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We report a theoretical study of the phase diagram of a ferrimagnetic iron-garnet with uniaxial
anisotropy near a magnetization compensation point in the presence of a two-component magnetic
field. The study is performed based on a quasi-antiferromagnetic approximation. The number and
stability of the equilibrium states of the Neel vector are analyzed using the effective energy function.
It is shown that application of the small out-of-plane magnetic field in addition to the stronger in-
plane magnetic field significantly changes the equilibrium states of a ferrimagnet. The possibilities
to control the equilibrium Neel vector position and to switch between the monostable and bistable
states by tuning the value and ratio of the in-plane and out-of-plane magnetic field components are
demonstrated. This opens new possibilities for the utilization of ferrimagnets since the magnetic
field could be changed much faster than the temperature.

I. INTRODUCTION

Ferrimagnets are of prime interest among the different
magnetically ordered materials as a material platform for
various optomagnetic [1–3] and spintronic devices [4–7].
Ferrimagnets are formed by several magnetic sublattices,
which allows for tuning of their magnetic and magneto-
optical properties by composition [8]. The sublattice
magnetic moments vary with temperature at different
rates, therefore, the temperature dependence of the total
net magnetization of ferrimagnets can be engineered on
demand. In particular, magnetization compensation can
be achieved [9]. Inequivalence of the ferrimagnetic sub-
lattices provides a possibility to control their magnetic
properties via an external magnetic field [10] and to de-
tect the ferrimagnet state by magneto-optical methods,
which is a high contrast to antiferromagnets.

Ferrimagnets with a compensation temperature attract
much interest due to their peculiar features of static and
dynamic magnetic properties. For example, strong vari-
ations of the domain structure [11–13] and domain wall
motion [14, 15], as well as skyrmion formation [16] were
recently demonstrated in the vicinity of this point. One
of the most intriguing feature of a ferrimagnet is an exis-
tence of the collinear and non-collinear magnetic phases
near the compensation point [17–19] and an ability to
realize the phase transition between the different ferri-
magnetic phases [20].

Recent interest to ferrimagnets is due to their unusual
ultrafast response to femtosecond laser pulses: unconven-
tional dynamics across the compensation point [21, 22],
in the non-collinear phase [23] or near spin-flop transi-
tion [24], magnetization reversal [25–28], ultrafast laser-
induced heating with a consequent magnetization rever-
sal [29] or precession [30] and peculiar magnetization pre-
cession frequency dependence [31–33].
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Ultrafast response of a ferrimagnet strongly depends
on its phase, i.e. the sublattice magnetization orienta-
tions and canting [23, 34, 35]. For example, it was shown
that the dynamics in the non-collinear phase, including
the frequencies of the two spin modes, significantly differs
from the collinear one [23]. Thus, it is important to an-
alyze the features of the ferrimagnet phase diagram and
to obtain a possibility to control it. The straightforward
way of ferrimagnet state control is to select a desired
(H,T ) point since the ferrimagnetic phase in sensitive to
both the temperature and the applied external magnetic
field [36]. Usually, quite large changes of both parameters
are required. In the present manuscript we analyze how
the ferrimagnetic phase diagram changes under applica-
tion of the two-component magnetic field. We demon-
strate that the small out-of-plane field can be used to
efficiently control the state of a ferrimagnet, which opens
new possibilities for spin dynamics control.

The present work is devoted to the study of an im-
pact of the two-component magnetic field on the mag-
netization states of a ferrimagnetic iron-garnet film with
high uniaxial anisotropy in the vicinity of the compen-
sation point. We show that small out-of-plane exter-
nal magnetic field can be used for the efficient control
of the equilibrium orientation of the sublattice magneti-
zations, the stability of the states and the whole phase
diagram, as well. The paper is organized as follows. Sec-
tion II is devoted to the basis of the theoretical analysis of
the ferrimagnet magnetization states based on the quasi-
antiferromagnetic approximation. Section III is devoted
on the qualitative analysis of the Neel vector orientations
and trajectoris for different varitations of the parameters
of the system. Analysis of the energy function of a ferri-
magnet placed in the incline (two-component) magnetic
field in quasi-antiferromagnetic approximation in terms
of the Neel vector is provided in Section IV. We study
the number and depth of the energy function minima
that determine the equilibrium magnetization positions.
In Section V we analyze how the equilibrium positions of
the Neel vector change depending on the value of the out-
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FIG. 1. (a) Scheme of the considered configuration of a ferrimagnet. The angle between the M1,2 and L vectors is depicted
exaggeratedly large for the sake of readibility. (b) Scheme of the two magnetic states with ϕ = π/2 and ϕ = 3π/2 and similar
θ0 angle of L. Such states are degenerate for h = 0. (c) Phase diagram of a uniaxial ferrimagnet with applied in-plane magnetic
field H (h = 0). White solid lines correspond to the phase transition between the phases. White dashed line denotes the region
that is studied in details further. White circle denotes the point (m = 2 emu/cm3, H = 2 kOe) that is analyzed in more details.

