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Abstract—In this work, the problem of communicating deci-
sions of a classifier over a noisy channel is considered. With
machine learning based models being used in variety of time-
sensitive applications, transmission of these decisions in a reliable
and timely manner is of significant importance. To this end, we
study the scenario where a probability vector (representing the
decisions of a classifier) at the transmitter, needs to be transmitted
over a noisy channel. Assuming that the distortion between the
original probability vector and the reconstructed one at the
receiver is measured via f-divergence, we study the trade-off
between transmission latency and the distortion. We completely
analyze this trade-off using uniform, lattice, and sparse lattice-
based quantization techniques to encode the probability vector
by first characterizing bit budgets for each technique given a
requirement on the allowed source distortion. These bounds are
then combined with results from finite-blocklength literature to
provide a framework for analyzing the effects of both quantiza-
tion distortion and distortion due to decoding error probability
(i.e., channel effects) on the incurred transmission latency. Our
results show that there is an interesting interplay between source
distortion (i.e., distortion for the probability vector measured
via f-divergence) and the subsequent channel encoding/decoding
parameters; and indicate that a joint design of these parameters
is crucial to navigate the latency-distortion tradeoff. We study
the impact of changing different parameters (e.g. number of
classes, SNR, source distortion) on the latency-distortion tradeoff
and perform experiments on AWGN and fading channels. Our
results indicate that sparse lattice-based quantization is the most
effective at minimizing latency for low end-to-end distortion
requirements across different parameters and works best for
sparse, high-dimensional probability vectors (i.e., high number
of classes).

Index Terms—Low-Latency, Quantization, Finite blocklength

I. INTRODUCTION

N recent years, machine learning (ML) has been increas-

ingly applied to time-sensitive applications, including Ve-
hicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I)
communications. These applications require reliable and rapid
data transmission for tasks such as trajectory prediction [2] and
lane change detection [3]]. Similarly, this need for reliable, fast
communication extends to other domains like internet of things

This work was supported by NSF grants CAREER 1651492, CCF-2100013,
CNS-2209951, CNS-1822071, CNS-2317192. Part of this paper will be
presented at the 2024 IEEE International Conference on Communications [[1].

The authors are with the Department of Electrical and Computer En-
gineering, The University of Arizona, Tucson, AZ 85721 USA (e- mail:
ntekul @arizona.edu; adiga@arizona.edu; tandonr @arizona.edu).

(IoT) and edge computing. Coinciding with the increasing
use of ML in low-latency applications, there has also been
a growing body of work on context-dependent low-latency
communications; which includes semantic communications
[4]-7], ultra-reliable low latency communications (URLLC)
[8]], [9], and joint source channel coding [|10[]—[13]].

Semantic communication generally focuses on sending con-
text dependent features/decisions dependent on the data to
the receiver (rather than the entire raw message) [7]. In
doing so, the amount of bits required for transmission is
often reduced [6]]. For example, in [14], a transformer-based
network was used to learn/transmit semantic features of sen-
tences and decode the received features to ensure that the
original meaning of the sentences were preserved. In [15],
an approach to modeling the length of a semantic message
and its distortion based on noise due to the model and the
channel is presented along with masking strategies that can be
applied before transmission. [[16]], [[17]] present rate-distortion
approaches for semantic communications for general block-
wise distortion functions. The focus of URLLC is to design
protocols in order to transmit low-data rate (short packets)
with high reliability (low probability of error) within a small
latency [9]. A rate-distortion analysis is also performed in
[18]] for short control packets, assuming transmissions are
being made to a remote agent, where the distortion measures
considered are quantization error and the freshness of the data
(age of information); however, this analysis is done under the
assumption of noiseless channels.

Overview and Main Contributions: In this paper, we focus
on the following problem: a transmitter wishes to send a
probability vector (e.g., representing the decisions of a ML
based classifier) to a receiver over a noisy channel. Our
objective in focusing on transmitting probability vectors is
to observe if there are any properties of such a vector that
can be exploited for obtaining reductions in latency when
transmitting while still preserving the decision of the classifier.
When using datasets with a high number of classes (e.g.
CIFAR-100, Imagenet-1k), for example, there will be many
entries in the vector that do not add any substantial information
regarding the classifier’s decision. In such a scenario, a vector
containing a small number of a classifier’s highest predic-
tions may be sufficient for identifying a classifier’s decision
compared to sending the entire vector. Results obtained from
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Fig. 1. End-to-End block diagram for communicating classifier decisions (probability vector) over a noisy channel.

