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Precision measurements of space and time, like those made by the detectors of the Laser In-
terferometer Gravitational-wave Observatory (LIGO), are often confronted with fundamental lim-
itations imposed by quantum mechanics. The Heisenberg uncertainty principle dictates that the
position and momentum of an object cannot both be precisely measured, giving rise to an appar-
ent limitation called the Standard Quantum Limit (SQL). Reducing quantum noise below the SQL
in gravitational-wave detectors, where photons are used to continuously measure the positions of
freely falling mirrors, has been an active area of research for decades. Here we show how the LIGO
A+ upgrade reduced the detectors’ quantum noise below the SQL by up to 3 dB while achieving a
broadband sensitivity improvement, more than two decades after this possibility was first presented.

Introduction – One of the most profound conse-
quences of quantum mechanics is the Heisenberg uncer-
tainty principle, which posits that the product of the
measurement noises of conjugate observables (i.e, posi-
tion and momentum) cannot be less than ℏ/2. Measur-
ing the position x of an object with an uncertainty ∆x
inevitably perturbs its momentum by ∆p ≥ ℏ/(2∆x).
After a time τ , the massive object m will freely evolve
with additional position uncertainty ∆x′ from the mo-
mentum perturbation ∆x′ = τ∆p/m = ℏτ/(2m∆x). An
extremely precise measurement (∆x → 0) will make the
next position measurement totally unpredictable (∆x′ →
∞) due to quantum back action [1]. The minimal pos-
sible uncertainty can be achieved with ∆x = ∆x′ =√
ℏτ/(2m), which is known as the Standard Quantum

Limit (SQL) [2]. While the SQL applies to measure-
ments of microscopic particles, it is also a limiting factor
for the measurements made by the LIGO interferometric
detectors, which probe attometer-scale displacements of
macroscopic mirrors [3].

In the 1980s, it was suggested that the SQL could
be surpassed by introducing quantum correlations be-
tween the interferometer’s laser light and the mirrors [4–
6]. In the early 2000s, proposed designs to convert the
LIGO into “quantum nondemolition interferometers”1

emerged [11]; one approach, referred to as “squeezed-
input” interferometer, suggested that it is possible to
break the SQL at a particular frequency by injecting a
non-classical state of light, known as squeezed vacuum
state, to the LIGO interferometer. Furthermore, the ad-
dition of a detuned Fabry-Pérot “filter cavity” would pro-
duce a frequency-dependent phase shift on the squeezed
vacuum states reflected from it and therefore enable a
broadband quantum enhancement below the SQL.

In the first proof-of-principle demonstration in 2020,
we injected squeezed vacuum states in LIGO to demon-
strate quantum correlations and surpass the SQL in
a narrow frequency region of the detection band (30–
50Hz) [12]. However, since this was achieved without

1 The concept of quantum nondemolition measurements was intro-
duced to describe measurements with quantum noise below the
SQL [1, 2, 7, 8]. We note that this definition, in certain scenar-
ios, differs from what is adopted in other fields of physics, where
a quantum nondemolition measurement implies that there is no
quantum back action on the measured observable [9, 10].

a filter cavity, it led to a quantum noise increase at fre-
quencies outside the sub-SQL dip and an overall decrease
of the astrophysical sensitivity, as predicted in [11].
As part of the LIGO A+ upgrade that started in 2022,

a 300-m long filter cavity was added to both LIGO Liv-
ingston (L1) and Hanford (H1) interferometers to achieve
broadband reduction of quantum noise [13]. Here we
present the first modeling and analysis of quantum noise
in the LIGO interferometer operating with a filter cavity.
We show that LIGO’s quantum noise surpasses the SQL
by up to 3 dB between 35Hz and 75Hz in astrophysical
operation, with enhanced sensitivity in most of the de-
tection band, thereby realizing the goal first set out over
two decades ago [11].
Theory – Gravitational-wave modulations of space-

time are quantified by strain h. The LIGO gravitational-
wave interferometer converts these modulations into a
measurable differential displacement between two pairs
of suspended mirrors. The dimensionless gravitational-
wave strain and the interferometer differential displace-
ment ∆x are related by h = ∆x/Larm, where Larm =
4km is the length of the each interferometer arm. At rel-
evant measurement frequencies, the interferometer mir-
rors move freely, and the SQL for these mirrors can be
expressed in units of gravitational-wave strain noise am-
plitude spectral density as

hSQL(Ω) =
∆xSQL(Ω)

Larm
=

√
2ℏ

(m/4)Ω2

1

Larm
(1)

where ℏ is the reduced Planck’s constant, and Ω is the
measurement frequency. Notably, this limit depends on
the mass of the object rather than the number of photons
used to probe the object (i.e., the laser power). In LIGO,
the mass of the object is the reduced mass (m/4) of the
differential motion of each pair of arm cavity mirrors with
mass m = 40 kg

h40kg
SQL(Ω) ≈ 1.8× 10−24

(
2π × 100Hz

Ω

)
1√
Hz

.

