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Compared to time-reversal symmetry-protected Z2 topological insulators and Dirac/Weyl
semimetals, there are significantly fewer candidates for topological crystalline insulators. SrAg4Sb2 is
predicted to exhibit topological crystalline insulator behavior when considering spin-orbit coupling.
In this study, we systematically investigate single crystals of SrAg4Sb2 using electrical transport and
magnetic torque measurements, along with first-principles calculations. Our transport data reveals
its compensated semimetal nature with a magnetoresistance up to around 700% at 2 K and 9 T.
Analysis of de Haas-van Alphen oscillations uncovers a Fermi surface consisting of three distinct
Fermi pockets with light effective masses. Comparison between the three-dimensional fermiology
obtained from our oscillation data and the first-principles calculations demonstrates excellent agree-
ment. This confirms the accuracy of the calculations, which indicate a band inversion centered
at the Γ point and identify the existence of nontrivial tube and needle hole Fermi pockets at Γ,
alongside one trivial diamond electron pocket at the T point in the Brillouin zone. Furthermore,
symmetry and topology analysis results in two potential sets of topological invariants, suggesting
the emergence of two-dimensional gapless Dirac surface states either on the ab planes or on both
the ab planes and mirror planes, protected by crystal symmetries. Therefore, SrAg4Sb2 emerges as
a promising candidate topological crystalline insulator.

I. INTRODUCTION

In the past decade, topological crystalline insulators
(TCIs) have attracted interest due to their robust topo-
logical surface states on certain high symmetry crystal
surfaces. Unlike the well-known Z2 topological insula-
tors protected by time reversal symmetry, these topologi-
cal states are protected by crystal symmetries [1, 2]. This
unique property of TCIs makes their topological property
more robust against external perturbations such as mag-
netic fields and readily tunable through the application
of strain, structural distortions, and more[3–8], providing
a versatile application platform in spintronics, quantum
computing, and pressure sensors [9]. The first TCI, SnTe,
was predicted in 2012 and has since been studied exten-
sively [3, 10–19]. However, compared to Z2 topological
insulators and Dirac/Weyl semimetals, the exploration
of TCI insulator candidates is far more limited.

Guided by databases [20–22], we found that according
to first-principles calculations, SrAg4Sb2 can be classified
as a TCI when spin-orbit coupling (SOC) is taken into
account. SrAg4Sb2 crystallizes in the CaCu4P2-type cen-
trosymmetric trigonal space group R3̄m (No.166) with Sr
atoms sandwiched in between layers of Ag2Sb, as shown
in the right inset of Fig. 1. In a recent study of the elec-
tronic structure and topology of SrAg4Sb2, density func-
tional theory (DFT) calculations were performed both in
the presence and absence of SOC [23]. In SrAg4Sb2, one

∗ Corresponding author: nini@physics.ucla.edu

might expect SOC to play an important role Since SOC
is most significant when heavy atoms are present. Ac-
cording to the calculated band structures, there are two
band touching points at the Γ and T points of the Bril-
louin zone that are gapped by SOC with band gaps of
≈ 0.5 eV. More specifically, the two bands immediately
above the Fermi level exchange character between {Ag s
+ Sb s} and {Ag dxy, dx2−y2 + Sb px, py} as a function of
kz. It is also worth noting that this is a relatively “clean”
band structure [22], making SrAg4Sb2 a great candidate
TCI.

However, despite reports of the observation of quan-
tum oscillations (QOs) [24], there is no thorough ex-
perimental study of this compound to determine its
three-dimensional (3D) fermiology to shed light on if
it is indeed a TCI or not. In this paper, we report
the single crystal growth, magnetotransport properties,
3D fermiology extracted from angle-dependent QOs, as
well as density functional theory (DFT) calculations for
SrAg4Sb2. By magnetotransport measurements, we show
that SrAg4Sb2 is a compensated semimetal. Through the
data analysis of the angle-dependent de Haas-van Alphen
(dHvA) effect in magnetic torque measurements and the
comparison with theoretical calculations, we are able to
verify the existence of two hole pockets and one elec-
tron pocket. The excellent agreement between DFT and
experiments suggests that our DFT calculations as well
as the ones performed in databases [20–22] correctly de-
scribe the band structure of SrAg4Sb2. We further show
that a band inversion centered around the T point with
an avoided band crossing along the Γ-T line exists on
the mirror planes and then discuss the potential topo-
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logical invariants and where the 2D Dirac surface states
protected by crystal symmetries are expected. Our re-
sult provides evidence that SrAg4Sb2 is a promising TCI
for exploration of topological surface states protected by
crystal symmetry.

