
Demystifying Invariant Effectiveness for Securing Smart

Contracts

ZHIYANG CHEN, University of Toronto, Canada

YE LIU, Nanyang Technological University, Singapore

SIDI MOHAMED BEILLAHI, University of Toronto, Canada

YI LI, Nanyang Technological University, Singapore

FAN LONG, University of Toronto, Canada

Smart contract transactions associated with security attacks often exhibit distinct behavioral patterns compared

with historical benign transactions before the attacking events. While many runtime monitoring and guarding

mechanisms have been proposed to validate invariants and stop anomalous transactions on the fly, the empirical

effectiveness of the invariants used remains largely unexplored. In this paper, we studied 23 prevalent invariants

of 8 categories, which are either deployed in high-profile protocols or endorsed by leading auditing firms and

security experts. Using these well-established invariants as templates, we developed a tool Trace2Inv which

dynamically generates new invariants customized for a given contract based on its historical transaction

data. We evaluated Trace2Inv on 42 smart contracts that fell victim to 27 distinct exploits on the Ethereum

blockchain. Our findings reveal that the most effective invariant guard alone can successfully block 18 of

the 27 identified exploits with minimal gas overhead. Our analysis also shows that most of the invariants

remain effective even when the experienced attackers attempt to bypass them. Additionally, we studied the

possibility of combining multiple invariant guards, resulting in blocking up to 23 of the 27 benchmark exploits

and achieving false positive rates as low as 0.32%. Trace2Inv outperforms current state-of-the-art works on

smart contract invariant mining and transaction attack detection in terms of both practicality and accuracy.

Though Trace2Inv is not primarily designed for transaction attack detection, it surprisingly found two

previously unreported exploit transactions, earlier than any reported exploit transactions against the same

victim contracts.

1 Introduction

Blockchain technology has paved the way for decentralized, resilient, and programmable ledgers

on a global scale. One of its most impactful applications is smart contracts, which can be deployed

onto a blockchain. These smart contracts allow developers to encode intricate transaction rules

that govern the ledger. This innovation has made both blockchains and smart contracts essential

infrastructure for decentralized financial services, commonly known as DeFi. As of Sept 25, 2023,

the Total Value Locked (TVL) in 2, 933 DeFi protocols has reached an impressive 48.58 billion [10].

However, the landscape is not without its challenges. Security attacks pose a significant threat to

the security of smart contracts. Attackers can exploit various vulnerabilities by sending malicious

transactions, potentially leading to the theft of millions of dollars from users. As of Sept 25, 2023,

the financial losses attributed to security attacks on DeFi protocols exceeded 5.53 billion USD [11].

One key observation is that transactions initiated by attackers often display abnormal behav-

iors when compared to standard transactions from regular DeFi contract users. These malicious

transactions may exploit control flows in corner cases, use abnormally large values to trigger

overflows, or manipulate a large volume of digital assets to distort the market in DeFi contracts. In

fact, industry experts have been actively monitoring abnormal digital asset movements on-chain

to report malicious activities. For example, Forta Network [78] deploys monitoring bots to detect

Authors’ addresses: Zhiyang Chen, zhiychen@cs.toronto.edu, University of Toronto, Totonto, Ontario, Canada; Ye

Liu, li0003ye@ntu.edu.sg, Nanyang Technological University, Singapore, Singapore, Singapore; Sidi Mohamed Beillahi,

sm.beillahi@utoronto.ca, University of Toronto, Totonto, Ontario, Canada; Yi Li, zhiychen@cs.toronto.edu, Nanyang

Technological University, Singapore, Singapore, Singapore; Fan Long, fanl@cs.toronto.edu, University of Toronto, Totonto,

Ontario, Canada.

, Vol. 1, No. 1, Article . Publication date: April 2018.

ar
X

iv
:2

40
4.

14
58

0v
1

 [
cs

.C
R

]
 2

2
A

pr
 2

02
4

2 Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long

on-chain security-related events in real-time. Driven by this observation, smart contract developers

have proposed deploying runtime checks to detect transactions leading to abnormal behaviors to

neutralize malicious attacks. These checks involve enforcing various runtime invariants, such as

restricting the maximum number of digital asset deposits or withdrawals in a contract to prevent

market manipulation. Another example is to limit the interaction of other contracts to prevent

attackers from crafting sophisticated attack strategies. However, these mechanisms are often man-

ually designed and tailored for specific contracts. This raises questions about their effectiveness

across different types of contracts and whether they maintain an acceptable false positive rate

without hindering normal user activities.

Smart Contract Invariant Study: This paper presents the first comprehensive, quantitative analy-

sis focused on the utilization of dynamically inferred invariants to enhance smart contract security.

We examine 23 invariant templates, which are advocated by leading auditing firms, academic

research, and DeFi protocol developers. Our findings indicate that dynamically inferred dynamic

invariants serve as effective mechanisms for thwarting security breaches. When appropriately

configured, these invariants can neutralize over 74.1% of malicious attacks while maintaining a

false positive rate of less than 0.32%.

Trace2Inv: To facilitate this study, we have developed Trace2Inv, a scalable and extensible

invariant synthesis framework. Trace2Inv is designed to automatically derive invariants from

transaction traces through the use of trace and dynamic taint analysis. Trace2Inv leverages the

main feature of public blockchains, transparent databases of transactions histories containing

well-organized transaction execution data. Then, for each invariant template under consideration,

Trace2Inv employs a specialized inference algorithm to dynamically generate the corresponding

invariant based on historical transaction data.

Experimental Results:We evaluate Trace2Inv on a benchmark set of 42 smart contracts that have

previously fallen victim to security attacks. Our results show that properly constructed invariants

are effective in neutralizing security threats in 39 out of the 42 benchmark contracts.

In the course of our study, we categorized the 23 invariant templates into eight distinct groups

based on their underlying design principles: access control, time lock, gas control, re-entrancy, oracle,

storage, money flow, and data flow. Subsequently, we conducted a series of in-depth analyses to

compare the efficacy of invariants within each group. We also manually scrutinized the transactions

flagged by each invariant template, leading to several key findings:

• Finding 1: Certain invariant outperform others in terms of effectiveness. Within each invariant

group, we identified at least one invariant template that is quantitatively superior, neutralizing a

greater number of attacks while generating fewer false positives. See Section 6.1.

• Finding 2: Invariants remain effective even when attackers are aware of them in the majority

of cases. A common concern regarding runtime invariants is their potential vulnerability to

informed attackers. Our study reveals that selected invariants in the access control, time lock,

gas control, money flow, and data flow groups often directly counter critical elements of attack

strategies, such as flash loans and transaction atomicity. These invariants not only neutralize

the malicious transactions but also render the attack strategies unfeasible or non-profitable in

84.21% of cases. See Section 6.2.

• Finding 3:Normal users can possibly circumvent invariant guards, thereby mitigating the impact

on user experience. For example, in the case of data flow and money flow invariants, a user

can divide a large transaction into smaller segments to bypass the invariant guard in 80% false

positive instances. See Section 6.2.

• Finding 4: Combined invariants, formed through disjunction or conjunction, offer enhanced

security coverage with lower false positive rate. Different groups of invariants address different

attack scenarios. A combined invariant formed through conjunction can cover more attack

, Vol. 1, No. 1, Article . Publication date: April 2018.

Demystifying Invariant Effectiveness for Securing Smart Contracts 3

vectors, while one formed through disjunction may reduce the false positive rate, as malicious

attacks often exhibit multiple abnormal behaviors. See Section 6.3.

Contributions: This paper presents the following contributions:

• Invariant Inference: This paper conducts an extensive study of 23 invariant templates, catego-

rized into 8 distinct groups. Additionally, we introduce innovative techniques for the effective

inference of invariants across all studied templates from transaction history.

• Trace2Inv: This paper presents the design and implementation of Trace2Inv, a specialized

tool for smart contract trace analysis that is capable of inferring the invariants under study from

transaction history.

• Experimental Results: This paper presents the first systematic and quantitative evaluation of

the effectiveness of runtime invariants on 42 victim contracts in 27 real-world exploits with high

financial losses.

• Invariant Study Findings: Our research uncovers a series of critical insights that will inform

the future application and development of dynamic invariants.

2 Background

Blockchain is a distributed, immutable ledger technology that records transactions across multiple

nodes in a network. It employs cryptographic techniques to ensure data integrity and consensus

algorithms to maintain final consistency across all participating nodes. Smart contracts are self-

executing contracts with the terms of the agreement directly written into code. Deployed on

blockchains, they are immutable and transparent, enabling trustless transactions without the need

for intermediaries. Invariant guards (also called circuit breakers) are runtime checks around

contract invariant conditions that shall always hold during contract exeuction, aiming to secure

smart contracts on the fly.

Ethereum Virtual Machine (EVM) is the runtime environment for smart contract execution

on Ethereum. It is a Turing-complete virtual machine that interprets and executes the bytecode

compiled from contracts programmed in high-level language like Solidity.Gas is a unit of transaction

fee on Ethereum, used to quantify the computational efforts for the execution of EVM operations. It

is paid in Ether, the native cryptocurrency of Ethereum. Externally Owned Account (EOA) and

contract account are two types of accounts on Ethereum. EOAs are owned by normal users only

who have the right to send transactions to blockchains, while contract accounts are controlled by

the code deployed at a certain blockchain address and its code will be executed when the contract

function is invoked. ERC20 is a standard interface for fungible tokens on Ethereum. Almost all

valuable tokens on Ethereum are ERC20 tokens.

Common smart contract vulnerabilities include integer overflow/underflow [24], reentrancy [84],

dangerous delegatecall [83], etc. DeFi vulnerabilities are smart contract vulnerabilities that are

specific to DeFi applications. They are more subtle to detect and attacks usually involve more sophis-

ticated steps [97]. DeFi protocols are major targets for smart contract attacks, which experienced

$5.53 billion loss out of the overall $6.94 billion in recent blockchain incidents [11].

3 Motivating Example

In this section, we present a motivating example to illustrate how an exploit transaction behave

differently from other benign transactions in histories and how dynamically inferred transactions

can neutralize the exploit transaction to enhance smart contract security.

Exploit Transaction: Harvest Finance is a Decentralized Finance (DeFi) protocol deployed on

Ethereum to manage and auto-invest stable coins for users. On October 26, 2020, USDC and USDT

vaults of the Harvest Finance were exploited, causing a financial loss of about USD $33.8 million.

, Vol. 1, No. 1, Article . Publication date: April 2018.

4 Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long

Harvest Finance internally uses the market data of Curve, another DeFi stable coin trading protocol,

to determine the market prices of USDC and USDT. In the exploit transaction, the attacker distorts

the market of Curve to cause the Harvest Finance to make sub-optimal investment decisions.

Specifically, the attacker in the exploit transaction first borrows a large amount of digital assets

and uses the borrowed asset to buy USDC in Curve to inflate the USDC price in Curve. Then it

deposits 49.98M USDC into Harvest vault contract, which increases its USDC balance from 72.83M

to 122.51M. Due to the manipulated oracle price of USDC, Harvest vault contract erroneously mints

the attacker an inflated 51.46M fUSDC, which increases the total fUSDC supply from 127.58M

to 179.04M. The attacker then restores the USDC by selling the USDC in Curve, and redeems all

its fUSDC tokens for 50.30M USDC, yielding a 32k surplus compared to the initial deposit. This

redemption decreases the Harvest vault’s USDC balance from 122.81M to 72.51M and restores the

total fUSDC supply to its original value of 127.58M. Remarkably, this identical attack vector is

executed three times within one exploit transaction, consuming an unusually high gas count of

9, 895, 111, narrowly within the gas limit of 12, 065, 986 at the time.

Abnormal Behaviors:We identify four distinct dimensions of abnormal behavior: a high frequency

of user interactions with the Harvest vault contract, an exceptionally large volume of token flow,

abrupt fluctuations in the total supply of fUSDC tokens, and remarkably high gas consumption. To

better understand the abnormality of the exploit transaction, we collect and analyze all transaction

history of the Harvest vault contract up to the point of the exploit, as illustrated in Figure 1.

Fig. 1. Statistics of Transactions on Harvest USDC Vault Contract.

As shown in Figure 1, the last data point in each sub-figure, representing the exploit transaction,

consistently emerges as an outlier. Specifically, we have observed that the exploit transaction is the

first in the contract’s history to: (1) invoke the withdraw function from a contract rather than from

a user address, (2) call both deposit and withdraw functions 3 times within one transaction, (3)

consume more gas than any previous transaction, (4) withdraw more USDC from the protocol than

any other transaction, (5) elevate the total supply of fUSDC tokens to an all-time high.