In [13], we presented a simplified model of quantum
noise in the LIGO interferometers. In the ideal lossless
case, the power spectral density (PSD) of quantum noise
can be expressed in units of strain as:

S(Ω) =
h2
SQL(Ω)

2

(
K(Ω) +

1

K(Ω)

)
(2)
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where the first term represents noise due to quantum
back action and the second term represents imprecision
noise. The optomechanical coupling strength K(Ω) in-
creases with the circulating laser power in arm cavities
Parm as

K(Ω) =
16k0Parm

mγ0Larm

1

Ω2

(
1 +

Ω2

γ2
0

)−1

. (3)

where k0 = 2π/(1064 nm) is the laser wavenumber, and
γ0 ≈ 2π × 450Hz is the detector’s signal bandwidth.

At frequencies below 100Hz, measurement back ac-
tion dominates due to the strong opto-mechanical cou-
pling (K(Ω) ≫ 1). At frequencies above γ0, the opto-
mechanical coupling is weak (K(Ω) ≪ 1), and the mea-
surement imprecision from photon shot noise dominates.
These two forms of quantum noise contribute equally to
the total quantum noise at the SQL frequency ΩSQL,
defined by K(ΩSQL) = 1. Note ΩSQL scales with the
square root of the laser power; for a circulating power of
Parm = 260 kW, ΩSQL = 2π × 37Hz.
Together, these two forms of quantum noise enforce the

so-called SQL for displacement sensing (Eq. (2)), which
arises from the use of uncorrelated photons to probe mir-
ror positions. Eq. (2) enforces the SQL because it is an
incoherent superposition of quantum back action and im-
precision noise. In the presence of quantum correlations
between light and mirrors, Eq. (2) no longer holds, al-
lowing the SQL to be surpassed.

Squeezed vacuum is a non-classical state of light which
uses quantum correlations between photon pairs to re-
duce one form of quantum noise (e.g. imprecision noise)
at the expense of the other (e.g. quantum back action
noise), in the way allowed by the Heisenberg uncertainty
principle [14]. The injection of squeezed vacuum into the
output port of an interferometer [15] modifies its quan-
tum noise relative to Eq. (2) to produce

SSQZ(Ω) = S(Ω)
[
e−2r cos2(ϕ− θ(Ω)) + e2r sin2(ϕ− θ(Ω))

]
(4)

where e−2r is the factor by which the injected quan-
tum noise is squeezed relative to vacuum noise, ϕ is
the relative phase between the input squeezed field and
the interferometer field (i.e. the “squeeze angle”), and
θ(Ω) = tan−1 K(Ω) is the squeeze angle rotation due to
the optomechanical response of the interferometer.

Frequency-dependent squeezed states, where the
squeeze angle varies as a function of frequency ϕ → ϕ(Ω),
can be prepared by reflecting the frequency-independent
squeezed state from a detuned and overcoupled Fabry-
Pérot cavity [13, 16–18]. When the filter cavity linewidth
is well-matched to ΩSQL, it imparts the phase rotation
ϕ(Ω) ≈ θ(Ω) = tan−1 K(Ω) upon the reflected squeezed
vacuum and enables quantum noise reduction of e−2r at
all frequencies [19]:

SFDSQZ(Ω) =
h2
SQL(Ω)

2

(
K(Ω) +

1

K(Ω)

)
e−2r. (5)

Squeezer
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main 
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FIG. 1. Simplified schematic of the LIGO A+ interferometer
as of the fourth astrophysical observing run (O4) started in
2023. The squeezing system is shown overlaying the shaded
main interferometer, which is a dual-recycled Michelson with
4-km long arm cavities. All optical components shown, ex-
cept for the main laser, are suspended in ultra-high vacuum.
Frequency-independent squeezed vacuum is generated by an
optical parametric amplifier (“squeezer”), which consists of a
nonlinear optical crystal in a dually-resonant bowtie cavity.
The outgoing squeezed beam is reflected from a 300-m long
filter cavity to produce frequency-dependent squeezing, in-
jected via the Faraday isolator, and then propagated through
the full LIGO interferometer.

In particular, around ΩSQL, quantum noise is reduced
below the SQL by a factor of e−2r

SFDSQZ(ΩSQL) = h2
SQL(ΩSQL)e

−2r. (6)

Experimental setup – Fig. 1 shows a simplified di-
agram of the LIGO interferometer [20], which includes
Fabry-Pérot arm cavities formed by a pair of 40-kg mir-
rors to resonantly enhance strain sensitivity, input power
recycling to increase the circulating laser power (and thus
K(Ω)), and output signal extraction to broaden the de-
tection bandwidth. Components of the squeezing system,
comprising the squeezed vacuum source (“squeezer”) and
the filter cavity, are highlighted in the figure.