II. EXPERIMENTAL METHODS

Single crystals were grown using the self-flux method
[25, 26]. Sr, Ag and Sb pieces were combined using
the molar ratio 1:14:7 and placed inside an alumina cru-
cible, which was then sealed in a quartz tube under vac-
uum. When the growth ampule was heated to 1050 ◦C
overnight for the mixture to homogenize and then al-
lowed to slowly cool down to 650 ◦C, the growth of
SrAg4Sb2 single crystals was complicated by the existence
of another stable, competing phase, SrAgSb. Where
SrAgSb was sandwiched between SrAg4Sb2, suggesting
that SrAgSb formed first. This was confirmed by per-
forming another trial with an increased spin-out temper-
ature of 750 ◦C, where the relative amount of SrAgSb
was higher. Thus, to eliminate the presence of SrAgSb,
after heating the quartz tube to 1050 ◦C, we quenched
it in air. It was then placed into a furnace which was
at 700 ◦C, and then slowly (over 120 hours) cooled to
580 ◦C, at which point it was centrifuged to separate the
single crystals from the liquid flux. By this, the presence
of SrAgSb was completely eliminated, as illustrated by
Fig. 1. Free standing three dimensional, hexagonal sin-
gle crystals of SrAg4Sb2 formed, as shown in the inset of
Fig. 1.

Powder X-ray diffraction measurements were per-
formed using a PANalytical Empyrean (Cu Kα radia-
tion) diffractometer. Magnetotransport measurements
were performed inside a Quantum Design (QD) Dyna-
cool Physical Properties Measurement System (PPMS)
with a maximum magnetic field of 9 T. Magnetic torque
measurements were performed in a QD-PPMS. Torque
measurements were made by mounting a small piece of
single crystal on the tip of a piezoresistive cantilever.
The magnetic torque was then inferred from the magne-
toresistance of the cantilever measured by a Wheatstone
bridge, as the resistance of the cantilever is very sensi-
tive to the deformation caused by torque. The electrical
resistivity (ρxx) and Hall (ρyx) measurements were per-
formed using the six-probe technique inside QD-PPMS.
To eliminate unwanted contributions from mixed trans-
port channels, data were collected while sweeping the
magnetic field from -9 T to 9 T. The data were then
symmetrized to obtain ρxx(B) using ρxx(B) = (ρxx(B) +
ρxx(−B))/2 and antisymmetrized to get ρyx(B) using
ρyx(B) = (ρyx(B)− ρyx(−B))/2. The magnetoresistance
is defined as MR = (ρxx(B)−ρxx(0))/ρxx(0). In our mea-
surement geometry, a positive slope of ρyx(B) suggests
the hole carriers dominate the charge transport.

The electronic structure of SrAg4Sb2 was studied via
DFT calculations using the PBE functional[28–30] and

Figure 1: The powder X-ray diffraction pattern of
crushed SrAg4Sb2 single crystals. Peaks can be indexed
using the experimentally determined crystal structure
(blue tick marks) [27]. The asterisks indicate peaks
from the small amount of Ag3Sb that was present on
the crystals. Left inset: A photo of a typical crystal
against a 1-mm sized grid. Right inset: The crystal
structure of SrAg4Sb2. Agtet: the Ag atoms connected
to 4 Sb atoms in tetrahedral coordination. Agtrig: the
trigonally coordinated Ag atoms.

the projector augmented wave (PAW) pseudopotential
method as implemented in the Vienna Ab initio Simu-
lation Package (VASP), version 5.4.4 [31]. An approxi-
mate SOC correction implemented in VASP was used to
compute the electronic properties in the first Brillouin
zone [32]. Fermi surfaces were computed using a k-mesh
spacing of 0.008 (31-31-31). Fermi surface data were gen-
erated from the DFT calculations using Vaspkit and vi-
sualized with Fermisurfer [33, 34]. Band structures were
plotted with pyprocar version 5.6.6 [35]. dHvA frequen-
cies were computed using SKEAF, with a modified file
conversion program to allow SKEAF to process VASP
output [36].

