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Abstract. Generalizing prior work of Levine, we give infinitely many examples of pattern knots
P such that P (K) is not slice in any rational homology 4-ball, for any companion knot K. To show
this, we establish a closed formula for the concordance invariants τ and ϵ of a family of satellite
knots obtained from generalized Mazur patterns. Our main computational tool is the immersed
curve technique from bordered Heegaard Floer homology arising from the work of Chen-Hanselman.
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1. Introduction

Two knots in S3 are said to be smoothly concordant if they co-bound a smoothly embedded
annulus in S3 × I. The set of concordance classes of knots form a group C, with addition given by
connect sum, and identity given by the concordance class of the unknot. In particular, knots in the
concordance class of the unknot are called smoothly slice. The classical study of knot concordance
looks to classify which knots in S3 are smoothly slice in D4.

One may extend the notion of sliceness to knots to more general 3-manifolds. A knot K in the
boundary of a smooth 4-manifold M is said to be smoothly slice if it bounds a smoothly embedded
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disk in M . There are also weaker notions of concordance that we consider: two knots are exotically
concordant if they co-bound a smoothly embedded annulus in a smooth 4-manifold homeomorphic
to S3 × I but possibly with an exotic smooth structure, and (for a ring R) R-homology concordant
if they co-bound a smoothly embedded annulus in a smooth manifold with the same R-homology of
S3×I. Then, a knot K ⊂ S3 is exotically slice or R-homology slice if it is exotically or R-homology
concordant to the unknot, respectively; this is the same as saying that K bounds an embedded disk
in a contractible 4-manifold (which is homeomorphic to D4 by Freedman [Fre82]) or an R-homology
4-ball, respectively. In particular, Q-homology concordance is stronger than exotic concordance.

For any two knots K ⊂ S3 and P ⊂ S1×D2, let P (K) denote the satellite knot of K with pattern
P . If K is concordant to K ′, then P (K) is concordant to P (K ′), so we may regard P as an operator
P : C → C, called the satellite operator. Note that this map is generally not a homomorphism. The
satellite operator is well-studied in literature; see for example [Hed07, Hom14a, Lev16]. Moreover,
we define the winding number w(P ) to be the number of signed intersections of a meridional disk
with P .

Problem 1.45 in Kirby’s problem list [Kir97], attributed to Akbulut, asks whether there exists
a winding number ±1 satellite operator P for which P (K) is never exotically slice in any rational
homology 4-ball with boundary S3. Levine answered a stronger version of this in the affirmative:

Theorem 1.1. [Lev16, Theorem 1.2] There exists a pattern knot P ⊂ S1×D2 with winding number
1 such that for any knot K ⊂ S3, P (K) is not slice in any rational homology 4-ball.

Levine’s strategy was to find a pattern Q which induces a non-surjective satellite operator on
the rational homology concordance classes, so that there exists a knot L which is not concordant
to Q(K) for all K ⊂ S3. Then, P = Q# − L ⊂ S1 ×D2 satisfies the conclusion of the Theorem.
In particular, he chose Q to be the Mazur pattern, shown in Figure 1.

Figure 1. The Mazur pattern Q2,1 embedded in the solid torus V = S1 ×D2.

The goal of this paper is to expand on this result to obtain an infinite family of pattern knots
with winding number ±1 whose satellites are never slice in any rational homology 4-ball. To do
this, we consider a generalization of the Mazur pattern Q.

Definition 1.2. Starting with a point in the solid torus, wind m times around the torus, then turn
around and wind n times. Join the top endpoint of the arc to the bottom endpoint by crossing
under the first n times, and over the next m times, resulting in a clasp where the pattern turns
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Figure 2. The generalized Mazur pattern Qm,n

around. The resulting pattern knot is a generalized Mazur pattern Qm,n, and a picture of this is
shown in Figure 2.

A pattern knot P is a (1, 1)-pattern if it admits a genus one doubly-pointed Heegaard diagram,
and is an unknot pattern if P (U) ≃ U in S3, where U is the unknot [Che19, CH23]. Generalized
Mazur patterns Qm,n are part of the class of (1, 1)-unknot patterns, and have winding number
±(m− n) depending on the orientation. We show that the pattern remains the same if we switch
m and n.

Proposition 1.3. Inside the solid torus S1 ×D2, Qm,n is isotopic to Qn,m.

In the early 2000s, Ozsváth and Szabó [OS04b, OS04c] introduced Heegaard Floer homology, a
collection of invariants of three-manifolds and knots and links inside them. The knot version, also
independently introduced by Rasmussen [Ras03], associates to every knot K ⊂ S3 a Z⊕Z-filtered,
free F[U,U−1]-complex CFK∞(K), called the knot Floer complex of K. Knot Floer homology
has several nice properties; for example, it categorifies the Alexander polynomial [OS04b], detects
the knot genus [OS04a], and detects fiberedness [Ghi08, Ni07]. There are a variety of concordance
invariants arising from CFK∞(K); in this paper, we are interested in the integer-valued τ -invariant
[OS03] and the {−1, 0, 1}-valued ϵ-invariant [Hom14b], which are maps with domain the set of
rational homology concordance classes.

In [Lev16], Levine computed τ(Q(K)) and ϵ(Q(K)) for satellites of knots along the Mazur
pattern.

Theorem 1.4. [Lev16, Theorem 1.6] If Q is the Mazur pattern, then for any knot K ⊂ S3, we
have

τ(Q(K)) =

{
τ(K) if τ(K) ≤ 0 and ϵ(K) ∈ {0, 1}
τ(K) + 1 if τ(K) > 0 or ϵ(K) = −1.

and



4 J. PATWARDHAN AND Z. XIAO

ϵ(Q(K)) =

{
0 if τ(K) = ϵ(K) = 0

1 otherwise

In this paper, we generalize this result to the generalized Mazur patterns Qm,n(K):

Theorem 1.5. Let Qm,n be the generalized Mazur pattern embedded in the solid torus V . If m ̸= n,
then for any knot K ⊂ S3, we have

(1.1) τ(Qm,n(K)) =


|m− n|τ(K) if τ(K) ≤ 0 and ϵ(K) ∈ {0, 1},
|m− n|τ(K) + |m− n| if τ(K) < 0 and ϵ(K) = −1,
|m− n|τ(K) + min(m,n) if τ(K) > 0 and ϵ(K) = 1,

|m− n|τ(K) + max(m,n)− 1 if τ(K) ≥ 0 and ϵ(K) = −1.
In the case where m = n, we have

(1.2) τ(Qm,m(K)) =


0 if τ(K) < 0,

m− 1 if τ(K) = 0,

m if τ(K) > 0.

Also,

(1.3) ϵ(Qm,n(K)) =

{
0 if τ(K) = ϵ(K) = 0,

1 otherwise

Remark 1.6. To put this computation into context, we make the following remark about (1, 1)-
patterns. Given a fixed pattern knot and a fixed companion knot, there are many available tools in
the literature that compute the τ -invariant of P (K), stemming from the bordered Heegaard Floer
homology invariants. However, it is challenging to find a closed formula for τ(P (K)) as we vary the
companion knot. The formula above recovers the results in the literature for satellites along the
Whitehead double Q1,1 [Hed07, Theorem 1.4] and the Mazur pattern Q2,1 [Lev16, Theorem 1.6].
Partial results for this formula have also been computed in [Ray15, Proposition 3.5], using certain
conditions on the Thurston Bennet number.1

Similar to [Lev16], we use techniques in bordered Heegaard Floer homology, due to Lipshitz,
Ozsváth and Thurston [LOT18], which is well-adapted to study three-manifolds with parametrized
boundary. In particular, we use the immersed curve interpretation of the bordered pairing theorem
developed by Hanselman [Han23]. The proof strategy for Theorem 1.5 is inspired by [CH23, Section
6], which recovers Levine’s computation using immersed curve techniques.

We are now ready to construct our infinite family of winding number ±1 pattern knots which
induce non-surjective satellite operators on the rational concordance groups. Since ϵ(Qm,m−1(K)) ̸=
−1 for all K ⊂ S3, we may pick a knot L ⊂ S3 such that ϵ(L) = −1, such as the left handed trefoil.
Then, Pm,m−1 = Qm,m−1#− L ⊂ S1 ×D2 satisfies the conclusion of Theorem 1.1. Thus, we have
shown the following.

Corollary 1.7. For m > 1, the infinite family of winding number 1 pattern knots Pm,m−1 have the
property that Pm,m−1(K) is not smoothly slice in any rational homology 4-ball for any knot K ⊂ S3.

1In Definition 1.2, we require m and n to be positive because if m (equivalently n) is 0, then Q0,p ≃ Qp,0 is the
(p, 1)-cable. Hom has computed this case in [Hom14a], and the result does not follow the pattern of Theorem 1.5.
This is expected, since the methods we used to obtain the results above rely on the parameters m and n being strictly
positive.
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The computation of Theorem 1.5 also allows us to recover the pattern knot genus of generalized
Mazur patterns Qm,n. Recall that for a pattern P with winding number w(P ), a relative Seifert

surface for P is a surface Σ̂ in S1 × D2 such that the interior of Σ̂ is disjoint from P , and the

boundary of Σ̂ consists of P together with w(P ) coherently oriented longitudes. The genus of a
pattern g(P ) inside the solid torus is defined as the minimal genus of a relative Seifert surface for P .
For a satellite knot P (K) with nontrivial companion K, a classical result of Schubert [Sch53] shows
the relation between the three-genus of the satellite knot g(P (K)) and w(P ), g(P ), and g(K):

(1.4) g(P (K)) = |w(P )|g(K) + g(P ).

We know w(Qm,n), so the value of g(Qm,n) is determined by g(Qm,n(K)) and g(K) for some
companion knot K of our choice. Using the fact that knot Floer homology detects knot genus, we
obtain a formula for the genus of Qm,n.

Proposition 1.8. The patterns Qm,n have genus g(Qm,n) = min(m,n).

We end with a discussion on a related problem. While Theorem 1.5 allows us to compute the
τ and ϵ-invariant of generalized Mazur patterns, one might hope that there is a general formula
for τ(P (K)) and ϵ(P (K)) for any (1, 1)-unknot pattern P . Moreover, we know that (1, 1)-unknot
patterns can be parameterized by a pair of integers (r, s), so we expect that τ(P (K)) and ϵ(P (K))
can also be obtained with respect to r and s [Che19].

Question 1.9. Is there a closed formula for the τ -invariant of satellite knots with (1, 1)-unknot
patterns?

Organization. In Sections 2 and 3, we review some background from bordered and immersed
Heegaard Floer homology and introduce the concordance invariants τ and ϵ. In particular, we focus
on obtaining immersed curves for knot complements, methods to recover Alexander gradings, and
the relevant pairing theorems which give a strategy for computing τ(Qm,n(K)) and ϵ(Qm,n(K)). In
Section 4, we describe the generalized Mazur patterns and some properties, including a construc-
tive procedure to recover their bordered Heegaard diagrams, and their 2-bridge link representation.
Here, we recover Proposition 1.3. In Section 5, we find both the τ and ϵ-invariant for Qm,n us-
ing techniques from immersed Heegaard Floer homology, proving Theorem 1.5. We also use the
pairing diagrams to recover Proposition 1.8. Lastly, Appendix 5 recovers the computation for the
τ -invariant using only the ordinary bordered theory. Throughout the paper, the coefficients of
Floer homology groups are taken in F = Z/2Z.

Acknowledgements. The authors are grateful to Kristen Hendricks and Abhishek Mallick for
their guidance, to Robert Lipshitz, Jonathan Hanselman, Wenzhao Chen, and Adam Levine for
helpful discussions, and to the Summer 2023 DIMACS REU for providing the opportunity for their
research.

2. Knot Floer homology

In this section, we will briefly review those features of most relevance. We assume that the reader
is familiar with Heegaard Floer homology. For an introductory overview, see [Man14] and [OS06].
In Sections 2.1 to 2.3, we closely follow the notation from [Hom14a, Hom20]. In Section 2.4, we
follow the notation from [Lev16].
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2.1. The knot Floer complex and concordance invariants. To each K ⊂ S3 we associate
a Z ⊕ Z-filtered (freely finitely generated) F[U,U−1] chain complex CFK∞(K), called the full
knot Floer complex of K[OS03]. This complex is well-defined up to chain homotopy equivalence.
It admits two Z-gradings called the Alexander and Maslov (or homological) gradings, denoted
respectively by the maps A,M : I → Z, where I is a finite set of points specified by K.

Equivalently, CFK∞ can be seen as an F-vector space, freely generated by elements of the form

[x; i, j], where x ∈ Tα ∩ Tβ, (i, j) ∈ Z⊕ Z, and j − i = A(x).

