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THE ZETA-DETERMINANT OF THE DIRICHLET-TO-NEUMANN OPERATOR OF
THE STEKLOV PROBLEM ON FORMS

KLAUS KIRSTEN AND YOONWEON LEE

ABSTRACT. On a compact Riemannian manifold M with boundary Y, we express the log of the zeta-
determinant of the Dirichlet-to-Neumann operator acting on g-forms on Y as the difference of the log
of the zeta-determinant of the Laplacian on ¢-forms on M with absolute boundary conditions and that
of the Laplacian with Dirichlet boundary conditions with some additional terms which are expressed
by curvature tensors. When the dimension of M is 2 or 3, we compute these terms explicitly. We also
discuss the value of the zeta function at zero associated to the Dirichlet-to-Neumann operator by using
a conformal rescaling method. As an application, we recover the result of the conformal invariance
obtained in [13] when dim M = 2.

1. INTRODUCTION

Let (M,Y’; g) be an m-dimensional Riemannian manifold with smooth boundary Y and Q%(M) be the
space of smooth g-forms. We consider the exterior derivative d, : Q4(M) — Q971 (M) and its formal
adjoint 6, = (—1)™a+L 5 ) dxpr, where %y is the Hodge star operator. Then the Hodge-De Rham
Laplacian A}, acting on Q?(M) is defined by A%, = d,dy + dg—104—1. If there is no confusion, we will
drop the ¢ on d; and d,. We choose a collar neighborhood U of Y which is diffeomorphic to ¥ x [0,1)
and denote the canonical inclusion by ¢ : Y — M. We also choose a unit vector field % which is an
inward normal vector to Y and denote the dual by du. We write a ¢g-form w on U by w = w1 + du A wa,
and define the tangential part wy,, and normal part wye, of w as follows.

Wian = 1w = w1y, Wnor = 17 (Laiw> = waly, (1.1)

where ¢ oW is the interior product of w and 6%. A ¢-form w is said to satisfy absolute boundary conditions
if Wnor = (dw)nor = 0, and it is said to satisfy relative boundary conditions if wian = (dw)tan = 0. We
denote by QF, / Lo(M) the space of smooth g-forms satisfying absolute/relative boundary conditions, i.e.

Qq

abs

(M) ={w € QUM) | wnor = (dw)por =0},

rel

(M) ={w € QIM) | wian = (0W)tan = 0}. (1.2)

We also denote by A%, /et @0 Af, p the Laplacian A}, with absolute/relative and Dirichlet boundary

q
M ,abs

ues. We note that for ¢ = 0, absolute/relative boundary conditions are equal to Neumann/Dirichlet
boundary conditions. For 0 < X € R, we define the Dirichlet-to-Neumann operator QZ, (\) and Q7 ())

acting on Q7(Y) as in [7, 26, 29]. For ¢ € Q(Y), we choose arbitrary extensions ¢ € Q7(M) and
¢ € QITH(M) of p and du A ¢ satisfying

conditions, respectively. Then, A /rel and A‘JZ\LD are self-adjoint operators having discrete eigenval-
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Fh=0, (L%¢) —0, =0, i (LMS) - (1.3)

We define the Poisson operators

P Q1Y) 5 0D, Phe=o— (A +A) (A% + N6, (14)
Pf@l( ) : Qq(y) - Qqul(M)’ ,Prclsp ¢ (AIJJ\;}_D + )\) (A?\jl + )\) ;5

It is not difficult to see that the definition of P

abs
extensions of ¢ and ¢ [7,23]. PL.(A) and P (X) satisfy the following relations.

(\) and PZ

rel

(M) do not depend on the choices of the

(AL +NPLNe =0, " PLMNe=p, i (12 PhNe) =0, (1.5)
(A5 N PLMe =0, FPLOe =0, i (12 PLOe) =
Definition 1.1. We define two Drichlet-to-Neumann operators Q% (\) and Q%(\) as follows [7, 26} 29].
1) 1 Q1Y) 5 QUY), QL) = —i* (1,2 dPL (Ve
L) Q1Y) 5 1Y), QL) =i (PL(N)9).

Remark : (1) When ¢ = 0 and A = 0, Q2,,(0) is the usual Dirichlet-to-Neumann operator on the Steklov
problem on the space of smooth functions.

(2) In eq.@IH) below, Q% () and Q% *()\) are defined by using a local coordinate system, which is
more intuitive.

The Green formula for the Hodge-De Rham Laplacians is given as follows [22, 27]. For w, 8 € Q9(M),

(dw,dO) s + (0w, 00)pr = (A% w,0)n + / (0 A *prdw — dw A *pr0), (1.6)
%

where we use the convention that dvol(M) = —du A dvol(Y') on Y. For 1, w2 € Q4(Y), eq.([L8) shows
that

QI Nw1, w2)y = MPhowo1, Phep2)m + (dPhp1, dPL pa)mr + (0Ph 01, 0P 02)m
QLN w1, v2)y = MPLir, PLioaym + (dPLior, dPLipa)vr + (0PL 1, 0PL 02) s

which implies that ngs /rel()\) are non-negative self-adjoint operators. Moreover, they are elliptic YDO’s

with parameter A of order 1 and weight 2 with the principal symbol o1 (Q3,, /.o (M)(,€) = V/I€]> + A
(see [0, 28] for a ¥DO’s with parameter). It is well known (Theorem 2.7.3 in [10]) that

ker Af, o = {w € QL (M) | dw = dw = 0} = HI(M), (1.7)
ker Af, o = {w € QL (M) | dw = éw =0} = HY(M,Y),

which shows that
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— )% q % q+1
ker Q% (0) = {z wlwe kerAMﬁbs}, ker QZ,(0) = {z (L%w) |w e kerAM)rel} . (1.8)
In particular, it follows that

dimker Qf,,(0) = dimkerAY, == dim H?(M), (1.9)
dimker Q?,,(0) dim ker A'IJ\ZLI = dim H* (M, Y).

For D = A?\/Labs/rel + X or Q¥(A)abs /rel; We define the zeta function (p(s) by

(p(s) = FL/ =1 (Tre” P — dimker D) dt. (1.10)
(s) Jo

It is well known that (p(s) is analytic for Rs > — d(D) and has a meromorphic continuation to the whole

complex plane having a regular value at s = 0. When ker D = {0}, we define the zeta-determinant of

D by Det D = e~ If dimker D > 1, we define the modified zeta-determinant by the same formula,

which we denote by Det™ D = e=v() In this paper, we are going to discuss

InDet™ AY, s — InDet Af, p — InDet” Q7 (0) and (1.11)
In Det* A‘}\Zicl — InDet A‘}\ZlD In Det* Q7 (0),

and their applications. However, for the Hodge star operators xj; and xy of M and Y, simple computation
shows that

*A_/[lAM rel*M AM abs? *X;AR};SI*M = A(II\/[,D7 and *Yl Q;Zl - q( )*Y = st(A)7 (112)

which shows that

InDet™ Af, ;,, — InDet A, p — InDet™ QF, (0) (1.13)
= InDet” A7 4 — InDet AT, ¥ — InDet” QU ' ~%(0).

rel

Hence, it is enough to consider In Det™ Af, ., —InDet Aj, , — InDet” QF,  (0).