of-plane magnetic field component. The most important
impact of such a field is lifting of the degeneracy between
the ’up’ and ’down’ states. Consequent variations of the
bistability regions of the phase diagram are discussed in
Section VI. With an increase of the out-of-plane compo-
nent the bistability region shrinks. At the same time,
as it is demonstrated in Section VII, the phase of the
ferrimagnet is non-collinear in the whole range of mag-
netization and external magnetic field values considered.
Thus, an ability to control the ferrimagnet phase and
to switch between the monostable and bistable regimes
by application of a small out-of-plane magnetic field is
demonstrated.

II. THEORETICAL DESCRIPTION OF A
FERRIMAGNET IN THE INCLINE MAGNETIC

FIELD

The ferrimagnets are characterized by magnetization
compensation point, i.e. the temperature TM at which
the sublattice magnetizations compensate each other
and, therefore, the net magnetization becomes zero. In
the vicinity of TM, the sublattice magnetizations are
nearly opposite to each other, except for a tiny canting
angle and a small difference between their magnitude [37–
39]. Thus, for the description and analysis of the ferri-
magnetic equilibrium states near the compensation point,
it is convenient to use a quasi-antiferromagnetic approxi-
mation [23, 32, 40] rather than the sigma model [15, 41].
Quasi-antiferromagnetic approximation of ferrimagnet
spin dynamics [23, 32, 40] is based on the assumption of
nearly the same values of the sublattice magnetizations
and small canting angles between them.

Let us consider a ferrimagnetic film of a two-sublattice
ferrimagnet with M1 and M2 sublattice magnetization
vectors. The film has uniaxial magnetic anisotropy with
the axis normal to the film. The sublattice M1,2 vectors
can be described by their magnitudes M1,2 and angles

θ1,2, ϕ1,2 determined in the spherical coordinate system
with z-axis oriented in the film plane and y-axis along
the anisotropy axis (see Fig. 1a). As it was mentioned
above, M1 and M2 have nearly the same values, but
close to the opposite orientations near the compensation
point, thus M1 −M2 = m ≪ M1 + M2. This allows us
to introduce an antiferromagnetic, or Neel, vector L =
M1 −M2 described by the angles θ and ϕ, so that:

θ1 = θ − ε, θ2 = π − θ − ε, (1)

ϕ1 = ϕ+ β, ϕ2 = π + ϕ− β, (2)

where angles ±ε and ±β give the canting of the sublattice
magnetizations from L vector, ε ≪ θ, β ≪ φ [42].

We consider a configuration where the magnetic field
with a predominant in-plane component H along z axis
and a relatively small out-of-plane component h along y
axis is applied to the ferrimagnetic film. The projections
of these H and h vectors on the corresponding z or y
axis are denoted as H and h, so that they both can have
positive and negative values.

The potential energy of the two-sublattice system in
this case can be described as a sum of Zeeman, exchange
and uniaxial anisotropy energy:

Φ = −(M1 +M2)(H+ h) + 2ΛM1M2 −

−K1
(M1n)

2

M2
1

−K2
(M2n)

2

M2
2

, (3)

where Λ > 0 is a Weiss constant, K1,2 are the anisotropy
constants for each of the sublattices, n is anisotropy axis
direction coinciding with the film normal.