The triple [x; i, j] corresponds to the generator U−ix, and the (i, j)-filtration level is given by
Fi,j = {[x, i′, j′] ∈ CFK∞ : i′ ≤ i, j′ ≤ j}. The differential ∂ decreases the Maslov grading by 1,
respects the Alexander filtration, and is U -equivariant, that is,

• M(∂x) = M(x)− 1
• A(∂x) ≤ A(x)
• ∂(Unx) = Un∂x

Moreover, multiplication by U decreases each filtration level by 1, lowers the Maslov grading by 2,
and the Alexander grading by 1. In other words,

• U [x; i, j] = [x; i− 1, j − 1]
• M(U [x; i, j]) = M([x; i− 1, j − 1]) = M([x; i, j])− 2
• A(U [x; i, j]) = A([x; i− 1, j − 1]) = A([x; i, j])− 1

The Maslov and Alexander gradings for [x; i, j] are then given by

M([x; i, j]) = M(x) + 2i, A([x; i, j]) = j − i.

Graphically, we can represent CFK∞ on a plane by drawing the element [x; i, j] at (i, j) and
the differentials as arrows that point (non-strictly) downwards and to the left, as seen in Figure 3.
Multiplication by U decreases the Alexander grading of a generator by 1. The j coordinate is the
generator’s Alexander grading, and the i coordinate is the negative of its U power. The Maslov
grading is not represented in this picture.

Example 2.1. The full knot Floer complex for the right-handed trefoil T2,3 is depicted in Figure 3.
As a F[U,U−1]-vector space, it has three generators a, b, c, with differentials

∂a = Ub+ c, ∂b = ∂c = 0.

The Alexander gradings of a, b, c are given by their j-coordinates, which are 1, 0,−1, respectively.
The Maslov gradings of a, b, c are −1, 0,−2, respectively. The homology of this complex is generated
by [b] = [U−1c] over F[U,U−1].

We can obtain various flavors of the knot Floer complex by taking different subcomplexes of
CFK∞(K). For a set S ⊂ Z ⊕ Z, let C{S} be the set of elements in CFK∞(K) whose (i, j)-
coordinates are in S. We then define

CFK−(K) = C{i ≤ 0}
to be the F[U ]-module whose elements have non-positive i-coordinates, and whose differential is the
induced differential. This complex has a natural Z-filtration, induced by the Alexander filtration
of CFK∞(K). Denote the associated graded of CFK−(K) by gCFK−(K), and let the homology
of the associated graded be

HFK− = H∗(gCFK−(K)).

Similarly, we can also take the Z-filtered chain complex

ĈFK(K) = C{i = 0}
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Figure 3. The full knot Floer complex for the right-handed trefoil.

with the induced differential, and denote the homology of the associated graded of ĈFK(K) by

ĤFK(K) = H∗(gĈFK).

This is commonly referred to as the knot Floer homology of K. While the homology of ĈFK(K)

is always F, the homology of gĈFK(K) is more interesting. As a bigraded vector space, the knot
Floer homology decomposes as

ĤFK(K) =
⊕
i,j

ĤFKi(K, j),

where i and j indicate the Maslov and Alexander grading, respectively. It also satisfies symmetry
under orientation reversal [OS04b, Section 3.5]:

ĤFKi(K, j) = ĤFKi−2j(K, j).

Furthermore, the knot Floer homology categorifies the Alexander polynomial in the following sense.
Its graded Euler characteristic is the Alexander polynomial [OS04b, Equation (1)]:

∆K(t) =
∑
i,j

(−1)i dim ĤFKj(K, s)ts.

While the Alexander polynomial bounds the Seifert genus ofK from below, the knot Floer homology
detects the genus [OS04a] by

g(K) = max{s| ĤFK(K, s) ̸= 0}.
And whereas the Alexander polynomial obstructs fiberedness, knot Floer homology detects it
[Ghi08, Ni07]:

K is fibered ⇐⇒ ĤFK(K, g(K)) = F.
Note that the full knot Floer complex is defined over the base ring F[U,U−1]. We may define

analogously a bigraded chain complex over the base ring R = F[U, V ]/UV , denoted by CFKR(K).
To obtain CFKR(K), we decorate each vertical arrow in CFK∞(K) with V n, where n is its
vertical length, then set all the UV arrows to 0. In particular, CFK∞(K) and CFKR(K) have
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the same set of original generators and differentials, except that for CFK∞(K) we extend them
linearly over F[U,U−1], whereas for CFKR(K) we extend them linearly over R. We may also take
subcomplexes of CFKR(K) to obtain different flavors of the knot Floer chain complex over R,
such as ĈFKR(K). We will make use of these chain complexes over R in Section 5.

Next, we introduce some concordance invariants arising from the knot Floer complex. Recall

that ĈF is an invariant of 3-manifolds, that ĤF is the homology of ĈF , and that in particular

ĤF (S3) = F (see [OS04a, OS04c]). For a knot K ⊂ S3, the Alexander filtration on ĈFK(K)

induces a spectral sequence that converges to ĤF (S3). The invariant τ(K) is defined to be the
Alexander grading of the unique cycle that survives to the E∞ page. By symmetry of the full knot
Floer complex, we have equivalently

τ(K) = −max{s | Un ·HFK−(K, s) ̸= 0 for all n ≥ 0}.
In other words, τ(K) is minus the Alexander grading of the non-vanishing generator for F[U ] in
HFK−(S3,K). This is different from but equivalent to the original definition of τ(K) in [OS03];
for a proof of the equivalence, see [OST08, Lemma A.2].

Define the horizontal complex

Chorz = C{j = 0}
to be the subquotient complex of CFK∞(K), for which the elements have zero j-coordinates, and
the differential ∂horz is the induced differential. The horizontal complex has a Z-filtration induced
by CFK∞(K). Similarly, we define the vertical complex

Cvert = C{i = 0},

to be the subquotient complex along the i-axis, which we previously called ĈFK(K), with in-
duced differential ∂vert. Note that the vertical complex and the horizontal complex are homotopy
equivalent.

For any Z ⊕ Z-filtered chain complex (C, ∂), we say that {xi} is a filtered basis for (C, ∂) if for
all pairs (a, b), the set {

xi | xi ∈ C{i ≤ a, j ≤ b}
}

is a basis for C{i ≤ a, j ≤ b}. Let {ηi} be a filtered basis over F[U ] for a reduced complex
CFK−(K), that is, the arrows in CFK−(K) point strictly downwards or to the left (or both). We
say that {ηi} is horizontally simplified if exactly one of the following situations holds for every ηi:

(1) ηi ∈ im(∂horz), and there exists a unique ηi−1 such that ∂horzηi−1 = ηi.
(2) ηi ̸∈ im(∂horz), but ηi ∈ ker(∂horz)
(3) ηi ̸∈ ker(∂horz), and ∂horzηi = ηi+1.

Recall that H∗(C
horz) ∼= H∗( ̂CFK(K)) ∼= F, i.e. the horizontal complex is generated by one

distinguished basis element upon taking homology. After reordering, we call this distinguished
element η0.

A vertically simplified basis {ξj} is defined similarly, replacing ∂horz by ∂vert. Let ξ0 be the
distinguished non-vanishing basis element that generates H∗(C

vert) after reordering the basis. Note
that if we have a horizontally simplified basis {ηi}, then τ(K) = −A(η0). If we have a vertically
simplified basis {ξj}, then τ(K) = A(ξ0).

Hom [Hom14a, Lemma 3.2 and 3.3] showed that CFK−(K) is always homotopy equivalent to
a reduced chain complex C, which admits a horizontally simplified basis {ηi} such that some ηi is
the distinguished element of a vertically simplified basis. We then consider the position of ηi in
the horizontal complex. It can have three situations, as enumerated above. To each situation we
assign the numbers 1, 0 and −1, respectively; see Figure 4.
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⋆ηi

(a) ϵ(K) = 1

ηi

(b) ϵ(K) = 0

ηi ⋆

(c) ϵ(K) = −1

Figure 4. Three positions of ηi in the horizontal complex.

This assignment is well-defined up to concordance, giving us the ϵ-invariant,

ϵ : C → {−1, 0, 1}
which satisfies the following properties [Hom14a]:

• ϵ(K) = −ϵ(K̄).
• If K is alternating, then ϵ(K) = sgn(τ(K)).
• If ϵ(K) = ϵ(K ′), then ϵ(K#K ′) = ϵ(K) = ϵ(K ′). If ϵ(K) = 0, then ϵ(K#K ′) = ϵ(K ′).
• If ϵ(K) = 0, then τ(K) = 0.

By symmetry, CFK−(K) also admits a vertically simplified basis {ξj} such that some ξj is the
distinguished element of a horizontally simplified basis, and we can similarly obtain the ϵ-invariant
by looking at vertical position of ξj .

Example 2.2. In the full knot Floer complex of the right-handed trefoil shown in Figure 3, {a, b, c}
is a vertically simplified basis, with b being the distinguished basis element. So we have τ(T2,3) =
A(b) = 1. Looking at the horizontal position of b, we get ϵ(T2,3) = 1.

Even though we defined the τ and ϵ invariants using the CFK complexes, they can be computed
in exactly the same way using the CFKR complexes. This is because CFK∞(K) and CFKR(K)
have the same set of generators, and almost the same set of differentials on those generators, ex-
cept that on CFKR(K) we decorate the vertical arrows with the extra V variable. In particular,
CFK∞(K) and CFKRK have the same vertical and horizontal complexes. So if we have a hori-
zontally simplified basis {ηi} on CFKR(K), then τ(K) = −A(η0) = A(ξ0) and ϵ(K) is determined
by the vertical position of η0. This is the strategy we will employ to determine the ϵ-invariant in
Section 5.

The τ -invariant and ϵ-invariant often admit a nice decomposition under the satellite operation.
For instance, Hom [Hom14a, Theorem 1] showed that for the (p, q)-cable of a knot K, denoted
Kp,q, we have

τ(Kp,q) =

{
pτ(K) + (p−1)(q−1)

2 if ϵ(K) = 1, or ϵ(K) = 0 and q > 0,

pτ(K) + (p−1)(q+1)
2 if ϵ(K) = −1, or ϵ(K) = 0 and q < 0.

ϵ(Kp,q) =


ϵ(K) if ϵ(K) ̸= 0,

−1 if q < −1 and ϵ(K) = 0,

0 if |q| = 1 and ϵ(K) = 0,

1 if q > 1 and ϵ(K) = 0.

Shortly thereafter, Levine gave a formula for the τ and ϵ invariants of satellite knots with Mazur
pattern Q, as stated in Theorem 1.4:

τ(Q(K)) =

{
τ(K) if τ(K) ≤ 0 and ϵ(K) ∈ {0, 1},
τ(K) + 1 if τ(K) > 0 or ϵ(K) = −1.

ϵ(Q(K)) =

{
0 if τ(K) = ϵ(K) = 0,

1 otherwise.
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The main goal of this paper is to find an analogous result for the generalized Mazur patterns Qm,n,
that is, calculate τ(Qm,n(K)) and ϵ(Qm,n(K)).

2.2. Bordered Heegaard Floer homology. The bordered version of Heegaard Floer homology
extends the theory to manifolds with boundary. In this section, we give a brief tour of the tools
we will use in bordered Heegaard Floer homology; a more comprehensive discussion is given in
[LOT18]. For most of this section, we follow the notation in [Hom14a].

First, we define the algebraic structures in bordered Heegaard Floer homology, such as A∞-
modules and type D structures. Let A be a unital differential graded algebra over F, equipped
with a subalgebra of idempotents I ⊂ A generated by an orthogonal basis that sum up to 1.
Let M be a (right) differential graded module over A. Denote M [n] as the module defined by
M [n]d = Md−n. We say that M is a (right unital) A∞-module if the family of right I-actions

mi : M ⊗Ai−1 →M [2− i], i ≥ 1

satisfies the A∞ relations

0 =

n∑
i=0

mn−i+1 (mi+1 (x⊗ a1 ⊗ · · · ⊗ ai)⊗ ai+1 ⊗ · · · ⊗ an)

+

n∑
i=1

mn+1 (x⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ d (ai)⊗ ai+1 ⊗ · · · ⊗ an)

+

n−1∑
i=1

mn (x⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an)

and the unital conditions

m2(x, 1) = x,

mi(x, · · · , 1, · · · , ) = 0, i > 2.

A type D structure over A is a F-vector space N , with left I-action satisfying

N =

n⊕
i=1

ιiN,

and a map

δ1 : N → A⊗I N,

satisfying the type D relations

(µ⊗ IdN ) ◦ (IdA⊗δ1) ◦ δ1 + (d⊗ IdN ) ◦ δ1 = 0,

where µ : A×A → A denotes the multiplication map on A. Inductively, we can define maps on N

δk : N → A⊗k ⊗I N

by setting

δ0 = IdN

δi = Id
⊗i−1

A ⊗δ1 ◦ δi−1.



GENERALIZED MAZUR PATTERNS AND IMMERSED HEEGAARD FLOER HOMOLOGY 11

Given an A∞-module M and a type D structure N , we define the box tensor product M ⊠N to
be the F-vector space M ⊗N , equipped with the differential map

∂⊠(x⊗ y) =

∞∑
k=0

(mk+1 ⊗ IdN )(x⊗ δk(y)).

Let Y be a compact, oriented 3-manifold with connected boundary ∂Y = F . To the surface F ,
we associate a differential graded algebra A(F ). To the 3-manifold Y , we associate two invariants:

ĈFD(Y ), which is a type D structure, and ĈFA(Y ), which is a right A∞-module over A(F ).