In this paper, we use the method of proving the BFK-gluing formula for zeta-determinants of Laplacians
[6, [7, O] to show that InDet” Af, ; —InDet Aj, , —InDet” Q% (0) is expressed by some curvature
tensors on Y. We compute it explicitly when dim M = 2 and 3. We also discuss the value of the
zeta function CQst (s) at s = 0 by using the conformal metric rescaling method. Finally, when M is
a 2-dimensional smooth Riemannian manifold with smooth boundary Y and ¢(Y) is the length of Y,
we show that g(y) Det* Q2,.(0) is a conformal invariant, which was proved earlier by Guillarmou and
Guillopé in [I3] (see also [8]).
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2. RELATION BETWEEN InDet” Af, ., —InDet Af, , AND InDet” Qf,(0)

In this section, we are going to discuss the relation between InDet* A4 M.abs — InDet A(II\/[,D and
InDet™ QY,.(0) . We first recall that for A # 0,

(A9, + X)) -PL(N) =0, P (N =1d, i*Lainbs()\) =0, (2.1)

which shows that
q ! q ! q -1

(AM,abs + )\) - (AM,D + A) Pabs()\) (AM abs + )\) . (22)

Lemma 2.1. For A # 0 we have
Pabs()\) = - (A(II\/[,D + )\) P&b:’(A)
Proof. Taking the derivative of (I?:[I), we obtain the following equalities.
d d
,deb(/\) + (A(II\/[ + /\) ) apfbs(/\) =0, P&bb(/\) =0, i*Li d}\deb()\) 0,

which yields the conclusion. O

From Definition [I.1] we note that

FOLN = ity SRR = ity d (= (8l +0) )P0 @)

O Oy

R ((Azd,m ) (A ) ) P

u

= it dPL ) (A%Mbsﬂ) Pl

- zbsw (A% t2) PALO.

where in the third equality we used the fact that wnor = (dw)por = 0 for w € QF, (M). This yields

gbs()\)_ ﬁ st()\) = i (AII]\/[,abs + )\) Pabs( ) (24‘)
For v =[] + 1, we also note that

v

Y {log Det (A'}w)abs + /\) — log Det (A‘JZ\LD + )\)} (2.5)
a1 1 1
= Tr {W ((Atlzw,abs + )‘) - (A?\/I,D + )‘) ) }
= Tr { dd):/ 11 (Pabs( )i* (A(JZ\Labs + )‘) 1) }
= I {dd)l\j—"_ll (z* (A?‘J*abs + )\) Pabs( )) } =T { dd):jlz_j1 ( gbs()‘)_l % st()‘)) }

dv
= ow log Det Q7. ().
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This equality leads to the following result, which has been already proved in Theorem 6.2 of [7] by a
different method.

m—1
Lemma 2.2. There exists a polynomial P1(\) = ZLE] ag\F such that

(752
log Det (AM abs T /\) — log Det (A?\/LD + )\) = Z arA¥ + InDet Q7, . (N).
k=0

To determine the coefficients aj, we are going to consider the asymptotic expansion of each term in
Lemma 22 for A — oo. When ¢t — 07, it is well known [10] that for some a;, b; € R,

Tre ™A ans Zajt—; Tre o ~ Y gyt (2.6)
§=0

It is straightforward ((5.1) in [31], Lemma 2.1 in [16]) that for A — oo,

N B
F M LG m—j
n Det (A%, +A) = nDet (A%, +2A) ~ Z <%> A (2.7)
’ ’ S
s=0
m—1 . N1
+ (= bp)In A + > (a; — by) ( >| = (A7),
j=0

where we note that the constant term does not appear. Since QZ, (1)) is an elliptic ¥DO of order 1 with
parameter of weight 2, it is shown in the Appendix of [6] that for A\ — co, In Det QY, .(\) has the following
asymptotic expansion,

m—1
Zﬂ']/\m = 4 qj/\m}lﬂ In A, (2.8)
j=0

In Det Q?

abs

where 7; and g; are locally computable as follows. For a fixed local coordinate system we denote the
homogeneous symbols of QY (A) and its resolvent (1 — Q% (A\))~! by

o (QI M) (W, € N) Zal i, 6N, (2.9)
((H Qaps(N) ) A~ > T (A ).
7=0

The densities 7;(y) and ¢;(y) are computed as follows (Appendix of [0]).
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1 1

o <W/T*Y 27”/7!1 Trr_q_; <y 3 w,u) dud§> (2.10)
1 1 1 . N ‘ i

q(y) = 9 (W /TJY%/VM Trr_i_; (y7§7 |)\|=M) dud§>

T = /Wj(y) dy, ¢ = /Qj(y) dy,
Y Y
A

where dy is the volume form on Y and + is a contour enclosing the poles of Tr7_q_; (y &, L u) coun-

)

s=0

terclockwise. Comparing the coefficients of A7, we have the following result.

Lemma 2.3.

d T(s—k)
ds D(s) )

I'(s — m—k—1
Gm—-1 = Gy — b, qr = (ak+1 - bk+1) <$>

ag = —Tm—1, ay = —Tm—1-2k — (Am—2k — b—2k) (

s=0

Since the heat coefficients are quite well known [I1], [15], we are going to concentrate on computing the
7r’s to determine the coefficients ax. We note that the coefficients . are expressed by some curvature
tensors including the scalar curvatures and principal curvatures of Y in M like heat coefficients (cf.[25]).
In Section 3 we are going to compute m; and 7y along these lines when dim M = 2, 3.

Before going further, we make one observation. If M has a product structure near Y so that A%, is
—82 —l—Ay on a collar neighborhood of Y, it is known that Q%, (\) = /Ay + X 4+ a smoothing operator
(cf. [ 24]). In this case, InDet Q7 (\) and In Det /Ay + X have the same asymptotic expansions for
A — o0, Wthh is shown in the Appendix of [6]. Since InDet /Ay + X = 3 InDet(Ay + A), the constant
term in the asymptotic expansion of In Det QY (X) is zero (cf.(28])), which shows that ag = 0.

We next discuss the asymptotic behavior of each term in Lemma for A — 0. We first note that

InDet(Af, , +A) = InDetAj, ,+O(N). (2.11)

In view of (L9), we let dimker A, = dimker QF, ((0) = £, and {¢1(0),--- ,¢,(0)} be an orthonormal
basis for ker A M.abs- Considering A € C — (—00,0), QL .(N) is a self-adjoint holomorphic family of type
(A) in the sense of T. Kato (for the definition see p. 375 of [14]) and Theorem 3.9 on p. 392 of [14] shows
that there exist holomorphic families {6;(A) | j =1,2,---} and {¢;(A) | j = 1,2, -} of eigenvalues and
corresponding orthonormal eigensections of QF, ((A) such that 0 < 61(X) <--- <60, (A) <0, 11(N) <---
and

Fe;N) =1, lim§;(\) =0 for 1<j</l. (2.12)
This leads to

InDet(Af, s +A) = €gInd + InDet™ Af, 1o+ O(N), (2.13)
InDet Q1 (A) = InO1(N)--- 0, (N) + InDet™ QL (0) + O(N).
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For each ¢;()), we denote ®;(\) := P (N)¢;(\). Then,

QM@ = i (1pd2,0) = 606500, (214)
and hence {®1(0),--,®,,(0)} is also a basis for ker AY, , .. The Green Theorem (L) shows that