III. EXPERIMENTAL RESULTS AND
DISCUSSION

SrAg4Sb2 has the lattice parameters a = b = 4.7404(4)
Å, c = 25.029(2) Å, α = β = 90o and γ = 120o [27, 37].
Figure 1 shows the powder X-ray diffraction pattern
where all peaks except three (marked by an asterisk)
can be well indexed using the SrAg4Sb2 structure. These
three anomaly peaks are likely due to small amount of
Ag3Sb droplets present on the surfaces of the crystals.

Figure 2(a) shows the temperature dependence of the
resistivity of SrAg4Sb2 measured at zero field and with
the current in the ab plane. The residual resistivity ra-
tio (RRR), defined as ρ300K/ρ2K is 42, and the residual
resistivity is 2.5 µΩ cm. Upon cooling, the resistivity de-
creases with a linear behavior in the range between 300
K and 20 K, a characteristic feature of a conventional
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Figure 2: (a) The temperature-dependent resistivity of
SrAg4Sb2. (b), (c) The field-dependent resistivity ρxx

and Hall resistivity ρyx measured at temperatures
between 2 K and 50 K. Filled circles represent
experimental data collected, while the solid black lines
are generated form the two-band model fit, see text. (d)
The carrier concentrations and mobilities. Two
methods are used to obtain the values. One is through
the two-band model fit of ρxx and ρyx up to 20 K; the
other is by analyzing the QO data measured with the
field along the [001] direction.

metal. Below 20 K, the resistivity exhibits the typically
Fermi-liquid behavior ρ = ρ0 + αT β, where β = 2 [38].

A. Magnetotransport Properties of SrAg4Sb2

Figures 2(b) and 2(c) show the magnetoresistivity ρxx

and Hall resistivity ρyx respectively with B ∥ c and I ∥ ab
at temperatures in the range between 2 K - 50 K. ρxx

shows a nearly parabolic behavior with a moderately
large MR of 700% at 2 K. Quasi-linear ρyx shows QOs
in a field range of 3 T to 9 T. Large quadratic MR with
quasi-linear ρyx are the characteristic features of compen-
sated semimetals. To extract the carrier concentrations
and mobilities, the data were fitted using the semiclas-

sical two-band Drude model of transport [39]. The field
dependence of ρxx and ρyx are given by

ρxx = Ex/Jx =
nµ+ pν + (nν + pµ)µνB2

e(nµ+ pν)2 + e(p− n)2µ2ν2B2
(1)

and

ρyx = Ey/Jx =
B(pν2 − nµ2) + (p− n)µ2ν2B3

e(nµ+ pν)2 + e(p− n)2µ2ν2B2
, (2)

where n, p, µ and ν are the carrier densities and mo-
bilities of electrons and holes respectively. The simulta-
neous nonlinear least-squares fit of ρxx and ρyx at 2 K
using the above expressions yields n = 3.49(5)× 1026/m3

and p = 3.53(5) × 1026/m3. The ratio p/n being ap-
proximately equal to 1 suggests that this is a compen-
sated semimetal and consistent with the observation of
large MR at low temperatures. The obtained electron
and hole mobilities at 2 K are µ = 0.19(3) m2/(V s) and
ν = 0.35(6) m2/(V s). As shown in Fig. 2 (d), upon
increasing temperatures, the mobilities decreases due to
the enhanced thermal fluctuations while the carrier den-
sities remains unchanged. These carrier densities and
mobilities are consistent with the ones we obtained from
QO data which will be discussed in the following section.

B. Quantum Oscillations of SrAg4Sb2

QOs are also observed in magnetic torque τ⃗ = M⃗ × B⃗
measurements. Figure 3(a) depicts the field-dependent τ
at various temperatures when the magnetic field was ap-
plied 40◦ away from the a-axis, in the ac plane, as shown
in the inset of Fig. 3 (b). Strong QOs can be clearly seen
above 3 T. Figure 3(b) shows δτ after the subtraction
of a polynomial background from τ . The Fast Fourier
Transform (FFT) of the oscillations (Fig. 3(c)) reveal
many features. One strong peak with the frequency FN