Apply Inferred Invariants: The multi-dimensional abnormalities observed in the exploit transac-

tion highlight a stark departure from typical transactional behaviors. This divergence suggests the

feasibility of crafting and applying runtime invariants that are capable of flagging and blocking

transactions exhibiting such anomalous characteristics. For example, suppose we inferred and

, Vol. 1, No. 1, Article . Publication date: April 2018.

Demystifying Invariant Effectiveness for Securing Smart Contracts 5

enforced an invariant stating that the withdraw function may only be invoked by an Externally

Owned Account (EOA), the exploit transaction could be blocked. This is because the exploit relies

on a contract to execute complex logic designed to extract funds from the vault. Likewise, if we

inferred an invariant that the total supply of fUSDC should not surpass 160M, the profitability of

each round of the exploit would be significantly reduced, making it unable to cover the cost of

manipulating the market of Curve. Importantly, both invariants do not affect any normal user’s

transaction in histories, making them practical for real-world deployment.

Patch Smart Contracts Post-Deployment: Despite the immutable nature of deployed smart

contracts, developers still have different methods to alter their behavior post-deployment, allowing

for the addition or modification of invariant guards to shield against future exploits: (1) Upgradable
or Modular Contract Design: Upgradable contract standards such as ERC897 [19] and ERC1167 [18]

incorporate a proxy and an execution contract. The proxy contract delegates function calls to the

execution contract, whose address can be modified within the proxy, allowing developers to update

their smart contracts after deployment. Similarly, developers can segment a protocol into multiple

contracts as different modules. A primary contract interfaces with users, subsequently interact

with other modular contracts that handle distinct functionalities including invariant checking.

The addresses of modular contracts could be updated in the primary contract. (2) Application
Interface Adjustments: For deployed protocols with neither upgradable nor modular contract designs,

addressing vulnerabilities or enforcing invariants can still be achieved by launching a revised

protocol version and redirecting users through website or application interfaces.

Research Questions: Inspired by these observations and their implications for enhancing smart

contract security, we are motivated to explore the following research questions:

RQ1: Given the fact that exploit transactions often exhibit abnormal behaviors, what kinds of

invariant guards are most effective at stopping exploit transactions?

RQ2: If an exploit transaction or benign transaction violates invariant guards, how difficult is

it for an attacker or a regular user to bypass them?

RQ3: As multiple dimensions of abnormality may be associated with an exploit transaction,

how effective is the combination of different invariant guards in preventing exploits?

RQ4: Invariant guards require additional gas at runtime. What are the gas overheads of

different types of invariant guards?

RQ5: In terms of enhancing smart contract security, how does this work compare to other

state-of-the-art works in smart contract invariant generation or transaction anomaly

detection?

4 Invariants

Scope. Our research focuses on the invariants that can be used to distinguish between benign and

malicious transactions. Particularly, we focus on the invariants that are broadly applicable to most

common DeFi protocols. Invariants that are not for security purposes or highly specific to a single

protocol are outside the scope of our study.

Methodology. In our effort to build a comprehensive list of smart contract transaction guards, we

carried out an analysis of existing research papers on smart contract security [26, 29, 65, 73, 82].

Additionally, we conducted a qualitative study on both audit reports and source code of the

63 audited projects from ConsenSys, a leading smart contract auditing firm, from May 2020 to

March 2023 [9]. One author extracted 2181 enforced invariants from the audit reports and smart

contracts under audit by searching for keywords such as “require” and “assert”, after eliminating

any duplicates. The author then manually reviewed these invariants to extract templates for pattern

matching against remaining uncategorized invariants. This iterative process continued until no

, Vol. 1, No. 1, Article . Publication date: April 2018.

6 Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long

new templates could be extracted, and all remaining invariants were also deemed uncategorized for

specific reasons. This task took three weeks. Following this, another author reviewed and validated

both the categorized and uncategorized invariants for accuracy. In cases of disagreement, a third

author was consulted to resolve the issue. This review process lasted two weeks. All three authors

have over two years of smart contract security research experience.

Table 1. Qualitative Study Statistics Overview (The table’s left section presents key statistics from the

qualitative study. The middle section presents categorized instances across invariant categories. The right

section presents instances for various reasons why these invariants remain uncategorized.)

Statistics Count Category Count Reason Count

Audits 63 Access Control 283 Protocol Specific 1098

Code Repositories 49 Time Lock 158 Array Length Check 200

Invariants in Total 2181 Gas Control 2 Byte Operation 44

Invariants Categoried 826 Re-entrancy 12 Safe Math 13

Invariants Uncategorized 1355 Oracle Slippage 15

Special Storage 24

MoneyFlow 151

DataFlow 181

The above process resulted in 826 invariants under 8 categories, which comprise 37.87% of the

overall 2181 invariants, as shown in Table 1. Access Control and DataFlow are the top and second

common categories, respectively. The remaining invariants (62.13%) can not be categorized for

various reasons. The most common reason is that invariants are specific to a particular protocol.

For example, the invariant “require(validUniswapPath(bAsset))” checks whether “bAsset” is a valid
Uniswap path. However, this invariant can only apply to protocols involving Uniswap, thus limiting

its applicability. Other uncategorized invariants are used for checking array lengths, byte operations,

and arithmetic safety, which target specific data structures or operations. Such invariants of low-

level operations are hard to apply as security guards because they are unable to capture the

high-level user intentions.

Invariant Templates. Table 2 summarizes the results of our study. In the table, the Category
column groups invariant templates based on their application domains, such as Access Control,

Time Lock, etc. The ID column assigns a unique identifier to each invariant, while the Name column

provides a human-readable description. The Template column contains formal representation of

the invariant templates. Specifically, we use x to denote a contract state record maintained by

invariant templates. We use r to represent a local variable and _? as the undetermined parameter to

be inferred. The Parameter column shows the type of the undetermined parameter. The References
column lists the academic or industry sources of each invariant template.

4.1 Access Control

Many research papers have conducted extensive studies on the access control [65, 73]. Access

control governs the privileges associated with the transaction’s sender and origin, dictating which

addresses are authorized to invoke specific smart contract functions.

Note that transaction’s sender and origin could be different in Ethereum. The sender is the

address which invokes the contract function, while the origin is the address who initiates the entire

transaction. For example, if user address 𝑎 calls contract 𝑏 which in turn calls contract 𝑐 , during the

execution of 𝑐 , the sender address is 𝑏 while the origin address is 𝑎.

onlyEOA (EOA): This template verifies that the transaction’s origin matches the sender’s address,

thereby confirming it was initiated from an externaly owned user address (i.e., EOA address) rather

than a contract address. The intuition of this invariant template is that many attack strategies

involves multiple sophisticated interactions and therefore attackers often have to write their own

contracts. This template can neutralize such attack strategies.

isSenderOwner (SO) and isOriginOwner (OO): These templates restrict function execution to a

predefined address (owner?) that are registered as owners.

, Vol. 1, No. 1, Article . Publication date: April 2018.

Demystifying Invariant Effectiveness for Securing Smart Contracts 7

Table 2. Invariants. (We use x to denote a contract state variable, r to denote a local variable, and _? to denote

a hole in the template to fill during the synthesis. |_| denotes the absolute value.)
Category ID Name Template Parameter References

Access Control

EOA onlyEOA msg.sender = tx.origin -

[65, 73]

SO isSenderOwner msg.sender = owner? address

SM isSenderManager msg.sender =
⋃𝑛?

𝑖=1 mgri? addresses

OO isOriginOwner tx.origin = owner? address

OM isOriginManager tx.origin =
⋃𝑛?

𝑖=1 mgri? addresses

Time Lock

SB isSameSenderBlock xentrySdrBlk ≠ rexitSdrBlk -

[16]

OB isSameOriginBlock xentryOrgBlk ≠ rexitOrgBlk -

LU lastUpdate rcurtBlk − xlstBlk ≥ nbBlks? Integer [14, 15, 17]

Gas Control

GS GasStartUpperBound gasStart ≤ gas? Integer

motivated by Section 3

GC GasConsumedUpperBound gasStart − gasEnd ≤ gas? Integer

Re-entrancy RE nonReEntrant xlock = true - [82]

Oracle Slippage

OR OracleRange prLB? ≤ rnewPr ≤ prUB? Integer [13]

OD OracleDeviation | (rnewPr − xoldPr)/xoldPr | ≤ prDev? Integer [13, 26]

Special Storage

TSU TotalSupplyUpperBound xtotSup ≤ totSup? Integer [7, 12]

TBU TotalBorrowUpperBound xtotBor ≤ totBor? Integer [7, 12]

MoneyFlow

TIU TokenInUpperBound rtokenIn ≤ v? Integer [8, 12]

TIRU TokenInRatioUpperBound rtokenIn ≤ v? Integer [8]

TOU TokenOutUpperBound rtokenOut/btoken,adr ≤ v? Integer [8, 12]

TORU TokenOutRatioUpperBound rtokenOut/btoken,adr ≤ v? Integer [8]

DataFlow

MU MappingUpperBound map?[index?] ≤ v? Integer

[29]

CVU CallValueUpperBound msg.value ≤ v? Integer

DFU DataFlowUpperBound var? ≤ v? Integer

DFL DataFlowLowerBound var? ≥ v? Integer

isSenderManager (SM) and isOriginManager (OM): These templates only allow function calls from a

set of predefined manager addresses mgri?.

The access control invariants are typically inserted at the beginning of non-read-only functions

to immediately halt unauthorized attempts to alter contract state.

4.2 Time Lock

The Time Lock category of invariants serves as a temporal gating mechanism for smart contract

functions. This category contains three invariants.

isSameSenderBlock (SB) and isSameOriginBlock (OB): These templates limit the ability to execute

specific paired functions within the same block by the same sender or origin. For example, to

inhibit the same sender or origin address from invoking both the deposit and withdraw functions

consecutively within a single block. The intuition is that normal users are unlikely to initiate

multiple interactions with the same function in a few seconds, while malicious attackers often use

iterative loops to drain funds from a victim contract. To implement these invariants, a state variable

xentrySdrBlk (resp., xentryOrgBlk) stores a hashed combination of the transaction sender (resp., origin)

address and the current block number upon entry into a function (e.g., deposit). In the exit function

(e.g., withdraw), this stored value is compared against a freshly computed hash, stored in rexitSdrBlk

(resp., rexitOrgBlk), to ensure that they differ. These two invariants are designed to be updated at the

entry point of enter functions, i.e., functions that accept tokens from users. Then verified at the

start of exit functions, i.e., functions that are responsible for disbursing tokens back to users.

lastUpdate (LU): These template moderates the frequency with which a given function can be

invoked. It inserts guard at the beginning of non-read-only functions to mandate that a specified

number of blocks, denoted as nbBlks?, must elapse between two consecutive calls to the same

function. To enforce this, the state variable xlstBlk captures the timestamp of the last block where

, Vol. 1, No. 1, Article . Publication date: April 2018.

8 Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long

the function was invoked. Subsequent calls to the function check this stored timestamp against the

current block timestamp. The difference must meet or exceed the nbBlks? threshold.

4.3 Re-entrancy

The Re-Entrancy class of invariants tackles re-entrancy vulnerabilities in smart contracts. Repre-

sented by a single invariant template, nonReEntrant (RE), this category utilizes a state variable xlock

as a lock to prevent a transaction from entering a set of key functions of a contract more than once.

xlock will be set to𝑇𝑟𝑢𝑒 when a function is invoked and reset to 𝐹𝑎𝑙𝑠𝑒 when a function returns. The

RE guard is usually placed at the beginning of enter and exit functions of a contract to effectively

mitigate re-entrancy risks.

4.4 Gas Control

We propose the Gas Control category of invariants, motivated by the Harvest example. The

intuition is that malicious attacks tend to have significantly more complicated logic to consume

a large amount of gas. This class consists of two invariants: GasStartUpperBound (GS) and Gas-
ConsumedUpperBound (GC). As illustrated in Table 2, the GS invariant sets an upper limit on the

remaining gas at the entry point of a function, using the variable gasStart, whereas the GC invariant

sets an upper bound on the total gas consumed within the function by comparing the remaining

gas at the entry and exit point of a function, gasStart and gasEnd. These invariants are designed to

be placed at the beginning and end of non-read-only functions.

4.5 Oracle Slippage

The Oracle Slippage category mitigates risks tied to price oracles in decentralized finance (DeFi)

applications. The intuition of templates in this category is to detect potential price manipulation by

malicious attacks. This class includes two invariant templates:OracleRange (OR) andOracleDeviation
(OD). The OR template enforces a bounded range for the oracle prices. It utilizes two parameters,

prLB? and prUB?. TheOD template enforces a specific percentage deviation limit between the current

and last price provided by the oracle. The parameter prDev? is employed to define a permissible

deviation rate. These invariants are usually inserted right after the oracle is called.

