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ABSTRACT

One key aspect differentiating data-driven single- and multi-channel speech enhancement and derever-
beration methods is that both the problem formulation and complexity of the solutions are considerably
more challenging in the latter case. Additionally, with limited computational resources, it is cum-
bersome to train models that require the management of larger datasets or those with more complex
designs. In this scenario, an unverified hypothesis that single-channel methods can be adapted to
multi-channel scenarios simply by processing each channel independently holds significant implica-
tions, boosting compatibility between sound scene capture and system input-output formats, while
also allowing modern research to focus on other challenging aspects, such as full-bandwidth audio
enhancement, competitive noise suppression, and unsupervised learning. This study verifies this
hypothesis by comparing the enhancement promoted by a basic single-channel speech enhancement
and dereverberation model with two other multi-channel models tailored to separate clean speech from
noisy 3D mixes. A direction of arrival estimation model was used to objectively evaluate its capacity
to preserve spatial information by comparing the output signals with ground-truth coordinate values.
Consequently, a trade-off arises between preserving spatial information with a more straightforward
single-channel solution at the cost of obtaining lower gains in intelligibility scores.

Keywords single-channel · multi-channel · speech enhancement · dereverberation · data-driven

1 Introduction

Data-driven Speech Enhancement (SE) and dereverberation methods are pivotal in improving the quality and intel-
ligibility of speech signals in various acoustic scenarios. These often rely on statistical methods, signal processing,
and feature engineering to establish nonlinear complex maps between clean and noisy signals Lyon [2017]. Inspired
by the well-known “cocktail party effect” Cherry [1957], recent advancements have incorporated microphone array
processing by leveraging different geometries to capture spatial information. Consequently, multi-channel SE and
dereverberation have garnered significant attention for applications in augmented, virtual, and mixed realities Rafaely,
Boaz et al. [2022].
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This surge of interest on spatial audio enhancement has given rise to specialized data challenges, such as Learning
3D Audio Sources (L3DAS) 20211, 20222 and 20233. These challenges typically provide access to baseline models
and custom training datasets, thereby stimulating research on this topic. The Filter and Sum Network (FaSNet) Luo
et al. [2019], which is the baseline model for Task 1 of L3DAS21 Guizzo et al. [2021], combines Normalized
Cross-Correlation (NCC), Temporal Convolution Network (TCN) layers, and beamforming filters to separate desired
audio components from background noise or interference. Notably, a multi-channel U-net with a neural beamformer
(MMUB) Ren et al. [2021] achieved the challenge’s top rank, outperforming FaSNet on both Word Error Rate
(WER) and Short-Time Objective Intelligibility (STOI) metrics, and became the new baseline model for Task 1 of
L3DAS22 Guizzo et al. [2022] and L3DAS23.

However, data-driven SE and dereverberation methods usually encounter various obstacles (especially for the multi-
channel case), such as effectively capturing and processing acoustic scenarios, managing large datasets with limited
computational resources, addressing model design complexity, and selecting suitable evaluation metrics. A recent
survey dos Santos et al. [2022] showed that only a fraction of articles published in 2021 on data-driven speech and audio
enhancement methods explicitly claimed to be suitable for multi-channel cases (23%), whereas a similar proportion
referred to single-channel cases (24%). Although a few others even explored more specific cases, such as binaural,
ambisonics, and stereo signals (9%), the vast majority (44%) did not specify their intended use case scenario.

It is not only important to question why so many authors omitted this information, as it is also worth noting that many
of the so-called multi-channel solutions perform a signal down-mix, i.e., producing an output signal that discards spatial
information. While focusing on single-channel solutions may be justified in contexts such as communications, in which
edge devices predominantly feature single microphones for capturing voice signals, in other applications such as hearing
aid technology, multi-channel solutions may offer even more benefits for end users.

However, the loose hypothesis that single-channel methods can be adapted to multi-channel scenarios simply by
processing each channel independently dos Santos et al. [2022] holds significant implications for the compatibility of
audio formats and data-driven speech and audio enhancement models. If confirmed, this hypothesis could revolutionize
the field, allowing for more versatile applications and advancements.

The remainder of this paper is organized as follows: Section 2 describes three different SE and dereverberation models
and another for Direction of Arrival (DOA) estimation, all used as baseline materials and methods in this study. In
Section 3, the problem formulation is presented, followed by the solutions offered by each model. The experimental
results are presented in Section 4 and are discussed in Section 5. Finally, the conclusions are presented in Section 6.