Squeezed vacuum is injected at the output port of the
interferometer to reduce quantum noise [21]. The LIGO
squeezer generates frequency-independent squeezed vac-
uum via spontaneous parametric down-conversion in a
bowtie optical parametric amplifier cavity containing
a nonlinear PPKTP crystal [22, 23]. As described
in [11, 13], the 300-m filter cavity is controlled on the res-
onance at a detuned frequency with respect to the carrier
frequency of the main laser, thus producing frequency-
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FIG. 2. Strain sensitivity of the LIGO L1 interferometer. The squeezed quantum noise surpasses the standard quantum limit
hSQL(Ω) by up to 3 dB in the shaded region between 35–75Hz. Error bars indicate the total 1-σ uncertainty. This configuration
is representative of the nominal detector noise during O4, demonstrating the use of quantum correlations to directly improve
astrophysical sensitivity. The total detector noise spectrum is an incoherent sum of the classical and quantum noise. The
unsqueezed reference total noise (solid black) is measured without squeezing injection. An unsqueezed quantum noise model
(dashed black) is subtracted from the measured reference total noise to obtain an estimate of the underlying classical noise
(gray). The inferred detector quantum noise with squeezing (purple dots) is obtained by subtracting the classical noise estimate
(gray) from the measured squeezed total noise spectra (solid purple). The dashed purple trace shows a fitted model of frequency-
dependent squeezed noise spectra, given our best knowledge of the detector and squeezer parameters.

dependent squeezing (ϕ → ϕ(Ω)) before injection into
the interferometer.

Results – Fig. 2 shows the first detailed quantum
noise analysis of the LIGO L1 detector operating with
frequency-dependent squeezing. Beyond our previous
work [13] that shows only the total detector noise re-
duction with frequency-dependent squeezing, here we
demonstrate quantum noise that surpasses the SQL be-
tween 35–75Hz, by as much as 3 dB near 50Hz, as high-
lighted in the purple shaded regions. While a complete
analysis was done only for the L1 interferometer data,
qualitatively similar results were observed in H1.

Accurate estimation of squeezed quantum noise below
100Hz is complicated by the presence of non-quantum
(“classical”) noises that are a factor of 2 higher in ampli-
tude. In this work, we performed further measurements
and extensive analysis to accurately infer the squeezed
quantum noise from total noise measurements.

There are two steps to inferring quantum noise. First,
we infer the classical noise (gray) by subtracting an un-
squeezed quantum noise model (dashed black) from mea-
surements of the total unsqueezed detector noise (solid
black). An accurate model of unsqueezed quantum noise

is crucial to determine classical noise from subtraction.
The model is known to have degenerate parameters. For
example, the circulating power and optical loss in the
readout path affect the imprecision noise in the same way
phenomenologically. To constrain the parameter space,
we experimentally set a few constant squeezing angles ϕ
and find a set of interferometer parameters that accu-
rately models the measured noise for each ϕ, since the
quantum noise SSQZ heavily depends on ϕ (Eq. (4)). We
perform a Markov Chain Monte Carlo inference to find a
set of parameters that make a common fit to all 11 dif-
ferent squeeze angle datasets (with a subset of these data
shown in Fig. 3). These parameters include key experi-
mental non-idealities such as squeezing phase noise, opti-
cal loss and mode-mismatches across the interferometer,
as described in [24–26]. Second, we subtract this classi-
cal noise estimate from subsequent measurements of the
total detector noise with squeezing (purple) to infer the
squeezed quantum noise (purple dots), representing our
measure of

√
SSQZ(Ω) from Eq. (4). Detailed discussion

of inferred parameters and model residuals are contained
in the Supplemental Material.
The two-step noise subtraction process assumes that
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classical noise remains identical across unsqueezed and
squeezed modes of operation. Variations in classical noise
between these modes will then appear as estimation un-
certainties. Here we use the same uncertainty propa-
gation methods as [12] to estimate the total error bud-
get, including statistical uncertainties from detector noise
PSD estimation and non-stationary classical noise, and
the systematic uncertainties from calibration and resid-
ual model errors.

Statistical uncertainties limit our estimation of low
frequency quantum noise. This includes uncertainties
from PSD estimation (requiring long averaging times)
and non-stationary classical noise (requiring technical de-
tector improvements) [27]. To reduce the statistical un-
certainty, the total noise measurements in Fig. 2 were
obtained by averaging the detector noise over 0.5–1 hour
in each configuration, and by alternating between un-
squeezed and squeezed configurations to control for time
variations of the classical noise. We find that differences
in the classical noise between segments (non-stationarity)
was comparable to the total uncertainty from one hour
of PSD estimation with optimal frequency binning.

The main systematic uncertainty arises from the real-
time calibration process, where we apply a known force
to the mirror to actively modulate the strain and measure
the instrument’s response [28, 29]. For the data shown
here, the systematic uncertainties are less than 5%. Full
derivations of total uncertainty budget can be found in
Supplemental Materials.

Fig. 3 shows L1 measurements of the inferred quan-
tum noise with frequency-dependent squeezing (pur-
ple traces) and frequency-independent squeezing at
two injected squeeze angles ϕ, in decibels of quan-
tum noise reduction compared to no squeezing (i.e.,

20 log10

[√
SSQZ(Ω)/S(Ω)

]
). Dashed traces show numer-

ical quantum noise models that include best-fit experi-
mental parameters for the full interferometer, squeezer,
and filter cavity. Strong agreements between model
curves (dashed traces) and measured spectra (dots with
error bars) support the unsqueezed quantum noise model
used for subtraction and experimental parameters for the
squeezer. This model is then extended to include the
filter cavity parameters, initially described in [13]. The
quantum noise models with frequency-dependent squeez-
ing (dashed purple curve) agree well with the inferred
quantum noise spectra (purple dots).