0 = ((AY +N)P;(N), 2x(0)) = (AF,P;(N), P (0)) + M(P@;(N), Px(0))
= (dD(N), Dy, (0)) + (5D (A ),5<I>k(0)>—/yi* (@4(0) A xard®;(N) — 6B;(A) A a1 (0))
+ A (@5 (A), P, (0))
= —(6%(0), QLN (M)y + MP;(N), @1(0)) ar
= —=0;(AN){(¢x(0), 65 (A\)y + M®P;(A), Pk (0)) ns
which leads to

0;(N)
A

lm G = (2;(0), ®x(0))nr- (2.15)

We define ¢, x £, matrices R = (r;;) and S = (s;;) by

rig = (P:(0), ¥;(O)a, s = Wi(0)]y, ¥;(0)y)y, (2.16)
where 9;(0)]y is equal to i*1;(0) since 1;(0) € QZ, _(M). Since ®;(0) = >°, 7ixx(0), we have

£q

.6\
T 4
(®:(0), @;(0)m = ;1<rmwa<0>, rpte(0)) = (RRY),; = lim —=dy, (2.17)
which shows that RR” is a diagonal matrix. The above equalities show that
01N -0, (V) ,
lim ————— = L, (RRT),; = det(RRT) = det(R?). (2.18)
Since ¢;(0) = @;(0)]y = 3, risthi(0)]y, we have
£ £
Yi(0)ly = Z Yi(0)ly, ¢x(0))y ¢, (0 0)ly, Tka%a(0)[y )y Tkot(0)ly
k,a, b:l
£q
= 2 (SRTR), vu(0)ly,
b=1
which shows that SRTR = Id. Hence,
det R2 = — (2.19)
det S’ '

From (21I8) and (219), we obtain the following result.
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Theorem 2.4. Let M be an oriented m-dimensional compact Riemannian manifold with boundary Y .
Then, for0 < qg<m—1,

InDet™ Af, ;s —InDet Af, = ap —IndetS +InDet” QZ} (0).

abs

Here aq is the constant term in the asymptotic expansion of —InDet QY (X) for A — oo. If M has a
product structure near'Y so that A%, ., s —8§m + Ay on a collar neighborhood of Y, then ag = 0.

Corollary 2.5. When q = 0, A(JJW,abs is the Laplacian acting on smooth functions with the Neumann

boundary condition on'Y. Then ly = dimker A}, =1 and S = (‘f((}]\//l))), where V(M) and ¢(Y) are

volumes of M and Y, respectively. In this case, Theorem [2.]] is rewritten as

InDet* A} .ps —InDet AY; p = ag+1In ‘;g\//? +InDet* Q%,.(0).

We should mention that the constant term corresponding to ag in the BFK-gluing formula of zeta-
determinants is zero when M is an even dimensional manifold since the density is an odd function with
respect to £&. However, the density for ag in Theorem 2-4lneed not be an odd function so that ag may not
be zero even though M is an even dimensional manifold. In the next section we are going to compute ag
precisely when the dimension of M is 2 and 3.

In the remaining part of this section, we are going to discuss the values of zeta functions at zero by
considering the metric rescaling from g to ¢2g for ¢ > 0 on M. It is well known [3] that

A?V[(c2g) = C_QA‘]ZW(Q), A?V[(c2g) +A =2 (A?\J(g) + 02)\) ) (2.20)
Lemma is rewritten as

In Det (A‘]Zwyabs(czg) + )\) — In Det (A?\47D(C2g) + )\) = PL,(A) +IDetQf 2,(\) (2.21)
[((m—1)/2]
= Z a; (029))\j + InDet Qibs czq()\)’
=0

m—1 3 m—1 .
where PI(\) = Zgg] a;j(g)N and P} (\) = 22:20 ]aj(czg))\ﬂ. The Dirichlet-to-Neumann operator
Q% , (N) is described as follows. For ¢ € Q4(Y), we choose ¢ € Q9(M) such that
abs,c?g

(A%(E)+N o = AL+ o =0, o=y, i (o) =0
Then, Q¢ s(A)f is defined by

abs,c?

oase = (1) = -1 ) - bt

which shows that

Qb2 = Qi 4(c*N). (2.22)
From (2.20) and 2.22), it follows that
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In Det (AMdb /D(c g)—f—)\) = —2Inc-(a AL e (9 9)+c2x)(0) + InDet (AM abs /D( )+02)\>,
InDet @ 2, (A) = —Inc- (oo (Cz)\)( ) + InDet Qf,, ,(c AN). (2.23)

We use the above equalities to rewrite (DI[I) as

—2Inc- {C(Agj’abs(g)+c2)\)( ) — Gy, , +c2)\)(0)}
+ {m Det(A‘]Imabs(g) +A) —InDet(A%, 1, (9) + C2A)}
=—2lnc- {C(Aq

A abs (9)+C2X) (0) - C(A?w p(9)+c2\) (O)} + qu(c2)\) + lnDet Qg 9(62)‘)
= Pg2g()\) —Inc- CQst,g(C”‘) (0) + InDetQZ, q( 2)), (2.24)
which leads to the following result.

Lemma 2.6.

—ne {2 (Cag, o ioren) ) = Cag, @) ©) = Can@n @] = Ph() — PiEN)

[(m-1)/2] o
= > (@9 —ag)e¥) N,
=0
From (Z9) we have the following,.
((M deb c2g ) ) ZT 1— J §7A7M;C2g)7 (225)

(1= @) ) = (= 20h@) ) = o (e (e )
1 1 !

N e 1
~ czr 1,6 AN e g) = czr 1 <y7c &N ep; g) =Y I (y,—&/\,u;g)
§=0 j=0 ¢
ZC_jF—l—j (y7 EgaAuuvg) )
j=0
which shows that
~ 9 e 1
Tflfj(y,é.,A,,UJ;C g) = € "T—1-j yvz@)\aﬂvg . (226)

By (210) the density m;(y; c?g) for mj(c?g) is given by

1 1 A
VSR — ST T L2 du dé (2
o ((27T>m1 /;Y By /WM r—1—j (y7§7 |/\|7M,C g) p dé(c g)) ,

mi(c’g) = /Y i (y; ¢ g) dvol(Y;c?g). (2.27)

0
milyict) = —o-
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Using (Z27) with the following relation

de(ctg) = M Vde(yg), dvol(Y;c?g) = ¢™ tdvol(Y;yg), (2.28)
we have the following result.

Lemma 2.7.

me(yiclg) = ¢ Fml(yig), m(c*g) = " Fm(g).

Lemma 23] shows that the coefficient ax(c?g) of the polynomial ch2q()\) is given by

2

ar(?g) = —Tm-1-21(c*g) — (am—2k(c®g) — br—21(c*g)) % (

M) (2.29)

I'(s)

= Czkak(g)v

where we used the fact that ai(c?g) = ¢™ *ax(g) and bi(c?g) = ¢™ *bi(g) (Theorem 3.1.9 in [11] or
(4.2.5) in [15]). Hence, Pc‘ég(/\) — PJ(c*X) = 0 in Lemma 2.6l Replacing A with L, we obtain the
following result.

Theorem 2.8. For A > 0, we obtain the following equality:

o, ,n(0) = 2 {C(A‘}Myabs(g)ﬁ-)\) (0) = C(ag, po1+n) (0)} :
If dim ker A'I]\/Labs(g) = dim ker ngsyg(O) = {4, we obtain the following equality by taking A — 0:
CQst,g(O) (0) + gq = 2 { (CA?W,abs(g) (0) + Et]) - CA?\/[,D(!]) (0)} :

The following heat trace asymptotic expansion is well known [12] 19} 25].