4.6 Special Storage

The Special Storage class of invariant templates is concerned with constraining global storage

variables that are crucial to the contract’s state or logic. The intuition of this is after an exploit, the

contract’s state variables are often in an abnormal state. Thus, by constraining the state variables, we

can prevent the exploit. This class features two main invariants: TotalSupplyUpperBound (TSU) and
TotalBorrowUpperBound (TBU). The TSU invariant imposes an upper bound (denoted as totSup?) on

the contract’s totalSupply variable, while TBU sets a ceiling (denoted as totBor?) for the contract’s

totalBorrow variable which represents the total amount that can be borrowed from the contract.

To preserve the integrity of these important state variables, these invariants are inserted at the

functions that could modify the total supply or total borrow balances.

4.7 Money Flow(also called Token Flow)

The MoneyFlow class focuses on the flow of tokens within the smart contract, particularly

for functions involving token deposits and withdrawals. The intuition of these templates is that

malicious transactions tend to cause abnormally large amount of digital asset movement.

TokenInUpperBound (TIU) and TokenOutUpperBound (TOU): This template caps the number of

tokens flowing into or out of the contract each time by using an integer parameter v?.

TokenInRatioUpperBound (TIRU) and TokenOutRatioUpperBound (TORU): These templates constrain

the ratio of tokens flowing into or out of the contract, in relation to the contract’s current token

balance. They also employ an integer parameter v?.

, Vol. 1, No. 1, Article . Publication date: April 2018.

Demystifying Invariant Effectiveness for Securing Smart Contracts 9

To ensure effective governance of money flow, these invariants are placed within functions that

handle token transfers. The TIU and TIRU invariants are applied right before a token deposit, while

the TOU and TORU invariants are applied before a token withdrawal.

4.8 DataFlow

Smartian [29] leverages dynamic taint analysis to detect whether a block state can affect an

ether transfer. We extend their work to include all data flows affecting both ether and ERC20 token

transfers. This allows us to set constraints on values that could potentially be controlled by an

attacker to manipulate transfer amounts. The DataFlow category is subdivided into four specific

invariants, each designed to address a particular type of variables in the data flow.

MappingUpperBound (MU): This invariant focuses on values stored in the contract’s mapping data

structure, often representing a user’s property(e.g., a user’s share in a liquidity pool). To constrain

such user-specific values, we introduce a parameter v? to set an upper limit on these mappings.

CallValueUpperBound (CVU): Call values signify the amount of ether transferred during a function

call. Because these values directly affect the contract’s ether balance, we list it as a separate invariant.

We employ a parameter, denoted as v?, to cap the incoming ether to mitigate risks of abnormal or

malicious deposits.

DataFlowUpperBound (DFU) and DataFlowLowerBound (DFL): These invariants apply to all other

data flow variables, whether derived from external calls, storage loads, or calldata. To regulate these

variables, we use a parameter v?, setting either upper or lower bounds on these values to thwart

unauthorized manipulations.

The above invariants are inserted at the locations where data flow variables are first read. This

is often in functions that initiate token transfers. These invariants helps the contract ensure that

every value used for the calculation of token transfers is within the normal range.

5 Trace2Inv

We present Trace2Inv, our proposed framework to infer concrete invariants as introduced in

Section 4 for a given contract by analyzing its historical transaction traces. As shown in Figure 2,

Trace2Inv is structured into three modules: trace parser, invariant-related data extraction, and

invariant generation. The second module consists of three sub-modules: invocation tree analysis,

type inference, and dynamic taint analysis.

Fig. 2. An Overview of Trace2Inv

5.1 Trace Parser

A transaction’s trace data, denoted as structLogs, contains a sequence of executed EVM in-

structions and each instruction is a six-item tuple ⟨pc, op, gasLeft, gasCost, stack,memory⟩ that
includes the current program counter, the EVM opcode to execute, the amount of the remain-

ing gas and the gas consumed by current opcode execution, the full view of current EVM stack

, Vol. 1, No. 1, Article . Publication date: April 2018.

10 Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long

and memory. In trace parser, we reconstruct the functional context information from structLogs
as an invocation tree where each node represents an external function call and the node hi-

erarchy reflects the call-chain relationship. In particular, each tree node is a seven-item tuple

⟨addr, func, args, ret_data, ins, gasEntry, gasExit⟩ that records the current contract address, func-
tion name, corresponding arguments, returned data, the set of executed EVM instructions belonging

to the function, and the amount of the remaining gas at the entry and exit points of the function.

The invocation tree also contains metadata of the transaction, such as the transaction hash, the

block number, and the origin address. The trace parser leverages the target contract address to

isolate a selected trace segment corresponding to the target contract’s execution. This invocation

tree and the segmented trace data are then passed to the next module for further analysis.

5.2 Invocation Tree Analysis

Invocation tree analysis extracts invariant-related data exclusively from the invocation tree,

sufficient to collect data for access control, time lock, gas control, re-entrancy, oracle, and money flow
invariants. For instance, for the sender opcode, its results can be extracted from the invocation tree

by searching for parent node of the node of target contract. Moreover, the invocation tree can also

be used to identify locations of re-entrancy by capturing the nested and recursive calls to the target

contract. Oracle values are also obtained by traversing the invocation tree to locate calls to the

oracle. For money flow invariants, the required values can also be directly read from function calls

of transfering Ether/ERC20.

5.3 Type Inference

Type inference in Trace2Inv infers the type of storage slot when it is accessed. It is essential for

extracting data relevant to both special storage and data flow invariants, as accurately decoding

storage accesses with the correct type is necessary for these invariant categories. Decoding storage

slots is straightforward when they are listed in the contract’s storage layout, which is typically

the case for special storage invariants. However, the challenge arises with complex data structures

like mapping, often used in data flow invariants. These structures may reference storage slots not

explicitly present in the contract’s storage layout, which instead are computed through operations

such as sha3 and arithmetic functions. To solve this issue, Trace2Invmaintain a preimage dictionary

to track the key’s computation. When Trace2Inv encounters a sha3 opcode, the mapping positions

and slots are recorded. In Solidity, the first 32-bytes represent the mapping slot, and the next

32-bytes serve as the mapping position. In Vyper, these roles are reversed. Anytime a 64-byte sha3

hash is encountered, both its hash value and origin are recorded for future reference. When an sload
operation has a key that is not present in the storage layout, the preimage dictionary is consulted.

We recursively trace back the computation steps until we identify a mapping data structure that is

in the storage layout. Utilizing the types of the mapping data structure, we can infer the type of

storage slot accessed.

5.4 EVM-level Dynamic Taint Analysis

Dynamic taint analysis in Trace2Inv operates at the EVM opcode level to track data sources. It is

used to extract data for data flow invariants. Given a target contract, a corresponding trace segment,

and the invocation tree of the transaction, the taint analyzer collects all accessible information

pertaining to that contract. The analyzer also infers the data types of recorded tainted data or taint

sources. It accomplishes this by utilizing storage layouts and function ABIs thereby providing a

comprehensive, type-aware taint analysis tailored for smart contracts.

Taint Sources and Sinks. Table 3 lists the EVM instructions that our dynamic taint analyzer

identifies as sources and sinks for taint propagation. The table is divided into two categories: Sources
and Sinks. In the Sources category, we outline various sub-categories of taint sources, which include

, Vol. 1, No. 1, Article . Publication date: April 2018.

Demystifying Invariant Effectiveness for Securing Smart Contracts 11

Table 3. Instructions Defined as Sources and Sinks.

Category Opcodes and Locations

Sources

External Address Variables balance, extcodesize, extcodecopy, extcodehash,

Execution Context Variables origin, caller, address, codesize, selfbalance, pc, msize, gas

Call Data Variables callvalue, calldataload, calldatasize, calldatacopy

Return Data Variables returndatasize, returndatacopy

Block Variables blockhash, coinbase, timestamp, number, prevrandao, gasprice, gaslimit, chainid,

Storage sload(untainted)

Sinks

ether transfer address.call{value: uint256}

ether transferFrom callvalue

ERC20 transfer ERC20.transfer(address,uint256), ERC20 = token

ERC20 transferFrom ERC20.transferFrom(address1,address2,uint256), ERC20 = token, address2 = this

external address, execution context, call and return data, block variables, and storage. Opcodes like

balance, extcodesize, and sload are some of EVM opcodes that load new taint sources into the stack

or memory. They are key to the taint propagation as they introduce data that could potentially

influence other data points or outcomes in the contract.

On the other hand, the Sinks category highlights areas where tainted data may potentially

lead to undesired or vulnerable behaviors. These include operations like ether transfers and

ERC20 token transfers. Notably, the locations of these sinks are marked in bold text, such as

address.call{value : uint256} and transfer(address,uint256), emphasizing their critical role in

the taint analysis. Through these identified sources and sinks, our taint analyzer can effectively

trace the flow of sensitive information within the smart contract, providing a robust framework for

dynamic invariant inference and validation.

Bit Level Taint Propagation. Our taint analyzer maintains three distinct taint trackers: the stack

tracker, the memory tracker, and the storage tracker. Initially, all these trackers are empty. Each

tracker records taint information at the bit level, enabling granular analysis. For instance, sload
and sstore opcodes can only read and write 32-byte chunks, but the taint status is stored for each

individual bit. Our propagation of taints follows a set of rules based on prior work [64]:

R1: A value derived from one or more operands becomes tainted if any of the operands is tainted.

R2: For sload, if the storage slot loaded is tainted, the 32-byte stack entry receives the corresponding
taint information. If not, the sload acts as a new taint source and taints the stack entry. For sstore,
the 32-byte entry in the storage tracker is overwritten with the taint information from the stack.

R3: For instructions that read data from memory (e.g., mload), the result value is tainted if the read

data is tainted. The same logic applies for data loaded from storage using the sload opcode.

R4: In external calls, if the arguments in memory are tainted, the return data will also be tainted.

5.5 Invariant Generation

Using the extracted data by the previous module, the invariants’ inference module uses the

templates provided in Table 2 to generate concrete invariants where all holes are filled with concrete

values. The synthesis heuristic of generating invariants varies based on their category:

Hypothesis Testing: For EOA, SB, OB, and RE invariants, which act as assumptions regarding the

contract’s behaviors, no parameters need to be learned. If no data points violate these invariants

(i.e, all transactions in the training set satisfy the invariant), they are then directly applied to the

contract. Otherwise, the violated invariant is not applied.

Role-based Set Inference: For address-based invariants such as SO, SM, OO, and OM, we adopt a

set-based heuristic. We analyze the set of senders or origins associated with each function call. If

the size of this set exceeds a certain threshold (greater than 1 for owners or 5 for managers), we

consider it as a violation, and the corresponding invariant is not applied to that function.

Bound Deduction: Invariants in the categories of gas control, oracle slippage, special storage, and

money flow require learning the bounds of certain integer parameters. For those, the maximum

, Vol. 1, No. 1, Article . Publication date: April 2018.

12 Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long

and minimum values are chosen among the collected data points, provided the data contains at

least two distinct values. Particularly for the oracle slippage invariant (OR), an additional tolerance

of 20% is included for the upper and lower bounds, in accordance with prior research [88]. For TIRU
and TORU invariants, we filter outliers using a z-score threshold of 3.

Hybrid: Lastly, for the LU invariant, which deals with the block gap between calls to the same

function, we calculate the smallest block gap among the data points. If any two data points have a

block gap of zero, the invariant is not applied to the corresponding function. Otherwise, the smallest

block gap is used as the parameter for the invariant.

5.6 Trace2Inv Implementation

Trace2Inv’s input, transaction trace data, can be obtained from Ethereum via its API de-
bug_traceTransaction. Within the Trace Parser module, Trace2Inv queries EtherScan [5] to gather

additional transaction metadata not directly available in the trace data, such as block number

and transaction origin. This metadata provides the execution context crucial for generating cer-

tain invariants, like EOA and LU. Additionally, Trace2Inv also queries EtherScan [5] to fetch the

contract’s source code. The code is then compiled locally using the appropriate versions of the

Solidity [1] or Vyper [2] compilers to obtain the contract’s function ABI. With this ABI, Trace2Inv

leverages Slither [6] to decode function names, their arguments, and return values present in the

trace. Within Invariant Related Data Extraction Module, Trace2Inv compiles source code of target

smart contract, and reads the compiler’s output to obtain its storage layout. However, some old

versions of Solidity and Vyper compilers do not support this functionality. In such cases, Trace2Inv

fetches the storage layout from EVM Storage [20].