While the current frequency-dependent squeezing con-
figuration achieves quantum-noise suppression above
35Hz (see the dashed purple “current FC” curve in
Fig. 3), frequency-independent squeezing models and
measurements all suggest that an optimal filter cavity
would yield significantly greater quantum noise reduc-
tion at astrophysically-important low frequencies (solid
purple “optimal FC” curve). The discrepancy between
the current and optimal filter cavity arises from the mis-
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FIG. 3. Quantum noise reduction in units of decibels. Dots
show the inferred quantum noise from measurements of the
total detector noise in various configurations. Dashed traces
are the quantum noise models. The input filter cavity ro-
tates the injected squeezing angle ϕ as a function of frequency
to produce frequency-dependent squeezing (ϕ → ϕ(Ω)) [13].
Blue and olive traces show the inferred quantum noise with
frequency-independent squeezing injected at two different ϕ.
They outline the minimum quantum noise achievable at par-
ticular frequencies, given detector losses. The three purple
traces show the quantum noise with (i) frequency-dependent
squeezing using the current filter cavity (dashed purple, same
as Fig. 2), (ii) an optimal filter cavity (solid purple) with a
cavity linewidth well-matched to the current circulating laser
power and 60-ppm round-trip optical loss, and (iii) a lossless
optimal filter cavity (dotted purple).

match between the current SQL frequency and the filter
cavity linewidth. In the lossless case, the optimal fil-
ter cavity would have an equal half-width-half-maximum
linewidth γFC and detuning both determined by the SQL
frequency, γFC = ΩSQL/

√
2 [19]. The current filter cavity

was designed to have γFC = 2π × 42 Hz, using an input
coupler power transmissivity of Tin ≈ 1000 ppm [13] and
assuming 60 ppm optical loss, to approximately match
ΩSQL =

√
2γFC = 2π×59 Hz. However, the current SQL

frequency is at ΩSQL = 2π×37 Hz. Since ΩSQL is propor-
tional to the square root of arm power as in Eq. (3), the
optimal filter cavity curve in Fig. 3 could be approached
by either reducing the filter cavity linewidth (reducing
Tin, solid purple), or increasing the current arm power
from 260 kW to 500 kW, as shown in Fig. 9. This is be-
cause a higher circulating laser power couples back action
into the measurement over a larger bandwidth, requiring
a higher bandwidth filter cavity to compensate.

Compared to frequency-independent squeezing spectra
(blue and olive traces), the lossless optimal filter cavity
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rotates the injected squeezing angle as a function of fre-
quency, ϕ → ϕ(Ω) ≈ tan−1 K(Ω), to approach the min-
imum quantum noise at all frequencies simultaneously
(dotted purple). Ideally, frequency-dependent squeez-
ing is a single configuration that reaches the envelope
of minimal quantum noises achievable by all frequency-
independent spectra.

Conclusions – With frequency-dependent squeezing,
the LIGO A+ detectors now operate with quantum-
limited sensitivity surpassing the SQL, as envisioned for
the first time over two decades ago [11]. The methods
described here enabled us to accurately model quantum
noise through the complex optical systems of the LIGO
interferometers, with important insights that inform the
next steps toward the A+ target of 6 dB of broadband
squeezing enhancement.

Concepts for future upgrades in the LIGO facilities
and the next generation of gravitational-wave detectors
like Cosmic Explorer [30] and Einstein Telescope [31] in-
clude the ambitious goal of 10 dB squeezing enhance-
ment. Techniques and methods presented here are fun-
damental to achieving this goal and further enhancing the
scientific potential of gravitational-wave observatories.
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SUPPLEMENTAL MATERIAL

Uncertainty Analysis

The argument that the LIGO detector operates beyond the standard quantum limit (SQL) requires a high statistical
significance of the inferred quantum noise below the SQL. We follow our previous work [12] to estimate the total
uncertainty of the inferred quantum noise. The formalism is briefly summarized here. The strain noise power spectral
density (PSD) of inferred quantum noise Q(Ω) is obtained from measured reference (unsqueezed) total noise Dr(Ω),
measured squeezed total noise Ds(Ω), and model of the reference quantum noise M(Ω):

Q(Ω) = Ds(Ω)− (Dr(Ω)−Mr(Ω)). (7)

The total uncertainty of Q(Ω) is

∆Q2(Ω) = Q2(Ω)δG2
cal(Ω) +

[
∆D2

s(Ω) + ∆D2
r(Ω) + ∆M2

r (Ω) + (Dr(Ω)−Mr(Ω))
2(δN2

t (Ω) + δN2
m(Ω))

]
(8)

where

• δGcal(Ω) is the reported combined calibration error and uncertainty estimate [28],

• ∆D(Ω) is the statistical uncertainty due to PSD estimation,

• ∆Mr(Ω) is the uncertainty of the unsqueezed reference quantum noise model, and

• δN(Ω) describes the non-stationary changes in the classical noise contributions, where δNt(Ω) is time-
nonstationarity and δNm(Ω) is the operating mode nonstationarity between unsqueezed and squeezed operating
modes.