Tre " @un(® Y "t =m0 N (w Int + 25t (2.30)
j=0 j=1

where the v;’s and w;’s are locally computed and the z;’s are not. The second statement of Theorem [2.8]
can be rewritten as follows.

Corollary 2.9.

Let 1(y), - ,&m—1(y) be the principal curvatures of Y in M at y € Y. We define the r-mean
curvature H, by

1 rl(m—1—r)!
Hr(y) = War(ﬁla“' 7"<5m—1) = War(fﬂw“ 7l‘€m—1)7 (2'31)
where o, : R™™!1 — R is the r-th elementary symmetric polynomial defined by o, (u1, - Upm_1) =

Zl§i1<---<u§m71 w;y, -+, [1]. For example, for m > 3, Hy(y) and Ha(y) are
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H) = Yok ) = ey Y kel (232
a=1

1<a<f<m-—1

When m = 3, the following equality was proved in Lemma 3.2 of [17].

1

Lt @) + 2y () — Haly), (2:33)

2
ZR%as(?J) = _RiC% = 75 9
a=1

where R, .(y) and Ricj3 are defined in (B8] below. For m = 2, 3, a,, — b,, can be computed concretely
by using Theorem 3.4.1 and Theorem 3.6.1 in [I1] or Section 4.2 and 4.5 in [I5], which together with
[233) and (B3H) below yields the following result.

Corollary 2.10. Let (M,Y; g) be an m-dimensional compact oriented Riemannian manifold with bound-
ary Y. We define QI (0) on QI(Y) as above and denote by Tar and Ty the scalar curvatures of M and

abs

Y, respectively. If m = 2, then

0 if q=0
—L1 [ k) dy if q=1.

abs

Cor_(y(0) +¢€4 = {

If m = 3, then

£y {S+ dry 383y i g=0
GO+l = Yaly | —amv — By +aHipdy if =1
=y~ Ev o ay + il pdy i q=2.
Remark : When ¢ = 0, the above result is obtained in Theorem 1.5 of [25] or Theorem 5.1 of [19].

Ezample 2.11 : For a closed Riemannian manifold N, we consider a Riemannian product M = [0, a] X N.
q

,
y:
absolute and Dirichlet boundary conditions on Y := {0,a} x N, respectively. Let N = {1,2,3,---} be
the set of all positive integers and Ny = NU {0}. The spectra of A‘szyabs and A‘JZ\LD are given by

kr\ 2 I\
q _ o i
SpeC (AM,abs> - {)\" + ( a ) » Ms Tt (a>
k) I\ >
P () e ()

which shows that (ae  (s) —Cas () = (aq (s) and hence

Let A‘szyabs and A?\/[,D be the Laplacian —8‘9—; + ( ) on M acting on smooth ¢-forms with the

An € Spec(A%), ps € Spec(AL), ke Ny, 1 € N} ,

Spec (A‘]IM)D)

An € Spec(A%), ps € Spec(AL), k€N, 1 € N} ,

InDet™ A, ;. — InDetAf, ;, = InDet” A%, Cat, . (0) = Car, (0) = Cag (0).

Simple computation shows that the spectrum of Q% (0) : Q4(N x {0}) ® QI(N x {a}) = QIU(N x {0}) ®
09N x {a}) is given by
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Spec (Q7,(0))
- {0} U {2} U {x/ﬂ<1+ﬁ> m<1—ﬁ> |0<An€SpeC(A?v)}v

where the multiplicities of 0 and 2 are ¢, := dimker HY(N) := dimker H?(M). Hence,

2 2 2
* q _ * q
lnDet QabS(O) = fqlna +1nDet AN+ E {ln (1+m> —l—lIl (1— m)}
0<A,ESpec(AY))

l;1n 2 + InDet™ A%,
a
Cor 0(0) = £4+Ca1(0) +Caz (0) = £+ 2Caq (0).

abs
Let {¢1,--- ,1b¢,} be an orthonormal basis of ker A%,. Then {ﬁ‘/’lv cee ﬁd)gq} is an orthonormal basis
of ker A%, ., .. Hence,

1 1
<%¢i, ﬁ%‘hf

Since Indet S = 441n % and ag = 0, this result agrees with Theorem 2.4] and Theorem 2.8

1 1 2
E(%» Yi){oyxN + E<¢ia Vi){a}xN = ~0ij-

3. THE HOMOGENEOUS SYMBOL OF Q% ())

abs

I .(A\) in the boundary normal

coordinate system defined below. For yy € Y and a small open neighborhood V' of gy in Y, we choose

In this section we are going to compute the homogeneous symbol of @

a normal coordinate system on V with y = (y1,+- ,Ym—1) and yo = (0,---,0). For y € Y, we denote
by vy(u) the unit speed geodesic such that v,(0) is an inward normal vector to Y. Then, (y,u) =
(Y1, ,Ym—1,u) gives a local coordinate system. We will write u = y,, for notational convenience. For

1<a, B, vy <m —1, the metric satisfies

9as(Yo) = 0ap; Gapiy(Yo) = 0, Gam(y) = 0, Imm(y) =1, (3.1)

where gag:x 1= %’cgaﬁ, 1 < k < m. Moreover, we may choose the coordinate system such that

2K for a=p
0 for « # 0,

where the k,’s (1 < o < m — 1) are the principal curvatures of Y in M. For simplicity, we are going to
Write@%,c by 8y, for 1 <k < m. We denote by VM the Levi-Civita connection on M associated to g and

97" (o) =~ gasm(yo) = { (3.2)

denote by w the connection form for VM with respect to {9y, , -+ ,9,,,} and put wy = w(9,, ). For some
endomorphism Ey acting on AYT*M , A%, + X is expressed as follows [17, [25]:

Al 4N = —Tr((VM)2) ~ B, (3.3)

o0
= _8§m Id + (A(yvym)_ 2wm) aym + D(y,ym,—

6y7)\) - (aymwm + Wmwm — A(.I, ym)wm) )
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m

where Id is an ( p

) X (7:;) identity matrix and

Aly,ym) = =5 Z 9% (Y, Ym) Gasim (Y, ym) ¢ 1d, (3.4)
aﬁ 1
0
D (yaymua_ya)\> = Z g y Ym auaaug + A (35)
o, f=1
m—1

1 .
— (§g“ﬂ(y,ym)(3ya In 9]y, ym)) + g“ﬂ’“(y,ym))) Oy, ¢ 1d

a,B=1
m—1 m—1
=23 gy, ym)wady, — Z 9% (Y, Ym) (%wﬂ +waws = Y Plﬁ“’v) — By,
a,B=1 a,B=1 y=1

We use the Weitzenbock formula (for example, Lemma 4.1.2 in [10]) to describe E; explicitly. It is known
([T1]) that Eg = 0. Let {e1,--- ,em} and {e!, -+, e™} be local orthonormal bases of T M|y and T* M|y
for some open set U in M, respectively. We denote by Rl e and Rch the Riemann curvature tensor
and Ricci tensor on M defined by

RYy = (VY Y e, = VYV e, -V er ), Z RN (3.6)
Then,
E, = < — Ric}/ > . (3.7)
1<i,j<m

For later use, we compute Es for m = 3 with respect to a local orthonormal basis {e! Ae?, e3Ael, e3 Ae?},
which is given by

. M M
— Ricsg —R21%\?2 31223
_ M .
Ey, = —R3113  —Ricy, 31332 . (3.8)
M M
Ry333  Ri3so Rlcu