Using the potential energy in the form (3), and mak-
ing the derivations similar to the ones preformed in [23]
(see Supplementary Information there), we can write
the effective Lagrangian Leff of the system in the quasi-
antiferromagnetic approximation as a function of the an-
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FIG. 2. Changes in the Neel vector L orientation for variation of the magnetization at the fixed H = 0.2 kOe (top panel)
or variation of the in-plane magnetic field H at the fixed m = 2 emu/cm3 (bottom panel) for (a,d) strictly in-plane (h = 0)
magnetic field, (b,e) in-plane magnetic field with an addition of a constant out-of-plane h = 0.2 kOe magnetic field, (c,f) tilted
external magnetic field with h and H simultaneously changing. Configuration (b,e) corresponds to the two-component magnetic
field created by the two independent magnets, while (c,f) corresponds to the magnetic field of a single electromagnetic applied
at an angle α = 5◦ to the film plane, so that h = H tan 5◦. The color of the arrows denotes the ϕ0 = π/2 (dark and light pink
color) and ϕ0 = 3π/2 (dark and light violet color) states. Dark pink and dark violet arrows show the states corresponding to
the deepest minima of the effective energy function. Light pink and light violet arrows show the orientations corresponding
to the less pronounced minimum of the effective energy function. Grey areas denote the regions with a single L equilibrium
position, white region corresponds to the bistability region.

gles θ and ϕ of the antiferromagnetic vector L [40]:

Leff = χ
2

((
ϕ̇
γ −H

)
sin θ + h cos θ sinϕ

)2

+

+χ
2

(
θ̇
γ − h cosϕ

)2

− ϕ̇
γm cos θ +mH cos θ +

+mh sin θ sinϕ+K sin2 θ sin2 ϕ, (4)

where K = K1 + K2 is an effective anisotropy con-
stant, χ = (M1 + M2)

2/(4ΛM1M2) ≈ Λ−1 is the con-
stant describing the exchange interaction between the
sublattices and γ is the gyromagnetic ratio. For a defi-
niteness, in numerical calculations the following param-
eters are used: K = 300 erg/cm3, χ = 10−3 and
m = 2 emu/cm3 that correspond to the sample with a
composition (YBiLu)3(FeGa)5O12 at the room tempera-
ture.

Passing from the Lagrangian to the Hamiltonian func-
tion, we can obtain a relation for the potential energy
of the system in the quasi-antiferromagnetic approxima-
tion:

Ueff = −χ
2 (h cos θ sinϕ−H sin θ)

2 − χ
2 (h cosϕ)

2 −
−mH cos θ −mh sin θ sinϕ−K sin2 θ sin2 ϕ. (5)

The equilibrium state of a magnetic system is deter-
mined by the angles θ, ϕ that provide the minimum of the
potential energy Ueff(θ, ϕ) . It allows to find a magnetic

phase diagram of a sample describing angle θ0 versus the
in-plane magnetic field H and the difference in magnetic
sublatticies m.
For the in-plane magnetic field (h = 0) the magnetic

phase diagram has a well-known form (see [23] for ex-
ample) and contains two regions corresponding to the
collinear and non-collinear phases (Fig. 1c). The collinear
phase exists in the range of |mH| ≥ 2K + χH2 and
is characterized by θ0 = 0 for m > 0 or θ0 = π for
m < 0. The non-collinear phase appears in the vicinity
of a compensation point if |mH| < 2K + χH2. In the
non-collinear phase Ueff(θ, ϕ) is symmetric for ϕ < π and
ϕ > π (Fig. 3a) and provides the two minima with the
same angle θ0

θ0 = arccos

(
mH

2K + χH2

)
, (6)

but different angles ϕ0 = π/2, 3π/2 Fig. 1b), so that the
system is bistable.
The whole picture changes if out-of-plane magnetic

field h appears in the system in addition to the in-plane
field H. These changes in terms of the Neel vector ori-
entation are qualitatevely discussed in the next section.
To understand the origins and the character of these
changes, a detailed theoretical and numerical analysis
is provided in next Sections in a following way. First,
we fix the magnetization and the in-plane magnetic field
and analyze how Ueff(θ, ϕ) modifies in the presence of h.
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FIG. 3. False-color map of the magnetic potential energy Ueff(θ, ϕ) for the different values of out-of-plane h component and
fixed in-plane H = 2 kOe of the external magnetic field. White lines depict the iso-levels of Ueff . (a) h = 0 which provides two
symmetric minima of Ueff . (b) Small h = 0.25 kOe component which provides the asymmetry between the minima of Ueff . (c)
Relatively large h = 0.6 kOe component providing only one minima of Ueff . The magnetic parameters of the sample used for
calculations are provided in the text.