In this paper, we follow the convention in [12] and use ∆ to describe the 1-σ uncertainty of the variable, and use δ
for the relative uncertainty δD = ∆D/D. We plot the noise spectrum in units of amplitude spectral density (ASD)
q(Ω) =

√
Q(Ω). The relative error in ASD is

δq(Ω) =
1

2
δQ(Ω) =

√
δG2

cal(Ω)

4
+

1

4Q2(Ω)
[∆D2

s(Ω) + ∆D2
r(Ω) + ∆M2

r (Ω) + C2(Ω)(δN2
t (Ω) + δN2

m(Ω))]. (9)

Re-binning Power Spectral Density

The statistical uncertainty δD of the PSD scales inversely with the square root of the number of averages, which is
proportional to the product of the duration T of the time series and the frequency bin width f

δD =
1√
Tf

. (10)

We first take the linear FFT of the raw time series to estimate the total noise PSD. For each frequency bin, we take
the median statistics to indirectly remove potential glitches in the time series, as described in our previous work [12].

The linearly spaced PSD has the constant frequency bin width, for which we choose a frequency resolution of
0.0625Hz. To reduce the statistical uncertainty and fit the model, we re-bin the PSD into a log-spaced frequency
bins. Each new frequency bin collects all the energy of the old frequency bins that falls into the bin so that the total
spectral energy is conserved. The statistical uncertainty of the new PSD with log-spaced and larger bin width still
follows the relation of Eq. (10).

The raw PSD measures the total differential displacement between the two pairs of arm cavity mirrors, which
contain many peaks and resonances including harmonics of the 60-Hz power line and 500-Hz violin mechanical modes
of test masses suspensions, etc. These peaks would inflate the energy of our re-binned PSD. Therefore, we remove all
the known noise peaks before re-binning.
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FIG. 4. Comparison of the unsqueezed noise stationarity between two PSDs measured in the same unsqueezed operating mode
(e.g. two segments with the squeezer beam diverter open), or measured in two different unsqueezed operating modes (e.g. with
squeezer beam diverter open and beam diverter closed). Both uncertainties are the same, suggesting the squeezer system does
not introduce excess technical noise in the full detectors.

Non-stationarity Verification

The stationarity uncertainty has two contributing terms: time-nonstationarity δNt(Ω) that captures slow thermal
drifts of the interferometer, and mode-nonstationarity δNm(Ω) that contains changes introduced by different operating
modes of the interferometer, namely with and without squeezing.

To measure the unsqueezed total noise as closely as the configuration with frequency-dependent squeezing, we set
up the squeezing configuration but without squeezed vacuum generated. Specifically, we leave both the squeezer and
filter cavity locked on resonance but without the nonlinear parametric down-conversion process. As seen in Fig. 1, we
only send auxiliary control sidebands to the squeezer cavity for lock acquisition [13], but not the 532-nm pump laser.
The squeezer is locked on the resonance to allow transmission of the control field to filter cavity. The filter cavity is also
locked on resonance with the auxiliary field to mimic the nominal operation with frequency-dependent squeezing. If
there is any extra technical noise introduced with frequency-dependent squeezing, for example backscatter noise driven
by filter cavity length fluctuations, the interferometer would sense it in the total noise spectra in both configurations.

To confirm if there are any excessive noises including backscatter, we compare the total unsqueezed interferometer
noise with the following two operating modes. The first one is to open the squeezer beam diverter to mimic the
frequency-dependent squeezing case as mentioned above, and the second one is to close the squeezer beam diverter on
the injection path such that no backscattered light can be transmitted between interferometer and squeezing system.
We follow Eq.(13) in [12] to estimate the uncertainties. We have two PSD of each mode and calculate δN(Ω) between
PSDs of the same and different operating modes.

Fig. 4 shows that the stationarity uncertainty curves are nearly identical between two PSD taken at the same
operating mode or different operating mode, confirming that the mode-nonstationarity contribution to the total
stationarity uncertainty is negligible.

The time-nonstationarity occurs due to thermal drifts of the interferometer. For the faster averaging timescales used
in our measurements, slow drifts can be reduced with longer averaging times, similarly to statistical PSD estimation.
Therefore, both of drifts and statistical uncertainties are reduced after the re-binning process.

Calibration uncertainty δGcal(Ω) are estimated in the same way as [12]. Note that it is a form of systematic error
instead of statistical error. Therefore, the calibration error is added to the total uncertainty after re-binning, since
it can not be reduced by averaging. The contributions of aforementioned uncertainties to the total uncertainty are
shown in Fig. 7.
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TABLE I. Parameters of the LIGO Livingston detector inferred using Markov Chain Monte Carlo (MCMC) methods. Fixed
and chosen parameters are input parameters for the MCMC, which infers the “common” and “independent” parameters.
Common parameters are shared across squeeze angle measurements, whereas independent parameters are allowed to change
across squeeze angle measurements. See [3, 20] for more detailed parameters of LIGO, including e.g. optic transmissivities.