Since Y is compact, we can choose a uniform constant ey > 0 such that v,(u) is well defined for
0 < u < ¢g. Then,

Uo = {Wym)|yeY, 0<ynm <eo} (3.9)

is a collar neighborhood of Y. We note that for a fixed y,, in [0, ),

Yy = {ym)lyeY} (3.10)

is a submanifold of M diffeomorphic to Y, and it is the y,,-level of Y. For 0 < y,,, < €, we denote
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My, = M —Up<u<y,,Yu: (3.11)

and denote by ¢, :Y, — M, the natural inclusion. We also denote by A?\/_[y the Hodge-De Rham
Laplacian Af; restricted to M,,,. For each 0 < y,, < €, we define QF,_ ()\) :QUY,, ) — Q94(Y,, ) and
ley (\) : QI71(Y,,.) = Q1(Y,,.) in the same way as QY, ()\) and le (A). Indeed, for oy, (y) €
Qq(YUm) a'nd /Bywn( ) € Qq 1( Um) we ChOOSQ ¢y7n € Q ( y7n) wynl € Q ( y7n) Satleylng

(A?\/Iym + A)(bym =0, i;;md)ym = Oy, P19 ¢ym =0, (312)

Ym

(A‘]Iwym + Ay, =0, izmwym =0, "1, Vym = Bym-
We define

gbs,ym ()‘)(Spum) = _Z:;m Laym d¢ym ) 3cl7ym ()‘)(Spum) = ym ( djym) (313)

Using local coordinates on Ue,, with multi-indices ¢ = (i1,...,44), 7 = (J1,-.-sJq—1), k = (k1, ..., kq), and
l = (llv ey qul)v we Write ¢ym (yvym) and T/Jym (ya yﬂ’L) as

Gy (U m) = D1 ym) dyiy A+ Ndyi, D b2 (Y Ym) dym Adyj, Ao Adyj,,, (3.14)

J

Gy W Ym) = D 01k Ym) dyi, Ao Adyr, + > 20y Ym) dym Adys, A+ Ay,
k l

where

ay, (¥) = D brilyym)ly, dyis Ao Adyi,
i

By (y) = Z¢2,l(y7ym)’yym dyi, N+ Ndy,_, s
l

P2ily, = Yirly, =0
In this local coordinate system, Qg , (M)(py,,) and Q) (A\)(¢y, ) can be rewritten as follows (cf.
Definition [LT]).
st,ym ()\)(aUm (y)) = - Z (aym(bl,i(y, ym)) }me dyil ARERNAN dyiq7 (315)
QL NBy. () = =) Oy 2(y.ym)) |y, dyi, Ao Ay,
1

When y, = 0, Qi o(A) and Qf O( ) are equal to QY [(\) and Qrel (N, respectively
We next define auxiliary operators 71, (X) : QU(Y,,,) — Q77'(Y,,,) and Tt V) QYY) —
Q(Yy,.) by
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a({)s,ym ()‘) (aym (y)) = - Z (aUm ¢2,j (y7 ym)) ’me dyjl ARSRNA dyjqfw (316)
J

Tty NGB @) = = Oy ym))ly,  dys A A dy,.
k

We ﬁnal]‘y deﬁne Rg ( ) Qq( y7n) Qq 1( )_>Q ( y7n) Qq 1( m) by

q — gbs,ym ()‘) 7;c1 ym( )
R ‘( T @Mg>>' (317)

Using local coordinates on Ue,, we write

R ) . By,.) (3.18)
= ( abs,ym aUm + 7, rcl y ( )Bymu al{)s,ym ()‘)aUm + Qrcl JYm ( )Bym)
= ( By 01 ym)) |y, dyin Ao Adyiy = Y (O iy ym)) [y, dyes Ao Ady,,
k
- Z By 02,3y ym)) |y, Ay Ao Adyj s =D (B t2a(y,ym)) ]y, dyi A A dyzq1>,
j .

where ¢, + ¢y, € QI(M,,,) satisfies

(A(II\/[ + )‘) (Qbym + 7/)ym) = 07 i;m (¢ym + 1/)ym) = Oy, » i;m (Laym (¢ym + 1/)ym)) = ﬂym- (3-19)

Then, RY () is an elliptic pseudodifferential operator of order 1.

We can identify Y, with ¥ :=Y{ by the geodesic v, (u) and regard R (A) to be a one parameter
family of operators defined on Q4(Y) @ Q?~!(Y). We are going to take the derivative of R () with
respect to yy, to obtain a Riccati type equation for R _(A), from which we can compute the homogeneous
symbol of R¢ (A). This idea goes back to I. M. Gelfand The symbol of Q¥ (\) is obtained from the
symbol of R (A).

We start from ¢y, (v, Ym) + ¥y, (Y, ym) € QI(M,,,). We note that

5ym<¢ym(y,ym)+¢ym(y,ym)>|yym = Ry Gy, (W 4m) + ¥y, (W ym)) |y, - (3:20)

We take the derivative with respect to y,, again to obtain

02, (S0 0) 4 G ) )y, (3.21)

= —((%mRZm(A)) (Gyn (U Ym) + Yy (W ym)) |y, + RYL (N (g (4 Ym) + Uy, (0, 5m)) |y,

which together with (B:3) leads to the following equality.
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{00, R5,, (N + RE, ()} (by,. (0, 9m) + Yy (W 9m)) |y, (3.22)
= {(A(ya ym) - 2wm) aym + D(ya Ym, ayv >‘) - (aymwm + WimWm — A(ya ym)wm)} (¢ym (yv ym) +
wynl (y7 ym)) ’me
Using ([B.20) again, we obtain the following result.
Lemma 3.1.
RY, ()2
= D(yu Ym, 6y7 )‘) - (A(ya ym) - 2wm) R?/ ( ) a R’Zm ()‘) - (aymwm + Wi Wm — A(yu ym)wm) .

We now compute the homogeneous symbol in this coordinate system using the above lemma. We
denote the homogeneous symbol of R¢ (A) and D(y, Ym Oy, )\) by

a (Rgm (A)) (ya Ym, 55 A) ~ al(ya Ym, 55 A) + o‘O(yv Ym, 57 >\) + O‘*l(ya Ym, 55 A) + (323)
o (D (Y Ym0y, N)) = D2(Ys Ym> & A) + 21U Ym» &) + Po (Y, Ym, €),
where for an (7:;) X (7:;) identity matrix Id, (8:5) shows that

m—1
P2 ym, &) = | D0 0™ ym)€abs + A | 1d = (I + )1, (3.24)
a,B=1
m—1 m—1
Py Ym,§) = =i Y ( (¥, ym )0y, In|g|(y, ym)+g“ﬂ?“(y,ym)> §p1d—2i > g*%wals,
a,B=1 a,B=1

m—1 m—1
oW ym: &) = — > g*° (3%% +waws — Y Flg%) - Eqy.
a,B=1

y=1
The symbol of 9,,, RY ()) is given by

g (auqu ()‘)) (yu ymuga )‘) ~ 6ym041 (yvymuga )\) + aymO‘O(yvymuga )\) + ayma—l(yvymugv )‘) + - (325)
It is well known [10, 28] that for D, = 19,,

o (Ry.. Z ) 3£ o1-i(Y,ym, & A) - Dy ar—5(Y, Ym, &, A) (3.26)
k= O\wH»'L;]O k
i,j>

= a% + (Oea1 - Dyon + 201 - )