2 Materials and Methods

In this study, a set of pre-trained data-driven models was used. The following subsections describe their primary
purpose, architecture, and training datasets used.

2.1 Multi-Channel SE Models

All multi-channel SE models are linked to the previous editions of the L3DAS challenge. FaSNet was the baseline
model for Task 1 of L3DAS21 and was later replaced by MMUB in subsequent challenge editions.

2.1.1 Filter and Sum Network (FaSNet)

FaSNet [Luo et al., 2019] is a Deep Learning (DL) architecture primarily intended for Source Separation (SS) that
utilizes a series of Convolutional Recurrent Neural Network (CRNN) modules. These modules incorporate convolutional
layers for local feature extraction and recurrent layers to model temporal dependencies. In addition, each module
integrates a time-domain filter to capture source-specific information, and a summing operation to combine filtered
signals, producing separate sources. Because FaSNet comprises stacked modules, the output of one module serves as
the input to the next module, allowing progressive refinement of separation. This process involves computing an NCC
metric between the time windows of a reference channel and the remaining channels, pooling the metric, passing it
through a TCN, and feeding it into the beamforming filter learner. Subsequently, the NCC metric is computed between
the previously denoised time windows and the remaining channels. Ultimately, each channel is individually denoised
and summed, resulting in a final beamformed signal. Consequently, this model demonstrates the capability of enhancing
noisy signals by effectively separating the desired component from background noise or interfering sources.

1https://www.l3das.com/mlsp2021/
2https://www.l3das.com/icassp2022/index.html
3https://www.l3das.com/icassp2023/
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This study uses a pre-trained model4 of FaSNet. The training dataset comprises clean speech samples from LibriSpeech5

(up to 10 s in duration), 12 transient (computer keyboard, drawer, cupboard, finger snapping, keys jangling, knock,
laughter, scissors, telephone, writing, chink and clink, printer) and 4 continuous (alarm, crackle, mechanical fan and
microwave oven) classes of noise samples from FSD50K6, and 252 Room Impulse Response (RIR) positions collected
in an office-like environment. The model’s input is tailored for first-order ambisonics (FOA) signals, whereas its output
is a monophonic signal.

2.1.2 Multi-Channel U-net with Neural Beamformer (MMUB)

MMUB Ren et al. [2021] is a model initially submitted to L3DAS21, combining a Multiple-Input (MI) U-Net
architecture with a Single-Output (SO) neural beamformer, referred to as “MIMO U-net Beamforming” in both the
L3DAS22 and L3DAS23 documentations, despite being a MISO system. It uses FOA signals as the input and employs
Short-Time Fourier Transform (STFT) as a feature extraction method. The resulting time-frequency representation
undergoes encoding and decoding through the contracting and expanding paths of a U-Net. This enables dynamic
adjustment of the neural beamformer weights based on the learned parameters. The architecture encompasses encoder
blocks for high-level feature extraction, decoder blocks for reconstructing the input feature size, and skip connections
for concatenating each layer in the encoder blocks with the corresponding layers in the decoder blocks.

In this study, a pre-trained model7 of MMUB is used. The training dataset is the same as that described in Section 2.1.1.

2.2 Single-Channel SE Model (Fully-Convolutional U-net)

This Fully Convolutional (FC) U-net Ernst et al. [2018] follows the original work of Ronneberger et al. [2015], which is
a typical 2D Convolutional Neural Network (CNN) architecture with a contracting path to capture the context and a
symmetric expanding path that enables precise localization. While each downsampling increases the number of feature
channels, the expansive path consists of an upsampling of the feature map, decreasing the number of feature channels,
which allows the network to propagate context information to higher-resolution layers. Consequently, the expansive
path is approximately symmetric to the contracting path, yielding a (sometimes inverted) U-shaped architecture.

Although the authors in Ronneberger et al. [2015] developed this model for biomedical image segmentation, in Ernst
et al. [2018] it was indicated that when considering a feature extractor based on STFT, this architecture can be helpful
for SE, especially in dereverberation tasks. Although some authors claim that conversion to and from the time-frequency
domain can be cumbersome, using spectrograms as input data effectively mitigates reverberation effects by capturing
important spectral patterns of speech.