MCMC Set-up Inferred

Fixed/ Prior Initial walker Common/

Chosen Gaussian (−σ, σ) Flat probability Independent

Interferometer parameters

Circulating power in arm cavity (270, 320) kW 270 - 310 kW 257+3.9
−1.6 kW

Arm to SEC mismatch 2.7%

Arm to SEC mismatch phase 0◦

SEC round-trip detuning phase 0.14◦

SEC round-trip Gouy phase (20, 50) ◦ 20◦ - 70◦ 43.0+4.5
−5.2

◦

Readout angle -11◦

Total readout loss (8, 10) % 6% - 10% 8.0+1.2
−0.5 %

IFO to OMC mismatch (6, 8) % 4% - 10% 3.6+0.5
−0.5 %

IFO to OMC mismatch phase Independent

Squeezing parameters

Generated squeezing 17.4 dB

Squeezing angle Chosen

Total Injection efficiency 92.9%

SQZ to OMC mismatch (1, 8) % 1% - 8 % 1.1+1.3
−0.2 %

SQZ to OMC mismatch phase -45◦

Phase noise (RMS) Chosen

Filter cavity parameters

Length 300 m

Detuning (−28, −25) Hz −31 Hz - −26 Hz −25.6 Hz

Finesse 7000

Full-linewidth 71 Hz

Input coupler transmission (800, 900) ppm 750 ppm - 880 ppm 797 ppm

Derived round-trip loss 100 ppm

Squeezer to FC mismatch 0.2%

Squeezer to FC mismatch phase (−180, 180) ◦ −180◦ - 180◦ −65◦

Length noise (RMS) (0.1, 1) pm 0.1 pm - 2 pm 0.2 pm

Full Quantum Noise Model

The only remaining source of uncertainty to be discussed is the modeling uncertainty δM(Ω). In this paper, we
use a novel method to estimate and constrain model parameters with Markov Chain Monte Carlo (MCMC) inference.
Before discussing details of the inference method, we briefly explain the latest model of quantum noise.

The LIGO detector is essentially an assembly of individual optical cavities. The core optics of the interferometer
is composed of two 4-km long arm cavities as two Michelson arms. The two input ports of the Michelson have two
partially-reflective mirrors to boost arm power and increase signal bandwidth separately at bright and dark port
(see Fig. 1). The squeezing system generates squeezed vacuum using an optical parametric amplifer cavity, performs
frequency-dependent rotation with a detuned filter cavity, and couples into the interferometer at the dark port. Each
cavity in the system has degredations like optical losses and off-resonance detunings. In addition, there are non-zero
mismatches between the fundamental spatial modes of two consecutive cavities. The full model captures all of these
non-idealities based on our latest theoretical work [26].

We use Gravitational Wave Interferometer Noise Calculator (GWINC) to numerically compute the detector quantum
noise. It is a phenomenological and analytical model that is derived from input-output relations [24]. It extends the
optical fields of fundamental (TEM00) spatial mode to one higher-order (TEM20) mode [24, 26]. The model includes
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all the decoherences, degradations, and dephasings of the squeezed vacuum [25]. The full sets of parameters can be
found in Table I.

For parameter estimation, we rely on external measurements as our priors whenever possible. But, we do not have
external measures of several quantities, and for others, external measurements do not have the necessary accuracy
and precision, and may vary if not measured in-situ. We use MCMC, informed by external measurements whenever
possible, to estimate experimental parameters. The full model of interferometer with frequency-dependent squeezing
has a total of 20 impactful parameters. We reduce the problem by isolating the interferometer from the squeezing
system first. Then we introduce the squeezer parameters to model frequency-independent squeezing measurements,
and finally the filter cavity to model frequency-dependent squeezing measurements.

Inferring Interferometer Parameters

LIGO employs an active calibration system, known as the Photon Calibrator [29], to calibrate the measured optical
power into meters of differential arm length. The system actively modulates the differential arm length by sending an
amplitude-modulated laser beam on the test mass. Therefore, we can directly measure the interferometer’s transfer
function (in units of meters/milliAmp, often called the “sensing function”) by sweeping the Photon Calibrator laser
frequency.

At the dark port of the interferometer, LIGO has an additional mirror, known as signal recycling mirror with
32.5% power transmission, to effectively broaden the sensitivity bandwidth to the differential arm length signal. The
cavity formed by signal recycling mirror and the interferometer has parameters such as loss, mode-mismatch, and
off-resonance detuning, which directly impact the measured sensing function. Therefore, we can isolate and infer these
parameters by fitting the sensing function with MCMC. The total parameter space is reduced after we successfully
infer parameters of the signal recycling cavity from the sensing function.

Inferring Frequency-Independent Squeezing Parameters

After inferring the parameters of the signal recycling cavity, we feed them into the model that describes the squeezed
interferometer. We simplify the squeezing system by bypassing the filter cavity first. It is often difficult to infer model
parameters when many parameters of the model are degenerate. For example, mode-mismatch and loss between
interferometer and output mode cleaner cavity are degenerate when this mode-mismatch is the only mismatch in the
optical path [26]. If we introduce multiple mismatches to break the degeneracy, there are redundant parameters that
provide more than one solution to satisfy measurements.