Several optimizations are incorporated into Trace2Inv implementation to enhance its perfor-

mance. Firstly, when fetching trace data from an Ethereum archive node, we optimize the process by

using batching RPC requests. This significantly reduces the overhead associated with individual

API calls. Secondly, we employ parallelization techniques to speed up the process of fetching and

parsing trace data. Specifically, multi-processing is used to concurrently handle different segments

of trace data, converting them into summaries in a more time-efficient manner. Thirdly, caching is

utilized to further optimize performance; the system caches query results from EtherScan, archive

nodes, and compilers. This minimizes redundant executions and API calls, thereby accelerating the

overall analysis process.

6 Evaluation

In this section, we aim to empirically answer the research questions raised in Section 3 by

applying invariant guards to real-world exploits on Ethereum Blockchain. We systematically

collected economic exploit incidents that cost greater than 300K USD financial loss from February

14, 2020, to August 1, 2022 on Ethereum Blockchain. Our benchmark is compiled from a diverse set

of sources including academic publications [28, 81], industry databases [25, 85], and open-source

GitHub repositories [30, 31]. It is worth noting that we exclude from our benchmarks any hacks

targeting individual user wallets, as these are primarily the result of private key leakage, rather

than protocol vulnerabilities. We also exclude hacks where the victim contracts are close-source, as

our manual analysis requires the source code of the victim contracts. Note that Trace2Inv can also

be applied to close-source contracts, as long as their function ABIs and storage layout are available.

Table 4 presents the benchmark dataset in our study. It comprises 27 hacks which cumulatively

resulted in financial losses exceeding 2 billion USD. The column FL denotes whether the exploit

involves flash loans, which require atomicity for the hack transactions. The column Type denotes
the type of victim contracts. For each exploit, two types of victim contracts are manually identified:

payload (P) refers to the protocol contract that eventually transfers abnormal amounts of tokens

, Vol. 1, No. 1, Article . Publication date: April 2018.

Demystifying Invariant Effectiveness for Securing Smart Contracts 13

Table 4. Benchmarks. (Exploit: the first exploit transaction during the incident. FL: whether the exploit

transaction uses flash loan. Contracts: the victim contracts involved in the exploit. Type: the type of the

contract, either interface (I) or payload (P). PL: the programming language of the contract, either Solidity (S)

or Vyper (V). History: the number of transactions in the history of the contract up to the exploit transaction.)

K
in
d

Victim Protocol Root Cause Date Loss Exploit FL Contracts Type PL History

B
r
i
d
g
e
s RoninNetwork keys compromised 22/03/29 624M [55] RoninNetwork I+P S 95345

HarmonyBridge keys compromised 22/06/24 100M [42] HarmonyBridge P S 32149

Nomad

zero hash as

a valid root
22/08/01 152M [47] Nomad I+P S 15630

PolyNetwork hash collision 21/08/10 611M [50] PolyNetwork I+P S 44509

L
e
n
d
i
n
g

bZx2 oracle manipulation 20/02/18 630K [36] ✓ bZx2 I+P S 711

Warp oracle manipulation 20/12/17 8M

Warp P S 148

[59] ✓
Warp_I I S 31

CheeseBank oracle manipulation 20/11/06 3.3M

CheeseBank_1 I+P S 615

CheeseBank_2 I+P S 593[37] ✓
CheeseBank_3 I+P S 557

InverseFi oracle manipulation 22/06/16 1.26M [46] ✓ InverseFi I+P S 7590

CreamFi1

cross contract

re-entrancy

21/08/30 18M

CreamFi1_1 I+P S 5

[38] ✓
CreamFi1_2 I+P S 58184

CreamFi2 oracle manipulation 21/10/27 130M

CreamFi2_1 I+P S 1270

CreamFi2_2 I+P S 898

CreamFi2_3 I+P S 261

[39] ✓

CreamFi2_4 I+P S 98

RariCapital1 read-only re-entrancy 21/05/09 10M [52] ✓ RariCapital1 I+P S 667

RariCapital2

cross contract

re-entrancy

22/04/30 80M

RariCapital2_1 I+P S 614

RariCapital2_2 I+P S 752

RariCapital2_3 I+P S 404

[53] ✓

RariCapital2_4 I+P S 776

XCarnival logic error 22/06/26 3.87M [60] XCarnival I+P S 342

Y
i
e
l
d
-
E
a
r
n
i
n
g

Harvest1 oracle manipulation 20/10/26

33.8M

[43] ✓ Harvest1 I+P S 2050

Harvest2 oracle manipulation 20/10/26 [44] ✓ Harvest2 I+P S 2161

ValueDeFi oracle manipulation 20/11/14 7.4M [57] ✓ ValueDeFi I+P S 295

Yearn forced investment 21/02/04 11M

Yearn P S 672

[61] ✓
Yearn_I I S 26688

VisorFi re-entrancy 21/12/21 8.2M [58] VisorFi I+P S 1693

UmbrellaNetwork underflow bug 22/03/20 700K [56] UmbrellaNetwork I+P S 59

PickleFi access control 20/11/21 20M [49] PickleFi I+P S 5439

O
t
h
e
r
s

Eminence logic error 20/09/29 7M [41] ✓ Eminence I+P S 20589

Opyn logic error 20/08/04 371k [48] Opyn I+P S 67

IndexFi logic error 21/10/15 16M [45] ✓ IndexFi I+P S 20641

RevestFi re-entrancy 22/03/27 11.2M

RevestFi P S 1635

[54] ✓
RevestFi_I I S 1463

DODO access control 21/03/08 700K [40] ✓ DODO I+P S 42

Punk access control 21/08/10 8.9M

Punk_1 I+P S 28

Punk_2 I+P S 42[51]

Punk_3 I+P S 37

BeanstalkFarms

flashloan assisted

commit

22/04/16 182M

BeanstalkFarms P V 5785

[35] ✓
BeanstalkFarms_I I S 306

out of the protocol, and interface (I) refers to the contract that is directly invoked by users to initiate

this abnormal transfer. The History column signifies the length of the transaction history up to the

exploit transaction for each victim contract.

6.1 RQ1: Effectiveness of Smart Contract Invariants

Experiment. In our first experiment, we utilize 23 pre-defined invariant templates, as detailed

in Section 4, to dynamically infer invariants from the transaction histories of 42 different victim

contracts, using the invariant generation methods as described in Section 5.5. We divide each

contract’s transaction history into two distinct sets: 70% of the transactions are allocated for

training set, while the remaining 30% are used as the test set.

To validate the effectiveness of the invariants dynamically inferred, we employ the transaction

trace data in the test set for evaluation. Utilizing the same parser and dynamic taint analyzer, we

obtain the invocation tree and data points pertinent to the particular invariant for each transaction.

, Vol. 1, No. 1, Article . Publication date: April 2018.

14 Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long

With these, we can evaluate whether a transaction violates any of the invariant guards in place. If a

transaction is blocked by these invariant guards, it serves as a positive example for the effectiveness

of the invariants. The validation process discriminates between different kinds of positives. Specifi-

cally, if the exploit transaction is successfully blocked by the invariant, it is categorized as a True
Positive. On the other hand, any non-exploit transactions blocked are counted as False Positives.

Table 5. Summarized Results of Invariants Effectiveness Evaluation.

AccessControl TimeLock GasCtrl Re Oracle Storage MoneyFlow DataFlow

E
O
A

S
O

S
M

O
O

O
M

S
B

O
B

L
U

G
S

G
C

R
E

O
R

O
D

T
S
U

T
B
U

T
I
U

T
O
U

T
I
R
U

T
O
R
U

M
U

C
V
U

D
F
U

D
F
L

Contracts Applied(42) 42 39 22 39 25 33 33 37 41 41 40 11 11 21 16 34 34 28 28 11 7 33 33

Contracts Protected(42) 23 6 7 5 9 11 13 12 30 23 2 7 6 8 12 9 22 5 22 1 2 23 1

Hacks Blocked(27) 15 4 6 3 8 9 11 10 18 15 2 5 4 7 6 8 17 5 15 1 2 18 1

Average FP(%) 0.2 0.6 1.8 0.5 2.6 0 0 2.4 2.4 2.6 0 22.3 4.6 7.9 12.6 0.7 0.4 0.8 1.4 1.5 0.7 1.6 0.9

Results. Table 5 provides a comprehensive summary of the effectiveness evaluation for the

invariants applied across various contract categories. The table lists several key metrics: the number

of contracts to which each type of invariant is applied, the number of contracts successfully

protected by these invariants, the number of hacks blocked, and the Average False Positive rate.

Among these, the row #Hacks Blocked stands out as the most crucial metric as it directly measures

the capability of each invariant to block financial exploits. The Average FP rate is also an important

metric as it quantifies the potential impact on regular users, reflecting the trade-off between security

and usability.

The applicability of the invariants varies across different categories. Access Control, Time Lock,

Gas Control, MoneyFlow, and DataFlow are universally applicable, protecting a broad range of

contracts and blocking numerous hacks. On the contrary, categories such as ReEntrancy, Oracle,

and Storage have narrower scopes, applicable only to specific types of contracts. For instance,

the ReEntrancy invariant we studied is effective only against common single-contract reentrancy

attacks. Other attack types, such as read-only or cross-contract reentrancy seen in CreamFi1,

RariCapital1, and RariCapital2, require more specialized invariants and are left as future work.

For true positives, in each category of Access Control, Time Lock, Gas Control, Data Flow, and

Money Flow, there is a standout invariant that proves most effective at blocking hacks: EOA for

Access Control, OB for Time Lock, GS for Gas Control, TOU for Money Flow, and DFU for Data

Flow. These invariants block the highest number of hacks in their respective categories.

For false positives, EOA, OB and TOU have an average FP rate below 0.4%, while GS and DFU

also have a low FP rate below 2.4%. This low rate indicates that these invariants have a small

impact on regular user transactions, thereby making them practical for real-world deployment. The

elevated false positive rates observed for OR, TSU, and TBU are primarily because of the fluctuating

nature of oracle values, total supply, and total borrow. Using upper-bound or range-based invariants

for these categories could inadvertently block all transactions once these values exceed a certain

threshold.

Answer to RQ1: EOA in Access Control, OB in Time Lock, GS in Gas Control, TOU in Money

Flow, and DFU in Data Flow shows the highest efficacy in blocking hacks while having a low

false positive rate.

6.2 RQ2: Study of False Positives and True Positives

Case Studies. In our second research question (RQ2), we explore the bypassability of the

invariants for both malicious hackers and normal users. Hackers will be informed when the

invariants are deployed in the target contract from the source code or the bytecode. It is natural to

ask whether malicious hackers can bypass the invariants and still gain profit if they realize the

existence of such invariant guards. We manually analyze every exploit transaction blocked by each

, Vol. 1, No. 1, Article . Publication date: April 2018.

Demystifying Invariant Effectiveness for Securing Smart Contracts 15

invariant (true positives) to check its bypassability. For each case, we assign one of three categories:

C1: the exploit is entirely blocked, and the hacker can no longer gain any profit; C2: the exploit is

partially blocked, resulting in significantly reduced profits for the hacker; and C3: the hacker can

still achieve profits similar to historical data, with some adjustments to their exploit code.

We also manually analyze the false positives generated by our invariants to assess their impact

on regular, benign users. For this, we sample up to 10 transactions from the false positives for each

invariant and manually evaluate their bypassability. We operate under the assumption that regular

users have the option to split transactions with large parameters into transactions with smaller

parameters (via DApp’s front-end), lower the gas for their transactions (via a wallet software), or

simply wait for some time to transact again after their transaction previously blocked. Based on

these criteria, we categorize the false positives into three groups: D1: the transaction is completely

blocked and cannot be bypassed through simple means; D2: the transaction can be bypassed by

breaking it down into smaller transactions; andD3: users can bypass the transaction by reducing the

gas or waiting for some time. For both true positives and false positives, two authors independently

labeled the bypassability results with the third one to resolve the divergence of views.

Table 6. Bypassability Results of Hacks Blocked (TPs) and Sampled Normal Transactions Blocked (FPs).

Access Control Time Lock GasCtrl Re Oracle Storage MoneyFlow DataFlow

E
O
A

S
O

S
M

O
O

O
M

S
B

O
B

L
U

G
S

G
C

R
E

O
R

O
D

T
S
U

T
B
U

T
I
U

T
O
U

T
I
R
U

T
O
R
U

M
U

C
V
U

D
F
U

D
F
L

T
P
s

C1 15 4 6 3 8 2 10 5 0 15 2 3 2 2 3 7 12 2 7 1 1 12 1

C2 0 0 0 0 0 0 0 0 1 0 0 2 2 5 3 0 0 2 8 0 0 0 0

C3 0 0 0 0 0 7 1 5 17 0 0 0 0 0 0 1 5 1 0 1 1 6 0

F
P
s

D1 10 10 10 10 10 0 0 1 0 10 0 10 10 10 10 0 0 0 1 10 0 4 10

D2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10 9 0 8 6 0

D3 0 0 0 0 0 0 0 9 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Results. Table 6 offers a comprehensive view of how both attackers and normal users can

potentially bypass the invariant guards. The table is divided into two major rows: True Positives

(TPs) and False Positives (FPs). For TPs, we have further categorized the effectiveness of the invariant

guards as C1, C2, and C3, signifying the level of success the hacker has in bypassing the guard. For

FPs, we use tags D1, D2, and D3 to illustrate how easily normal users can circumvent these guards.