classifiers operating on real datasets are provided later in the
paper that further support this idea. Additionally, transmitting
probability vectors enables the use of specific quantization
techniques that can be efficient. One such technique, which
is considered in this work, is a lattice based quantization
proposed in [[19], where a given probability distribution is
fitted to its nearest match on a certain finite-dimensional
lattice. This problem can also be viewed within the umbrella
of semantic communication and joint source channel coding.
Transmitting the results of a classification task incurs lower
latency/overhead compared to sending a compressed form of
the data required for classification at the receiver. It also
enables the receiver to quickly execute tasks that depend
on knowing the classification results, which is essential to
conducting goal-oriented communications [5]. Additionally,
this problem falls under the umbrella of JSCC as its objective
is to attain low-latency transmissions by operating in the finite
blocklength regime [[11].

The main new elements herein are two fold: we measure
utility of the reconstruction of the probability vector in terms
of statistical divergence measures; and secondly, we simul-
taneously want to minimize the transmission latency over
the noisy channel. We note that there has been prior work
on quantizing probability distributions, including [19]-[23].
In particular, [22]], [23|] investigated quantizing probability
distributions in order to minimize Kullback-Leibler (KL)-
divergence by performing a non-linear operation and then
using uniform quantization. However, the existing works did
not study the scenario when a probability vector has to be
transmitted through a noisy channel, and what would be
the right quantization strategy/parameters if the goal is to
minimize latency. By considering the distortion introduced
by the channel and quantization, we aim to analyze the
trade off between the end-to-end distortion of the system
and the incurred transmission latency. Additionally, a similar
framework considering quantization noise was introduced in
[24], but focused on transmitting control signals and ensuring
the stability of the assumed control system rather than quan-
tizing/transmitting probability vectors. There have also been
works such as [25]—[27]] that look at relating finite blocklength
analysis with latencies but do not consider quantization noise.

Our main contributions are as follows:

o In-depth investigation of quantization techniques for clas-
sification results: The performance of uniform, lattice,

and sparse lattice-based quantization techniques are in-
vestigated with respect to balancing the trade-off between
latency and end-to-end distortion. We show that the
lattice-based methods are more efficient than the baseline
uniform quantization as they require less complexity and
make use of the properties of the probability vector to
require fewer bits. The sparse-lattice based technique is
proposed to employ the assumed lattice-based quantiza-
tion technique on only a few of the highest probabilities
of the vector. This amount should be determined such that
a large portion of the mass of the vector is represented,
which is investigated on predictions from classifiers on
real datasets; specifically, CIFAR-100 & Imagenet-1K.
We provide results bounding the necessary bit budgets
under each technique to satisfy a requirement on the
allowable source distortion (Lemmas 2}{). Our results
show the expected trend that to ensure a lower source
distortion when quantizing the probability vector, a higher
bit budget is needed for each of the assumed techniques.
For a probability vector of length 50 classes and the
same source distortion, for example, our results show that
sparse-lattice based quantization incurs a reduction in bit
requirement of approximately 96% and 80% with respect
to uniform and lattice-based quantization.
Latency-Distortion trade-off analysis: We derive a rela-
tionship (Lemma [5) between the source distortion in-
curred for each of the afroementioned quantization tech-
niques and the decoding error probability (i.e. accounting
for distortion caused by noisy channel effects) to obtain a
bound on the end-to-end distortion between the received
and transmitted vectors. By incorporating these two
sources of distortion, the subsequent blocklength under
these parameters can be obtained and used to calculate the
transmission latency (Theorem [I). Our results show that
by using the proposed framework, an optimized source
distortion can be found that achieves a minimal latency
for different levels of end-to-end distortion. In doing so,
this also enables us to extend our framework to fading
channels (Theorems [2] & [3).

e Application to noisy channels: We provide a comprehen-

sive set of simulation results to validate the proposed
framework. Specifically, we study the trade-off between
latency and distortion while varying parameters of the
framework; such as, channel conditions (i.e. SNR), source
distortion, and the length of the probability vector (i.e.



number of classes). We report results assuming additive
white gaussian noise (AWGN) and fading channels using
results from the literature on finite blocklength. For a
probability vector of length 100 classes and the same
end-to-end distortion, for example, our results show that
the sparse-lattice based quantization can incur a latency
reduction of approximately 97% and 85% with respect
to uniform and standard lattice-based quantization for the
AWGN channel. Our results indicate that sparse lattice-
based quantization is the most effective at minimizing
latency for low end-to-end distortion requirements across
different parameters. Specifically, the results indicate that
sparse lattice-based quantization works best for sparse,
high-dimensional probability vectors (i.e. high number of
classes).