To constrain the quantum noise model, we change the squeezing angle ϕ to alter the quantum noise SSQZ(Ω) in
Eq. (4) while keeping the filter cavity end mirror misaligned to simplify the system (ϕ is frequency-independent in
this case). Since we have only changed the squeezing parameter, there should exist a set of model parameters that
can fit all of the measurements by only altering the squeezing angle, if the model fully captures the physics. Assuming
such a set of common parameters should break certain degeneracies in the model and constrain the parameter space.

Experimentally, we misalign the filter cavity and change the the squeezing angle ϕ by adjusting the offset of
locking point of the phase-locking-loop between frequency-independent squeezing and the local oscillator field of the
interferometer. We operate the interferometer in an unsqueezed mode (pump laser blocked so no squeezed photons
are being generated) and frequency-independently squeezed mode at various ϕ. 20-minute time series data is taken
in each operating mode. Assuming the classical noise C(Ω) is stationary across different configurations, we can take
the difference of two measured total noise PSDs and model the quantum noise differences (Eq. (4)),

Sdiff(r, ϕ) = Ds(r, ϕ)−Dr(r = 0) = S(r, ϕ)− S(r = 0) (11)

where the total measured noise is D(Ω) = S(Ω) + C(Ω). Although we can not directly measure the classical noise,
we can still model the quantum noise difference that is measurable.

LIGO reads out optical power fluctuations that are transmitted (cleaned) by the output mode cleaner cavity. The
transmitted beam is divided onto two photodetectors using a 50/50 beam splitter, and we read out the summation
of the photocurrent signals. The sum reads out the squeezed quantum noise we observe, and the difference of the
two photocurrents, known as the null channel, subtracts all of the correlated noise and only leave the uncorrelated
noises of the two photodiodes, namely quantum shot noise and dark noise of the detector. The null channel provides a
simultaneous monitoring of the calibrated quantum shot noise, which is computed by dividing the flat quantum shot
noise in milliAmps by the sensing function.
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FIG. 5. Inference results on the difference of total noise between frequency-independent squeezed and unsqueezed interferometer
at various squeezing angles. The negative PSD difference means that the quantum noise is being squeezed. The residual between
model and measurements are normalized by the 1-σ uncertainty and shown in the bottom plot.

We find the best inference of the parameters with MCMC. We use a Gaussian likelihood with a set of Gaussian
priors for each parameter. For each measurement with certain squeezing angle, we fit both the noise difference and
the quantum shot noise, the latter of which is used to infer the readout loss. The initial walkers are distributed with
a flat probability in a bounded interval. As a result, the method is able to find a set of common parameters that
minimize the residual of all squeeze angle measurements, as presented in Fig. 5 and Table I.

There are four types of parameters in our inference methods:

• “Fixed” parameters are fixed across all squeeze angle datasets. For example, the signal recycling cavity param-
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eters we inferred earlier are assumed to be the same for all.

• “Chosen” parameters are selected and different for each squeeze angle dataset. For example, the squeezing angle
is actively changed to obtain different squeezing PSD.

• “Common” parameters are shared degrees of freedom that MCMC infers a single value across all squeeze angle
datasets. For example, the power within arm cavity should be the same across measurements, and we use
MCMC to infer its exact number.

• “Independent” parameters are degrees of freedom of MCMC infers differently for each squeeze angle dataset.

In Table I, we set the squeezing angle and phase noise as “chosen parameters”. It is known that the residual phase
noise error of the aforementioned phase-locking-loop depends on the control offset and therefore the squeezing angle.
To be able to fit the PSD difference, we still need to set the mode-mismatch phasing between interferometer and
output mode cleaner (Fig. 1) as an “independent parameter”, which is an extra phase in the optical path calculated
from 2-dimensional overlap integral of the wavefronts of two eigenmodes of two cavities [26]. This mode-mismatch
phasing only helps us fit the model phenomenologically, and is not expected to physically depend on the squeezing
angle. Instead, the MCMC adjusts this phasing to mimic certain physics that is not fully captured in the latest model
in order to fit the measurements.

Fig. 5 validates our quantum noise model as we successfully fit all of the measurements at various squeezing angles
by independently tuning a minimal set of parameters. The model uncertainty δM(Ω) is obtained by taking the 16th
and 84th percentile of the model curve computed from the parameters of the MCMC chain (after burning in). Now
we collect all sources of uncertainties (Fig. 7) and compute the inferred quantum noise with frequency-dependent
squeezing.
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Inferring Filter Cavity Parameters

Using the interferometer and squeezer quantum noise models obtained in the previous subsections, we can compute
the inferred quantum noise ASD with frequency-dependent squeezing from Eq. (7). We perform a final MCMC to
infer the remaining filter cavity parameters.

Since LIGO is currently operating at a lower arm power than the designed value, the filter cavity is not operating
in the optimal configuration [19]. This is the reason why the current frequency-dependent squeezed quantum noise
does not trace the sub-SQL dips of each frequency-independent measurements, in addition to a noise bump near 80Hz
due to scattered light. In the MCMC, we assumed the filter cavity finesse to be 7000 in order to fit external cavity
ringdown and linewidth measurements of the filter cavity. The inferred parameters are shown in Table I.