= 98(4) T is observed, followed by three weaker peaks
that are the 2nd, 3rd, and 4th higher harmonics of FN ,
respectively. Peaks with FD = 600(14) T, FT1 = 850(7)
T, and FT2 = 1120(9) T as well as lobes surrounding FT1

and FT2 also present. To better investigate this rich FFT
feature, the zoom-in plot between 700 T and 1500 T at
2 K is plotted as Fig. 3(d), where QO FFT peaks other
than FT1, FT2 and FN are clearly seen. The black arrows
point to the exact location of the calculated values of
FT1 ± nFN and FT2 ± nFN (n = 1, 2, 3). The positions
of these lobes agree well with the locations of the black
arrows. Frequency combinations such as this can arise
from magnetic breakdown (MB) or magnetic interaction
(MI). MB occurs at fields high enough such that the sep-
aration ℏωc = eℏB0/m

∗ between Landau levels is larger
or equivalent to E2

g/EF [40], where Eg is the energy gap
between the two bands and EF is the Fermi energy. An
estimate of the magnetic breakdown field B0 can be made
through B0 = (πℏ/2e)(k1 − k2)

3/(k1 + k2) [41], where k1
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Table I: Parameters extracted from dHvA data at three different field orientations. α: 40◦ from [100], as shown in
the inset of Fig. 3(a). Errors associated with frequencies F were found via the Full Width Half Maximum technique.
While errors for m∗

exp and TD were found by computing the variance-covariance matrix from the fitting function
produced from fitting the data with the Levenberg-Marquardt (L-M) Algorithm in Origin. All other errors were
found by way of error propagation.

B F (T) m∗
exp(me) m∗

DFT(me) kF (Å
−1

) vF (105m/s) TD(K) τQ(10
−13s) νQ (m2/Vs) pQO(10

26/m3)

FN

∥ α 98(4) 0.14(1) 0.06 0.06(1) 4.5(8) 3.6(1) 3.4(1) 0.43(3)
0.06(2)∥ [120] 340(9) 0.35(2) 0.22 0.10(2) 3.3(2) 5.7(1) 2.10(4) 0.10(1)

∥ [001] 60(3) 0.097(1) 0.04 0.04(1) 5(1) 2.4(1) 5.0(2) 0.63(7)

FT1
∥ α 850(7) 0.35(4) 0.39 0.16(1) 5.3(7)

1.3(3)
∥ [001] 420(8) 0.27(1) 0.25 0.11(2) 4.7(9)

FT2
∥ α 1120(9) 0.43(4) 0.42 0.18(2) 4.8(7)

∥ [001] 790(7) 0.23(2) 0.33 0.16(1) 8.0(9)

FD
∥ α 600(14) 0.16(1) 0.26 0.14(2) 9.5(2)

∥ [120] 560(14) 0.23(2) 0.23 0.13(2) 5.4(2)

Figure 3: (a) τ at temperatures 2 - 24 K in applied fields ranging from 3 T to 9 T. (b) ∆τ at the same temperatures
as a function of 1/B. The bottom right inset contains the measurement configuration. (c) The FFT curves
associated with (b). (d) The zoom-in plot of the peaks around FT1 and FT2. The surrounding peaks are due to
magnetic interaction and the associated calculated frequencies are indicated by black arrows. (e) The normalized
temperature-dependent FFT amplitude. The LK fits used to extract the effective masses are shown as the solid
lines. (f) A Dingle Plot from QO data at 2 K, where ln(∆τ/B3/2) is plotted against 1/B.

and k2 are the Fermi wave vectors of the Fermi pock-
ets contributing to the combined oscillation frequencies,
respectively. Plugging in values as shown later in this
section, we find that the field needed for MB to occur
between the Fermi pockets associated with FN and FT1

is more than 400 T, suggesting this effect is a result of MI
instead. MI can occur as a complication of sample shape
and/or crystal anisotropy much like that seen in layered
materials [42]. Figure 3(e) summarizes the temperature-

dependent FFT amplitudes of FN , FD, FT1 and FT2. The
amplitude of multiple oscillations in the magnetic torque
is given by the Lifshitz-Kosevich (LK) theory as

∆τ(B) = ±ΣiAiB
3/2Ri

TR
i

DR
i

S sin[2π(
Fi

B
+ ϕi)], (3)

where Ai, Fi and ϕi are constants, frequencies and phase
factors of each pocket, respectively[43]. RT represents
the thermal damping factor, which is a finite temperature
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Figure 4: (a) Contour plot of the experimental FFT frequencies of ∆τ as a function of angle. Overlaid are solid
green, pink, and blue lines which indicate the DFT calculated frequencies associated with the tube, diamond, and
needle pockets, respectively. The blue dashed lines are a guide for the eye to highlight the observed 2nd, 3rd, and 4th

harmonics of FN . In each panel, an inset with the measurement geometry can be found. (b) The DFT calculated
electronic band structure. The dashed circle indicates the avoided band crossing along Γ-T line. (c) 3D renderings of
each component of the Fermi surface are shown separately and annotated with relevant high-symmetry points, for
visual clarity. The colored square next to each Fermi surface component corresponds to the colored band in (b). (d)
Top row: 5s and 5p valence orbitals of Sb. Bottom row: Orbitals of Agtrig which contribute significantly to the
topological band inversion - 5s, 4dxy, and 4dx2−y2 .