To a knot K1 in Y1, we may associate either ĈFA(Y1,K1), which is Z-filtered A∞-module, or
CFA−(Y1,K1), which is an A∞-module over A(F ) with ground ring F[U ]. The pairing theorem
[LOT18, Theorem 1.3 and 11.19] states that gluing 3-manifolds along their boundaries corresponds
to taking the box tensor of their invariants. More concretely, let Y1 and Y2 be compact oriented
3-manifolds with boundary, along with an orientation-reversing diffeomorphism f from ∂Y1 to ∂Y2.
Let Y = Y1 ∪f Y2 be the 3-manifold obtained by gluing Y1 and Y2. Then there exists a homotopy
equivalence

ĈF (Y ) ≃ ĈFA(Y1)⊠ ĈFD(Y2).

Moreover, if we have a knot K1 ⊂ Y1 whose image K ⊂ Y under identification is null-homologous,
then we get a homotopy equivalence of F[U ]-modules

gCFK−(Y,K) ≃ CFA−(Y1,K1)⊠ ĈFD(Y2),

where gCFK−(Y,K) denotes the associated graded of CFK−(Y,K). We will discuss these invari-
ants in more detail in Sections 2.3 and 2.4.

Remark 2.3. There is an alternate version of the pairing theorem, which gives a homotopy of
Z-filtered chain complexes

ĈFK(Y,K) ≃ ĈFA(Y1,K1)⊠ ĈFD(Y2),

where ĈFA is the hat version of CFA−. For more detail, see [LOT18].

In this paper, we are concerned with satellite knots, so we restrict our discussion to the case
where F is the torus T 2. We let Y1 be the solid torus V equipped with a pattern knot P , and Y2
be the bordered manifold XK = S3\No(K) with the bordered structure given by the 0-framing
(where No(K) denotes a regular neighborhood of K). Upon gluing Y1 and Y2, the knot K ⊂ Y
becomes the satellite knot P (K) inside of S3. The pairing theorem then tells us that

(2.1) gCFK−(P (K)) ≃ CFA−(V, P )⊠ ĈFD(XK).

Setting P to be the generalized Mazur patterns, we see that computing gCFK−(Qm,n(K)) reduces
to finding the A∞-module for the generalized Mazur patterns and the type D structure for XK .
We discuss how one may obtain these two components in Sections 2.3 and 2.4.

Next, we describe the graded algebra A(F ) in the case where F = T 2; in the general case
where g(F ) ≥ 2, A(F ) is a differential graded algebra, as discussed in [LOT18]. Recall that one
may specify a torus via handle decomposition: a disk D2 with two 1-handles attached, such that
the boundary is connected and can be capped off with a disk. We represent this information by
a pointed matched circle (Z, z, {a1, a3}, {a2, a4}), where Z is an oriented circle, z ∈ Z is a fixed
basepoint, and {a1, a3}, {a2, a4} are two pairs of points on Z disjoint from z (see Figure 5). We
may recover the torus from the pointed matched circle; see [LOT14, Construction 1.2].
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Figure 5. Left: the pointed matched circle for the surface T 2. Right: the same
pointed matched circle cut open at z.

Given a torus T 2 parametrized by a pointed matched circle, the graded algebraA(T 2) is generated
over F by two idempotents ι0 and ι1 (where ι0 + ι1 = 1) and the six “Reeb” elements ρ1, ρ2, ρ3,
ρ12, ρ23, ρ123, satisfying the comptability conditions

ρ1 = ι1ρ1 = ρ1ι2 ρ2 = ι2ρ2 = ρ2ι1 ρ3 = ι1ρ3 = ρ3ι2
ρ12 = ι1ρ12 = ρ12ι1 ρ23 = ι2ρ23 = ρ23ι2 ρ123 = ι1ρ123 = ρ123ι2

and the nonzero products

(2.2) ρ1ρ2 = ρ12, ρ2ρ3 = ρ23, ρ1ρ2ρ3 = ρ12ρ3 = ρ1ρ23 = ρ123.

Schematically, the algebra elements are shown in Figure 6.
For a three manifold Y with ∂Y = T 2, a doubly pointed bordered Heegaard diagram for Y is a

tuple H = (Σ̄, αc, αa, β, z, w) such that

• Σ̄ is a compact oriented surface of genus g with a single boundary component.
• There is a (g − 1)-tuple of pairwise disjoint circles αc = (αc

1, · · · , αc
g) in Σ̄o, the interior of

Σ̄.
• There is a pair of disjoint arcs αa = (αa

1, α
a
2) in Σ̄\αc with endpoints on ∂Σ̄.

• There is a g-tuple of pairwise disjoint circles β = (β1, · · · , βg) in Σ̄o.
• z and w are basepoints in Σ̄\(αa ∪ αc ∪ β), with z ∈ ∂Σ̄.

In addition, we require that the α-curves and β-curves intersect transversely, that the complement
of the α-curves and the complement of the β-curves are connected, and that (∂Σ̄, z, ∂αa

1, ∂α
a
2)

describes a pointed matched circle. Whenever the context is clear, we refer to doubly pointed
bordered Heegaard diagrams simply as Heegaard diagrams.

A Heegaard diagram specifies a knot embedded in Y by connecting w to z in the complement of
the β curves and connecting z to w in the complement of the α arcs. If the two sets of arcs cross,
the second set crosses under the first set. Moreover, every knot in a bordered three manifold can
be realized by a doubly pointed Heegaard diagram.

A pattern knot embedded in the solid torus V = S1 × D2 is called a (1, 1)-pattern knot if it
admits a Heegaard diagram with genus 1 [Che19]. All the pattern knots in this paper are (1, 1)-
pattern knots, including the Mazur pattern whose bordered Heegaard diagram was shown in Figure
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Figure 6. The idempotents and the “Reeb” elements in A(T 2)

8 [Lev16]. The arc αa
1 represents a meridian µV = {pt}×∂D2, and the arc αa

2 represents a longitude
λV = S1 × {pt}. Note that there are no α-arcs in the interior of our Heegaard diagrams because
their genus is 1.

Figure 7. Pseudoholomorphic disks bounded by an α-arc (red) and a β-arc (blue).
The CFA−(V, P ) relations corresponing to these disks are m1(a) = Ub (left) and
m2(a, ρ1) = b (right)

2.3. Obtaining type A structures from Heegaard diagrams. Recall that the pairing theorem
states that

gCFK−(Y,K) ≃ CFA−(Y1,K1)⊠ ĈFD(Y2).
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Figure 8. Genus 1 Heegaard diagram for the Mazur pattern Q (equivalently Q2,1)

In this subsection, we outline how one may obtain CFA−(V, P ) from a Heegaard diagram H
associated with P , and in the next subsection, we discuss how one determines the type D structure.
We may assume P to be a (1, 1)-pattern knot, since all pattern knots are (1, 1) in this paper. As
such, the F[U ]-vector space CFA−(V, P ) is generated by the set of intersection points of α-arcs
and β-arcs, denoted S(H). The right I-action is given by

x · ι0 =

{
x if x lies on the arc αa

1,

0 otherwise,

x · ι1 =

{
x if x lies on the arc αa

2,

0 otherwise.

We may obtain the A∞-structure on CFA−(V, P ) by counting certain pseudoholomorphic curves,
giving us the family of I-actions:

mj+1 : CFA−(V, P )⊗A⊗j → CFA−(V, P ).

Specifically, we extend the Heegaard diagram H to its universal cover, and count the pseudoholo-
morphic disks ϕ that are bounded by an α-arc and a β-arc intersecting acutely at two points in
S(H). Label the intersection points by a and b, such that if we start at a and travel counter-
clockwise along the boundary, we encounter the α-arc first (see Figure 7). Note that the boundary
of ϕ may contain parts of the pointed matched circle, which we denote by their corresponding
algebra elements ρi1 , · · · , ρij (concatenated when possible per equation (2.2)), in the order that we

encounter travelling counterclockwise from a. The relation in CFA−(V, P ) corresponding to ϕ is

mj+1(a, ρi1 , · · · , ρij ) = Unw(ϕ)b,

where nw(ϕ) is the number of times w appears inside ϕ. Note that the region bounded by ϕ must
be a disk, and in particular has trivial fundamental group (this is true only in the genus one case).
Furthermore, ϕ may not intersect the top left corner of H. In Figure 7, the corresponding relations
are m1(a) = Ub, and m2(a) = b, respectively. An example of finding these disks and writing their
corresponding relations in CFA− is given in Example A.2.

2.4. Obtaining type D structures from CFK−(K). The module ĈFD(XK) may be algorith-
mically computed in terms of a basis in CFK−(K). The algorithm in the following theorem is
originally due to [LOT18]; we state a slight enhancement of it, due to [Lev16].
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Recall that CFK−(K) always admit a horizontally and a vertically simplified basis up to chain

homotopy. Let
{
ξ̃0, . . . , ξ̃2n

}
and

{
η̃0, . . . , η̃2n

}
be its vertically and horizontally simplified basis,

respectively. Then the type D structure ĈFD(XK) may be described as follows.

Theorem 2.4. [Lev16, Theorem 2.6] Let K be a knot in S3, and let
{
ξ̃0, . . . , ξ̃2n

}
be the vertically

and horizontally simplified basis described above. The type D structure ĈFD (XK) satisfies the
following properties:

• The summand ι0 · ĈFD (XK) has dimension 2n+1, with designated bases {ξ0, . . . , ξ2n} and
{η0, . . . , η2n} related by

ξp =
2n∑
q=0

ap,qηq and ηp =
2n∑
q=0

bp,qξq.

These elements are all homogeneous with respect to the grading by relative spinc structures.

• The summand ι1 · ĈFD (XK) has dimension
∑n

j=1 (kj + lj) + s, where s = 2|τ(K)|, with
basis

n⋃
j=1

{
κj1, . . . , κ

j
kj

}
∪

n⋃
j=1

{
λj
1, . . . , λ

j
lj

}
∪ {µ1, . . . , µs} .

• For j = 1, . . . , n, corresponding to the vertical arrow ξ2j−1 → ξ2j, there are coefficient maps

(2.3) ξ2j
D123−→ κj1

D23−→ · · · D23−→ κjkj
D1←− ξ2j−1.

• For j = 1, . . . , n, corresponding to the horizontal arrow η2j−1 → η2j, there are coefficient
maps

(2.4) η2j−1
D3−→ λj

1
D23−→ · · · D23−→ λj

lj

D2−→ η2j

• Depending on τ(K), there are additional coefficient maps

(2.5)


η0

D3−→ µ1
D23−→ · · · D23−→ µs

D1←− ξ0 τ(K) > 0

ξ0
D12−→ η0 τ(K) = 0

ξ0
D123−→ µ1

D23−→ · · · D23−→ µ0
D2−→ η0 τ(K) < 0

We refer to the subspaces of ĈFD(XK) spanned by the generators in (2.3), (2.4), and (2.5) as
the vertical chains, horizontal chains, and unstable chain, respectively.

For example, running the algorithm for the right-handed trefoil T2,3, we obtain the type D

structure for its complement in S3, as shown in Figure 9. The basis for ι0 ·ĈFD(XT2,3) is {ξ0, ξ1, ξ2},
and the basis for ι1 · ĈFD(XT2,3) is {κ, λ, µ1, µ2}.

In general, we may use Theorem 2.4 to determine the structure for ĈFD(XK), where K is an
arbitrary knot in S3. The type D structure when τ(K) > 0 is displayed in Figure 10, and the type
D structures when τ(K) ≤ 0 are determined similarly. In practice, we are concerned with finding

a particular summand of the box tensor CFA−(V, P )⊠ ĈFD(XK). For this purpose, we will only

need to consider a neighborhood of the unstable chain in ĈFD(XK), which we call the unstable
neighborhood.
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ξ0 λ ξ1

µ1

µ2 κ

ξ2

ρ1
ρ2 ρ3

ρ1

ρ23

ρ3
ρ123

Figure 9. Getting ĈFD form CFK− for the right-handed trefoil complement

η1

η2 ξ0 λ1
l1

· · · λ1
1 η1

λ1
1 µs ξ1

κ1k1

...
. . .

...

λ1
l1

µ1

η2 κ11

ξ2 κ11 · · · κ1k1 η0 ξ1

ξ2

D3

D
1

D2 D23 D23 D3

D23

D1

D23

D
23

D23

D2

D
23

D23

D123 D23 D23 D1

D
3

D123

Figure 10. Neighborhood of the unstable chain of ĈFD(XK) for τ(K) > 0. When
ϵ = −1, the unstable neighborhood is the left and bottom edges of the diagram
square, colored in red. When ϵ = 1, the unstable neighborhood is the left and
bottom edges of the diagram square, colored in blue.

3. Immersed Heegaard Floer homology

We introduce the immersed curve interpretation of the pairing theorem in [LOT18, Theorem
1.3]. In Section 3.1, we sketch out how one may convert a type D structure to an immersed curve
in the torus T 2. In Section 3.2, we introduce the notion of a pairing diagram and the method
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to determine Alexander grading. This gives us an algorithmic strategy to compute the τ and ϵ
invariant of the satellite P (K), which is sketched out in Section 3.3.