After that, we analyze how the equilibrium L positions
and the system stability changes due to application of
h. That allows us finally to compare the phase diagrams
of the ferrimagnets placed in the fully in-plane and two-
component magnetic fields.

III. NEEL VECTOR TRAJECTORY

In the strictly in-plane external magnetic field the ferri-
magnet has two degenerate equilibrium positions that are
characterized by the same θ0 and the opposite ϕ0 = π/2
and ϕ0 = 3π/2 values (Eq. (6)). If one parameters of
the system, for example, an external magnetic field is
fixed (H = 2 kOe in Fig. 2a), and the other varies
(−6 emu/cm3 < m < 6 emu/cm3), the Neel vector L
gradually changes its orientation from θ0 = π to θ0 = 0.
This can be realized in two ways, by passing through
the states with ϕ0 = π/2 (pink arrows in Fig. 2a), or
passing through the states with ϕ0 = 3π/2 (violet ar-
rows in Fig. 2a). Both trajectories are equivalent from
the point of view of the energy of the states. In prac-
tice, one of paths (’up’ through the states with ϕ0 = π/2
or ’down’ through ϕ0 = 3π/2 states) is selected stochas-
tically depending on the different small deviations from
the considered ideal case, such as small tilts of the ex-
ternal magnetic field from strictly in-plane orientation,
presence of residual magnetization, cubic anisotropy etc.
Similar situation is observed for a fixed magnetization
m = 2 emu/cm3 and varying external magnetic field
(−6 kOe < H < 6 kOe (Fig. 2d)).
Application of the out-of-plane magnetic field breaks

this degeneracy between ϕ0 = π/2 and ϕ0 = 3π/2 states
(Fig. 2b,c,e,f). As it will be shown further, in a bistability
region (white color in Fig. 2) one of the states becomes
more energetically favorable, and can be called stable
(such states are shown by darker colors in Fig. 2b,c,e,f)
that the other one (shown by light colors), which may be

treated as a quasi-stable state. Under the magnetization
change from m = −6 emu/cm3 to m = 6 emu/cm3 for a
fixed inclined magnetic field (Fig. 2b,c) first L gradually
changes according to the more energetically favorable tra-
jectory (dark violet arrows). Passing through the m = 0
point swaps the stability of the ’up’ and ’down’ posi-
tions, so L continues its path through a less favourable
quasi-stable states (light violet arrows) unless it reaches
the bistability border (m ≈ 2.5 emu/cm3), grey region)
where these states vanish. At this point, L flips to the
opposite orientation and continues its path through the
stable states (dark pink arrows). If one changes the mag-
netization in the opposite way, from m = 6 emu/cm3 to
m = −6 emu/cm3, L again passes through the more
favourable stable states (dark pink arrows in Fig. 2b,c)
which transform to a quasi-stable less favourable ones
(light pink arrows in Fig. 2b,c) at the compensation point
m = 0. Finally, L reaches the other bistability boarder
(m ≈ −2.5 emu/cm3, grey region) where it flips to the
opposite direction corresponding to the stable states.
Thus, a continuous change of the magnetization across

the compensation point results in the hysteresis be-
haviour of the Neel vector orientation. Similar hysteresis
behaviour of the Neel vector L is observed in the presence
of the inclined magnetic field with both in-plane and out-
of-plane components simultaneously changed (Fig. 2c,f).
On the contrary, if out-of-plane magnetic field is fixed,
and in-plane field varies (Fig. 2e), the states ϕ0 = π/2
are preferable.