Some invariant categories can easily be bypassed by both hackers and normal users. For example,

GS, though it blocks the most hacks in RQ1, can be easily bypassed by changing the gas passed

to the specific function call of the target contract. Some other invariants, such as GC, cannot be

bypassed by either hackers or normal users. EOA also fall into this category. OB interestingly has

no false positives, but in practice it is very hard to be bypassed by normal users.

For certain invariants such as TOU and DFU, there is a dichotomy where they block exploit

transactions effectively but normal users can still bypass them. They make certain exploits impossi-

ble by preventing hackers from reaching specific contract states required for profitability. Regular

users, who usually do not attempt to manipulate contract states for exploitative gains, can often

bypass these invariants by simply splitting their larger transactions into smaller ones. Though this

results in more transactions and higher gas costs, it does not impede their primary objectives.

Answer to RQ2: Most of invariants behave similarly for both hackers and normal users, either

being easily bypassed (such as GS) or not bypassable at all (such as EOA, OB, GC). Some invariants

could block hackers while allowing normal users to circumvent them (such as TOU and DFU).

6.3 RQ3: Effectiveness of Combination of Invariants

Experiment. In RQ3, we look into the effectiveness of various invariant combinations in

safeguarding smart contracts. Building on insights from RQ1 and RQ2, we identify a set of five

effective invariants (EOA, SO, GC, TOU, and DFU), replacing GS with GC considering that it can be

easily bypassed. Our aim is to explore whether these invariants, each effective in its own domain,

, Vol. 1, No. 1, Article . Publication date: April 2018.

16 Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long

can be combined to provide a more robust defense against contract exploits while maintaining a

low false positive rate.

After investigating the exploits blocked by each of these five invariants in RQ1, we have observed

that (1) EOA and GC can uniquely block 2 and 1 hacks, respectively; (2) no exploits can uniquely

be blocked by OB, TOU or DFU; (3) all exploits blocked by MFU can be blocked by DFU.

We then designed an experiment that combines four invariants—EOA, GC, OB, and DFU—each

chosen for its efficacy in blocking hacks and resistance to bypass. We consider two logical operators:

conjunction (∧) and disjunction (∨). By enumerating all logical combinations of invariants up to a

length of 4, we can evaluate their collective True Positives (TPs) and False Positives (FPs) based on

two metrics: (1) their ability to block the maximum number of hacks (2) their ability to block the

maximum number of hacks while maintaining a false positive rate below 1%.

Results. Table 7 shows the validation results of the best combined invariants based on metrics

Table 7. Validation Results of the Best Combined Invariants.

EOA ∧ GC ∧ DFU EOA ∧ (OB ∨ DFU)

Contracts Applied 42 C1 20 # Contracts Applied 42 C1 18

Contracts Protected 35 C2 0 # Contracts Protected 31 C2 0

Hacks Blocked 23 C3 3 # Hacks Blocked 20 C3 2

Average FP rate(%) 3.99 D1 8 Average FP rate(%) 0.32 D1 10

D2 2 D2 0

D3 0 D3 0

(1) and (2), using the same evaluation methodology as described in RQ1 and RQ2.

The combination EOA ∧ GC ∧ DFU emerges as the most effective one according to the metric

(1). This result is intuitive, as this combined invariant effectively reverts a transaction when any

one of EOA, GC, or DFU is violated. Our early observation that EOA and GC can uniquely block 2

and 1 hacks, also justifies their inclusion in this composite invariant. However, this comes at the

expense of a higher false positive rate of 3.99%.

The combination EOA ∧ (OB ∨ DFU) maintains an impressively low false positive rate of 0.32%,

making it superior based on the metric (2). Its efficacy is due in part to OB’s inherent low false

positive rate and to the complementary nature of OB and DFU in the context of token transfer

functions. Both combined invariants are better at stopping hacks than individual invariants. This is

because they can work together in different parts of the smart contract code, making it more likely

they will catch harmful actions. Sometimes a function in the contract may only be protected by

one invariant, if other invariants are not applicable to this function. In those cases, both hackers

and normal users may still find a way to bypass the security measures.

Answer to RQ3: The invariant guards studied and generated by Trace2Inv are complimentary

and their combinations are promising to be more effective on contract protection and hack

prevention with lower false positive rate.

6.4 RQ4: Gas Overhead of Invariant Guards

Experiment. In our next research question, RQ4, we examine the gas overhead incurred by

the deployment of individual and combined invariants. We select four benchmark contracts that

represent different kinds of protocols and programming languages. The target smart contract is

instrumented with the generated invariants studied in RQ3 and then compiled by either a Solidity

or Vyper compiler. This process is carried out for both the original and the instrumented versions

of the contract. The compiler returns an estimate of the gas consumption for each function in the

contract, allowing us to calculate the gas overhead for each inserted invariant by comparing the

two versions. Subsequently, we replay all transactions within the test set on these instrumented

, Vol. 1, No. 1, Article . Publication date: April 2018.

Demystifying Invariant Effectiveness for Securing Smart Contracts 17

contracts. For each transaction, we add the corresponding gas overhead when the transaction

reaches where the invariants are inserted.

The total gas overhead is calculated as,
Total Gas After Instrumentation−Total Gas Before Instrumentation

Total Gas Before Instrumentation
. This

provides a quantitative measure of the computational burden imposed by the invariant guards,

aiding in the cost-benefit analysis of their deployment.

Table 8. Runtime Gas Overhead (%) of Different Types of Invariant Guards.

Kind Benchmark Compiler EOA OB GC DFU EOA ∧ GC ∧ DFU EOA ∧ (OB ∨ DFU)

Bridge HarmonyBridge Solidity 0.5.17 0.04 0.52 0.02 0.01 0.07 0.56

Lending Harvest1 Solidity 0.5.18 0 1.46 0.01 0.01 0.02 1.46

Yield-Earning CreamFi2_1 Solidity 0.5.17 0 2.55 0 0 0.01 2.55

Others BeanstalkFarms Vyper 0.2.8 0 0.53 / 0 0 0.53

Results. Table 8 lists four benchmark contracts and shows the runtime gas overhead incurred by

the application of various individual and combined invariant guards. Specifically, the OB invariant

introduces the highest gas overhead among all individual invariants. This is attributable to the fact

that OB utilizes a new contract state variable in storage to store its hash and, therefore, necessitates

a storage load or store each time it is executed. In contrast, other invariants do not require additional

storage variable access. DFU has the least impact on gas overhead, largely because it merely sets

an upper bound on already accessed values, whereas other invariants typically fetch opcode results

for comparison. The combined invariants do not have a gas overhead significantly higher than the

individual invariants. This is because the combined invariants do not access new variables, but

rather utilize the existing variables to perform additional comparisons.

Answer to RQ4: The gas overheads of these invariant guards are as low as 0% - 2.55%.

6.5 RQ5: Comparative Analysis with Other State-of-the-art (SOTA) Tools

Experiment 1: Compare with InvCon+, a SOTA invariant mining tool. InvCon+ [75],

a direct follow-up work of InvCon [72], leverages transaction pre/post conditions to generate

invariants aimed at mitigating real-world smart contract vulnerabilities. InvCon only infers likely

invariants and only produces raw results from Daikon [34]. In contrast, InvCon+ generates accurate

invariants that are verified against the contract’s transaction history. Similar to Trace2Inv, InvCon+

takes a target contract and its transaction history as inputs and automatically generates invariants.

We contacted authors of InvCon+ and obtained the InvCon+ tool. We then applied it on our

benchmarks in Table 4. Following the same methodology of RQ1 and RQ3, we used 70% of the

transaction history for training, testing the generated invariants on the remaining 30%.

Experiment 2: Compare with TxSpector, a SOTA transaction attack detection tool.

Though Trace2Inv is not primarily designed for transaction anomaly detection, we explored its

ability to flag attack transactions. TxSpector [94], a SOTA framework for transaction attack detec-

tion, identifies attacks using eight detectors: re-entrancy, unchecked call, failed send, timestamp

dependence, unsecured balance, misuse of origin, suicidal, and gas-related re-entrancy. TxSpector

takes a transaction as input and automatically flags it if it is identified as an attack. We obtained

TxSpector from its public repository
1
, and applied it to the testing set of our benchmarks. Same as

what is used in TxSpector paper [94], we assigned a timeout of 60 seconds for all benign transactions.

For hack transactions which are usually more complex, we assigned a timeout of 2 hours.

Results. As shown in Table 9, InvCon+ was applied to 27 contracts. The other 15 contracts in

our benchmarks, which utilize a proxy-implementation pattern as described in Section 3, could

not be processed by InvCon+ due to its requirement for contract logic and storage to be unified.

InvCon+ encountered errors for 16 benchmarks when processing their transaction histories, and

1
https://github.com/OSUSecLab/TxSpector

, Vol. 1, No. 1, Article . Publication date: April 2018.

18 Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long

Table 9. Comparison among Trace2Inv, InvCon+, and TxSpector. (TxSpector only takes transactions as input,

thus it does not have statistics about contracts.)

Trace2Inv InvCon+ TxSpector

Contracts Applied(42) 42 27 -

Contracts Protected(42) 31 8 -

Hacks(27) 20 Blocked 6 Blocked 7 Detected

Average # Invariants per Contract 12 2054 -

Average FP rate(%) 0.32 73.55 15.30

successfully generated invariants for 11 victim contracts. These invariants secured 8 contracts

across 3 hack incidents (Cheesebank, Punk, Warp). However, the enhanced security comes at a

substantial cost: an average of 2054 invariants per contract and a false positive rate of 73.55% if

directly applying all of the invariants. This makes InvCon+ not suitable for practical application

without significant human efforts to filter out unproductive invariants.

TxSpector correctly identified 7 out of 27 transactions as malicious. For the remaining 20 hack

transactions, TxSpector experienced a timeout on 1 transaction and failed to flag 19 transactions.

Although TxSpector reliably identifies single contract re-entrancy attacks, it struggles with detecting

other attack types such as cross-contract re-entrancy and oracle manipulation. Additionally, it

inaccurately marked 15.30% of benign transactions as malicious, compromising its real-world utility.

In contrast, Trace2Inv, utilizing the invariant template EOA ∧ (OB ∨ DFU), effectively secured

31 out of 42 victim contracts across 20 hacks with a remarkably low false positive rate of just

0.32%. Moreover, Trace2Inv demonstrated enhanced practicality by generating an average of only

12 invariants per contract, significantly outperforming InvCon+ in terms of real-world viability.

Unlike TxSpector, which only detects hacks, Trace2Inv not only blocks a greater number of hacks

but also achieves this with a significantly lower false positive rate, indicating its effectiveness in

anomaly detection as well.

Identifying New Exploits: In the development of Trace2Inv, we surprisingly found two

previously unreported exploit transactions, earlier than any reported exploit transactions against

RariCapital1
2
and Yearn,

3
respectively. These two transactions were initially reported by Trace2Inv

as false positives, because they were not flagged as attacks when we collected benchmarks. However,

after manual investigation, we found that these two transactions caused a huge financial loss and

the addresses of the originators of the two transactions are flagged on EtherScan as “Rari Capital

Exploiter” and “Yearn (yDai) Exploiter”, respectively. Thus, we believe these are indeed exploit

transactions. This discovery further underscores Trace2Inv’s potential in unveiling new exploits.

Answer to RQ5: Trace2Inv outperforms current SOTA works on smart contract invariant

mining and transaction attack detection in terms of both practicality and accuracy.

6.6 Threats to Validity

The internal threat to validity mainly lies in human mistakes in the study. Specifically, when

analyzing the possibilities of bypassing invariant guards, we may miss some possible bypassing

strategies. Tomitigate this threat, two of the authors independently labeled the results, andwhenever

a conflict arises, it was resolved by the third author. All authors have more than two years’ smart

contract security analysis experience.