3.1. From type D structures to immersed curves. Given a type D stucture N = ĈFD(XK)
over the torus algebra A, we can convert it into an immersed curve in the torus T 2 using an
algorithm described in [HRW23, Sections 2.3 and 2.4].

The first step is to convert N into an A-decorated graph Γ, which is a directed graph whose
vertex is either • or ◦, and whose edges are labelled with one element from {∅, 1, 2, 3, 12, 23, 123},
along with additional requirements specified in [HRW23, Section 2.4]. The conversion is given as
follows. For each generator of N which is either in ι0 or ι1, we put a • or a ◦ in Γ, respectively.
Suppose that there are two vertices corresponding to generators x and y such that ρI ⊗ y is a
summand of δ1(x); in this case, we put a corresponding edge labeled by I from x to y in Γ. The
higher differentials δk in the type D structure then correspond to direct paths in Γ. We say a
decorated graph (and its associated type D structure) is reduced if there are no edges labeled by ∅.

Next, we convert the A-decorated graph Γ into an immersed train track. Let T be a torus R2/Z2

punctured at z = (1 − ϵ, 1 − ϵ), and let µ and λ be the images of the x and y axis, respectively.
We embed the vertices of Γ so that the •’s are distinct points in the interval {0} × [14 ,

3
4 ] within

λ, and the ◦’s are distinct points in the interval [14 ,
3
4 ] × {0} within µ. Then, we embed the edges

of Γ according to Figure 11. This gives us an immersion from Σ to T , which we denote as αK .

Figure 11. Correspondence between the edges of the decorated graph Σ and di-
rected edges in the punctured torus T

We further require that all intersections in the image of αK are transversal, and edges intersect in
points that are away from λ and µ. In this case, we call αK the immersed train track associated
with K. Figure 12 shows the immersed train track associated with the right-handed trefoil.

Figure 12. Immersed train track associated with the right-handed trefoil.
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For an arbituary knot K, we know how to compute ĈFD(XK) from Proposition 2.4 (also

see Figure 10). Given the algorithm converting ĈFD to immersed curves stated above, we may
describe the shape of αK when lifted to the universal cover. First, we describe the segment in αK

corresponding to the unstable chain, which we call the unstable segment of αK .

Lemma 3.1. [Bod23, Lemma 2.2] Suppose that K is a knot in S3 and that γ0 is the unstable
segment of αK lifted to the universal cover.

• If ϵ(K) = 1 and τ(K) ≥ 0, γ0 slopes upwards for 2τ(K) rows and turns down at the top
and up at the bottom.
• If ϵ(K) = −1 and τ(K) ≥ 0, γ0 slopes upwards for 2τ(K) rows and turns up at the top and
down at the bottom.
• If ϵ(K) = 1 and τ(K) ≤ 0, γ0 slopes downwards for 2τ(K) rows and turns down at the
bottom and up at the top.
• If ϵ(K) = −1 and τ(K) ≤ 0, γ0 slopes downwards for 2τ(K) rows and turns up at the
bottom and down at the top.
• If ϵ(K) = 0, then τ(K) = 0 and γ0 is horizontal at height 0.

We may extend the results of Lemma 3.1 to describe a neighborhood of the unstable segment

using the correspondence between elements of ĈFD(XK) and their immersed curve representations
shown in Figure 11. This is displayed in Figure 13. For example, the top figures shows the
neighborhood of the unstable segment when τ(K) ≥ 0, corresponding to the unstable neighborhood

in ĈFD(XK) appearing previously in Figure 10. The bottom figure displays the neighborhood of
the unstable segment when τ(K) < 0.

3.2. Pairing diagrams. In this section, we introduce the notion of a pairing diagram for the
satellite P (K). Let αK be the immersed curve associated to K as previously described, and let
βP be the β-curve in H, the genus-one Heegaard diagram of P . Following the notation in [CH23],
we denote the pairing diagram of P (K) by H(αK). Intuitively, the pairing diagram is a way of
laying βP over αK in the torus T 2 = [0, 1]2/ ∼. Specifically, we divide T 2 into four quadrants, upon
which we include αK into the first quadrant and βP (along with the w, z basepoints) into the third
quadrant. For the second and fourth quadrant, extend both curves horizontally and vertically. See
Figure 14a for an example of a pairing diagram of the Mazur pattern Q2,1 with the right-handed
trefoil as companion. The intersection points in the second quadrant correspond to the generators

in CFA−(S3, P ) ⊠ ĈFD(S3, XK) coming from the ι0 idempotent, and the intersection points in
the fourth quadrant correspond to those generators coming from the ι1 idempotent.

In practice, we usually draw the pairing diagram H(αK in the universal cover π : R2 → R2/Z2,

with a single lift of αK and a single lift of βP , which we denote by α̃ and β̃, respectively. Intuitively,
we can imagine the universal cover R2 as a board with a lattice of pegs nailed in at the w and z
basepoints, and the curve α̃ as a rubber band that winds around those pegs. This curve is called
a peg-board diagram. When α̃ is pulled tight, we require that it intersects β̃ transversally, and that
every Whitney disk connecting two intersection points must contain at least a w or a z basepoint.
Figure 14b shows the pairing diagram of Q2,1(T2,3) in the universal cover after isotopy, so that

there are minimal intersection points between α̃ and β̃.
Given a pairing diagram, we may recover the Alexander grading of intersection points repre-

senting generators of gCFK−(P (K)), which we describe below. First, we can recover the relative
Alexander grading with the following Lemma.
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Figure 13. The unstable segment and its neighborhood in both directions in αK .
The points ξ0 and η0 are at heights τ(K) and −τ(K) respectively when τ(K) ≥ 0,
and the points ξ0 and η0 are at heights −τ(K) and τ(K) respectively when τ(K) ≤ 0.
The length of the dotted neighborhood can be arbitrarily large or small.
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(a) Pairing diagram of Q2,1(T2,3)
(b) Pairing diagram of Q2,1(T2,3) in the universal
cover, after isotopy

Lemma 3.2. [Che19, Lemma 4.1] Let x, y be two intersection points of α and β. Let l be the
section of the β-curve from x to y, and let δw,z be the straight arc from w to z. Then

A(y)−A(x) = l · δw,z,

where multiplication on the right counts the algebraic intersection between l and δw,z.

To determine the absolute Alexander grading, note that the pairing diagram is symmetric under
hyperelliptic involution. In other words, the complex remains the same if we rotate it by π and
exchange the w and z basepoints. The intersection point fixed under this involution must necessarily
have Alexander grading 0. From this we may recover the absolute gradings of all intersection points
using Lemma 3.2. In Example 3.3, we use this method to compute the absolute gradings of certain
intersection points in the pairing diagram of Q2,1(T2,3).

3.3. Computation of τ(P (K)) and ϵ(P (K)) from the pairing diagram. From the pairing
diagram H(αK) for the satellite P (K), we may obtain τ(P (K)) and ϵ(P (K)) via a combinatorial
computation similar to [CH23], which we describe here. First, we construct a bigraded chain com-
plex CFKR(H(αK), ∂) over R by counting bigons combinatorially in the pairing diagram H(K).

Specifically, the generators of the complex are intersections of the α̃ and β̃, and the differentials
are given by bigons connecting two generators. Suppose there is a bigon ϕ bounded by α̃ and β̃
intersecting acutely at a and b, such that we encounter α̃ first if we travel counterclockwise from
a. The differential in CFKR(H(αK), ∂) corresponding to ϕ is

∂a = Unw(ϕ)V nz(ϕ)b,

where nw(ϕ), nz(ϕ) are the number of w and z basepoints in ϕ, respectively. As we are working
with CFKR, we recall that UV = 0. See [CH23, Figure 1] for an example of the complex CFKR
of the (2, 1) cable paired with the right-handed trefoil T2,3.

Recall the pairing theorem [LOT18, Theorem 11.19] which says

gCFK−(Y,K) ≃ CFA−(Y1,K1)⊠ ĈFD(Y2).

In [CH23], Chen and Hanselman reinterpreted the pairing theorem in terms of the immersed curves

in the case when CFA−(V, P ) is paired with ĈFD(XK), thus obtaining gCFK−1(S3, P (K)). (Here
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P must be a (1, 1)-pattern knot, as is the case for generalized Mazur patterns). The main theorem
in [CH23] states that there is a bigraded homotopy equivalence of chain complexes

CFKR(H(αK), ∂) ∼= CFKR(P (K)).

In other words, the pairing of CFA−(V, P ) with ĈFD(XK) is entirely captured in the CFKR
complex of the pairing diagram. Hence, to recover the τ and ϵ invariants of P (K), it suffices to
compute the relevant portion of CFKR(H(αK), ∂).

First, we describe how to recover τ(P (K)), using an algorithm described in [Che19]. Recall that

the Alexander filtration on ĈFK(K) induces a spectral sequence converging to ĤF (S3) = F, and
that the τ -invariant is the Alexander grading of the cycle that survives to the E∞ page. Passing
from one page to the next in the spectral sequence amounts to eliminating the differentials that
connect elements of minimal Alexander filtration difference. (For a more detailed discussion of why
this is the case, see for example [Bod23, Che19].) This can be performed in the pairing diagram:
the differentials correspond to Whitney disks that contain z basepoints but not w basepoints, and
eliminating the differential amounts to isotoping the β-curve over such Whitney disks that connect
intersection points with minimal filtration difference, as seen in Figure 15. Each time we perform
such an isotopy, we eliminate a pair of intersection points, so that at the end of such isotopies, we
only have one intersection point left. This intersection point corresponds to the cycle that survives
to the E∞ page, hence its Alexander grading is the τ -invariant of the satellite knot.

Figure 15. Eliminating a pair of intersection points, x and y with minimal filtration
difference. The Whitney disks connecting x and y is highlighted in pink. The small
black arrow is the A-buoy placed along the β-curve.

In practice, we need to remember the filtration difference of the intersection points, and we do
so by placing A-buoys along the β-curve, which are small arrows introduced in [Che19, Section 4].
See Figure 15 for the placement of these A-buoys. Recall that from Lemma 3.2 that the relative
Alexander grading between intersection points x and y is given by the algebraic intersection between
the arc on the β-curve connecting x and y and δw,z. When we perform the isotopies described
above, we may change this algebraic intersection; to count the filtration difference of the remaining
intersection pooints, we must count the algebraic intersection of the β-curve with both δw,z and
the A-buoys.

Note that this algorithm corresponds to doing successive pages of a spectral sequence, so we
have to eliminate pairs of intersection points in order of their original filtration difference. In other
words, we need to eliminate all disks connecting points of filtration difference one, then once none
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are left, all disks connecting points of filtration distance two, and so on, making sure to count the
A-buoys.

To compute ϵ(P (K)), we construct a subcomplex of CFKR(H(αK)) that contains the cycle
which survives to the E∞ page. This subcomplex must contain the distinguished element of some
horizontally simplified basis, whose vertical situation indicates the value of ϵ(P (K)). Note that
in general, it is difficult to locate a subcomplex in CFKR(H(αK)) that contains the distinguished
element. Doing isotopy across z basepoints allow us to track down one element in that subcomplex,
hence recovering the entire subcomplex becomes computationally easy.

Then, we perform isotopies to simplify the subcomplex (i.e. reduce the number of elements as
much as possible) while ensuring that it is reduced. Differentials obtained from crossing over z
are called vertical differentials, and are labelled with powers of V corresponding to the multiplicity
of z, and differentials obtained from crossing over w are called horizontal differentials, labelled
with powers of U corresponding to the multiplicity of w. In the horizontal complex consisting of

the horizontal differentials, we look for a cycle which survives in the homology ĤF (S3); this is
the distinguished element whose vertical situation gives us ϵ(P (K)), and whose Alexander grading
gives us τ(P (K)).

Example 3.3. We compute τ(Q2,1(T2,3)) using the algorithm described above. The pairing diagram
of the Mazur pattern and the right-handed trefoil is given in Figure 16. First, we eliminate all

Figure 16. Pairing diagram of Q2,1(T2,3)

pairs of intersection points of filtration difference 1 (see Figure 17). After isotoping the right side
of the β-curve to obtain Figure 18, there are no more differentials in the new complex, and the
only remaining intersection point is x3. By the symmetry under elliptic involution, we see that
A(x15) = 0. Then using Lemma 3.2, we have A(x3) = −2, therefore τ(Q2,1(T2,3)) = −A(x3) = 2.
This matches up with the bordered computation in [Lev16, Theorem 1.6]. To compute ϵ(Q2,1(T2,3)),
we refer the reader to [CH23], where the differentials in the CFKR complex are given. Note that
the Mazur pattern in [CH23] has the opposite orientation, which amounts to switching the w and z
basepoint in the pairing diagram. The differentials in CFKR are changed accordingly by switching
the U and V powers. From there, one may compute the homology and find that the generator
containing x3 has an incoming vertical arrow. Therefore ϵ(Q2,1(T2,3)) = 1.