IV. EFFECTIVE ENERGY OF A
FERRIMAGNETIC IN THE INCLINE

MAGNETIC FIELD

For h = 0 the function Ueff(θ, ϕ) in the non-collinear
state has two symmetric minima as it was mentioned
above (Fig. 3a). If an out-of-plane field h is applied, the
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FIG. 4. The relative value of a potential barrier ∆Umin/∆Umax between the two equilibrium states (ϕ = π/2 and ϕ = 3π/2).
(a) Schematic depiction of the barrier change under application of out-of-plane field. (b) Dependence of ∆Umin/∆Umax on h
and H fields for a fixed m = 2 emu/cm3 and (b) dependence of ∆Umin/∆Umax on H and m for a fixed h = 0.4 kOe. White
dashed curves show the isolines with 0.2 step. Gray area denote the region with a single potential energy minimum.

two minima still exist located at ϕ0 = π/2, 3π/2, but
different θ0 values. An important change in Ueff(θ, ϕ)
function is that one of the minima of Ueff(θ, ϕ) becomes
more pronounced, and the other gets swallow (Fig. 3b).
This means that the state with an out-of-plane compo-
nent of the net magnetization M = M1 + M2 directed
along h field ((M,h) > 0) is preferable. However, the
second equilibrium state, with out-of-plane component
of M directed oppositely to h ((M,h) < 0) still exists.
Thus, the bistability remains. With the increase of h,
the asymmetry grows and finally the second minima of
Ueff(θ, ϕ) disappears (Fig. 3c) and the system becomes
monostable with only one stable state at ϕ0 = π/2 and
((M,h) > 0).

Thus, application of the out-of-plane magnetic field di-
minishes the depth of a potential barrier corresponding to
the oppositely directed magnetization (compare Fig. 3a,b
and the two minima in Fig. 3b). While for the quite small
magnetic fields h the second minimum of the effective po-
tential energy Ueff still exists mathematically (Fig. 3b),
its depth becomes extremely small. Figure 4 illustrates
the differences of the potential barriers between the two
equilibrium states Uϕ=π/2 and Uϕ=3π/2, which are de-
termined as minima of Ueff (Eq. (5)). ∆Umin character-
izes the minimal energy required to overcome a potential
barrier and to switch from the higher-energy to the low-
energy state . In other words, ∆Umin is the depth of the
most swallow minimum (see a sketch in Fig. 4a). For a
convenience, it is normalized on the depth of the other
minima ∆Umax. Both ∆U are calculated for the optimal
trajectory between the Uϕ=π/2 and Uϕ=3π/2 states.

In the absence of the out-of-plane magnetic field h = 0
(Fig. 4b) or at the magnetization compensation point
m = 0 (Fig. 4c) the two states with ϕ = π/2 and
ϕ = 3π/2 are equivalent to each other and have the
same energy (Fig. 3). Application of the out-of-plane
magnetic field h makes one of the minima more swal-
low, and the difference between the minima depth grows.
Figure 4b,c illustrates that the potential barrier between
the two states is less than 20% of its depth in a rather

wide H range in the vicinity of the transition between
the bistable and monostable states. For example, quite
moderate out-of-plane magnetic field h ∼ 40 mT makes
∆Umin/∆Umax < 20% in the region 1.5 kOe < H <
2 kOe for a fixed m = 2 emu/cm3 (Fig. 4b,c). This re-
gion grows with the increase of h (1 kOe < H < 1.8 kOe
for h = 0.6 kOe, m = 2 emu/cm3 Fig. 4b) or as one
moves away from the compensation point (0.25 kOe <
H < 0.7 kOe for h = 40 kOe, m = 4 emu/cm3, Fig. 4c).
Although the bistability in this region exists in theory,
the higher-energy state would be quite unstable in prac-
tice.

V. EQUILIBRIUM STATES OF A
FERRIMAGNET IN THE INCLINE MAGNETIC

FIELD

As the presence of the small out-of-plane magnetic field
h can change the number and position of the magneti-
zation equilibrium states, it is important to analyze its
impact in more detail. The minima of Eq. (5) are deter-
mined by the following transcendental equation:

−(K +
χ

2
(H2 − h2)) sin 2θ0 +mH sin θ0

±χHh cos 2θ0 ∓mh cos θ0 = 0, (7)

where ± signs correspond to the two minima at ϕ0 =
π/2, 3π/2, respectively. Numerical solution of this equa-
tion for the fixed H or h values is shown in Fig. 5.
Making the expansion of Eq. (7) near the equilibrium

θ0 determined by Eq. (6) allows one to obtain a shift of
the equilibrium angle ∆θ0 which is proportional to h:

∆θ0 = ±h
m cos θ0 + χH cos 2θ0

(sin2 θ0 − χh2

2K+χH2 cos 2θ0)(2K + χH2)
, (8)

where ± signs correspond to the two solutions with ϕ0 =
π/2, 3π/2, respectively. For rather small values of h2 ≪
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(a) (b) (c)

(d) (e)

FIG. 5. Equilibrium positions θ0, ϕ=π/2,3π/2 in the presence of the out-of-plane magnetic field h. (a) Values of θϕ=π/2,3π/2(H)
for non-zero h = 0.2 kOe (solid orange and violet lines). Pink line shows θ0(H) for h = 0 that is the same for ϕ0 = π/2, 3π/2.
Dotted black lines show the approximations Eqs. (9), (10). (b) Tuning the number and position of equilibrium states θ0ϕ=π/2,3π/2

by applying the out-of-plane h field (solid orange and violet lines) in m = 2 emu/cm3 and H = 2 kOe configuration. Pink
dashed line shows the level of θ0 for h = 0. (c) The difference between the equilibrium θ0 values δθ0 = θ0(π/2) − θ0(3π/2) vs.
in-plane H and out-of-plane h magnetic field components. Grey area shows the region where only one solution exists. Dashed
black lines correspond to the cross-sections shown in (a) and (b) plots. (d) θ0, ϕ=π/2 and (e) θ0, ϕ=3π/2 in (m,H) coordinates for
a fixed out-of-plane magnetic field h = 0.2 kOe. White lines show the boarders between the bistable and monostable regimes.
Dashed black lines show the same boarder coinciding with a phase transition obtained for h = 0 (see Fig. 1).

2K/χ one may simplify Eq. (8) to:

∆θ0 = ± h

sin2 θ0

m cos θ0 − χH cos 2θ0
2K + χH2

. (9)

These θ0 ±∆θ0 values describe analytically the bistable
regime (see the central part of Fig. 5a where the violet
and orange curves coexist).

Equation (9) shows that the shift of the equilibrium po-
sition ∆θ0 significantly grows while L vector tends to the
film plane (xz plane) since sin θ0 becomes close to zero.
However, Eq. (8) was obtained under the assumption of
smallness of ∆θ0 and is not valid for the simultaneously
small sin θ0 ≈ 0 and large ∆θ0. Thus, this region of phase
diagram with the close to the in-plane orientation of L
vector should be analyzed in a different way. Assuming
that θ0 ≈ 0 or π one may simplify Eq. (8) and obtain
that the bistablity vanishes. Only one equilibrium state
for these parameters exist:

θ0 =

∣∣∣∣h m− χH

2K + χ(H2 − h2)−mH

∣∣∣∣ , mH > 0,

(10)

θ0 = π −
∣∣∣∣h m+ χH

2K + χ(H2 − h2) +mH

∣∣∣∣ , mH < 0,

and ϕ0 = π/2 or 3π/2 for h > 0 and h < 0, correspond-
ingly. This monostable state is realized in the region of
phase diagram that correspond to a collinear state in the
absence of h (see the pink curve and θ0 = 0, π region).

Figure 5 demonstrates bistable and mono-stable equi-
librium positions of the Neel vector L for different val-
ues of the two-component external magnetic field. There
is a good agreement between the numerically calculated
through Eq. (5) (orange and violet curves in Fig. 5a) and
the approximations by Eqs. (9), (10) (black dashed curves
in Fig. 5a) of the equilibrium angles θ0(ϕ=π/2,3π/2).

For the strictly in-plane magnetic field (pink curve in
Fig. 5) θ0 values for the minima determined by ϕ0 =
π/2, 3π/2 coincide with each other, and the phase tran-
sitions between the collinear and non-collinear states are
clearly seen as the kinks of θ0(H) curve. The presence
of out-of-plane h field modifies θ0(H) dependence sig-
nificantly (compare violet and pink curves in Fig. 5a).
First of all, one may see that there is no kink for θ0(H)
dependence in the presence of the small magnetic field
(violet curve in Fig. 5a). As such a kink is a characteris-
tic feature of the second-kind phase transition, one may
suppose that such transition vanishes due to the appli-
cation of the out-of-plane magnetic field. At the same
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(a) (b)