The paper is structured as follows: Section presents
the system model studied in this work; Section presents
results analyzing the distortion incurred with each of the
quantization techniques and details our framework for ana-
lyzing the latency-distortion tradeoff using these techniques
for AWGN and fading channels; Section presents results
from simulations; Section [V]concludes the paper and proposes
future work. The proofs for the technical results are presented
in the Appendix.

II. SYSTEM MODEL

We consider the scenario illustrated in Fig. a pre-
trained classifier (e.g., a neural network), denoted as h(-),
is used for a k-class classification problem and is situated
at a transmitter. The output classification probabilities are
represented as p = [p[1],p[2], -+ ,p[k]] ", where p € RF*1,
Let p = [p[1],p[2],--- ,P[k]] " denote the estimated classifier
output at the receiver. In this paper, we measure the distortion
between p and p via f-divergence, defined as

k
Do) =31 (B
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The transmitter’s goal is to communicate the probability vector
p within a latency budget of 7},,x with minimum total expected
distortion f3;, i.e., E(Df(p,p)) < B, where the expectation
is over the noisy channel realizations. We next describe
the main components (source/channel encoder/decoder(s)): a
source encoder () quantizes the probability vector p, such
that g = ¢(p). The lossy compression caused by quantization
results in source distortion, denoted by . The total number of
bits required by q, given the source distortion, is represented
as J(Bs), where J(-) is a function of ;. We note that based
on the quantization technique, q may not necessarily be a
probability vector. In this scenario, we normalize the values
in q to obtain the corresponding probability vector q after
source encoding, where q[i] = q[i]/ Zle qli] and q € R*¥*1,
The source distortion [y is quantified as s = D¢(p, Q).
We use the channel encoder ¢(-) to generate the n-length
channel input x = ¢(q), where x = [x[1],x[2],--- ,x[n]]"
and x € X™. Let £ denote the source and channel encoder
pair. We consider a bandwidth constrained fading channel,
where the channel output is given by y[i] = hl[i]x[i] + z[i],

) Bl M

for all i € [n]; where y € R™*!, the channel fading gains are
given by h = [h[1],h[2],--- ,h[n]]T with h € R**!, and the
AWGN noise vector is given by z = [z[1],z[2],--- ,z[n]]"
with z € R™*!. We also consider a bandwidth constrained
AWGN channel which can be obtained from the above model
by setting h[i{] = 1 V i € n. The signal-to-noise ratio (SNR)
of the channel for a bandwidth By Hz, is defined as vg = N%,
where P denotes the signal power and Ny denotes the noise
power. To simulate using the same transmit powers at different
bandwidths, as done in [8]], we define the operational SNR for
a channel of bandwidth B Hz as v = VUTfO where % acts as
a scaling factor for relating different channel conditions.

We denote the decoding error probability by €*(n), where
€*(n) € [0, 1]. At the receiver, we consider a channel decoder,
denoted by k(:), such that § = k(y). Subsequently, we
consider the source decoder w(-) and a normalization operation
to obtain an estimate of the classifier probabilities, given by
D = w(q). Let D denote the source and channel decoder pair.

The channel noise, in addition to the source distortion,
contributes to the total end-to-end distortion. Given a specific
SNR, it is possible to vary the source distortion (s to achieve
a maximum total expected distortion of ;. In other words,
we have s € [0, £]. This choice will also affect the incurred
transmission latency; given a bandwidth of B Hz, the time
required to transmit an n-length vector x is calculated as:

n
T(E,D) = 55" )

In this paper, we focus on understanding the tradeoff
between latency and distortion for the task of communicat-
ing probability distributions. Specifically, given the channel
statistics (e.g., bandwidth, SNR) and desired maximum latency
Thax, the optimal distortion can be defined as follows:

D*(Thnax) £ min

D), st T(E,D) < Toax.
(E,D) 615(57 )? s.t (57 )_ (3)

Alternatively, we can fix the maximum permissible distortion
Bmax, and minimize the total latency 7' over encoder-decoder
pairs as

T*(Bmax) = min

(&D) T(gvp)a S.t. 6t(E,D) S 6max~ (4)

In the lemma stated next (proof is presented in the Appendix),
we show that the optimal latency 7™ (Smax) is a convex non-
increasing function of the total distortion Sy,x; and likewise,
we show that the minimal distortion D*(T.x) is a convex
non-increasing function of Ti,a.

Lemma 1. T*(B,.) is convex non-increasing function of
Bmax- D* (Tpax) is convex non-increasing function of Tyx.