GENERALIZED MAZUR PATTERNS AND IMMERSED HEEGAARD FLOER HOMOLOGY 23

Figure 17. Eliminating pairs of intersection points of filtration difference 1. The
Whitney disks connecting those pairs are highlighted in pink. After the isotopies,
we get the dark green curve as our new β-curve.

Figure 18. x3 is the only intersection point remaining.

4. Generalized Mazur patterns

In this section, we describe the generalized Mazur patterns Qm,n and some of their properties,
including representations of their associated 2-bridge links. We begin by describing how to construct
bordered Heegaard diagrams for Qm,n pattern knots, which will be utilized in our computation of
the τ and ϵ-invariant in Section 5.

Lemma 4.1. We may obtain a Heegaard diagram for Qm,n starting from Q1,1 by an inductive
algorithm on m and n.

Proof. The inductive procedure begins with a Heegaard diagram for Q1,1, then constructs Qm,1,
Qm,2, and Qm,n.

The Heegaard diagram for the Q1,1 case is shown in Figure 19. A Heegaard diagram has left and
right vertical α1 arcs, top and bottom α2 arcs, and a β curve which crosses the αi arcs, breaking
it into strands inside the diagram. To describe the algorithm, we utilize the terminology of Figure
20, which label the strands of the β curve based on where they are located in the diagram and how
they intersect the α-arcs. We first describe the strands which intersect both the α2 and α1 arcs:
the strand T/L intersects the top α2 arc and the left α1 arc; B/L intersects the bottom α2 arc and
the left α1 arc; T/R intersects the top α2 arc and the right α1 arc; B/R intersects the bottom α2

arc and the right α1 arc. Next, we describe the strands which only intersect the α2 arcs: V/M/L
and V/M/R intersect both the top and bottom of the α2 arcs, and these are placed in between the
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four aforementioned strands which intersect both α2 and α1 arcs. The final label L or R determine
whether they are to the left or right of the final type of strand: B/M/RNB. This strand intersects
the bottom α2 arc twice, and takes the shape of a rainbow. If we label the horizontal intersection
points lying on the α2 arcs in a sequential order, the V/M/L arc passes from an intersection point
xi upwards to an intersection point xj with i < j, while the V/M/R arc passes from an intersection
point xi upwards to an intersection point xj with i > j.

We now describe the algorithm to construct Qm,n diagrams for any m and n. We add β strands
at each step, but the order of adding them does not matter for the steps Q1,1 to Qm,1 and Qm,2

to Qm,n: each strand type is independent of the others. However, the step Qm,1 to Qm,2 requires
a vital modification: the strands V/M/L are introduced into the diagrams, and they must be on
the left of the rainbows B/M/RNB. For this reason, the first step in this case which constructs a
B/M/RNB strand from a B/L strand must come first before adding any other strand.

• Q1,1 to Qm,1: To construct Qk+1,1 from Qk,1, add the following strands:
– 2 T/L
– 1 T/R
– 1 B/R
– 1 V/M/R
– 1 B/M/RNB

To see a precise example, we may obtain the Mazur pattern Q2,1 in Figure 8 from the
Whitehead double Q1,1 in Figure 19. General Qm,1 diagrams are shown in Figure 22.
• Qm,1 to Qm,2: add the following strands:

– Take the strand of B/L which lies on the left α1 arc (there should be only one at this
stage) and push it down through ρ3 such that we obtain a rainbow B/M/RNB. There
should now be m+ 1 B/M/RNB rainbows in the diagram.

– 1 T/L
– 1 V/M/R
– 2m V/M/L

A schematic for this is seen in Figure 21, which uses m = 1 for simplicity, and omits all
parts of the diagram except for the one B/M/RNB rainbow present in the diagram for
Q1,1.
• Qm,2 to Qm,n: To construct Qm,k+1 from Qm,k, add the following strands:

– 2m+ 1 V/M/L
– 1 V/M/R

General Qm,n diagrams can be seen in Figure 23.

To verify this construction, one may perform isotopies on the curve obtained from the Heegaard
diagram. It is not immediately obvious that the curve is the desired Qm,n pattern, but well-
chosen isotopies will reduce the number of self intersections until the same ones as described in
Definition 1.2 remain. This results in 1 + 2m intersection points down the vertical alpha curve
and 2m + 2n + 2nm − 2 intersection points along the horizontal alpha curve. To circumvent the
technical details of isotoping Heegaard diagrams, we defer a formal proof that this construction is
valid until the end of the section.

□

With these bordered Heegaard diagrams, we look to prove that the patterns Qm,n and Qn,m are
isotopic, fixing m and n. We utilize an approach developed in [Che19], which passes from Heegaard
diagrams to their associated 2-bridge links, and extract the Schubert normal form b(p, q) for the
2-bridge link.
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Figure 19. The Heegaard Diagram for Q1,1

Figure 20. The terminology used to describe the construction of Qm,n diagrams.
The labels represent the strands, not the regions.

We may describe a pattern obtained by a 2-bridge link as such: remove a regular neighborhood
of one component of the 2-bridge link, and this leaves the other component as a pattern knot inside
the solid torus. Theorem 1.6 in [Che19] states that patterns obtained by 2-bridge links are in
bijective correspondence with (1, 1)-unknot patterns. This bijection gurantees that the Schubert
normal form for an (1, 1)-unknot pattern is unique up to the following equivalence condition: b(p, q)
and b(p′, q′) are isotopic if and only if p = p′ and q′ ≡ q±1 (mod p) [Sch53].

To pass from a Heegaard diagram to a 2-bridge link, we follow the procedure outlined in [Che19]:
one can extract integers r and s associated to the diagram, and use the following Theorem to find
their Schubert normal form.

Theorem 4.2. [Che19, Theorem 5.4] Let P be a (1, 1) unknot pattern obtained by a genus-one
doubly pointed Heegaard diagram of parameter (r, s). Then the link consists of P and the meridian
of the solid torus is the 2-bridge link b(2|s|+ 4|r|, ϵ(r)(2|r| − 1)), where ϵ(r) is the sign function of
r.
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Figure 21. The Heegaard diagram transformation for the n = 2 case, utilizing
m = 1 for simplicity and avoiding all arcs except for B/M/RNB

Figure 22. Heegaard diagrams for Qm,1 patterns
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Figure 23. Heegaard diagrams for Qm,n patterns, when n ≥ 2

These integers r and s are described as the loops and strands of the diagram. In particular, r
is the number of loops around w and z, and s is the number of strands of the β curve which runs
between the loops around w and z, separating them. An example of finding r and s for the Mazur
pattern is shown in Figure 24. Loops are colored in green, and strands are colored in purple, so
(r, s) = (3, 1).

Figure 24. Determining the number of loops and strands for the Mazur pattern
Q2,1

The integers r and s for generalized Mazur patterns Qm,n are (m + 1,−(2mn + n − m − 2)),
where the minus comes from sign conventions. Thus, by Theorem 4.2, the Schubert normal form of
the 2-bridge link associated to Qm,n is b(4mn+2n+2m, 2m+1). For Qm,n, we have b(4mn+2n+
2m, 2n+ 1). Since (2m+ 1)(2n+ 1) ≡ 1 (mod 4mn+ 2n+ 2m), we may conclude the following.
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Proposition 4.3. Qm,n is isotopic to Qn,m.

Remark 4.4. Utilizing the bordered Heegaard diagrams for the (p, 1)-cable patterns found in
[Hom14a], we obtain the parameters (r, s) = (1,−(p − 2)), which implies that (p, 1)-cables cor-
respond to the GMP notation Q0,n = Qm,0.

Remark 4.5. In particular, the Heegaard diagrams specified by lemma 4.1 are for a specific orienta-
tion of Qm,n corresponding to a winding number of −(m−n). Aligning orientations, Proposition 4.3
says that Qm,n is isotopic to rQn,m. Throughout the paper, the use of these Heegaard diagrams to
do computation comes with the implicit detail that the winding number associated to this pattern
is −(m− n).

With this proposition, it is possible to make statements about Qm,n for m ≥ n, and have them
hold for all Qm,n patterns.

We now prove that the Heegaard diagrams from lemma 4.1 recover the generalized Mazur pat-
terns. To do this, we determine the braid decomposition for the generalized Mazur patterns and
their associated rational tangles. If the fraction of the tangle associated to the braid decomposition
matches the fraction associated to the Schubert normal form coming from the Heegaard diagrams,
we conclude that the Heegaard diagrams are indeed valid.

Let L be the 2-bridge link associated to Qm,n. For simplicity, assume that the bridge presentation
consists entirely of whole twists, and that the top and bottom closures consists of arcs which are
neither overlapping nor braided. To be precise, suppose L is the plat closure of the 4-stranded
braid

(4.1) σ2a0
2 σ2a1

1 · · ·σ2ar−2

2 σ
2ar−1

1 σ2ar
2

for some nonzero integers a0, . . . , ar, where r is even and the braid is read from top to bottom. For
example, the Mazur pattern has r = 2 and (a0, a1, a2) = (2,−1,−1).

Figure 25. The two bridge link LQm,n along with a dotted arc joining the two com-
ponents. There are 2(m− 1) blue components added, and 2(n− 1) red components
added for a given m and n.
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Proposition 4.6. The braid decomposition for Qm,n of the form in Equation 4.1 is given by r = 2
and (a0, a1, a2) = (m,−1,−n). The 2-bridge link with a dotted arc joining the two components is
given in Figure 25.

Proof. If we start with no red or blue arcs, then Figure 25 is the 2-bridge link for the Whitehead
double. Adding two blue arcs corresponds to adding one longitudinal arc in the set of m strands,
and this is the figure for the Mazur pattern Q2,1 (a figure for this can also be found in [Lev16]).
Likewise, adding two red arcs instead of two blue arcs corresponds to adding a longitudinal arc in
the set of n strands. The figure we recover corresponds to Q1,2, which by symmetry of the two
bridge link we find is the same as Q2,1. From here, an induction of adding 2 arcs in the blue and red
components correspond to adding longitudinal strands in the generalized Mazur patterns Qm,n. □

Figure 26. A tangle diagram for generalized Mazur patterns, describing the ratio-
nal tangle C(2m, 1, 2n)

This construction may also be used to describe the Conway rational tangle associated to the
patterns Qm,n. An isotopy of Figure 25 results in Figure 26, from which we extract the rational
tangle C(2n, 1, 2m), obtained by counting the number of crossings at each section of the tangle
diagram.

Finally, we recall the correspondence between the Schubert normal form and Conway’s rational
tangles [Lic97]: b(α, β) is equivalent to the rational tangle C(a1, ..., an), where ai is the ith coefficient
in the continued fraction expansion

(4.2)
β

α
=

1

a1 +
1

a2 + · · ·
1

an−1 +
1

an

Thus, b(4mn+ 2n+ 2m, 2m+ 1) = C(2n, 1, 2m), and we conclude that the Heegaard diagrams
for Qm,n are valid.
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5. Computation of τ(Qm,n(K)) and ϵ(Qm,n(K))

In this section, we compute the invariants τ(Qm,n(K)) and ϵ(Qm,n(K)) for generalized Mazur
patterns, giving a proof of Theorem 1.5. This is the technical core of our paper. By Proposition
1.3, we may reduce our computation to Qm,n with m ≥ n.

Theorem 5.1. Let Qm,n be the generalized Mazur pattern embedded in the solid torus V . If m ̸= n,
then for any knot K ⊂ S3, we have

(5.1) τ(Qm,n(K)) =


|m− n|τ(K) if τ(K) ≤ 0 and ϵ(K) ∈ {0, 1},
|m− n|τ(K) + |m− n| if τ(K) < 0 and ϵ(K) = −1,
|m− n|τ(K) + min(m,n) if τ(K) > 0 and ϵ(K) = 1,

|m− n|τ(K) + max(m,n)− 1 if τ(K) ≥ 0 and ϵ(K) = −1.
In the case where m = n, we have

(5.2) τ(Qm,m(K)) =


0 if τ(K) < 0,

m− 1 if τ(K) = 0,

m if τ(K) > 0.

Also,

(5.3) ϵ(Qm,n(K)) =

{
0 if τ(K) = ϵ(K) = 0,

1 otherwise

Figure 27. A lift of β curve to the universal cover

Figure 28. The Alexander grading at various points of β̃ curve in the row contain-
ing c

We follow the strategy outlined in Section 3, recovering the τ and ϵ invariant of Qm,n(K) from
its pairing diagram. Using the notation from Section 3.2, we denote the lifts of αK and β(Qm,n) in

the universal cover of the doubly marked torus as α̃ and β̃, respectively.