correction to the Fermi-Dirac distribution. It describes
the temperature dependence of the oscillations’ ampli-
tude and is given by equation RT = X/sinhX, where
X = αTm∗/Bme, α is equal to 14.69 T/K and m∗ is the
cyclotron effective mass. RD = exp(−αTDm

∗/Bme) is
the Dingle damping factor, which is related to the quan-
tum lifetime through the equation τq = ℏ/(2πkBTD). RS

= cos (πgm∗/2me) is the spin damping factor, which ac-
counts for the interference between two oscillations from
spin-split Landau levels. When several frequencies exist
and are not easily separable, the extraction of the effec-
tive mass and the Dingle temperature can be quite chal-
lenging or even impossible by fitting the QO using Eq.
(3). Alternatively, we obtain the effective mass by fitting
the temperature-dependent FFT amplitude of each peak
AFFT (Fig. 3(e)) using AFFT ∝ X/sinhX, where B is the
average inverse field of the FFT window from B1 to B2

and defined as 1/B = (1/B1 + 1/B2)/2. However, care

must be taken when choosing which B1 and B2 to use
in the analysis, as the wrong choice may lead to overes-
timated or underestimated values. For reasons outlined
in our previous report on SrAg4As2, we chose B1 = 5
T and B2 = 9 T[25]. The obtained effective masses are
m∗

N = 0.14(1)me, m∗
D = 0.16(1)me, m∗

T1 = 0.35(4)me

and m∗
T2 = 0.43(4)me. Despite there being many fre-

quencies present, the FN peak dominates the oscillation,
resulting in the exponential decaying oscillation ampli-
tude with increasing B as shown in Fig. 3(b). The
maximum peak intensity at 2 K in Fig. 3(b), ∆τmax,
as well as the corresponding field B are recorded and
plotted in Fig. 3 (f). By fitting this Dingle plot with
∆τmax/B

3/2 ∝ exp(−αTDm
∗
N/Bme) where TD is the fit-

ting parameter, we are able to extract a Dingle temper-
ature of TD(2 K) = 3.6(1) K. From this we calculate the
quantum lifetime to be τq (2 K) = 3.4(1)×10−13 s. Using
τq = m∗µq/e we estimate the quantum mobility associ-
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Figure 5: Band structures for the needle and tube bands along the Γ-T-Γ k-path projected onto Agtrig s, and Agtrig

dxy + dx2−y2 . Panels (a) and (c) illustrate the SOD band structure and to the right of these panels, panels (b) and
(d), show the SOC band structures.

ated with the FN pocket to be µq = 0.43(3) m2/(Vs).
Similar analysis is performed for the QO data at vari-
ous temperatures and with the field along the [120] and
[001] directions. The obtained effective masses along-
side the DFT computed ones are summarized in table
I. The obtained m∗s are angle-dependent, which is ex-
pected for anisotropic Fermi pockets. µq ranges from
0.63(7) m2/(Vs) when holes move in the ab plane to
0.10(1) m2/(Vs) when holes move perpendicular to the
[120] direction, as expected for a compound with lay-
ered structure. The exacted quantum mobility associ-
ated with the FN pocket when the field is along the [001]
direction monotonically decreases upon warming, as plot-
ted in Fig. 2(d). The hole mobility extracted using the
two-band model fitting, 0.35(6) m2/(Vs), is an average of
the classical mobilities for all hole pockets. It is compa-
rable to the ones obtained from QO, indicating that the
impact of small angle scattering is likely negligible [44].