FIG. 6. Phase diagram of a ferrimagnet in a vicinity of a compensation point. Blue region denotes collinear phase and pink
region denotes the non-collinear phase for the case h = 0. Solid lines (see the legends) show the shift of the bistability region
boarder under application of different out-of-plane magnetic fields h (a) via independent magnet in addition to the in-plane
field H (b) via the sample tilt at an angle α.

time, according to Eq. (10) θ0(H) ̸= arctan(h/H) for
any finite value of H. This means, that the Neel vector
is not collinear with the orientation of the external mag-
netic field even in the monostable regime. This is in a
contrast with a collinear phase realized for the in-plane
external magnetic field where L is aligned along H. The
question of collinearity of the sublattices for a bistable
and monostable regimes realized for the two-component
field will be discussed in details below.

The two equilibrium states with ϕ0 = π/2, 3π/2 in the
non-collinear phase of the in-plane configuration (h = 0)
are degenerate and have the same θ0 values (pink curve
in Fig. 5). Under application of any values of out-of-
plane magnetic field this degeneracy between the two
states is lifted and θ0 differs for these states (orange
and violet curves in Fig. 5a,b). Moreover, one of the
solutions providing M aligned oppositely to h field (or-
ange line in Fig. 5a) exists only in a certain range of H
(−2.5 < H < 2.5 kOe for the considered parameters in
Fig. 5a) and disappears as L tilts more towards xz plane
under application of stronger H. Note that the stability
loss condition, i.e. point where the second equilibrium
state disappears, differs from the point of second-kind
phase transition between the collinear and non-collinear
phase in h = 0 state.

As shown in Fig. 5b, for a fixed in-plane magnetic
field H = 2 kOe application of an order smaller h sig-
nificantly changes the equilibrium θ values by up to
0.3 rad, and also allows to switch between the bistable
(|h| < 0.45 kOe) and mono-stable (|h| > 0.45 kOe)
regimes.

Figure 5c summarizes how the difference between the
equilibrium positions δθ0 = θ0(π/2) − θ0(3π/2) and the
boundary between the monostable and bistable regimes
can be controlled by the out-of-plane h fields for different
values of the in-plane magnetic field H. By varying the
out-of-plane h from h = 0 to h = 0.6 kOe one might move
the bistability boundary from H ≈ 4 kOe to H ≈ 2 kOe,
correspondingly. An ability to modify phase diagram will
be analyzed further in more details.

The direction of h is responsible for making θ0(π/2)
or θ0(3π/2) state preferable. Figure 5d,e show how the
θ(m,H) dependence modifies (see Fig. 1 for a comparison
with h = 0 case) in the presence of out-of-plane magnetic
field. One might see that the state with (M,h) > 0)
is preferable, so that θ0(π/2) and θ0(3π/2) solutions re-
main for m > 0 and m < 0, correspondingly. The value
θ0 gradually changes throughout the whole region where
the solution exist and does not exhibit a kink. The phase
transition lines that existed for h = 0 case do not coin-
cide with the stability loss lines (the boundary of a white
region where the solution disappears, see Fig. 5d,e) that
illustrates the possibility to modify the phase diagram.
Let us study this phenomenon in mode detail.

VI. PHASE DIAGRAM FOR THE INCLINE
MAGNETIC FIELD

For the strictly in-plane magnetic field the phase di-
agram in terms of (m,H) coordinates is well known
(Fig. 1). It contains the non-collinear phase arising near
the compensation point m = 0 and the collinear phase
existing for quite large values of m and H. The bound-
ary between these phases is described by the condition
|mH| = 2K + χH2. The non-collinear phase is charac-
terized by the bistability of the antiferromagnetic vec-
tor position while there is only a single stable state the
collinear phase (see the pink and blue areas in Fig. 6,
correspondingly). Thus the condition |mH| = 2K+χH2

describes the boundary between these two regimes, too
(see the black line in Fig. 6).