. . 1 W %9
+ | 20101 + ag — i(Oevg)(Oyar1) — i(Ogan ) (Oyag) — Z J(ag )0y ar) | + -

|w]=2

Using Lemma 3.1l with (3.24)) - (3.26]), we can compute the homogeneous symbol of R¢ (). For example,
the first three terms are given as follows.
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o1 (y,ym,&A) = VI[P + A Id, (3.27)

1
Oéo(yvym,@)\) = W {—35041 - Dyor +p1 — (A(yaym) - 2wm)041 + 3ym041}7
1 1 . .
1Y, Ym, & A) = m{ > (08 a1)(8;a1) +i(0e0)(9yn) +i(O¢ ) (9ya0) — ag
Jw|=2

+ po — (A(yv ym) - 2wm>a0 + 8ym040 - (aymwm + Wmwm — A(yv ym)wm)}'

Let Fy,. : QUY,. ) — QY,,.)® Q1 (Y, ) and G, :Q%Y,, )oY, ) — QIY,, ) be the
natural inclusion and projection, respectively, i.e. Fy, (¢) = (¢, ) and Gy, (¢, 1/1) ¢. Then, by (BI7)
it follows that

st,ym ()\) = gym : R’Zm ()\) : ]:ym7 (328)
which shows that the symbol of QZ . ()) is given by

U( st,ym(A)) = (I 0) {o (R}, (V) } @ O)F, (3.29)

where I is the (mq_l) X (m 1) identity matrix and O is the (mq_l) X (’Z:ll) zero matrix.

We consider the boundary normal coordinate system (y,ym) = (Y1, , Ym—1,Ym) on a collar neigh-
borhood of Y introduced at the beginning of this section. For yo € Y, we denote e; := 9, (yo) and
et = dx;(yo) for 1 < i < m. Eq.@I) and B2) show that {e1, - e} and {e!,---,e™} at yo € YV

satisfy the following relations.

Vi‘geﬂ = wa(e'@) = Kadape™, Vé‘iem = —Kqe”, Vé\f[neo‘ = Kqe®, Vé\f[nem =0, (3.30)

The following result is straightforward (cf. Lemma 1.5.4 of [I1]).

Lemma 3.2. For1<a<m-—-1land1 <14 <--- <ty <m—1, the following equalities hold.

wa (€™ A /\e“I) = Ka em/\(Leaeil/\---/\eiq),

War (e Aelt A - /\ejqfl) = —Kg YA N AT

Wi (€M A NE) = (kg +or Ry, €A Ael,

W (e Aelt A - -/\ejq*l) = (K, +- -+ rj,,) e NI NN edamt,

When dim M = 3, Lemma is reduced to the following result.

Corollary 3.3. Let dim M = 3. For p=1 and an ordered basis {e',e? e3} of T*M‘U, we can write wy,
wo and wy, (m=3) by
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0 0 —ry 1 00
wr = 0 0 0 : wiw = —K3| 0 0 0 |, (3.31)
k1 0 0 00 1
00 0 00 0
Wy = 00 -k |, Wows = —k2| 0 1 0 |,
0 Ky O 00 1
k1 0 0 kK2 0 0
Wm = 0 ko O , Wm Wy = 0 m% 0 .
0 0 0 0 0 0

For p = 2 and an ordered basis {e! A €2, €3 Ael, €3 A e?} of N2T*M we can write w1, wy and Wpy,
(m=3) by

0 0 —k1 1 0 O
wy = 0 0 0 , wiw, = —Kk2| 0 0 0 |, (3.32)
k1 O 0 0 0 1
0 ko O 1 0 0
Wy = —ky 0 O , Wy Wy = —/@% 01 0 ,
0 0 0 0 0 O
K1+ ke O 0 (Hl + 112)2 0 0
Wm = 0 k1 O , Wm W, = 0 Ii% 0
0 0 ko 0 0 k3
We denote
(L O) Eq (Iv O)T = Eqv (L O) wm(yaym) (Iv O)T = a/-)m(y,ym), (333)
I O) wa(¥,ym) (I, O)T = Ga(Wym), (I, O) wa(¥, ym)ws (¥, ym) (I, O)F = Waws (Y, Ym)-

When m = 3, Ey and E are given by 3.7) and B8] as follows.

~ —Ric” —RicM ~ .
E, = ( _Rm% _Ricﬁ ) E, = (—Rlcgg) (3.34)

Moreover, we use ([233) to obtain the following equalities.

_ 1
T El = —TM + RIC% = —5(7']\4 + TY) + H27 (335)
_ 1
TrE, = —Ricd = —5(ru —7y) — Ha.

We also denote
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52(y7ymu§7)‘) = Z g y Ym §a§ﬂ +A Id = (|€|2 + )‘) faa (336)
a,B=1
. m—1
Py ym, &) = —i Z ( (¥ Ym )0y, In|g|(y, ym)+g"‘ﬂ§a(y,ym)) pld =20 > g™ @als,
a,f=1 «a,f=1
m—1 m—1 .
po(Ysym.&) = — Z gaB (ayaaﬁ + wawp — Z FZ{%) — LBy,
a,Bf=1 y=1
~ 1™ ~
Alysym) = {—3 P, Ym) Gapim (Y, ym) ¢ 1d,
a,B=1

where Id is the (ml;l) X (mgl) identity matrix.

Remark : At (yo, 0) € Y, Lemma B2 (or Corollary B:3]) shows that &q (y0,0) = 0, and hence p1(yo,0) =0
by BI). Since Wawy # 0 as shown in [B31) and [B32), it follows that

2
(A00.0) = 0. (1.0) 0.8 1 O =~ S G0 el (3.37)
a,f=1

Using Lemma BT with (3.29), we can compute the homogeneous symbol of Qf, . ()), whose first three
terms are given as follows (cf. (1.7)-(1.9) in [20], (2.2)-(2.3) in [25] for ¢ = 0).

Theorem 3.4. In the boundary normal coordinate system given at the beginning of this section, we
denote the homogeneous symbol of QF, . ym (A) by

o (ngs,ym ()‘)) (ya Ym» 55 A) ~ &1 (ya Ym» 55 A) + aO(yv Yms 57 >\) + &71(ya Ym» 55 A) +
Then,

al(ya ymagv >\) =
&O(yu ymuga )‘)

T = VPRI

[
==
ce
Q L
[
RG]
Lce
!

— W {_35&1 - Dy +p1 — (Av(yuym) - 2c~um> aq + 5ym&1} ,

a1y ym: &A) = (I, 0) a_y (I, O)F

— m{ > %(%&1)(8;”&1)+i(85&0)(8yal)+¢(a§a1)(ayao)_ (I, 0) a2 (1, O)T
lwl=2 "

+ 50 - (Z(%ym) - 2‘:}m)&o + aym&O - (aym(;:n + @1@ - Z(yvym)am)}v

where at (z,0) €Y

(I, 0) ad(y,0) (1, 0)T = (ao@v(”) BGEER
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We next denote the homogeneous symbol of the resolvent (pu — Q7 ()\))71 by

abs
g ((/1* - ngs()‘))_l) (y7§7 A?M) ~ 7—1(%57 )\7 /14) + ?—Z(yvgu )\7#) + 77—3(y7§7 )\7#) + - (338)
Then,
-1
s = (u=VEP+A) 14, (3.39)
—1 Jj—1
Faswedn = (i VEFTA) Y Y Sogm Do,

k=0 |w|+1+k=j

which shows that the first three terms are given as follows.