Since QO frequency is directly proportional to the ex-
treme cross sectional area (S) of the Fermi surface per-
pendicular to the magnetic field through the Onsager re-
lation F = (ℏ/2πe)S [43], to reconstruct the Fermi pock-
ets, we utilized angle-dependent magnetic torque mea-
surements to obtain the angular dependence of the ex-
treme cross sectional area of each Fermi pocket. The
sample was rotated from a to c in the ac plane, as well as
in the ab plane to the crystallographic a axis. Rotation in
these two planes allows for the experimental determina-
tion of the 3D fermiology of the material. A contour plot
of the frequencies extracted via FFT of δτ can be seen
in Fig. 4(a). The left panel illustrates rotation in the

ac plane where four branches of the fundamental dHvA
frequencies (FN , FT1, FT2, and FD) and a set of three har-
monic frequencies of FN are observed (dashed lines are a
guide for the eye). In the right panel where the rotation
is in the ab plane, only two fundamental frequencies (FN

and FD) are observed with FN being angle independent.

C. Comparison to DFT calculations

To understand the angular dependence of QO, DFT
calculations were performed and the results were com-
pared to the measured dHvA data. We first optimized
the structure of SrAg4Sb2 and found good agreement
with experiment[23, 27]. We then computed the band
structure and Fermi surface, shown in Fig. 4(b) and (c).
The computed Fermi surface contains three features: the
needle pocket, a long, closed hole pocket oriented along
z; the tube pocket, a continuous distorted cylinder ori-
ented along z which encloses the needle pocket; and the
diamond pocket, a set of three rounded-diamond-shaped
electron pockets centered at the F points on the faces of
the 1st Brillouin zone. Solid lines on Fig. 4(a) are the
DFT-computed dHvA frequencies corresponding to the
three Fermi pockets. We find excellent agreement in the
angular dependence. The minimum in FN in the ac sweep
occurs when the field is oriented along c, i.e. along the
length of the needle pocket (Fig. 4(c)), and the maximum
appears when the field is aligned along a, perpendicular
to the needle pocket. FN is independent of angle in the
ab sweep because of the rotational symmetry of the nee-
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dle pocket. FT1 and FT2, the frequencies arising from
the tube pocket, behave similarly, diverging as the field
is rotated from c to a. Because the tube is continuous
in the c direction and has infinite extreme cross section
perpendicular to the ab plane (Fig. 4(c)), it is expected
that the frequency corresponding to the tube pocket can
not be seen when the field rotates within the ab plane.
This is indeed what we have observed in the right panel
of Fig. 4(a). The multiplicity and lower symmetry of the
diamond pocket create the more complex FD profiles in
both ac and ab sweeps.

Despite excellent agreement in angular dependence, a
scaling factor of 0.7 is needed to maximize the quantita-
tive similarity between the experimental and computed
values of the extreme cross sections. Small quantitative
deviations can occur due to the approximate nature of
DFT, particularly when computing flat bands close to
the Fermi level [36]. Furthermore, in a previous study of
NbAs2, a similar deviation was observed and attributed
to As vacancies or imperfections that may lead to subtle
relative shifts in bands [45]. Crystalline defects, despite
being low in SrAg4Sb2[27], could contribute to the dif-
ference here since even small shifts can lead to sizable
changes in small pockets. With these factors in mind, we
conclude that the essential features of the Fermi surface
are correctly described by our DFT calculations.

Based on our QO data and the shape of Fermi surface
determined from DFT, we can estimate the hole carrier
densities associated with the tube pocket and the needle
pocket. For the tube pocket, according to the Onsager
relation and assuming circular cross sections, the Fermi

wave vector kF =
√
2eF/ℏ are kT1 = 0.11(2) Å

−1
and

kT2 = 0.16(1) Å
−1

with the Fermi velocities vF = ℏkF/m
∗

valued at vT1 = 4.7(9) × 105 m/s and vT2 = 8.0(9) ×
105 m/s, where values FT1 = 420(8) T, FT2 = 790(7)
T, m∗

T1 = 0.27(1)me and m∗
T2 = 0.23(2)me are used.

Approximating the tube as a cylinder with a radius
kT = (kT1 +kT2)/2 and a height 2π/c, the carrier density
2πk2

T (2π/c)/(8π
3) is estimated to be pT = 1.3(3) × 1026

m−3. We can calculate the carrier density associated
with the needle pocket by approximating it as a prolate
spheroid. The Fermi wave vectors are kN1 = 0.04(1) Å
along the minor axis and kN2 = 0.10(2) Å along the ma-
jor axis with the Fermi velocity of vN1 = 5(1)× 105 m/s
and vN2 = 3.3(2) × 105 m/s, where FN2 = 340(9) T,
FN1 = 60(3) T,m∗

N2 = 0.35(2)me, andm∗
N1 = 0.097(1)me

are used. The carrier density 2(4πk2
N1kN2/3)/(8π

3) is
thus estimated as pN = 0.06(2)× 1026 m−1 and the total
hole carrier density obtained from QO is pQO = 1.36×1026

m−3, this rough estimation agrees with pHall = 3.53×1026

m−3 reasonably well.