The external threat to validity lies in the subject selection of our study. The type of hacks studied

in our experiments may be limited and biased. To mitigate this issue, we systematically collected

all the well-known hacks from a diverse set of sources and finally included 27 representative hacks

2
https://etherscan.io/tx/0x4764dc6ff19a64fc1b0e57e735661f64d97bc1c44e026317be8765358d0a7392

3
https://etherscan.io/tx/0x59faab5a1911618064f1ffa1e4649d85c99cfd9f0d64dcebbc1af7d7630da98b

, Vol. 1, No. 1, Article . Publication date: April 2018.

https://etherscan.io/tx/0x4764dc6ff19a64fc1b0e57e735661f64d97bc1c44e026317be8765358d0a7392
https://etherscan.io/tx/0x59faab5a1911618064f1ffa1e4649d85c99cfd9f0d64dcebbc1af7d7630da98b

Demystifying Invariant Effectiveness for Securing Smart Contracts 19

in our benchmark. These attacks attribute to many different root causes, including compromised

keys, hash collisions, oracle manipulation, etc. Their affected contracts are from diverse application

domains, e.g., bridges, lending, and yield-earning. Therefore, we believe they are representative

and can be used to evaluate the effectiveness of the invariant guards.

7 Discussion

This study contributes valuable insights into the application and effectiveness of invariant-based

security measures across different types of decentralized finance (DeFi) protocols. In this section, we

discuss some key takeaways and their implications for future research and practical applications.

Choosing Complementary Invariants. Our findings underscore the importance of selecting a

diverse set of invariants to safeguard smart contracts. Each type of invariant serves as a unique

line of defense against abnormal transactions. For instance, invariants in time lock category act as

temporal barriers, making it difficult for attackers to execute key functions like withdraw multiple

times within a single transaction. On the other hand, invariants in data flow and money flow

categories limit the token amounts that can be withdrawn in one function call. By employing a

combination of these invariants, developers force attackers to only withdraw a controlled amount

of tokens per transaction, which may disrupt the underlying logic that the attack relies on, thereby

blocking the attack.

Dynamic Parameter Updates for Invariants. Another key insight from our research is the

need for dynamic parameter updates for certain types of invariants. For invariants that are tied to

variables that change cumulatively over time—like oracle prices or storage values—parameters in

the invariants can quickly become obsolete. If such an invariant is violated, it could lead to a cascade

of failed transactions, causing a high False Positive rate. Therefore, it is crucial for developers to

continuously monitor these variables and adjust the invariant parameters. Conversely, for invariants

related to independent actions like token transfers, the parameters can remain relatively stable, as

user behavior in these domains tends to be stable over time.

Mitigating Flash Loan Attacks. Our benchmarks indicate a significant prevalence of flash loan-

based exploits, with 17 out of 27 examined exploits leveraging flash loan. Flash loans enable users

to borrow large amounts of tokens for the duration of a single transaction, providing attackers

with substantial resources to execute complex exploits. Our approach of enforcing invariants can

effectively mitigate the risk posed by flash loans. Many effective invariants such as EOA and OB

block flash loan attacks by enforcing attackers to split their transaction into multiple ones. Without

flash loan, the attacker would need to use their own assets to execute the attack with the uncertainty

of other bots’ backrunning between the hackers’ transactions. This raise not only the technical but

also financial barriers to successful attacks.

The Impact of Invariants on Contract Composability. Incorporating invariant guards into

smart contracts might limit their adaptability and integration with DeFi protocols. However, our

study in Section 4 reveals that many invariants stem from existing DeFi protocol requirements,

underscoring the preference of developers for security benefits over flexibility. Moreover, our

findings in RQ2, as discussed in Section 6, show that certain invariants, like OB, has almost no false

positives, while others, such as TOU and DFU, can possibly block malicious transactions while

allowing normal users to circumvent them. These insights imply that with careful selection and

understanding of target user behaviors, developers can devise invariant guards that minimally

affect contract composability.

, Vol. 1, No. 1, Article . Publication date: April 2018.

20 Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long

8 Related Work

Smart Contract Invariants. There exist several works studying smart contract invariants [32,

71, 73, 98]. Zhou et al. [98] introduces 6 invariants to defend against different hacks. Cider [71]

leverages deep reinforcement learning on smart contract source code to learn invariants that

prevent arithmetic overflows. SPCon [73] utilizes function callers in past transactions of a contract

to recover a likely access control model. More recently, Over [32] infers safety constraints on oracles

from the contract’s source code and the history of oracle updates. Compared to the above works,

Trace2Inv studies a broader range of invariants and evaluates their effectiveness and bypassability

against real-world attacks.

Smart Contract Security Analysis. There are a large body of works on detection of smart contract

security vulnerabilities [3, 4, 27, 62, 63, 67, 68, 76, 86, 87, 89, 90, 92]. Oyente [76] is one of the earliest

symbolic execution-based security tools to detect reentrancy, mishandled exception, transaction
order dependence, and timestamp dependence. It has been extended to detect greedy, prodigal and
suicidal contracts [80]. Other well-known symbolic-execution tools also include Manticore [3]

and Mythril [4] which are able to find other types of vulnerabilities, e.g., dangerous delegatecall,
integer overflow, etc. Slither [6] is another popular static security analysis tool for smart contracts.

It performs data flow and control flow dependency analysis to support up to 87 bug detectors

including dangerous strict equality and the dangerous usage of tx.origin. Other static analyzers include
SmartCheck [87] mainly targeting bad coding practices, Securify [86] and Ethainter [27] for finding

information-flow vulnerabilities. Moreover, many dynamic analysis tools [21, 67, 74, 79, 89, 90, 92]

were proposed to detect smart contract vulnerabilities through fuzzing and model-based testing.

There is a large body of work on the detection and exploitation of DeFi vulnerabilities [23, 33,

66, 69, 81, 91, 93]. Qin et al. [81] and Zhou et al. [96] formulated oracle price manipulation and

arbitrage as an optimization problem to identify attack opportunities maximizing attacker’s profit.

Wu et al. [91] identified several oracle price manipulation patterns from on-chain transaction data

to detect real-world attacks while Kong et al. [69] detects price manipulation vulnerabilities in

DeFi applications through inter-contract taint analysis. Also, Gudgeon et al. [66] showcased how

to explore flashloan to conduct governance attack. Baum et al. [23] surveyed the state-of-the-art

mitigation techniques for front-running in DeFi, such as fair ordering, batching of blind inputs,

private and secrete state. Interestingly, several works [33, 93, 95] explored front-running as a

defense mechanism against smart contract exploits. Different from the over-generalized security

patterns used by the existing tools, our invariant guards capture the subtle semantic constraints of

specific smart contracts.

RuntimeVerification andValidation.Runtime verification is a light-weight verification approach

that monitors the operation of a running system, detects and possibly reacts to unsatisfied observed

behaviors against certain properties. Runtime verification can be used for validation purpose where

the runtime checks are on properties from users’ expectation rather than from formal program

specifications [77]. Sereum [82] is a general runtime validation framework to protect deployed

contracts against reentrancy attacks. Sereum extends Ethereum by introducing the detectionmodule

for monitoring attacks rooted in different types of reentrancy. Solythesis [70] provides a source-to-

source compiler that facilitates the runtime validation of smart contracts. Specifically, Solythesis

takes as inputs a smart contract code and a user specified invariant. It generates an enhanced

smart contracts that reject all unexpected contract transactions. Additionally, the overhead of

the runtime validation approach is shown to be quite small. Trace2Inv distinguishes itself from

the above-mentioned approaches in that the existing approaches only offer limited protection for

several fixed types of attacks. In contrast, Trace2Inv is not bound to specific attack types and has

been proven effective in mitigating many sophisticated attack vectors.

, Vol. 1, No. 1, Article . Publication date: April 2018.

Demystifying Invariant Effectiveness for Securing Smart Contracts 21

9 Conclusion

In this paper, we present the first comprehensive study of the effectiveness of practical invariant

guards on preventing DeFi smart contract attacks. Our large-scale experiments on real-world DeFi

hacks demonstrate that the inferred invariant guards are very effective in stopping the existing

hacks, but some of the invariant guards can be bypassable by experienced attackers. We also found

combining multiple invariants can be more effective than individual invariants with a lower false

positive rate.

10 Data Availability

The experimental data of this paper is available on our website [22]. The artifact will be open

sourced after the paper is accepted.

References

[1] 2018. Solidity. https://solidity.readthedocs.io/en/v0.5.1/.

[2] 2018. Vyper. https://docs.vyperlang.org/en/stable/.

[3] 2019. Manticore. https://github.com/trailofbits/manticore. Symbolic Execution Tool for Smart Contracts.

[4] 2019. Mythril. https://github.com/ConsenSys/mythril. A Security Analysis Tool for EVM Bytecode.

[5] 2020. Etherscan. https://etherscan.io.

[6] 2021. Slither. https://github.com/crytic/slither. The Solidity Source Analyzer.

[7] 2023. Aave V3 Protocol Contract. https://github.com/aave/aave-v3-core/blob/27a6d5c83560694210849d4abf09a09dec

8da388/contracts/protocol/libraries/logic/ValidationLogic.sol#L83.

[8] 2023. balancer Protocol Contract 1. https://github.com/balancer/balancer-core/blob/f4ed5d65362a8d6cec21662fb6eae2

33b0babc1f/contracts/BPool.sol.

[9] 2023. Consensys Audits. https://consensys.io/diligence/audits/.

[10] 2023. DeFiLlama. https://defillama.com/. DeFi Overview.

[11] 2023. DeFiLlama. https://defillama.com/hacks. Total Value Hacked in DeFi.

[12] 2023. dForce Protocol Controller Contract. https://github.com/dforce-network/LendingContractsV2/blob/55da73310d

196849213da2e2357572afdb6d663a/contracts/Controller.sol.

[13] 2023. dForce Protocol PriceOracleExOpt Contract. https://github.com/dforce-network/xswap/blob/2f86672fc4e2b1b12

d18fcbeb19aee4ee8173b4c/contracts/Mockup/PriceOracleExOpt.sol.

[14] 2023. Fei Protocol Audit. https://consensys.net/diligence/audits/2021/09/fei-protocol-v2-phase-1/.

[15] 2023. Fei Protocol Contract. https://github.com/fei-protocol/fei-protocol-core/blob/be704ad65a84edfafcc09e3e5fa788

65f6a1de18/contracts/pcv/balancer/BalancerLBPSwapper.sol#L281.

[16] 2023. idle Finance Contract. https://github.com/Idle-Labs/idle-tranches/blob/8740aa6847391a1ee1cb9ca222558643de37

f556/contracts/IdleCDO.sol#L1014.

[17] 2023. mStable Contract. https://github.com/mstable/mStable-contracts/blob/master/contracts/savings/SavingsManag

er.sol#L232.

[18] 2024. ERC-1167: Minimal Proxy Contract. https://eips.ethereum.org/EIPS/eip-1167.

[19] 2024. ERC-897: DelegateProxy. https://eips.ethereum.org/EIPS/eip-897.

[20] 2024. EVM-Storage. https://evm.storage/.

[21] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks on Ethereum smart contracts (SoK). In

International conference on principles of security and trust. Springer, 164–186.
[22] Anonymous authors of this paper. 2023. Website of this paper. https://sites.google.com/view/trace2inv/home.

[23] Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen, and Lorenzo Gentile. 2022. Sok:

Mitigation of front-running in decentralized finance. In International Conference on Financial Cryptography and Data
Security. Springer, 250–271.

[24] Blockchain-Projects. 2020. Overflow Attack in Ethereum Smart Contracts. https://blockchain-

projects.readthedocs.io/overflow.html.

[25] BlockSec. 2023. SlowMist Medium Articles. https://blocksecteam.medium.com/.