In this study, a pre-trained model8 of this FC U-net is used. The training dataset comprises noisy9 and reverberant10

speech samples from the VCTK dataset.

2.3 DOA Estimation Model (Sound Event Localization and Detection Network)

Sound Event Localization and Detection Network (SELDnet) Adavanne et al. [2019] is a Multi-Task Learning (MTL)
model that consists of two independently trained CRNNs, one for Sound Event Detection (SED) and the other for DOA
estimation.

The SED model uses log-magnitude STFT as predictors to the system. The network is then implemented in two stages:
CNN layers and Gated Recurrent Units (GRU). A custom reshaping layer is used to recast the output of the CNN and
pass it to the input of the RNN model. The final activation layer uses a sigmoid function.

The DOA estimation model uses a generalized cross-correlation phase transform (GCC-PHAT) as the system predictor.
The network itself is similar to that of the SED model. The key difference is the size of the input layer and final
activation layer, which uses a hyperbolic tangent function.

In this study, a pre-trained model11 of SELDnet is used, which was the baseline model for Task 2 of L3DAS21. The
training dataset is similar to that described in Section 2.1.1.

4https://github.com/l3das/L3DAS21
5https://www.openslr.org/12
6https://zenodo.org/record/4060432#.ZG0e5HbMJPY
7https://github.com/l3das/L3DAS22
8https://www.mathworks.com/help/audio/ug/dereverberate-speech-using-deep-learning-networks.html
9https://datashare.ed.ac.uk/handle/10283/2791

10https://datashare.ed.ac.uk/handle/10283/2031
11https://github.com/l3das/L3DAS21
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3 Experimental Setup

In all editions of L3DAS, clean speech samples were augmented to obtain synthetic 3D acoustic scenes containing a
randomly placed speaker, typical background noise, and reverberation of an office-like environment. In the following
subsections, the problem formulation and solutions offered by each model described in Section 2 are presented.

3.1 Problem Formulation

Let x(t) denote a clean monophonic speech sample and H(t) be the measured Room Impulse Response (RIR) in
B-format:

H(t) = [h(t)W h(t)X h(t)Y h(t)Z ]
T , (1)

in which the sub-indices represent the corresponding W , X , Y and Z channels. To generate a reverberant spatial sound
scene, x(t) can be convolved with H(t):

S(t) = x(t) ∗H(t), (2)
such that S(t) represents the reverberant spatial sound scene. Similarly, a monophonic noise sample n(t) can be
convolved with another RIR to obtain N(t), i.e., a reverberant spatial noise sample in B-format. Hence, the total mix
can be written as:

Y(t) = S(t) +N(t), (3)
in which Y(t) represents a noisy reverberant spatial sound scene.

3.2 Solutions Under Consideration

1. FaSNet: When considering the 3D SE performed by FaSNet, which is a black-box-type system working in
time domain, one should consider Y(t) as input, and x̂(t) as an estimation of the clean monophonic signal of
interest, as free from additive and convolutive noise as possible;

2. MMUB: Moreover, in the 3D SE performed by MMUB, it produces an output X̂(τ, f) which is as an
estimation of the clean monophonic speech matrix computed from a noisy reverberant spatial sound scene
matrix Y(τ, f), in which τ and f are the time and frequency indices in the STFT domain, respectively.
Because the MMUB computes real and imaginary masks, conversion to and from the time-frequency domain
is a complex operation.

3. FC U-net: The pre-trained FC U-net is also a black-box-type system, which produces an output X̂(τ, f) that is
an estimation of the clean monophonic speech matrix computed from a noisy reverberant matrix Y (τ, f). Thus,
to obtain x̂(t) from y(t), conversion to and from the time-frequency domain is necessary. However, because
FC U-net only estimates the magnitude of X̂(τ, f), the original phase of Y (τ, f) is used in the inverse-STFT
operation. Hence, it did not affect the Inter-Channel Phase Difference (ICPD), and no normalization was
applied between the input and output channels.