Proof of Theorem 5.1. When ϵ(K) = 0, K is ϵ-equivalent to the unknot U [Hom14b]. Thus,
τ(Qm,n(K)) = τ(Qm,n(U)) and ϵ(Qm,n(K)) = ϵ(Qm,n(U)), so we have τ(Qm,n(K)) = 0 and
ϵ(Qm,n(K)) = 0, as desired. For the rest of the proof, we assume that ϵ(K) ̸= 0 and m ≥ n.
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We begin by a discussion of how to construct the pairing diagram of the satellite Qm,n(K), which

consists the two lifts β̃ and α̃, where the latter is pulled tight in the pegboard diagram. Recall that
Lemma 4.1 gives us a way to construct the Heegaard diagram H of Qm,n. We obtain β̃ by lifting
the β-curve in H into the universal cover, as shown in Figure 27. The lift spans m+ n columns in
the universal cover, which we label by 1 to m+ n from left to right. For the lift α̃ of αK , Lemma
3.1 describes the unstable segment of α̃ and Figure 13 shows its relevant neighborhood. Note that
each column contains a translated copy of α̃, but we only draw the copy contained in column n
to column n + 1, because this is the only relevant one containing the distinguished generator in

ĤF (S3). For example, the pairing diagram of Qm,n(K) in the case when τ(K) > 0 and ϵ(K) = 1
is shown in Figure 29.

From the pairing diagram, we may determine the absolute Alexander grading of the intersection
points by Lemma 3.2 and the discussion thereafter. In particular, note that if x′ can be obtained
from x by shifting the picture in the universal cover down a row, then A(x)− A(x′) = w(Qm,n) =
−(m − n). Let c be the fixed point under hyperelliptic involution, with A(c) = 0. For ease of
computation, we determine the grading of x by first shifting the picture vertically so that the
image x′ lies in the row containing c, and then determining the grading of x′ using Lemma 3.2. In
Figure 28, we display the grading of different points along β̃ in the row containing c.

We are now ready to recover τ(Qm,n(K)) and ϵ(Qm,n(K)). The lift α̃ has the form described in
Lemma 3.1 and Figure 13, which depends on τ(K) and ϵ(K), so it remains to inspect the following
four cases.

Case 1: τ(K) > 0 and ϵ(K) = 1. The pairing diagram of Qm,n(K) is shown in Figure 29, where
the fixed point c is marked in red. Following the strategy in Section 3.3, we first eliminate all
the intersection points of filtration difference 1. The Whitney disks connecting those points are
highlighted in pink in Figure 31, and the diagram after they are eliminated is shown in Figure 32.
If m > n, we eliminate the blue disks (with filtration difference n− 1), then the brown disks (with
difference n), and finally the yellow disks (with difference m− 1). If m = n, we eliminate the blue
and yellow disks first, then the brown disks. Either way, x1 is the remaining intersection point after
the isotopies.

To recover the Alexander grading of x1, we shift the diagram down τ(K)− 1 rows to get x′1, and
find that the algebraic intersection lc,x′

1
· δw,z = −m. It follows that

τ(Qm,n(K)) = −A(x1) = −(−(m− n)(τ(K)− 1) + lc,x′
1
· δw,z) = (m− n)τ(K) + n.

To compute ϵ(Qm,n(K), we need to construct the subcomplex of the CFKR complex containing
x1. The relevant differentials of this subcomplex are drawn in Figure 30. Note that the cycle∑2n+1

i=1 x2i+1 survives in the homology ĤF (S3), so this cycle must be the distinguished element
of some horizontally simplified basis. It remains to look at its position in the vertical complex to
recover ϵ(Qm,n(K). There is a vertical arrow from yi to xi for each odd i, and together they give us

a vertical arrow from
∑n

i=0 y2i+1 to
∑n

i=0 x2i+1. Thus, the cycle
∑2n+1

i=0 x2i+1 is a boundary with
respect to the vertical differential, which means that ϵ(Qm,n(K)) = 1.

Case 2: τ(K) ≥ 0 and ϵ(K) = −1. The pairing diagram is shown in Figure 33. As before, we

perform isotopies that eliminate intersection points of the same filtration difference. If τ(K) = 0
and m = n, then the intersection point that survives the spectral sequence is x3; otherwise, it is
x1. To compute the Alexander grading of x3, we shift the diagram down by τ(K) − 1 rows, and
find that the the image x′3 has grading −m. Thus, when τ(K) = 0 and m = n, we have

τ(Qm,n(K)) = −A(x3) = −(−(m− n)(τ(K)− 1)−m) = m.
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Figure 29. The pairing diagram for Qm,n(K) when τ(K) > 0, ϵ(K) = 1

Otherwise, we calculate the grading of x1 using the same method, and obtain that

τ(Qm,n(K)) = −A(x1) = −(−(m− n)τ(K)− (m− 1)) = (m− n)τ(K) + (m− 1).

We construct the subcomplex of CFKR containing x1 and x3, and the relevant part is shown in
Figure 34. The analysis for ϵ(Qm,n(K)) the same as the case when τ(K) > 0 and ϵ(K) = 1,
displayed in Figure 30. Hence, we have ϵ(Qm,n(K)) = 1.

Case 3: τ(K) ≤ 0 and ϵ(K) = 1. The pairing diagram is shown in Figure 35. After eliminating
all pairs of intersection points with the same filtration difference, we are left with x2n+1, which has
Alexander grading −(m− n)τ(K). Therefore, we have

τ(Qm,n(K)) = −A(x2n+1) = (m− n)τ(K).

Figure 36 shows the relevant differentials in the CFKR complex containing x2n+1, and one observes
that x2n+1 is the distinguished element in some horizontal simplified basis. Since there’s a vertical
differential pointing from y1 to Unx2n+1, we have ϵ(Qm,n(K)) = 1.
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y2n+1

y2n−1 x2n+1

x2n−1 x2n

• x2n−2

y3 . . .

y1 x3 •

x1 x2
UmV

Un

V
Um

Um

Un

V
Um

Un

V

Figure 30. The relevant differentials in the CFKR complex of Qm,n(K) when
τ(K) > 0, ϵ(K) = 1.

Case 4: τ(K) < 0 and ϵ(K) = −1. The pairing diagram is displayed in Figure 37, where the

remaining intersection point is x2n−1, which has Alexander grading −(m−n)(τ(K)−1). This gives

τ(Qm,n(K)) = −A(x2n−1) = (m− n)(τ(K)) + (m− 1)) = (m− n)τ(K) + (m− 1).

In Figure 38, we show the relevant differentials in the subcomplex containing x2n+1, which is a
distinguished element in some horizontally simplified basis. Since a vertical differential sends y1 to
Unx2n−1, we conclude that ϵ(Qm,n(K)) = 1.

□

The proof of Theorem 1.5 allows us to find the three-genus of the patterns Qm,n. Recall that by
[OS04b], the genus of the knot is the largest Alexander grading supporting non-zero Floer homology.
Moreover, for a satellite knot P (K), we have a genus formula from [Sch53]

(5.4) g(P (K)) = |w(P )|g(K) + g(P ),

where |w(P )| is the absolute value of the winding number.

Proposition 5.2. For m,n ≥ 1, the generalized Mazur patterns have genus g(Qm,n) = min(m,n).

Proof. We take P to be Qm,n and reverse the orientation (where without loss of generality we
assume that m ≥ n), which has winding number m− n, and K to be the right-handed trefoil T2,3,
which has τ(T2,3) = ϵ(T2,3) = g(T2,3) = 1. By Equation (5.4), we have

(5.5) g(Qm,n(T2,3)) = (m− n) + g(Qm,n).

We want to compute g(Qm,n(T2,3)), which is equal to the largest Alexander grading for which

ĤFK(Qm,n(K)) is non-zero. Consider the pairing diagram in Figure 29 from the proof of Theorem
5.1 and note that x1 has the lowest Alexander grading, but after taking the reverse this generator
has the largest Alexander grading. Since x1 is also the distinguished generator,

g(Qm,n(T2,3)) = A(x1) = τ(Qm,n(T2,3)) = |m− n|τ(T2,3) + n = m.

Plugging into Equation (5.5), we get g(Qm,n) = n. For any m,n ≥ 1, we have g(Qm,n) = min(m,n).
□
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Figure 31. The disks highlighted in pink represent all the Whitney disks of filtra-
tion difference 1. Eliminating them by an isotopy, we get Figure 32.
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Figure 32. The result of eliminating Whitney disks in Figure 31. If m > n, we
first eliminate the blue disks, then the brown disks, and finally the yellow disks. If
m = n, we first eliminate the blue and yellow disks, then the brown disks. In both
cases, we arrive at a complex with x1 as the only remaining intersection point. The
small arrows with label n or n − 1 represent respectively n or n − 1 small arrows
placed in parallel; these are the A-buoys keeping track of the filtration difference
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Figure 33. The pairing diagram for Qm,n(K) when τ(K) ≥ 0, ϵ(K) = −1. Some
bigons contributing to the differentials in the subcomplex are shaded. From top to

bottom, they correspond to the differentials x1
Um

−−→ x2, y3
V−→ x3, and x2n+1

Un

−−→ x2n,
respectively

y2n+1

y2n−1 x2n+1

x2n−1 x2n

• x2n−2

y3 . . .

y1 x3 •

x1 x2
Um−1V

Un

V
Um

Um

Un

V
Um

Un

V

Figure 34. The relevant differentials in the CFKR complex of Qm,n(K) when
τ(K) ≥ 0, ϵ(K) = −1
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Figure 35. The pairing diagram for Qm,n(K) when τ(K) ≤ 0, ϵ(K) = 1

x2 x1

x4 x3

y2k+1 y2k−1 · · · y1
...

...

y2k · · · y2 x2n+1 x2n x2n−1

Un

Um

Un

Um

Um

UnUm

V n

Um−nV n−1

V n

Um−nV n−1

V n

Um−nV n−1

Figure 36. The relevant differentials in the CFKR complex of Qm,n(K) when
τ(K) ≤ 0, ϵ(K) = 1
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Figure 37. The pairing diagram for Qm,n(K) when τ(K) < 0, ϵ(K) = −1

x2 x1

x4 x3

...
... y1

x2n+1 x2n x2n−1 •

Un

Um

Un

Um

Um

UnUm

V

Figure 38. The relevant differentials in the CFKR complex of Qm,n(K) when
τ(K) < 0, ϵ(K) = −1
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Appendix A. Computation of τ(Qm,n(K)) using bordered Heegaard Floer homology

We give an alternative way of computing the τ -invariant for satellites along generalized Mazur
patterns, using the ordinary bordered Heegaard Floer homology. This is a generalization of the
method used in [Lev16]. As expected, we obtain the same value of τ(Qm,n(K)) as in Theorem 1.5.

The organization of the Appendix is as follows: in Section A.1, we describe our strategy for
computing τ(P (K)); in Section A.2, we give a few examples for computing τ(Qm,n(K)) for small
values of m and n; and in Section A.3, we carry out the computation for general m and n.

A.1. Bordered strategy to determine τ(P (K)). In this section, we follow closely the notation
in [Lev16]. Recall that an alternative definition of the invariant τ(K) is

τ(K) = −max{s | Un ·HFK−(K, s) ̸= 0 for all n ≥ 0}.
In other words, τ(K) is minus the Alexander grading of the non-vanishing generator for F[U ] in
HFK−(S3,K). Recall also the pairing theorem [LOT18, Theorem 1.3]: for a satellite knot with
pattern P ⊂ V and companion K, we have

(A.1) gCFK−(P (K)) ≃ CFA−(V, P )⊠ ĈFD(XK).

Here, we may again assume that the pattern knot P is a (1, 1)-unknot pattern.
Our goal is to directly compute the associated graded on the left hand side. We discussed

how to compute CFA− in Section 2.3, and ĈFD(XK) in Section 2.4. The box tensor product

CFA−(V, P )⊠ ĈFD(XK) is defined to be the F-vector space

CFA−(V, P )⊠I ĈFD(XK)

with the differential now given by the combinatorial formula

∂⊠(x⊗ y) =
∑
k+1

(x, ρi1 , · · · , ρik)Dik ◦ · · · ◦Di1(y)

where the sum is taken over all k-element sequences i1, · · · , ik (including the empty sequence when
k = 0) of elements in {∅, 1, 2, 3, 12, 23, 123}.

The box tensor product in Equation (A.1) consists of one direct summand whose homology

contains a F[U ] part, obtained by box tensoring with a unstable neighborhood in ĈFD(XK),
and other summands whose homology is U -torsion. We are interested only in the summand with
non-vanishing homology, since the Alexander grading of its generator gives us −τ(P (K)).

It remains determine the absolute Alexander grading in gCFK−(S3, P (K)), which we denote
by AQm,n(K). This can be achieved by the following proposition in [Lev16].

Proposition A.1. [Lev16, Proposition 2.2] Let P ⊂ V be a based knot with winding number m.
For each element a ∈ CFA−(V, P ) · ι0, there exists a constant Ca with the following property: For

any knot K ⊂ S3, and any homogeneous element x ∈ ι0ĈFD (XK), we have

(A.2) AP (K)(a⊗ x) = mAK(x) + Ca.