Fo— (M_W)‘lm, (3.40)
o = (n-VIEFTA)

- 1 1 .~ ~ ~ ~ ~ ~ ~ o~ ~ -
r_3 = (,U \ |§|2 + )\) { Z Jﬁg’al . D;;T,1 + 85041 . Dy’I”,Q + 850&0 . DyT,1 + Qo T—2 + a_q - ’I”,l}.

lwl=2

1
{Oedy - DyF_y + dg - 71},

4. THE CONSTANT TERM ag IN 2 AND 3 DIMENSIONAL MANIFOLDS

In this section we are going to compute ag in Theorem [24] in terms of curvature tensors on Y when
dimY =1 and 2. By Lemma 2.3 with (2.10), ao(y) is expressed by

0 ! L A
s=0 (W w/T*Y % [yllf ’I‘I'T—m (y7§7 W;M) dﬂdé-) . (41)

aoy) = s

Yy

Let VY be the Levi-Civita connection on Y associated to the induced metric from g. We denote by Rapys
and Ricap the Riemann curvature tensor and Ricci tensor on Y associated to VY defined by

m—1

,825]8907’ 815>Y’ Ricap = Z Rayqp. (4-2)
y=1

Raﬁ'yé = <vgza vgzﬁ 83”7 - vgzﬁ V}?/za 8307 - V?é

e

The following lemma is shown in [25] and [30].
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Lemma 4.1. We consider the boundary normal coordinate system on an open neighborhood U, of yo € Y
with metric tensor g = (g;;) and yo = (0,---,0). Then, we have the following equalities:

apio 1 oo 2
(1) g% (yy) = — 3 Rassalvo), g P (yo) = = Rapsalyo),

3
2.
(2) 8yaaya 1n‘g’(y0) = _g Rlcaa(yO)a Z Raﬁﬁa yO Z Raﬁaﬁ yO
a,Bf=1 a,y=1

(3) Qaﬂ;m(yo) = 2'%&5(1,8 = _ga,@;m(yO)u / L |§|k E gaﬂwegagﬁg’ygedg =0 fO’f’ kE<—-3- m,
R™=
a,B,7,e=1

m—1

(4) Z g* " (yo) = 8 i “i(yo) - Z Jaazmm (Y0),
a=1

,_.)—A

(5) Jaamm(Yo) = = {7 (yo) — 7v (yo) — 2(m — 1)*Hi(yo) + 3(m — 1)(m — 2)Ha(yo) } ,

3 Q

Q
Il
-

where Tar(yo) and Ty (yo) are scalar curvatures of M and'Y at yo € Y, respectively, and Hy and Hs are

defined in (2:32).
The following lemma is straightforward.

Lemma 4.2. Let Ct =C—{r e R|r <0}. For z € Ct let v be a counterclockwise contour in CT with
z inside vv. Then for Res > 2 the following integrals are all well defined and one computes:

1 / e - 1 woe s 1 / poe 1 Cse2
— dp=2"° — | ———du=-s2"°"", — | ————du=-s(s+1)z7°"7,
2mi J, p— 2 2mi )., (u— 2)? 2mi )., (u— 2)3 2

1 2 )-ge = L 1 1 2, 1y-5-1 11
o [P0 hae = oo o [P e = oo
1 2(1¢12 —5-2 _ i 1
1 [P )R = S
2 —-5-3 _ 1 1
47T2/ 6152 |§| +1) d§ 27TS(S+2)(S+4)7
3 1

401612 —5-80 _ 9
H‘/Rz Gle+1) d 21 s(s +2)(s+4)

Now we proceed the computation as in [I7]. For two integrable functions f(¢) and g(¢) on R™~1, we
define an equivalence relation ” &~ 7 as follows:

f = g if and only if /}RW1 f() d¢ = /}RW1 g(&) d¢. (4.3)

We first suppose that Y is a 1-dimensional manifold, i.e. m = 2. Using (3.1]), we have, at (y,0) € Y

3



22 KLAUS KIRSTEN AND YOONWEON LEE

T_g = (M_ \/|§|2+)\)71 {agal'DyF_l +&0'7_1} ~ (u— |§|2+/\)7 ap
_ 1 {—8&&1 . Dyal + p1 (&VJ _ lg(y O)) 8ym&1 }
I S A RN/ A0+ 3 e
- 1 {(ZD 1;{( 6yma1
(= VIER+02 1" 2v/1¢12 +

1 - K
(M—WV{“’”W [€2+ A }

where k(y) is the principal curvature on y € Y. Hence,

~ k 1 [ 1
= - —35) Trwp, +s5 = — ————1
27r _OO( ) & 1s+1 £ 2 27 J_ \/52—"1'15%,

(lft i+b dt = L) [2, 2], we obtain

Setting ¢ = ¢ and using the identity [, ()

1 t
= | i = - S
A e e e r ey

which leads to

= ~W+S~(%+O(s)).

Taking the derivative with respect to s gives

aoly) = —% Tr(@) In 2 + %

(4.6)

(4.7)

Lemma shows that if ¢ = 0 then @,, = 0 and if ¢ = 1 then &,,, = x(y). This leads to the following

result.

Theorem 4.3. When dimY =1, the constant ay in Theorem[2.4) is given as follow.

w {%fyn(mdy for q=0
=(1-2In2) [, x(y) dy for qg=1.

Remark : Tt follows from (2.I0) that
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{0 for ¢=0 (4.8)
G = .
—% fy k(y) dy for g=1,

which agrees with as — bs in Corollary 2.9 and Corollary 2.10

We next consider the case that Y is a 2-dimensional compact Riemannian manifold, i.e. m = 3. We
refer to [17] for details. Before computing ag(y), we first consider aq(y), which is by Lemma [Z3]

ai(y) = (a1(y) = br(y)) — 7m0 (y)- (4.9)

Simple computation shows that for g = (5)7

1 L A A
=0 ((2@2 /;Y%Lﬂ Trr_; <y,§,m,u> dud{) (4.10)

0

mo(y) = T 0s

T s / L/deg
N 0 9s seo \ (27m)2 z;3/271'1' 'YM—\/W 1z
_n
T 8

It is well known (for example, Theorem 3.4.1 and Theorem 3.6.1 in [I1] or Section 4.2 and 4.5 in [15])
that

ay) —bily) = -, (4.11)

8m
which yields the following result.
Lemma 4.4. When dimY = 2, the constant a1 in Lemmal2.3 is zero.