Application of the out-of-plane magnetic field results
in the disappearance of the true collinear phase. For any
finite values of (H,h) the Neel vector L is tilted with
respect to the external magnetic field H + h, and, as it
will be shown further, the two sublattices remain canted.
However, the boundary between the bistability region
where there are two equilibrium positions of antiferro-
magnetic vector and the region with a single equilibrium
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(a) (b) (c)

FIG. 7. Sublattice canting 2ε for (a) ϕ = π/2, and (b) ϕ = 3π/2 equilibrium positions in the case of non-zero out-of-plane
h field. White area depicts the region where the corresponding solution is abscent. (c) The difference between the sublattice
canting 2∆ε = 2επ/2 − 2ε3π/2 vs. in-plane H and out-of-plane h magnetic field components. Grey area shows the region where
only one solution exists.

position exists. Moreover, this boundary can be shifted
under application of a small out-of-plane magnetic field
component h.

There are two ways, how this application of the out-of-
plane h field can be implemented in practice. On the one
hand, one might fix the position of the sample parallel
to the external in-plane magnetic field H provided by a
magnet and apply the out-of-plane field h using another
independent electromagnet. In this case one might tune
H and h independently. Fig. 6a illustrates this case how
the boundary of the bistability region shifts for the dif-
ferent values of h field applied. Another way to change
the ratio of the in-plane and out-of-plane components is
to tilt the sample at an angle α in the external mag-
netic field H0 created by a single electromagnet. In this
case, H = H0 cosα and h = H0 sinα are simultaneously
changed. Fig. 6b illustrates how the boundary of the
bistability region shifts for the different values of a tilt
angle α in this case.

Figures 6a,b show that application of the out-of-plane
h field significantly reduces the bistability region. Quite
moderate magnetic fields of tenths of kOe, or sample tilts
of several degrees result in ∼ 1 kOe shift of the boarder
of bistability region. Moreover, the so-called ’waist’ of
this boarder (the minimal value of |m| in the m(H) de-
pendence describing this border) moves to the region
of smaller external magnetic fields of 1-3 kOe which is
important for practical realization since can be easily
achieved in experimental setups.

Thus, application of small external magnetic fields al-
lows for the efficient control of the boarder of the bistabil-
ity region, and to perform switching between the stable
and quasi-stable states.

VII. CANTING OF THE MAGNETIC
SUBLATTICES

It is well-known that in the non-collinear phase under
the application of the in-plane magnetic field the sublat-

tices are canted with respect to each other at a small an-
gle 2ε, and this canting disappears in the collinear phase.
An important question is what is the relative orientation
of the magnetization sublattices if out-of-plane magnetic
field is applied in addition to the in-plane one.
Considering ε, β as small corrections to θ, ϕ one may

obtain the following relations from Eq. (3):

ε =
χ

M1 +M2
(H sin θ0 − h cos θ0 sinϕ0), (11)

β =
χ

M1 +M2
h
cosϕ0

sin θ0
, (12)

where θ0 and ϕ0 are determined by Eq. (7), so that ϕ0 =
π/2 or ϕ0 = 3π/2 and β = 0 in all range of h and H
values.
On the contrary, sublattice canting 2ε is quite small

(∼ 10−3 rad), but non-zero in almost all range of h and
H values (Fig. 7). It is interesting that as θ differs for the
two equilibrium states in the bistable regime (see Fig. 5a-
c), sublattice canting 2ε is also different for these states
(Fig. 7c). This difference reaches its maximum at the
edge of the bistability region.
For the large values of H where according to Eq. (10)

| sin θ| → 0, sublattice canting 2ε gradually decreases
2ε → 0. However, for any finite value of H it is still
non-zero (Fig. 7a,b). This explains why the second-kind
phase transition between the collinear and non-collinear
phases disappears in the case of out-of-plane magnetic
field applied to the system. According to our analy-
sis, this happens due to the disappearing of the collinear
state.

VIII. CONCLUSION

We report a theoretical study of the phase diagram
of a ferrimagnetic iron-garnet with uniaxial anisotropy
near a magnetization compensation point in the presence
of the two-component magnetic field. The equilibrium
state was determined using an effective energy function
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in the quasi-antiferromagnetic approximation. It was
shown that the phase diagram and the Neel vector equi-
librium positions change significantly in the presence of
the two-component magnetic field, with the components
aligned along and perpendicular to the easy axis. Switch-
ing between the monostable and bistable states becomes
possible by tuning the ratio of two magnetic field com-
ponents. This opens new possibilities for utilization of

ferrimagnets, since the magnetic field could be changed
much faster than the temperature.
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