IV. DISCUSSION

The excellent agreement between experiments and
DFT calculations suggests the latter correctly describe
the band structure of SrAg4Sb2. Now let us take a

Table II: Two possible sets of topological invariants
mapped from the symmetry indicator Z2,2,2,4 = {1, 1, 1,
2} for SrAg4Sb2 [20–22]. m2̄10

(2) denotes the mirror plane

(2̄10) in the conventional cell. g2̄10
1
6

1
3

1
3
denotes the (2̄10)

glide plane with glide plane vector ( 1

6

1

3

1

3
). 2100 is the

two-fold rotational axis along the [100] direction. i is
the inversion center. 2100

1 is the screw axis. For a
detailed guide of this Table, please refer to Ref. [2].

Weak m2̄10
(2) g2̄101

6
1
3

1
3

2100 i 21001

111 0 1 1 1 1

111 2 0 0 1 0

closer look at the electronic band structure of SrAg4Sb2,
as shown in Fig. 4(b) and supplemental Fig. S1 (a).
Most of the bands near EF are dominated by Sb or-
bitals with contributions from the Ag orbitals, which is
consistent with Sb being an anion with filled s and p
orbitals. Above EF , the contributions of Sb are highly
k-dependent. Meanwhile, Sr, a closed-shell cation with
little covalency, contributes very little to the bands close
to EF . Figure 4(d) shows the computed Fermi surface
of SrAg4Sb2 with projections onto Sb and Agtrig orbitals.
Sb 5px,y and Agtrig 4dxy,x2−y2 orbitals dominate the body
of the needle pocket (near T point), while the tip of the
needle pockets (near Γ point) is mainly composed of Sb
5s and Agtrig 5s orbitals. The needle pocket thus arises
predominantly due to orbital interactions in the xy plane,
although near the tips the pocket has more s character.
The tube pocket is predominantly composed of Sb 5px,y

and Agtrig 4dxy,x2−y2 orbitals, like the body of the nee-
dle pocket. The diamond pocket, on the other hand, has
stronger Agtet character. The quasi-cylindrical shapes
of the tube pocket and the needle pocket are consistent
with the fact that they arise primarily from in-plane in-
teractions in the layered structure of SrAg4Sb2, while the
diamond pockets likely arise from more isotropic interac-
tions. The compositions also give us a chemical intuition
for the charge transfer processes at work in SrAg4Sb2 -
the needle and tube hole pockets are primarily composed
of Sb, a formal 3- anion, and the diamond electron pock-
ets are primarily composed of Agtet, a formal 1+ cation,
so charge transfer of electrons from Sb to Agtet occurs.

The most important feature in the band structure is
an avoided crossing between the two bands marked by a
dashed oval slightly above EF along the Γ-T line (Fig.
4(b)), which lies in the mirror plane. It has been previ-
ously shown to be part of a band inversion, a significant
feature for topological materials [23]. To characterize the
symmetry properties of the band inversion we have used
the irvsp code [46]. Γ and T both have D3d point sym-
metry, the highest possible point symmetry in the R3̄m
space group. Since SOC is required to form the band in-
version we must describe the band symmetries with dou-
ble groups, rather than the usual point groups. At Γ the
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needle band transforms as E 1
2
g and the tube band trans-

forms as E 1
2
u, while at T (in the inverted state) they are

the other way around. Points between Γ and T have C3v

point symmetry, and both bands transform as E 1
2
. Since

the bands have the same symmetry at the intermediate
points, they mix and avoid each other, rather than cross-
ing, which creates the band inversion. The band inversion
leads to the k-dependent changes in orbital composition
shown in Fig. 4(d).