We next compute ag(z). We recall that

L LY A
o ((27r)2 /T;Y %/W,M Trr_s <y,€, m,u) dud§> (4.12)

(ﬁ /m % / i Te{(D) + (1) + (I1D) + (IV) + (V)} dud§> ,

0
ao(y) = s

9
Os

s=0

where

1 qwx Wy ~ ~ ~ ~
@) = Zeim2@®0 Dt 9@ Dy gy Gl Dyiy
1= IEF+ A 1= IEF+ A 1= /IEF+ A
Qo - T—2 a_1-T_1
aw)y = 2 oy = G
VA = IEF+ A

Moreover, we denote
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&,1 *r—1 a_1
V) = = = (V1) + (V2) + (V3) + (Va) + (V5) + (Ve) + (V7) + (Vs),
p=VIEPEA (= VIR +A)?
where
1 qwx w . ~ ~
(Vy) = Djwl=2 w001 - G an (V) = i(0c) - (Oyan)
2(n = VIEP + N2V + A 2(n = VIEP + X2V + A
i(9gan) - (9yao) —(L, 0) af (I, O)F
(Vs) = 2 2 2 ’ (Va) = 2 2 2 ’
2(n = VIEP + N2V + A 2(n = VIEP + N2V + A
~ 2~m_A’ 7 ~
(V) = i g = e AU
2(n = VIEP + N2V + A 2(n = VIEP + N2V + A
0y, 80 (DB + Brnlm — A(y,0)5m)
(V7) = 5 5 5 ) (Vg) = D) 2 2
2(n = VIEP + 20 VIEP + A 2(n = VIEP + 2)2VIEP + A
Direct and tedious computations show the followings (cf. [I7]). Here, as before, we denote tg = (5) SO
that tg =1 for ¢ =0, 2 and vg = 2 for ¢ = 1.
1 1 s 1y s+l
(2m)2 /TJY%/ﬂ (Ddpds = —vo- 5= =5
1 1 _ v Ss+1 1 - s+1
— S(IDdpdé = o —— - - —T o) ——,
(27r)2/TJY2m/V“ (Mdpd = vo- 5055~ 17 W (Oa) 75
! / i/ “*(II)dudé = 0
(27T)2 TJY 2mi ,YM H o ’
1 1 . - H? (s+1)*(s+3) H, s+1
(27)? /TJY%A“ (IV)dpds = o 0 o)~ O I GG
H1 . (S+1)2 1 _
5 Tr (W) P e Tr(Om@m) - (s+ 1),
1 1 s _ v 1
(27)? /TJY%/ﬂ (Vi)dpds = —vo- 500 55
L v = o
@m2 Jpoy 2mi J, TR T
! L R E A
(27)? /TJY%/ﬂ (Va)dudS = vo-on 75 = 27 T 0nlde) -
1 1 . - H? (s+1)(s+3) H, 1
(2m)2 /T;y 2m'/7“ (Va)dpds = v 0 o567 " I GG D)
1 — 1 Hy . s+1 1 ~ -
——T aWo T a  a— m)* — T mm ),
4m H(wata) s+2 2rm *(Gm) s+2+47r (@rim)
1 1 s 1 ~ 1 ~
Gn)? /T*Y%fy,u (Vs)dpdé = 4—Tr(8yawa) + — Tr (Wata) + — Tr (Ey),
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1 1 H? s+1 H; - 25+ 3 1
— Ve)dudé = —rtg- —= - T (@) - ——— — — T (D@
*y27r "(Ve)dude 0o sy Ty Blm) T o Tr(EmEm),
1 s+1 H? s+1
S(Vy)dudé = — it
*Y2m nduds = o e (e —7Tv) - TS o Ty
Ho $2+s—4 1 -
-t — — Tr(dy, Wm),
0 S GG L Gumbm)
1 H, - 1 - 1 ~
— (Vg)dudé = ——— Tr(0yy, — Tr(0 m — Tr(wWmwm)-
(%/ 22/# e = - Te(B) + = Tr(0y, ) + 7= Tr (@)
Adding up the above terms, we obtain
7 Sy 3 [T (6 0)
— — [ p T Te7 3 |y, & —, p | dud€ (4.13)
(2m)?2 wy 27 ), |A]
1 -1 H? s$246s2+7 2 H. 3
_ g {msEl v so L HD s A6 4 T2 Hy s 43) 1L p
160 s+2 4871 s+2 4w (s+2)(s+4) 8 (s+2)(s+4) 47
— Tr aWa) ® — Tr m)" T 5 — Tr mWm) " 17
o Blwata) - 25 = on Tl@m) - — 5+ g TEnlm) - (s + 1)

which shows that
T™M TY 11 2 3
= —_———+ —H7 ——H 4.14
a0(y) fo (6471' 6ir T odn 1 Gdn 2) (4.14)

3H; 1 ~
167T2Trwawa —8—Tr( )—i—ETr(wmwm).

If p =0, then vg = 1 and @, = Wy, = 0. Eq.(331) and (B:32) show that if p = 1, then tg = 2 and

G = (0, G = (0, o= (L0, e k200
m 0/%27 mW&m — 0/1%7 1wl — 1007 2W2  — 201

If p=2, then vy =1 and
Om = K1+ ko =2H), @mom = (k1 +k2)? =4H?, 010, = —kK3, Wolp = —Ka.

These facts lead to the following result.

Theorem 4.5. When dimY = 2, the constant ag and a1 in Theorem and Lemma[22 are given as
follows.

= [y (= 7v +11HE = 3H3) dy  for q=0
ao = {z=Jy (T —7v +11HE —15H,) dy for q=1
o= Jy (tar —7v +11H +5Hs) dy  for q=2.
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Remark : When dimY = 2, we get from (ZI0), 335), (@I3) and Lemma 23]

_ _ 1 ™ Ty H1
@ = /an(y) dy = 2/Y{ro <32 + o5t mw) + 47TTr(E) (4.15)

—_~—

H ~ 1 ~ -

+ — > Tr(@awa) — 4_;Tf(wm) + Eﬂ(wmwm)} 4
§7M T agry +1HE ) dy  for g =0

i™v — 57y +3HY) dy for q=1

—8mm + 537y + 3 HY) dy for gq=2

1
= 53—C3—§(CQ ()+€q),
which agrees with Corollary 2.10

As an application of Corollary[2:5 and Theorem[d.3], we recover Theorem 1.1 in [I3]. For this purpose let
M be a 2-dimensional compact Riemann manifold with boundary Y. We consider a Laplacian A9, acting
on smooth functions and the conformal variation of Corollary 2.5 as follows. For a smooth function F :
M — R, we denote g;;(e) = e*Fg;;. We also denote by InDet A}, ,;(€), InDet AY; ;(€), r(€), dy(e), and
In Det Q% . (0)(e) the corresponding objects with respect to the metric g;;(€), where A9, (e) = e 2<FAY,
and Q% .(0)(e) = e=<F'QY..(0). Then, Corollary L5 and Theorem E3J for g;;(e) can be rewritten by

abs

lnw = —i/ r(e)dz(e) — InV(M)(e) + InDet* A, ,1(€) — InDet Al p(e)
) 3 Jy ,
S r(e)et dy — ln/ e*F dr + InDet* AY, ,.(6) — InDet AY, (e), (4.16)

o Jy " . )

where dz = dvol(M). For t — 0T, we put

Tr (Fe~tA%me)  ~ Za] Py, T (Fet MD)NibJ Pt (4.17)

7=0
It is well known that [4] 5]
L) mDet” A% () = ~2(a (F)—;/ F(z) do (4.18)
de M ,abs - 2 VOl(M) o y .
d . 0 d
E‘ezolnDet Alyple) = —2by(F), E‘Ezon(e) = —Fr— Fa,

where Fl5 is the derivative of F' with respect to the inward unit normal vector field. Moreover, it is also
well known that [111 [15]

a()—bz = —/dey (419)

Consideration of all these facts shows that
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d Det* Q(0)(¢)
dee= " e = O (4.20)

Det* Q%,.(0)

abs

which shows that )

is a conformal invariant, which is proved earlier in [I3] (see also [g]).

Remark : A similar computation shows that In Det* @1, (0) depends on the conformal change of a metric,

where @}, .(0) is the Dirichlet-to-Neumann operator acting on 1-forms on Y with dimY = 1.
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