[26] Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry, Steve Ellis, Ari Juels, Farinaz Koushanfar, Andrew

Miller, Brendan Magauran, Daniel Moroz, et al. 2021. Chainlink 2.0: Next steps in the evolution of decentralized oracle

networks. Chainlink Labs 1 (2021), 1–136.
[27] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smaragdakis. 2020. Ethainter: a smart

contract security analyzer for composite vulnerabilities. In Proceedings of the 41st ACM SIGPLAN Conference on

, Vol. 1, No. 1, Article . Publication date: April 2018.

https://solidity.readthedocs.io/en/v0.5.1/
https://docs.vyperlang.org/en/stable/
https://github.com/trailofbits/manticore
https://github.com/ConsenSys/mythril
https://etherscan.io
https://github.com/crytic/slither
https://github.com/aave/aave-v3-core/blob/27a6d5c83560694210849d4abf09a09dec8da388/contracts/protocol/libraries/logic/ValidationLogic.sol#L83
https://github.com/aave/aave-v3-core/blob/27a6d5c83560694210849d4abf09a09dec8da388/contracts/protocol/libraries/logic/ValidationLogic.sol#L83
https://github.com/balancer/balancer-core/blob/f4ed5d65362a8d6cec21662fb6eae233b0babc1f/contracts/BPool.sol
https://github.com/balancer/balancer-core/blob/f4ed5d65362a8d6cec21662fb6eae233b0babc1f/contracts/BPool.sol
https://consensys.io/diligence/audits/
https://defillama.com/
https://defillama.com/hacks
https://github.com/dforce-network/LendingContractsV2/blob/55da73310d196849213da2e2357572afdb6d663a/contracts/Controller.sol
https://github.com/dforce-network/LendingContractsV2/blob/55da73310d196849213da2e2357572afdb6d663a/contracts/Controller.sol
https://github.com/dforce-network/xswap/blob/2f86672fc4e2b1b12d18fcbeb19aee4ee8173b4c/contracts/Mockup/PriceOracleExOpt.sol
https://github.com/dforce-network/xswap/blob/2f86672fc4e2b1b12d18fcbeb19aee4ee8173b4c/contracts/Mockup/PriceOracleExOpt.sol
https://consensys.net/diligence/audits/2021/09/fei-protocol-v2-phase-1/
https://github.com/fei-protocol/fei-protocol-core/blob/be704ad65a84edfafcc09e3e5fa78865f6a1de18/contracts/pcv/balancer/BalancerLBPSwapper.sol#L281
https://github.com/fei-protocol/fei-protocol-core/blob/be704ad65a84edfafcc09e3e5fa78865f6a1de18/contracts/pcv/balancer/BalancerLBPSwapper.sol#L281
https://github.com/Idle-Labs/idle-tranches/blob/8740aa6847391a1ee1cb9ca222558643de37f556/contracts/IdleCDO.sol#L1014
https://github.com/Idle-Labs/idle-tranches/blob/8740aa6847391a1ee1cb9ca222558643de37f556/contracts/IdleCDO.sol#L1014
https://github.com/mstable/mStable-contracts/blob/master/contracts/savings/SavingsManager.sol#L232
https://github.com/mstable/mStable-contracts/blob/master/contracts/savings/SavingsManager.sol#L232
https://eips.ethereum.org/EIPS/eip-1167
https://eips.ethereum.org/EIPS/eip-897
https://evm.storage/
https://sites.google.com/view/trace2inv/home
https://blocksecteam.medium.com/

22 Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long

Programming Language Design and Implementation. 454–469.
[28] Zhiyang Chen, Sidi Mohamed Beillahi, and Fan Long. 2022. FlashSyn: Flash Loan Attack Synthesis via Counter

Example Driven Approximation. arXiv preprint arXiv:2206.10708 (2022).
[29] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and Sang Kil Cha. 2021. Smartian: Enhancing

smart contract fuzzing with static and dynamic data-flow analyses. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 227–239.

[30] Many Contributors. 2023. DeFi Hacks Reproduce - Foundry. https://github.com/SunWeb3Sec/DeFiHackLabs.

[31] Many Contributors. 2023. Learn EVM Attacks. https://github.com/coinspect/learn-evm-attacks.

[32] Xun Deng, Sidi Mohamed Beillahi, Cyrus Minwalla, Han Du, Andreas Veneris, and Fan Long. 2024. Safeguarding DeFi

Smart Contracts against Oracle Deviations. arXiv preprint arXiv:2401.06044 (2024).
[33] Xun Deng, Zihan Zhao, Sidi Mohamed Beillahi, Han Du, Cyrus Minwalla, Keerthi Nelaturu, Andreas Veneris, and Fan

Long. 2023. A Robust Front-Running Methodology for Malicious Flash-Loan DeFi Attacks. In 2023 IEEE International
Conference on Decentralized Applications and Infrastructures (DAPPS). IEEE, 38–47.

[34] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco, Matthew S Tschantz, and Chen

Xiao. 2007. The Daikon system for dynamic detection of likely invariants. Science of computer programming 69, 1-3

(2007), 35–45.

[35] Etherscan. 2023. BeanstalkFarms Attack Transaction. https://etherscan.io/tx/0xcd314668aaa9bbfebaf1a0bd2b6553d01d

d58899c508d4729fa7311dc5d33ad7.

[36] Etherscan. 2023. bZx Attack Transaction. https://etherscan.io/tx/0x762881b07feb63c436dee38edd4ff1f7a74c33091e53

4af56c9f7d49b5ecac15.

[37] Etherscan. 2023. CheeseBank Attack Transaction. https://etherscan.io/tx/0x600a869aa3a259158310a233b815ff67ca41e

ab8961a49918c2031297a02f1cc.

[38] Etherscan. 2023. CreamFi Attack Transaction 1. https://etherscan.io/tx/0x0016745693d68d734faa408b94cdf2d6c95f51

1b50f47b03909dc599c1dd9ff6.

[39] Etherscan. 2023. CreamFi Attack Transaction 2. https://etherscan.io/tx/0xab486012f21be741c9e674ffda227e30518e8a1

e37a5f1d58d0b0d41f6e76530.

[40] Etherscan. 2023. DODO Attack Transaction. https://etherscan.io/tx/0x395675b56370a9f5fe8b32badfa80043f5291443bd

6c8273900476880fb5221e.

[41] Etherscan. 2023. Eminence Attack Transaction. https://etherscan.io/tx/0x3503253131644dd9f52802d071de74e4565703

74d586ddd640159cf6fb9b8ad8.

[42] Etherscan. 2023. HarmonyBridge Attack Transaction. https://etherscan.io/tx/0x27981c7289c372e601c9475e5b5466310b

e18ed10b59d1ac840145f6e7804c97.

[43] Etherscan. 2023. Harvest Attack Transaction 1. https://etherscan.io/tx/0x0fc6d2ca064fc841bc9b1c1fad1fbb97bcea5c9a

1b2b66ef837f1227e06519a6.

[44] Etherscan. 2023. Harvest Attack Transaction 2. https://etherscan.io/tx/0x35f8d2f572fceaac9288e5d462117850ef269478

6992a8c3f6d02612277b0877.

[45] Etherscan. 2023. IndexFi Attack Transaction. https://etherscan.io/tx/0x44aad3b853866468161735496a5d9cc961ce5aa8

72924c5d78673076b1cd95aa.

[46] Etherscan. 2023. InverseFi Attack Transaction. https://etherscan.io/tx/0x600373f67521324c8068cfd025f121a0843d57ec

813411661b07edc5ff781842.

[47] Etherscan. 2023. Nomad Attack Transaction. https://etherscan.io/tx/0x61497a1a8a8659a06358e130ea590e1eed8956ed

bd99dbb2048cfb46850a8f17.

[48] Etherscan. 2023. Opyn Attack Transaction. https://etherscan.io/tx/0x56de6c4bd906ee0c067a332e64966db8b1e866c796

5c044163a503de6ee6552a.

[49] Etherscan. 2023. PickleFi Attack Transaction. https://etherscan.io/tx/0xe72d4e7ba9b5af0cf2a8cfb1e30fd9f388df0ab3da

79790be842bfbed11087b0.

[50] Etherscan. 2023. PolyNetwork Attack Transaction. https://etherscan.io/tx/0xad7a2c70c958fcd3effbf374d0acf3774a9257

577625ae4c838e24b0de17602a.

[51] Etherscan. 2023. Punk Attack Transaction. https://etherscan.io/tx/0x597d11c05563611cb4ad4ed4c57ca53bbe3b7d3fef

c37d1ef0724ad58904742b.

[52] Etherscan. 2023. RariCapital Attack Transaction 1. https://etherscan.io/tx/0x4764dc6ff19a64fc1b0e57e735661f64d97b

c1c44e026317be8765358d0a7392.

[53] Etherscan. 2023. RariCapital Attack Transaction 2. https://etherscan.io/tx/0x0fe2542079644e107cbf13690eb9c2c65963

ccb79089ff96bfaf8dced2331c92.

[54] Etherscan. 2023. RevestFi Attack Transaction. https://etherscan.io/tx/0xe0b0c2672b760bef4e2851e91c69c8c0ad135c69

87bbf1f43f5846d89e691428.

, Vol. 1, No. 1, Article . Publication date: April 2018.

https://github.com/SunWeb3Sec/DeFiHackLabs
https://github.com/coinspect/learn-evm-attacks
https://etherscan.io/tx/0xcd314668aaa9bbfebaf1a0bd2b6553d01dd58899c508d4729fa7311dc5d33ad7
https://etherscan.io/tx/0xcd314668aaa9bbfebaf1a0bd2b6553d01dd58899c508d4729fa7311dc5d33ad7
https://etherscan.io/tx/0x762881b07feb63c436dee38edd4ff1f7a74c33091e534af56c9f7d49b5ecac15
https://etherscan.io/tx/0x762881b07feb63c436dee38edd4ff1f7a74c33091e534af56c9f7d49b5ecac15
https://etherscan.io/tx/0x600a869aa3a259158310a233b815ff67ca41eab8961a49918c2031297a02f1cc
https://etherscan.io/tx/0x600a869aa3a259158310a233b815ff67ca41eab8961a49918c2031297a02f1cc
https://etherscan.io/tx/0x0016745693d68d734faa408b94cdf2d6c95f511b50f47b03909dc599c1dd9ff6
https://etherscan.io/tx/0x0016745693d68d734faa408b94cdf2d6c95f511b50f47b03909dc599c1dd9ff6
https://etherscan.io/tx/0xab486012f21be741c9e674ffda227e30518e8a1e37a5f1d58d0b0d41f6e76530
https://etherscan.io/tx/0xab486012f21be741c9e674ffda227e30518e8a1e37a5f1d58d0b0d41f6e76530
https://etherscan.io/tx/0x395675b56370a9f5fe8b32badfa80043f5291443bd6c8273900476880fb5221e
https://etherscan.io/tx/0x395675b56370a9f5fe8b32badfa80043f5291443bd6c8273900476880fb5221e
https://etherscan.io/tx/0x3503253131644dd9f52802d071de74e456570374d586ddd640159cf6fb9b8ad8
https://etherscan.io/tx/0x3503253131644dd9f52802d071de74e456570374d586ddd640159cf6fb9b8ad8
https://etherscan.io/tx/0x27981c7289c372e601c9475e5b5466310be18ed10b59d1ac840145f6e7804c97
https://etherscan.io/tx/0x27981c7289c372e601c9475e5b5466310be18ed10b59d1ac840145f6e7804c97
https://etherscan.io/tx/0x0fc6d2ca064fc841bc9b1c1fad1fbb97bcea5c9a1b2b66ef837f1227e06519a6
https://etherscan.io/tx/0x0fc6d2ca064fc841bc9b1c1fad1fbb97bcea5c9a1b2b66ef837f1227e06519a6
https://etherscan.io/tx/0x35f8d2f572fceaac9288e5d462117850ef2694786992a8c3f6d02612277b0877
https://etherscan.io/tx/0x35f8d2f572fceaac9288e5d462117850ef2694786992a8c3f6d02612277b0877
https://etherscan.io/tx/0x44aad3b853866468161735496a5d9cc961ce5aa872924c5d78673076b1cd95aa
https://etherscan.io/tx/0x44aad3b853866468161735496a5d9cc961ce5aa872924c5d78673076b1cd95aa
https://etherscan.io/tx/0x600373f67521324c8068cfd025f121a0843d57ec813411661b07edc5ff781842
https://etherscan.io/tx/0x600373f67521324c8068cfd025f121a0843d57ec813411661b07edc5ff781842
https://etherscan.io/tx/0x61497a1a8a8659a06358e130ea590e1eed8956edbd99dbb2048cfb46850a8f17
https://etherscan.io/tx/0x61497a1a8a8659a06358e130ea590e1eed8956edbd99dbb2048cfb46850a8f17
https://etherscan.io/tx/0x56de6c4bd906ee0c067a332e64966db8b1e866c7965c044163a503de6ee6552a
https://etherscan.io/tx/0x56de6c4bd906ee0c067a332e64966db8b1e866c7965c044163a503de6ee6552a
https://etherscan.io/tx/0xe72d4e7ba9b5af0cf2a8cfb1e30fd9f388df0ab3da79790be842bfbed11087b0
https://etherscan.io/tx/0xe72d4e7ba9b5af0cf2a8cfb1e30fd9f388df0ab3da79790be842bfbed11087b0
https://etherscan.io/tx/0xad7a2c70c958fcd3effbf374d0acf3774a9257577625ae4c838e24b0de17602a
https://etherscan.io/tx/0xad7a2c70c958fcd3effbf374d0acf3774a9257577625ae4c838e24b0de17602a
https://etherscan.io/tx/0x597d11c05563611cb4ad4ed4c57ca53bbe3b7d3fefc37d1ef0724ad58904742b
https://etherscan.io/tx/0x597d11c05563611cb4ad4ed4c57ca53bbe3b7d3fefc37d1ef0724ad58904742b
https://etherscan.io/tx/0x4764dc6ff19a64fc1b0e57e735661f64d97bc1c44e026317be8765358d0a7392
https://etherscan.io/tx/0x4764dc6ff19a64fc1b0e57e735661f64d97bc1c44e026317be8765358d0a7392
https://etherscan.io/tx/0x0fe2542079644e107cbf13690eb9c2c65963ccb79089ff96bfaf8dced2331c92
https://etherscan.io/tx/0x0fe2542079644e107cbf13690eb9c2c65963ccb79089ff96bfaf8dced2331c92
https://etherscan.io/tx/0xe0b0c2672b760bef4e2851e91c69c8c0ad135c6987bbf1f43f5846d89e691428
https://etherscan.io/tx/0xe0b0c2672b760bef4e2851e91c69c8c0ad135c6987bbf1f43f5846d89e691428

Demystifying Invariant Effectiveness for Securing Smart Contracts 23

[55] Etherscan. 2023. RoninNetwork Attack Transaction. https://etherscan.io/tx/0xc28fad5e8d5e0ce6a2eaf67b6687be5d58

113e16be590824d6cfa1a94467d0b7.