Total Uncertainty Budget

Now that we have collected all sources of the uncertainties δq(Ω) of the inferred quantum noise amplitude spectral
density q(Ω), we can add these independent noises together in quadrature to obtain the final 1-σ uncertainty. The
contributions of each uncertainty is shown in Fig. 7.
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FIG. 7. Total uncertainty budget of inferred quantum noise from various error sources.

The statistical uncertainty dominates both positive and negative error bars at low frequency due to the small
frequency bin width (Eq. (10)). At high frequencies above 500Hz, the statistical error decreases as there are more
averages available per bin width. Both statistical and stationarity error are symmetrical, whereas the calibration
error and modeling error are not. The calibration error, obtained from the calibration pipeline [28], dominates at high
frequency above 200Hz.

Considering all measurement uncertainties, the LIGO detector operates with sub-SQL quantum noise at more than
3-σ statistical confidence, as enabled by frequency-dependent squeezing (Fig. 2).
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Sub-SQL Performance

20 50 100 200 500 1000
Frequency [Hz]

10−24

10−23

In
fe

rr
ed

qu
an

tu
m

no
is

e
[1
/√

H
z]

No squeezing
SQL
φ =-38◦

φ =-26◦

φ =-22◦

φ =-19◦

φ = φ(Ω), current
φ = φ(Ω), optimal
φ = φ(Ω), lossless

20 50 100 200 500 1000
Frequency [Hz]

−10

−5

0

5

10

15

20

Q
ua

nt
um

no
is

e
re

la
tiv

e
to

no
sq

ue
ez

in
g

[d
B

]

No squeezing
Squeezing without FC at various φ (as in [2])
Squeezing with current filter cavity
Squeezing with optimal filter cavity
Squeezing with lossless filter cavity

FIG. 8. Quantum noise reduction in strain amplitude spectral density. Blue, olive, lime, and teal traces show the inferred
quantum noise with frequency-independent squeezing injected at four different squeeze angles ϕ. The three purple traces show
the quantum noise with three frequency-dependent squeezing configurations, same as Fig. 3.

Fig. 8 compares the sub-SQL performance with frequency-independent squeezing (constant squeezing angle ϕ) and
frequency-dependent squeezing (ϕ = ϕ(Ω)). The sub-SQL dip can be produced by sending squeezing at a fixed angle,
as previously observed [12]. However, the dip has a very narrow frequency range. Although we can move the dip
frequency by changing squeezing angle, it is not an optimal configuration for maximum sensitivity at all frequencies.
As mentioned in the main text, frequency-dependent squeezing can theoretically achieve the sub-SQL envelope that
covers all dips that frequency-independent squeezing can achieve (dotted purple). The current and optimal filter
cavity are more realistic configurations, and they are the same as Fig. 3.

Future Filter Cavity Upgrade

While we demonstrate that the optimal lossless filter cavity is able to simultaneously achieve all sub-SQL dips that
frequency-independent squeezing can do, we have to acknowledge the fact that a realistic filter cavity has a non-zero
loss. The designed round-trip loss of the filter cavity is 60 ppm, compared to the loss of 100 ppm suggested by our
MCMC. A few different filter cavity configurations are shown in Fig. 9.



16

20 50 100 200 500 1000
Frequency [Hz]

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Q
ua

nt
um

no
is

e
re

la
tiv

e
to

no
sq

ue
ez

in
g

[d
B

] 257 kW in arm, with FC of 36 Hz linewidth, 100 ppm loss
257 kW in arm, with FC of 34 Hz linewidth, 60 ppm loss
500 kW in arm, with FC of 34 Hz linewidth, 60 ppm loss
257 kW in arm, with FC of 26 Hz linewidth, 60 ppm loss
257 kW in arm, with FC of 23 Hz linewidth, 0 ppm loss

FIG. 9. Comparison of the quantum noise with various filter cavity configurations.

In Fig. 9, the relative quantum noise curves with current filter cavity (dashed purple) and optimal filter cavity
(solid purple) are identical to Fig. 3. If we achieve the designed loss of 60 ppm with current filter cavity, the squeezing
will improve from dashed purple to the orange curve. It is only possible to achieve squeezing at all frequencies when
we adjust the filter cavity linewidth γFC to approach ΩSQL/

√
2, for example, reducing the filter cavity input coupler

transmission to 584 ppm (purple curve) or increasing the arm cavity power to 500 kW (blue curve). The lossless filter
cavity is shown in the dotted purple trace. Note that the squeezing in the lossless case is not flat because we have a
nonzero phase difference between the local oscillator field and the signal field, known as the readout angle. For each
trace in Fig. 9, the detuning frequency of the filter cavity is optimized to maximize sensitivity to binary neutron star
inspirals - a standard figure of merit for gravitational wave detectors.
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FIG. 10. Sub-budget of contributions to the total quantum noise.

Fig. 10 shows the contributions of the total quantum noise plotted in Fig. 2. At low frequencies below 40Hz,
quantum noise is mostly limited by misrotation of the squeezed state due to the non-optimal filter cavity. At high
frequencies above 200Hz, squeezing is limited by the losses due to injection, readout, and mode-mismatches along the
optical path. Reducing these major noise sources is the key to further quantum enhancement in the LIGO detectors.
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