In what follows, we will set P to be the generalized Mazur pattern Qm,n. Note that the constant
Ca in equation (A.2) is independent of K. This allows us to determine Ca by setting K to be
the unknot O. Since Qm,n(O) is also the unknot, the tensor product complex CFA−(V,Qm,n) ⊠

̂CFD(XO) is generated over F[U ] by a single element with Alexander grading 0. Moreover, we have

AO(x) = 0 for any x ∈ ι0ĈFD (XO). Equation (A.2) then allows us to determine the constant Ca

for certain generators a ∈ CFA−(V,Qm,n).
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For any knotK, we may apply Proposition A.1 again to compute the absolute Alexander gradings
of the relevant generators of CFK−(S3, Qm,n(K)). This computation is sufficient to determine
τ(Qm,n(K)); we will carry out this computation in more detail in Section A.3. Before that, we give
some examples of how this strategy may be applied for small values of m and n.

A.2. Examples.

Example A.2 (The pattern Q3,1). First, we obtain the following Heegaard diagram for the pattern
Q3,1 by applying the inductive procedure in lemma 4.1. The resulting diagram is shown in Figure
39. The indexing of the vertical column is x1 to x7 from top to bottom, and the indexing of the
horizontal column is y1 to y12 from left to right.

Figure 39. The Heegaard diagram for Q3,1

Next, we find all the pseudoholomorphic disks in the universal cover, shown in Figure 40.
The corresponding A∞ multiplications are:

• m1(x1) = Ux6
• m2(x1, ρ1) = y12
• m2(x1, ρ12) = x7
• m2(x1, ρ123) = Uy7
• m4(x1, ρ3, ρ2, ρ1) = Uy1
• m1(x2) = Ux5
• m2(x2, ρ1) = y11
• m2(x2, ρ12) = x6
• m4(x2, ρ123, ρ2, ρ1) = Uy6
• m4(x2, ρ3, ρ2, ρ1) = Uy2
• m1(x3) = Ux4
• m2(x3, ρ1) = y10
• m2(x3, ρ12) = x5
• m4(x3, ρ123, ρ2, ρ1) = Uy5
• m4(x3, ρ3, ρ2, ρ1) = Uy3
• m2(x4, ρ1) = y9
• m3(x4, ρ12, ρ1) = y8
• m4(x4, ρ12, ρ12, ρ1) = y7

• m4(x4, ρ3, ρ2, ρ1) = Uy4
• m2(x5, ρ1) = Uy8
• m3(x5, ρ12, ρ1) = Uy7
• m4(x5, ρ3, ρ2, ρ1) = Uy5
• m2(x6, ρ1) = U2y7
• m4(x6, ρ3, ρ2, ρ1) = Uy6
• m2(x7, ρ3) = Uy7
• m1(y1) = Uy6
• m1(y2) = Uy5
• m1(y3) = Uy4
• m3(y8, ρ2, ρ1) = y7
• m3(y9, ρ2, ρ1) = y8
• m4(y9, ρ2, ρ12, ρ1) = y7
• m2(y10, ρ2) = x5
• m4(y10, ρ23, ρ2, ρ1) = Uy5
• m1(y10) = Uy9
• m2(y11, ρ2) = x6
• m4(y11, ρ23, ρ2, ρ1) = Uy6
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Figure 40. The universal cover of the bordered diagram for Q3,1
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• m1(y11) = U2y8
• m2(y12, ρ2) = x7

• m2(y12, ρ23) = Uy7
• m1(y12) = U3y7

This can be represented by the diagram below in Figure 41:

x7 y12 x1 y11 x2 y10 x3 y1 y2 y3

y7 x6 y8 x5 y9 x4 y6 y5 y4

Uρ3

ρ2

U3+
Uρ23

ρ1

ρ12

U
ρ 1
23 U

ρ2
U2

ρ1

U

ρ12

ρ2
U

ρ1

U

ρ12

U U U

U2ρ1

ρ2ρ1

Uρ1

Uρ12ρ1

ρ2ρ1

ρ2ρ12ρ1

ρ1

Uρ12ρ1

ρ12ρ12ρ1

Figure 41. The A∞-module CFA−(Q3,1(K))

One may observe that a few differentials are not represented in the diagram above, namely

x1
Uρ3ρ2ρ1−→ y1

y11
Uρ23ρ2ρ1−→ y6

x2
Uρ123ρ2ρ1−→ y6

x6
Uρ3ρ2ρ1−→ y6

x2
Uρ3ρ2ρ1−→ y2

y10
Uρ23ρ2ρ1−→ y5

x3
Uρ123ρ2ρ1−→ y5

x5
Uρ3ρ2ρ1−→ y5

x3
Uρ3ρ2ρ1−→ y3

x4
Uρ3ρ2ρ1−→ y4

However, we may apply the following change of basis to eliminate these arrows: let x′6 = x6 +
Uρ3ρ2ρ1y1, x

′
5 = x5 + Uρ3ρ2ρ1y2, and x′4 = x4 + Uρ3ρ2ρ1y3.

Example A.3 (The pattern Q1,2). The Heegaard diagram for Q1,2 is shown in Figure 42. After
counting pseudoholomorphic disks in the universal cover, we obtain the following A∞ multiplica-
tions:

• m1(x1) = Ux2
• m2(x1, ρ1) = y8
• m2(x2, ρ1) = y7
• m2(x1, ρ12) = x3
• m2(x1, ρ123) = U2y7
• m2(x3, ρ3) = U2y7
• m2(y8, ρ2) = x3
• m2(y8, ρ23) = U2y7
• m1(y8) = U2y7

• m4(x1, ρ123, ρ2, ρ1) = Uy3
• m4(x1, ρ3, ρ2, ρ1) = Uy1
• m5(x1, ρ3, ρ2, ρ12, ρ1) = U2y4
• m3(x2, ρ12, ρ1) = y6
• m4(x2, ρ3, ρ2, ρ1) = Uy2
• m5(x2, ρ3, ρ2, ρ12, ρ1) = U2y5
• m2(x3, ρ1) = Uy6
• m4(x3, ρ3, ρ2, ρ1) = Uy3
• m1(y1) = Uy2
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Figure 42. The Heegaard diagram for Q1,2

• m1(y3) = Uy6
• m1(y4) = Uy5
• m3(y7, ρ2, ρ1) = y6

• m3(y8, ρ23, ρ2, ρ1) = Uy3
• m3(y1, ρ2ρ1) = Uy4
• m3(y2, ρ2ρ1) = Uy5

which are represented by the CFA− complex below in Figure 43 with the change of basis in
Remark A.7 applied:

y3 x3 y8 x1 y1 y4

y6 y7 x2 y2 y5

U

Uρ3ρ2ρ1

Uρ1 U2ρ3

ρ2

U+
U2ρ23

U
2 ρ1

23

ρ1

ρ12

U

Uρ123ρ2ρ1

U U

ρ2ρ1

ρ1

ρ12ρ1

Figure 43. The A∞-module CFA−(Q1,2(K))

As before, one may check that the summands in the box tensor product with ĈFD(XK) look
like the figures given for each value of τ(K) after plugging in m = 1 and n = 2. The only difference
is that there are no dashed arrows, since there are no ρ2 arrows pointing to x2 in CFA−(V,Q1,2)
that will pair nontrivially with the D2 differential fron λ to ξ0.

Example A.4 (The patternQ2,3). We describe theA∞-module CFA−(Q2,3(K)). Using the inductive
procedure outlined in Lemma 4.1, we obtain the Heegaard diagram in Figure 44. We provide a less
exhaustive CFA− structure below in Figure 45, not including the isolated components. There are
also arrows from y18 and x3 to y16 featuring compositions of the arrows going through y17, which
have also been omitted for clarity.
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Figure 44. The Heegaard diagram for Q2,3

y10 y5 x5 y20 x1 y19 x2

y15 y16 y17 x4 y18 x3

U

Uρ2ρ1

U2

Uρ3ρ2ρ1

U2ρ1

U3ρ3

ρ2

U2+
U3ρ23

U
3 ρ12

3

ρ1

ρ12

U

Uρ123ρ2ρ1

ρ2
U

ρ1

U

ρ12

ρ2ρ1

ρ2ρ12ρ1

ρ2ρ1

Uρ1

ρ12ρ1

ρ2ρ1

ρ1

ρ12ρ1

Figure 45. Part of the A∞-module CFA−(Q2,3(K))

A.3. Computation of τ(Qm,n(K)). In the case of general m,n, the invariant τ(Qm,n(K)) is given
by the following theorem.

Theorem A.5. Let Qm,n be the generalized Mazur pattern embedded in the solid torus V . If m ̸= n,
then for any knot K ⊂ S3, we have

(A.3) τ(Qm,n(K)) =


|m− n|τ(K) if τ(K) ≤ 0 and ϵ(K) ∈ {0, 1},
|m− n|τ(K) + |m− n| if τ(K) < 0 and ϵ(K) = −1,
|m− n|τ(K) + min(m,n) if τ(K) > 0 and ϵ(K) = 1,

|m− n|τ(K) + max(m,n)− 1 if τ(K) ≥ 0 and ϵ(K) = −1.
In the case where m = n, we have

(A.4) τ(Qm,m(K)) =


0 if τ(K) < 0,

m− 1 if τ(K) = 0,

m if τ(K) > 0.
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The bordered Heegaard diagrams corresponding to the the generalized Mazur patterns Qm,n is
given in Lemma 4.1. We label the intersection points of the α-arcs and β-arcs as follows: let the
intersection points down the vertical arc be x1 to x1+2m, and the points along the horizontal arc
be y1 to y2m+2n+2nm−2. Reading off these diagrams, the A∞ multiplications have m squares which
connect to each other, and mn+n−1 isolated components. The first square contains a head, so one
may consider the structure to be as a train with m carriages, with ρ2 arrows connecting carriages.
We may see this representation in Figure 46. We index the squares by r = 1, ...,m unless otherwise
specified.

Proposition A.6. The generators x1 to x1+2m lie in ι0, and the remaining generators lie in ι1.
The multiplications for the isolated components are as follows:

(1) y(2m+1)l+j
U−→ y(2m+1)(l+1)−j for j = 1, ...,m, l = 0, 1

(2) y(2m+1)l+(j−1)
U−→ y(2m+1)(l+1)−(j−1) for j = 1, ...,m+ 1, 2 ≤ l ≤ n− 1.

When n = 1, we only use Equation 1, and l = 0. When n = 2, we use Equations 1 with both
l = 0, 1. When n ≥ 3, we use both equations.

The multiplications which make up the squares are as follows

• xr
ρ1−→ y2m+2n+2mn−2−r+1 for r = 1, ...,m

• xr
U−→ x2m−r+1 for r = 1, ...,m

• y2m+2n+2mn−2−r+1
Um−r+1

−−−−−→ y2n+2mn−2+r for r = 1, ...,m

• x1
Unρ123−−−−→ y2n+2mn−1

• y2m+2n+2mn−2
Unρ23−−−−→ y2n+2mn−1

• x1+2m
Unρ3−−−→ y2n+2mn−1

• y2m+2n+2mn−2−r+1
ρ2−→ x2m−r+2 for r = 1, ...,m

• xr+1
ρ12−−→ x2m−r+1 for r = 0, ...,m− 1

• y2n+2mn−2+r
ρ2ρ̂12

l−1ρ1−−−−−−−→ y2n+2mn−2+r−l for r = 2, ...,m and l = 1, ..., r − 1

• x2m−r+1
Um−r ρ̂12

lρ1−−−−−−−→ y2n+2mn−2+r−l for r = 1, ...,m and l = 0, ..., r − 1

• x2m+1
Uρ3ρ2ρ1−−−−−→ y2m+1, when n ≥ 2

• y2m+1
Un−1

−−−→ y2n+2mn−2, when n ≥ 2

• x2m+1
Umρ1−−−→ y2n+2mn−2, when n ≥ 2

There are also the following multiplications which appear in both the isolated components and the
squares when n ≥ 2:

• yj
Uρ2ρ1−−−−→ y2m+1+j for j = 1, ..., 2mn+ n− 2m− 2

Combinations of these elements also appear in the A∞ structure, as long as the index of any of the
terms do not exceed 2mn+ n− 1.

One notices that by this, the isolated components are connected to each other, but are isolated
from the component containing the main squares.

Let a = y2mn+n−2m−1, and b = y2mn+2n−3. The A∞ module can be represented by the following
figure:
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a y2m+1 x2m+1 y2mn+2m+2n−2 x1 · · · y2mn+m+2n−1 xm

b y2n+2mn−2 y2mn+2n−1 x2m · · · y2mn+m+2n−2 xm+1

U

Un−2ρ2ρ
n−3
12 ρ1

Un−1

Uρ3ρ2ρ1

Umρ1

Unρ3

ρ2

Um+
Unρ23

U
n ρ12

3

ρ1

ρ12

U ρ2 ρ2
U

ρ1

U

ρ2ρ1 ρ2ρ1 Um−1ρ1 ρ1

Figure 46. The CFA− structure for generalized Mazur patterns, with some of the
differentials connecting the second row not included for clarity. The dotted lines are
included when n ≥ 2, and the red dotted lines are included when n ≥ 3. The isolated
components are not included here either, although they may be easily determined
by Proposition A.6. One in fact notices that when n ≥ 3, the isolated component

a
U−→ b is no longer isolated. See Section A.2 for examples of these relations

Remark A.7. There are also the following multiplications: xj
ρ3ρ2ρ1−−−−→ yj for j = 1, ..., 2m. These

may be removed by the following change of basis: x′2m−j+1 = x2m−j+1 + ρ3ρ2ρ1yj . This isolates

yj
U−→ y2n−j+1 for j = 1, ..., n. Furthermore, there are also Uρ2ρ1 relations between the isolated

components, outlined in A.6. We may remove many of these by a similar change of basis as the
one above, with the appropriate substitutions.