3.3 Audio Example

Consider the four channels of a noisy reverberant spatial sound scene Y(t), as illustrated in Figure 1(a–d). Consequently,
Figure 1(e) shows a spectrogram of the FasNet estimation of the clean monophonic speech x̂(t), and 1(f) represents
X̂(τ, f) as outputted by MMUB. Subsequently, Figure 1(g–j) shows the enhancement promoted by FC U-net for each
of the four channels independently. STOI scores (cf. Taal et al. [2010]) are shown for all signals with reference to
x(t). Using SELDnet to estimate the DOA of the desired sound source from the enhanced sound scene yielded 153.10◦

of azimuth and 12.71◦ of elevation. By converting this enhanced sound scene to the Mono format, in the direction
(153.10◦, 12.71◦), a fairer comparison with the other methods is provided (k). To listen to these samples, the reader in
referred to this link12.

In this example, both FaSNet and MMUB were able to mask additive noise (a telephone at approximately 2.5 s). The
MMUB achieves a higher STOI score owing to better mitigation of reverberation effects. However, both multi-channel
solutions completely discard spatial information owing to the beamforming filters.

A comparison of the SELDnet estimation of the DOA of the desired sound source from the sound scene version
enhanced by the FC U-net and its ground-truth coordinate values returned an azimuthal separation of −0.48◦ and an
angular separation of 0.25◦ in elevation. Hence, by not altering both the Inter-Channel Level Difference (ICLD) and
ICPD, it was possible to preserve the spatial information with minimum error.

12http://tinyurl.com/yc6t4fc3
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Figure 1: The 4–channels of a noisy reverberant spatial sound scene (a–d), followed by the clean monophonic speech
estimated by FaSNet (e) and MMUB (f), the enhancement promoted by the FC U-net for each channel independently
(g–j), and a conversion to Mono format in the DOA detected by SELDnet. STOI scores are computed with reference to
the clean monophonic speech signal x(t).

Figure 2 illustrates the polar plots for the associated azimuth and elevation angles of the SELDnet estimation and the
ground-truth coordinate values of the DOA of the desired sound source.

Figure 2: Polar plots for the associated azimuth and elevation angles of the estimated desired sound source’s DOA and
ground-truth coordinate values.

3.4 Summary

Table 1 summarizes the advantages and disadvantages of each SE model considered in the audio example. Although the
FC U-net does not incorporate array processing, i.e., it does not leverage multiple-input data to produce an output, nor
does it tackle additive noise, it is the only model capable of preserving spatial information.

Table 1: Comparison of data-driven SE models considered in this example.
System Masks Masks Incorporates Preserves

Working I/O Convolutive Additive Array Spatial
Domain Format Noise? Noise? Processing? Information?

FC U-net Magnitude STFT SISO ✓ ✗ ✗ ✓
FaSNet Time MISO ✓ ✓ ✓ ✗
MMUB Complex STFT MISO ✓ ✓ ✓ ✗

5
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4 Results

To verify whether the experimental setup described in Section 3 would hold for a variety of 3D sound scenes, the
test set for Task 1 of L3DAS22 was used in this study. It is comprised of 2.189 samples, in which the predictors
consist of two sets of B-format FOA recordings (4–channels each), namely “Mic A” and “Mic B”, released as .wav
files, with a sampling rate of 16 kHz and a resolution of 16 bit. In this setting, Mic A is placed at the center of an
office-like room, with dimensions 6 m (length) by 5 m (width) by 3 m (height), while Mic B is horizontally separated
from Mic A by 20 cm. Both microphones are at a height of 1.3 m. The targets are clean monophonic speech samples
and the ground-truth X , Y , and Z coordinates of each sound event’s DOA, together with their respective spatial
distances Guizzo et al. [2022].

4.1 MISO Solutions

Figure 3 illustrates the violin plots for the STOI scores obtained using the multi-channel methods described in Section
2.1 to enhance the number of samples in the test set. Because both models are MISO, only one output per microphone
is shown.

Figure 3: STOI scores for the enhancement promoted by (a) FaSNet and (b) MMUB, using the L3DAS22 test set.

4.2 SISO Solution

Figure 4 illustrates violin plots for the STOI scores obtained using the FC U-net to independently enhance each channel
of (a) Mic A and (b) Mic B, and (c) after conversion to Mono format in the DOA estimated by SELDnet.

Figure 4: STOI scores for the enhancement promoted by the FC U-net, using the test set for Task 1 of L3DAS22.

Since SELDnet can take two sets of FOA microphones as inputs to better estimate the sound source DOAs, Figure 5(a)
illustrates the prediction errors between SELDnet DOA estimations using both Mic A and Mic B recordings enhanced
by the FC U-net as the input and the test set ground-truth values. Figures 5(b) and (c) illustrate the associated polar
coordinates for these prediction errors.

