 2, 6, 6).

8. Appendix

In this section we outline the algorithm emerging from Theorem 5.2, which allows us to
find the Poincaré decomposition of a pav. The code for this algorithm, and the others in this
work, can be found in [21]. The reader can also find there more precise explanations on how to
actually implement them in Magma [5], as well as the calculations for our applications.
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Algorithm 5.2. Decomposition of a pav A into simple factors given its period matrix.

Input: The period matrix Π = (E Z) of A, with E = diag(d1, . . . , dg) and Z ∈ Hg.
Output: The period matrices of all the simple factors in the decomposition of A.

Algorithm: (1) For a given n ∈ {1, . . . , [g+1

2
]}, look for ω =

∑

1≤i<j≤2g

aijdxi∧dxj , aij ∈ Q,

satisfying all the conditions in Theorem 4.1 in [1].

(2) If such an ω exists, find Eω = γ−1(ω) ∈ NSQ(A), see (5.3) and continue with (3)
below. Otherwise, try with a different n. If there is no such w for all 1 ≤ n ≤ [g+1

2
],

then A is simple.
(3) Find the symmetric idempotents fω = ϕ(Eω) and 1− fω, see (5.4).
(4) Find symplectic bases for the lattices of the subvarieties Im(fω) and Im(1 − fω),

and their induced representations, using Algorithm 3.1.
(5) Find the period matrices for Im(fω) and Im(1− fω) using Algorithm 4.1.
(6) Repeat the algorithm for the period matrices obtained in the previous step until

all the simple factors have been found.
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