From the orientation choice letting w(Qm,n) = −(m− n) and Proposition A.1, we have

AQm,n(K)(a⊗ x) = −(m− n)Ak(x) + Ca.

The following lemma allows us to determine the coefficient Ca for certain a.

Lemma A.8. The constants associated to the generators of CFA−(V,Qm,n) · ι0 via Propsition A.1
are Cxm+1 = 0, Cxm = Cxm+2 = −1,..., and Cxm+1−r = Cxm+1+r = −r for r = 1, ...,m.

Proof. Let O ⊂ S3 be the unknot, and XO its complement equipped with the 0-framing. Note that
Qm,n(O) is also the unknot. By the pairing theorem, we have

gCFK∞(Qm,n(O)) = CFA−(V,Qm,n)⊠ ĈFD(XO).

The associated graded on the left hand side has a single generator in its homology, with 0 Alexander

grading since τ(Q(O)) = 0. On the right hand side, the type D structure ĈFD(XO) has a single

generator ξ0 in 0 grading. The tensor complex CFA−(V,Qm,n)⊠ ĈFD(XO) has a summand:

x1 ⊗ ξ0 · · · xm ⊗ ξ0

x2m+1 ⊗ ξ0 x2m ⊗ ξ0 · · · xm+1 ⊗ ξ0

U U U

It is easy to verify that this is indeed a summand. The only relations in CFA−(V,Qm,n) that pair
nontrivially with the type D structure are arrows connecting x1, x2m or x2m+1 with labels Up or
Upρ12 (for some integer p ≥ 0), and all of them are captured within the fundamental complex in
Proposition A.6. One may observe further that the homology of this summand is generated by
xm+1 ⊗ ξ0, which implies that A(xm+1) = 0. The lemma follows. □
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Proof of Theorem A.5. Consider the box tensor product of CFA−(V,Q) with ĈFD(XK), where K
is a knot in S3, and XK is its exterior equipped with the 0-framing. Note that the generators of the

“isolated” components do not affect τ(Qm,n(K)) since their tensor products with ĈFD(XK) pro-

duce summands of CFK−(Qm,n(K)) which are U-torsion. In the case where ϵ(K) = 0, ĈFD(XK)

has a summand isomorphic to ĈFD(XO), so the tensor complex CFA−(V,Qm,n)⊠ ĈFD(XK) has
a summand isomorphic to (diagram). It follows immediately that τ(Qm,n(K)) = τ(Qm,n(O)) = 0.
Thus, we restrict our discussion to the cases where ϵ(K) = ±1. Let s = 2|τ(K)|, and apply the
following change of variables for simplicity:

w = y2n+2mn−2, y = y2m+2n+2mn−2, y′ = y2n+2mn−1, z = y2m+2n+2mn−3, z′ = y2n+2mn.

Moreover, we denote λ1
l1
as λ and κ1k1 as κ in the unstable neighborhood of CFD(XK).

Recall that the homology of the tensor complex contains a F[U ]-free part and a U -torsion part.
Our goal is to determine the Alexander grading for generator of the free part of the homology.
Towards this end, we consider three cases cases according to τ(K).

Case 1: When τ > 0, the unstable chain in ĈFD(XK) (along with the possible D1 differential
from κ to η0 if ϵ(K) = −1, and the D2 differential from λ to ξ0 if ϵ(K) = 1) is as follows

κ η0 µ1 · · · µs ξ0 λ.
D1 D3 D23 D23 D1 D2

The red dashed arrow is included if ϵ(K) = −1 and n > 1, while the blue dashed arrow is included
if ϵ(K) = 1 and m > 1. The tensor complex has the following direct summand:

y2m+1 ⊗ κ x1+2m ⊗ η0 y ⊗ µ1 · · · y ⊗ µs−1 y ⊗ µs x1 ⊗ ξ0

w ⊗ κ y′ ⊗ µ1 · · · y′ ⊗ µs−1 y′ ⊗ µs x2m ⊗ ξ0

z′ ⊗ λ z ⊗ λ

Un−1

Um
Un

Um Un Un

Um Un

Um U

Um−1

Um−1

By Proposition A.1 and Lemma A.8, we have

A(x1+2m ⊗ η0) = −(m− n)A(η0)−m = (m− n)τ(K)−m,

A(x1 ⊗ ξ0) = −(m− n)A(ξ0)−m = −(m− n)τ(K)−m,

A(x2m ⊗ ξ0) = −(m− n)A(ξ0)− (m− 1) = −(m− n)τ(K)− (m− 1),

which allows us to compute that

A(y′ ⊗ µj) = (m− n)τ(K) + (n−m)j,

A(y ⊗ µj) = (m− n)τ(K) + (n−m)j −m,

A(w ⊗ κ) = (m− n)τ(K),

A(y2m+1 ⊗ κ) = (m− n)τ(K)− (n− 1),

A(z′ ⊗ λ) = −(m− n)τ(K),

A(z ⊗ λ) = −(m− n)τ(K)− (m− 1).

We then split our calculation into the following five subcases:
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• Case 1.1: If ϵ(K) = 1 and m ≥ n, the free part of the homology is generated by

Unz′ ⊗ λ+

( s−1∑
r=1

U (m−n)(s−1−r)y ⊗ µr

)
+ U (m−n)(s−1)x1+2m ⊗ η0,

which has Alexander grading −(m− n)τ(K)− n. This gives us

τ(Qm,n(K)) = (m− n)τ(K) + n = |m− n|τ(K) + n.

• Case 1.2: If ϵ(K) = 1 and m < n, the free part is generated by the element

x1+2m ⊗ η0 +

( s−1∑
r=1

U (n−m)ry ⊗ µr

)
+ U (n−m)s+1x2m ⊗ ξ0,

with Alexander grading (m− n)τ(K)−m. In this case, we have

τ(Qm,n(K)) = −(m− n)τ(K) +m = |m− n|τ(K) +m.

• Case 1.3: If ϵ(K) = −1 and m > n, the free part is either generated by

x2m ⊗ ξ0 + Um−n−1

( s−1∑
r=1

U (m−n)(s−1−r)y ⊗ µr

)
+ U (m−n)s−1x1+2m ⊗ η0

if n = 1, or by the above sum plus an additional term U (m−n)(s+1)y1+2m ⊗ κ if n > 1. In
both cases, the generator has Alexander grading −(m− n)τ(K)− (m− 1), and

τ(Qm,n(K)) = (m− n)τ(K) + (m− 1) = |m− n|τ(K) + (m− 1).

• Case 1.4: If ϵ(K) = −1 and m < n, the generator is

y2m+1 ⊗ κ+ Un−m−1x1+2m ⊗ η0 + Un−1−m

( s−1∑
r=1

U (n−m)ry ⊗ µr

)
+ U (n−m)(s+1)x2m ⊗ ξ0,

which has Alexander grading (m− n)τ(K)− (n− 1), giving us

τ(Qm,n(K)) = −(m− n)τ(K) + (n− 1) = |m− n|τ(K) + (n− 1).

• Case 1.5: If ϵ(K) = −1 and m = n, the free part of the homology is generated by

Uy2m+1 ⊗ κ+ x1+2m ⊗ η0 +

( s−1∑
r=1

y ⊗ µr

)
+ Ux2m ⊗ ξ0,

with Alexander grading (m− n)τ(K)−m = −m, and thus

τ(Qm,n(K)) = m.

Taken together, when τ(K) > 0 and m ̸= n, we have

τ(Qm,n(K)) =

{
|m− n|τ(K) + min(m,n) if ϵ(K) = 1,

|m− n|τ(K) + max(m,n)− 1 if ϵ(K) = −1.
.

Moreover, when τ(K) > 0 and m = n, we have

τ(Qm,n(K)) = m, for all ϵ(K).
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Case 2 : When τ < 0, the unstable chain in ĈFD(XK) is the following:

λ ξ0 µ1 · · · µs η0 κ
D2 D123 D23 D23 D2 D1

where again the red dashed arrow included if ϵ(K) = −1 and n > 1, and the blue dashed arrow is
included if ϵ(K) = 1 and m > 1. The summand with nonvanishing homology in the tensor complex
is given by:

z ⊗ λ x1 ⊗ ξ0 y ⊗ µ1 · · · y ⊗ µs−1 y ⊗ µs x1+2m ⊗ η0 y1+2m ⊗ κ

z′ ⊗ λ x2m ⊗ ξ0 y′ ⊗ µ1 · · · y′ ⊗ µs−1 y′ ⊗ µs w ⊗ κ

Um−1 U
Un

Um Un Un

U

Um Un

Um
Um

Un−1

We calculate inductively that

A(y′ ⊗ µj) = −(m− n)τ(K) + j(n−m),

A(y ⊗ µj) = −(m− n)τ(K) + j(n−m)−m.

In the case when ϵ(K) = −1 and n > 1, we have

A(w ⊗ κ) = (m− n)τ(K),

A(y1+2m ⊗ κ) = (m− n)τ(K)− (n− 1),

and in the case when ϵ(K) = 1 and m > 1, we have

A(z ⊗ λ) = −(m− n)τ(K)− (m− 1),

A(z′ ⊗ λ) = −(m− n)τ(K).

Next, we split our calculation into four cases, depending on the value of ϵ(K) and whether m ≥ n

• Case 2.1: If m ≥ n and ϵ(K) = 1, the free part of the homology is generated by z′ ⊗ λ,
which has Alexander grading

A(z′ ⊗ λ) = −(m− n)τ(K),

giving us
τ(Qm,n(K)) = (m− n)τ(K) = |m− n|τ(K).

• Case 2.2: If m < n and ϵ(K) = 1, the free part is generated by y′ ⊗ µs, with Alexander
grading A(y′ ⊗ µs) = (m− n)τ(K). As such, we have

τ(Qm,n(K)) = −(m− n)τ(K) = |m− n|τ(K).

• Case 2.3: If m ≥ n and ϵ(K) = −1, the free part is generated by x ⊗ ξ0, with Alexander
grading A(x⊗ ξ0) = −(m− n)τ(K)− (m− 1). This gives us

τ(Qm,n(K)) = (m− n)τ(K) + (m− 1) = |m− n|τ(K) + (m− 1).

• Case 2.4: Ifm < n and ϵ(K) = −1, the free part is generated by y1+2m⊗κ+Un−m−1x1+2m⊗
η0, with Alexander grading A(y1+2m ⊗ κ) = (m− n)τ(K)− (n− 1). Therefore, we have

τ(Qm,n(K)) = −(m− n)τ(K) + (n− 1) = |m− n|τ(K) + (n− 1).
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In summary, when τ(K) < 0, we have

τ(Qm,n(K)) =

{
|m− n|τ(K) if ϵ(K) = 1,

|m− n|τ(K) + max(m,n)− 1 if ϵ(K) = −1.
.

Case 3: When τ = 0, the unstable neighborhood in ĈFD(XK) is

λ ξ0 η0 κ,
D2 D12 D1

and the differential in the tensor complex is

z ⊗ λ x1 ⊗ ξ0 x1+2m ⊗ η0 y2m+1 ⊗ κ

z′ ⊗ λ x2m ⊗ ξ0 w ⊗ κ

Um−1 U Um

Un−1

Um−1

where we include red dashed arrow if ϵ(K) = −1 and n > 1, and the blue dashed arrow if ϵ(K) = 1
and m > 1. One may check that this is indeed a summand. We divide our computation into the
following three cases

• Case 3.1: If ϵ(K) = 1, either z′ ⊗ λ or x2m ⊗ ξ0 generates the free part of the homology,
depending on whether m > 1 or m = 1, respectively. In both cases, the Alexander grading
of the generator is 0, and therefore

τ(Qm,n(K)) = 0 = |m− n|τ(K).

• Case 3.2: If ϵ(K) = −1 and m ≥ n, the free part of the homology is generated by either
x2m ⊗ ξ0 + Um−ny2m+1 ⊗ κ if n > 1, or by x2m ⊗ ξ0 if n = 1. In both cases, the Alexander
grading of the generator is −m+ 1. Hence, we get

τ(Qm,n(K)) = m− 1 = |m− n|τ(K) + max(m,n)− 1.

• Case 3.3: If ϵ(K) = −1 and m < n, the free part is generated by Un−mx2m⊗ξ0+y2m+1⊗κ,
which has Alexander grading −n+ 1, giving us

τ(Qm,n(K)) = n− 1 = |m− n|τ(K) + max(m,n)− 1.

All in all, when τ(K) = 0 we get

τ(Qm,n(K)) =

{
|m− n|τ(K) if ϵ(K) = 1,

|m− n|τ(K) + max(m,n)− 1 if ϵ(K) = −1.

□
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