[56] Etherscan. 2023. UmbrellaNetwork Attack Transaction. https://etherscan.io/tx/0x33479bcfbc792aa0f8103ab0d7a37847

88b5b0e1467c81ffbed1b7682660b4fa.

[57] Etherscan. 2023. ValueDeFi Attack Transaction. https://etherscan.io/tx/0x46a03488247425f845e444b9c10b52ba3c1492

7c687d38287c0faddc7471150a.

[58] Etherscan. 2023. VisorFi Attack Transactions. https://etherscan.io/tx/0x69272d8c84d67d1da2f6425b339192fa472898dc

e936f24818fda415c1c1ff3f and https://etherscan.io/tx/0x6eabef1bf310a1361041d97897c192581cd9870f6a39040cd24d7d

e2335b4546.

[59] Etherscan. 2023. Warp Attack Transaction. https://etherscan.io/tx/0x8bb8dc5c7c830bac85fa48acad2505e9300a91c3ff2

39c9517d0cae33b595090.

[60] Etherscan. 2023. XCarnival Attack Transaction. https://etherscan.io/tx/0x51cbfd46f21afb44da4fa971f220bd28a14530e1

d5da5009cfbdfee012e57e35.

[61] Etherscan. 2024. Yearn Attack Transaction. https://etherscan.io/tx/0x59faab5a1911618064f1ffa1e4649d85c99cfd9f0d64d

cebbc1af7d7630da98b.

[62] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: A Static Analysis Framework for Smart Contracts. In

2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE,
8–15.

[63] Yu Feng, Emina Torlak, and Rastislav Bodik. 2019. Precise Attack Synthesis for Smart Contracts. arXiv preprint
arXiv:1902.06067 (2019).

[64] Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman. 2022. eTainter: detecting gas-related vulnerabilities in smart

contracts. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis. 728–739.
[65] Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman. 2023. AChecker: Statically Detecting Smart Contract Access

Control Vulnerabilities. Proc. ACM ICSE (2023).

[66] Lewis Gudgeon, Daniel Perez, Dominik Harz, Benjamin Livshits, and Arthur Gervais. 2020. The decentralized financial

crisis. In 2020 crypto valley conference on blockchain technology (CVCBT). IEEE, 1–15.
[67] Bo Jiang, Ye Liu, and WK Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection. In

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. ACM, 259–269.

[68] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS: Analyzing Safety of Smart Contracts. In

Ndss. 1–12.
[69] Queping Kong, Jiachi Chen, YanlinWang, Zigui Jiang, and Zibin Zheng. 2023. DeFiTainter: Detecting PriceManipulation

Vulnerabilities in DeFi Protocols. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis. 1144–1156.

[70] Ao Li, Jemin Andrew Choi, and Fan Long. 2020. Securing smart contract with runtime validation. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 438–453.

[71] Junrui Liu, Yanju Chen, Bryan Tan, Isil Dillig, and Yu Feng. 2022. Learning Contract Invariants Using Reinforcement

Learning. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. 1–11.
[72] Ye Liu and Yi Li. 2022. InvCon: A Dynamic Invariant Detector for Ethereum Smart Contracts. In Proceedings of the

37th IEEE/ACM International Conference on Automated Software Engineering. 1–4.
[73] Ye Liu, Yi Li, Shang-Wei Lin, and Cyrille Artho. 2022. Finding permission bugs in smart contracts with role mining. In

Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis. 716–727.
[74] Ye Liu, Yi Li, Shang-Wei Lin, and Qiang Yan. 2020. ModCon: A Model-Based Testing Platform for Smart Contracts.

In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1601–1605.

[75] Ye Liu, Chengxuan Zhang, et al. 2024. Automated Invariant Generation for Solidity Smart Contracts. arXiv preprint
arXiv:2401.00650 (2024).

[76] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016. Making Smart Contracts Smarter.

In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. ACM, 254–269.

[77] Daniele Magazzeni, Peter McBurney, andWilliam Nash. 2017. Validation and verification of smart contracts: A research

agenda. Computer 50, 9 (2017), 50–57.
[78] Forta Network. 2023. Forta Network. https://forta.org/.

[79] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020. sfuzz: An efficient adaptive fuzzer

for solidity smart contracts. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering.
778–788.

[80] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. 2018. Finding The Greedy, Prodigal,

and Suicidal Contracts at Scale. In Proceedings of the 34th Annual Computer Security Applications Conference. ACM,

653–663.

, Vol. 1, No. 1, Article . Publication date: April 2018.

https://etherscan.io/tx/0xc28fad5e8d5e0ce6a2eaf67b6687be5d58113e16be590824d6cfa1a94467d0b7
https://etherscan.io/tx/0xc28fad5e8d5e0ce6a2eaf67b6687be5d58113e16be590824d6cfa1a94467d0b7
https://etherscan.io/tx/0x33479bcfbc792aa0f8103ab0d7a3784788b5b0e1467c81ffbed1b7682660b4fa
https://etherscan.io/tx/0x33479bcfbc792aa0f8103ab0d7a3784788b5b0e1467c81ffbed1b7682660b4fa
https://etherscan.io/tx/0x46a03488247425f845e444b9c10b52ba3c14927c687d38287c0faddc7471150a
https://etherscan.io/tx/0x46a03488247425f845e444b9c10b52ba3c14927c687d38287c0faddc7471150a
https://etherscan.io/tx/0x69272d8c84d67d1da2f6425b339192fa472898dce936f24818fda415c1c1ff3f
https://etherscan.io/tx/0x69272d8c84d67d1da2f6425b339192fa472898dce936f24818fda415c1c1ff3f
https://etherscan.io/tx/0x6eabef1bf310a1361041d97897c192581cd9870f6a39040cd24d7de2335b4546
https://etherscan.io/tx/0x6eabef1bf310a1361041d97897c192581cd9870f6a39040cd24d7de2335b4546
https://etherscan.io/tx/0x8bb8dc5c7c830bac85fa48acad2505e9300a91c3ff239c9517d0cae33b595090
https://etherscan.io/tx/0x8bb8dc5c7c830bac85fa48acad2505e9300a91c3ff239c9517d0cae33b595090
https://etherscan.io/tx/0x51cbfd46f21afb44da4fa971f220bd28a14530e1d5da5009cfbdfee012e57e35
https://etherscan.io/tx/0x51cbfd46f21afb44da4fa971f220bd28a14530e1d5da5009cfbdfee012e57e35
https://etherscan.io/tx/0x59faab5a1911618064f1ffa1e4649d85c99cfd9f0d64dcebbc1af7d7630da98b
https://etherscan.io/tx/0x59faab5a1911618064f1ffa1e4649d85c99cfd9f0d64dcebbc1af7d7630da98b
https://forta.org/

24 Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long

[81] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. 2021. Attacking the defi ecosystem with flash loans for

fun and profit. In International conference on financial cryptography and data security. Springer, 3–32.
[82] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2018. Sereum: Protecting Existing Smart Contracts

against Re-Entrancy Attacks. arXiv preprint arXiv:1812.05934 (2018).
[83] Palladino Santiago. 2017. The Parity Wallet Hack Explained. https://blog.openzeppelin.com/on-the-parity-wallet-

multisig-hack-405a8c12e8f7/

[84] David Siegel. 2016. Understanding The DAO Attack. https://www.coindesk.com/understanding-dao-hack-journalists

[85] SlowMist. 2023. SlowMist Hacked Database. https://hacked.slowmist.io/.

[86] Sofware Reliability Lab 2019. Securify. Sofware Reliability Lab. https://securify.ch/

[87] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev, Evgeny Marchenko, and Yaroslav

Alexandrov. 2018. Smartcheck: Static Analysis of Ethereum Smart Contracts. In Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain. 9–16.

[88] Palina Tolmach, Yi Li, Shang-Wei Lin, and Yang Liu. 2021. Formal analysis of composable DeFi protocols. In Financial
Cryptography and Data Security. FC 2021 International Workshops: CoDecFin, DeFi, VOTING, and WTSC, Virtual Event,
March 5, 2021, Revised Selected Papers 25. Springer, 149–161.

[89] Trail of Bits 2019. Echidna. Trail of Bits. https://github.com/trailofbits/echidna

[90] Haijun Wang, Ye Liu, Yi Li, Shang-Wei Lin, Cyrille Artho, Lei Ma, and Yang Liu. 2020. Oracle-Supported Dynamic

Exploit Generation for Smart Contracts. IEEE Transactions on Dependable and Secure Computing (2020).

[91] Siwei Wu, Dabao Wang, Jianting He, Yajin Zhou, Lei Wu, Xingliang Yuan, Qinming He, and Kui Ren. 2021. Defiranger:

Detecting price manipulation attacks on defi applications. arXiv preprint arXiv:2104.15068 (2021).
[92] Valentin Wüstholz and Maria Christakis. 2020. Harvey: A Greybox Fuzzer for Smart Contracts. In Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1398–1409.

[93] Yue Xue, Jialu Fu, Shen Su, Zakirul Alam Bhuiyan, Jing Qiu, Hui Lu, Ning Hu, and Zhihong Tian. 2022. Preventing

Price Manipulation Attack by Front-Running. In International Conference on Artificial Intelligence and Security. Springer,
309–322.

[94] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin. 2020. {TXSPECTOR}: Uncovering attacks in

ethereum from transactions. In 29th USENIX Security Symposium (USENIX Security 20). 2775–2792.
[95] Zhuo Zhang, Zhiqiang Lin, Marcelo Morales, Xiangyu Zhang, and Kaiyuan Zhang. 2023. Your Exploit is Mine: Instantly

Synthesizing Counterattack Smart Contract. In 32nd USENIX Security Symposium (USENIX Security 23). 1757–1774.
[96] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais. 2021. On the just-in-time discovery of

profit-generating transactions in defi protocols. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 919–936.
[97] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, ZhipengWang, YeWang, Kaihua Qin, Roger Wattenhofer,

Dawn Song, and Arthur Gervais. 2023. Sok: Decentralized finance (defi) attacks. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 2444–2461.

[98] Shunfan Zhou, Malte Möser, Zhemin Yang, Ben Adida, Thorsten Holz, Jie Xiang, Steven Goldfeder, Yinzhi Cao, Martin

Plattner, Xiaojun Qin, et al. 2020. An ever-evolving game: Evaluation of real-world attacks and defenses in ethereum

ecosystem. In 29th USENIX Security Symposium (USENIX Security 20). 2793–2810.

, Vol. 1, No. 1, Article . Publication date: April 2018.

https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://www.coindesk.com/understanding-dao-hack-journalists
https://hacked.slowmist.io/
https://securify.ch/
https://github.com/trailofbits/echidna

	Abstract
	1 Introduction
	2 Background
	3 Motivating Example
	4 Invariants
	4.1 Access Control
	4.2 Time Lock
	4.3 Re-entrancy
	4.4 Gas Control
	4.5 Oracle Slippage
	4.6 Special Storage
	4.7 Money Flow(also called Token Flow)
	4.8 DataFlow

	5 Trace2Inv
	5.1 Trace Parser
	5.2 Invocation Tree Analysis
	5.3 Type Inference
	5.4 EVM-level Dynamic Taint Analysis
	5.5 Invariant Generation
	5.6 Trace2Inv Implementation

	6 Evaluation
	6.1 RQ1: Effectiveness of Smart Contract Invariants
	6.2 RQ2: Study of False Positives and True Positives
	6.3 RQ3: Effectiveness of Combination of Invariants
	6.4 RQ4: Gas Overhead of Invariant Guards
	6.5 RQ5: Comparative Analysis with Other State-of-the-art (SOTA) Tools
	6.6 Threats to Validity

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Data Availability
	References