6



Exploring the Potential of Data-Driven Spatial Audio Enhancement Using a Single-Channel Model A PREPRINT

Figure 5: Prediction error between SELDnet’s DOA estimations using Mic A and Mic B recordings enhanced by the
FC U-net as input and the test set ground-truth coordinate values in (a) Cartesian coordinates and the associated (b)
distance (radius) and (c) polar angles.

5 Discussion

When considering the enhancement promoted by FaSNet and MMUB, higher STOI scores are obtained (cf. Figure 3),
owing to the incorporation of array processing, i.e., they take advantage of multiple-input data to dynamically adjust the
weights of neural beamformers, which not only suppresses convolutive noise, but additive as well. In addition, because
there is no need to preserve the ICLD or ICPD between the input and output signals, normalizing their outputs can also
contribute to higher STOI scores by increasing the gains between clean speech estimates and noisy mixes.

In contrast, when considering the enhancement promoted by the FC U-net, it not only enhances the intelligibility of
sounds (cf. Figure 4), but also preserves the spatial information of the scenes to a certain extent, considering the minor
errors between SELDnet predictions and ground-truth DOA coordinates (cf. Figure 5). On the lower side, this particular
model treats additive noise sources as part of the scene.

That being the case, this comparison between single- and multi-channel data-driven SE and dereverberation models
evinces a trade-off. Since a SISO model can enhance microphone channels while preserving ICLD and ICPD, it is
reasonable to compromise the sound scene enhancement, i.e., obtaining lesser gains in intelligibility score. In this
scenario, the modern research focus can switch from MISO models to SISO for augmented, virtual, and mixed reality
applications. And, since the single-channel approach reduces the complexity of both problem formulation and solution
derivation, future research can concentrate on other aspects such as full-bandwidth audio enhancement, competitive
noise suppression, and unsupervised learning.

Considering the state-of-the-art methods, both MISO models used in our experiments fall into this category. Also,
according to dos Santos et al. [2022], the CNN — which is the building block of FC U-net, FaSNet, and MMUB — was
the most used type of architecture in data-driven speech and audio enhancement studies published in 2021. However, it
is also important to mention that they are based on a discriminative approach, in which, by concentrating on accurate
classification between clean and noisy signals, they explicitly learn decision boundaries to separate clean speech from
noisy mixes.

Contemporary SISO generative models have obtained even higher intelligibility scores by delving into the underlying
distributions of training datasets, which allows for creative data generation and augmentation. Examples such as Hi-Fi
GANs 1 and 2 Su et al. [2021] reportedly achieved STOI scores of 0.89 and 0.92 (respectively) using the DAPS13 dataset.
Even more recently, StoRM Lemercier et al. [2023], a diffusion-based Stochastic Regeneration Model, reportedly
achieved an Extended STOI (ESTOI, cf. Jensen and Taal [2016]) score of 0.88 using various datasets, such as WSJ014 +
CHiME15, REVERB-WSJ016 and VOICEBANK/DEMAND17.

13https://ccrma.stanford.edu/~gautham/Site/daps.html
14https://catalog.ldc.upenn.edu/LDC93S6A
15https://www.chimechallenge.org/
16https://github.com/sp-uhh/storm
17https://datashare.ed.ac.uk/handle/10283/2791
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6 Conclusion

This study verified that data-driven single-channel SE and dereverberation methods can be applied to multi-channel
scenarios as long as they preserve ICLD and ICPD in the 3D audio captured while masking undesired noise sources.
Although this approach does not leverage microphone array processing to produce an output signal, it was verified
that based on DOA estimations, it minimally changes the source’s position in the enhanced sound scene. Regarding
intelligibility scores, both MISO systems used for comparison in our experiments achieved even higher performances.
However, all models considered in this study were based on a discriminative approach. Alternative contemporary SISO
models based on generative approaches have obtained state-of-the-art results. Because training single-channel models
requires less training data and uses less computational resources owing to simpler model designs, modern research
can focus on other challenging topics such as full-bandwidth audio enhancement, competitive noise suppression, and
unsupervised learning. In summary, with current technology, there is no gain in preserving spatial information without
losses in intelligibility scores. Hence, a trade-off arises depending on the type of application being considered.
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