To check where the band inversion occurs, we projected
the band structures onto the atomic orbitals. The band
inversion is shown in detail in the projected band struc-
tures along the Γ-T-Γ path in Fig. 5, where the pro-
jections are onto Ag 5s and Agtrig 4dxy,x2−y2 . The left
column (fig. 5 (a) and (c)) show the bands when they
are spin orbit decoupled (SOD) and the right column
(fig.5 (b) and (d)) illustrates the changes to the bands
when SOC is taken in to account. In the SOD regime,
the lower band, which is below EF at Γ, forms the needle
pocket, and the upper band forms the tube and diamond
pocket. When SOC is activated, the upper band splits,
resulting in a decrease and increase in energy of the tube
and diamond bands, respectively. This leads to a distinct
band inversion centered at T, formed between the tube
and needle bands.

Materials in the space group R3̄m are characterized
by four symmetry-based indicators, Z2,2,2,4 = {1, 1, 1, 2}
[2, 20]. Odd values associated with Z4 suggests a strong
TI, however, for the case of SrAg4Sb2, Z4 = 2, thus ex-
cluding the possibility of being a strong TI. To further
comprehend this, we repeated the symmetry analysis for
the SOD electronic structure and found that the sym-
metry relationships between the bands transform as dif-
ferent irreps at Γ and T but the same at all interme-
diate points. SOC therefore creates the band inversion
by influencing the band energies but not their symme-
tries. The symmetry consequences of SOC are a neces-
sary ingredient for a time-reversal-symmetry protected
topological insulator but not for a TCI [47], so this anal-
ysis further supports the claim that SrAg4Sb2 is a TCI
with SOC.

By mapping the symmetry-based indicator to topolog-
ical invariants, two possible sets of topological invariants
exist, as shown in table II. The first set states that the
mirror Chern number Cm = 1, while the hourglass invari-
ant δh = 1, the rotation invariant δr = 1, the inversion in-
variant δi = 1 and the screw invariant δs = 1. This set of
invariants indicate 2D Dirac surface states are protected
by two-fold rotational symmetry and exist on the (2̄10),
(110), and (12̄0) planes; 2D Dirac surface states that are
protected by glide symmetry occur on the ab plane. The
second set states that the mirror Chern number Cm = 2
and the inversion invariant δi = 1. In this case, 2D Dirac
surface states only exist on the ab plane and are protected
by mirror symmetry. From the symmetry-based indica-
tor, it is unclear which set SrAg4Sb2 takes unless Cm is

calculated. For example, in the proposed TCI candidate
Bi, the symmetry-based indicator suggests it either has
a non-zero mirror Chern number Cm(11̄0) = 2 or a non-
zero rotation invariant δr(11̄0) = 1. And further calcu-
lations suggest the latter is the case in the real material
[48].
Last but not least, although SrAg4Sb2 is topologically

categorized as a TCI, it is an electronic conductor, hav-
ing a bulk Fermi surface. This aspect of SrAg4Sb2 is dis-
cussed in previous work and coined the term “semimetal-
lic topological insulator”[23]. This property is not unique
or new; the same issue was noted for the Bi-Sb alloy sys-
tem in a landmark paper on Z2 time-reversal-symmetry
protected topological insulators [49] and has also been
discussed for PbTaSe2 which is a superconducting Z2

topological insulator, featuring a continuous gap with
multiple band crossings rather than a global gap at the
Fermi level [50].

V. CONCLUSION

In summary, we have grown high quality single crystals
of the TCI candidate SrAg4Sb2 and investigated its mag-
netotransport properties and 3D fermiology. From our
magnetotransport measurements, we find a moderately
large MR of 700%. From the two-band model fitting
we show holes and electrons to posses similar concen-
trations at low temperatures, suggesting that this is a
compensated semimetal. Quantum oscillations are ob-
served in both Hall and magnetic torque measurements.
The temperature dependence of the dHvA oscillations
reveals small effective masses associated with the Fermi
pockets. The angle dependence of the dHvA data shows
great agreement with the DFT calculations. Through the
analysis of dHvA oscillations and comparison with first-
principles calculations, we have demonstrated SrAg4Sb2

to have a band inversion centered around the T point
and contain one needle hole pocket centered at the T
point, one tube hole pocket centered at the Γ point and
a diamond pocket at the F point. Two sets of topologi-
cal invariants are possible for SrAg4Sb2, suggesting that
it is a TCI candidate with the 2D Dirac surface states
either on the ab planes or on both ab planes and mir-
ror planes, which are all as-grown single crystal surfaces.
Further angle-resolved photoemission spectroscopy mea-
surements and theoretical works are urged to confirm its
topological properties.
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