III. MAIN RESULTS & DISCUSSION

In this section, we present the framework for analyzing the
latency-distortion tradeoff. We begin by assuming a noiseless
channel and uniform quantization as the source encoder (i.e.,
transforming p to q) and analyze the corresponding source
distortion (Lemma|[2). We perform a similar analysis for lattice
and sparse lattice-based quantization techniques to analyze the
source distortion for a noiseless channel (Lemma 3] & Lemma



). We then incorporate and analyze the impact of channel
noise on the end-to-end distortion (Lemma [5). Subsequently,
we use results on finite-blocklength capacity, which allow us
to connect latency with the overall distortion. This, in turn,
also leads to an explicit optimization (Theorem [I)), which can
be solved to trade latency with distortion. We then extend this
result to account for fading channels with and without CSI
(Theorems [2] & [3).

A. Quantizing Classifier Probabilities

1) Uniform Quantization (UQ): Suppose we have a total
budget of J bits to quantize the k-dimensional probability
vector p. Under uniform quantization (UQ), we use j = | J/k]
bits to quantize each element p[i],i = 1,2,..., k. We denote
q[i] as the resulting quantized output. Note that q may not
necessarily be a probability vector. We can however, normalize
it as qfi] = %, for ¢ = 1,...,k. Our objective
is to minimize the f-divergence between p & p; in the
noiseless scenario, which would be equivalent to minimizing
Di(p, @), as S5 would be the only distortion present. When
f(z) = 3|z — 1|, f-divergence results in total variation (TV):
Di(p,a) = Drv(p,q) = 3 >i-, |pli] — alil| [28]. The next
lemma shows a sufficient condition on the quantization budget
to achieve a source distortion of ;.

Lemma 2. For a k-class classification problem, if the total
uniform quantization (UQ) budget satisfies

Jug > 2k - log, <§> )

then Dry(p,q) < fBs.

Remark 1. (Impact of normalization) The proof of Lemma
is non-trivial due to the nature of the vectors involved. While p
is a probability vector, the corresponding quantized q may not
be a probability vector. To apply the statistical f-divergence
measure, we normalize the entries of q by their sum, i.e.,
S =", qli]. However, this normalization operation makes the
analysis of bounding the f-divergence challenging. The proof
above overcomes this issue, by first assuming that the number
of bits j is of the form j = log(k/2«), and then we are able
to bound the sum S as S € [1 — o, 1 + «]. This allows us
to determine the number of bits required to achieve a desired
source distortion (.

®)

2) Lattice-based Quantization (LQ): There are a few dis-
advantages when using UQ. First, UQ does not exploit the fact
that the vector being compressed is a probability distribution.
There are more efficient methods that can further reduce the
number of bits required for quantization by exploiting this
property. Additionally, as the number of classes k increases,
the length of p will increase, leading to a significant increase
in the number of bits required to satisfy the source distortion
requirement as shown in Lemma [2] Also, as noted in Remark
[Il UQ requires an additional normalization step which com-
plicates deriving a bound on the source distortion between p
and q. Subsequently, we now consider the algorithm presented
in [[19], which presents a lattice-based approach for quantizing
probability distributions. The algorithm uses a lattice to repre-
sent a set of k-length probability distributions that is a subset

Algorithm 1 Lattice-based Quantization (LQ) [[19]]

Inputs: p, Qe )
Compute b [i] = [p[i] + 5], ¢ =3, b [i]

if ¢ = ¢ then
Done
else

Calculate ([i] = b [i] — £p[i] and sort in increasing order.

if ¢ — 0> 0 then
Decrease |¢/ — (| values with largest ¢[i] in b'[i] by 1
else if ¢/ — ¢ < 0 then /
Increase |¢' — ¢| values with smallest ¢[¢] in b [] by 1
end if
end if
Compute lexicographic index to represent b[1], ..., b[k]

of the k-dimensional probability simplex (i.e. the set of all
possible k-length probability vectors Ay = {[q[1], ..., q[k]] €
Q* | 32, 4qli] = 1}). The probability vectors in the lattice
are defined to have the property that each of their elements
must have the same denominator ¢, which is a positive integer
set by the user. Subsequently, each element in the probability
vector must be of the form q[i] = #, where bl[i] are also
positive integers. Because q must sum to 1, this implies that
>, b[i] = £. Denoting the lattice as @, the formal structure
for the lattice is given as follows [19]:

Qe ={lalt) - alk) € [l = 2. 3" bli) = 1} ©

From (6), we can see that @, C Ay and if a probability
distribution satisfies (6), it is a point on Q. The algorithm’s
objective is to find the point (i.e. probability distribution) on
Q¢ closest, under an assumed distance metric, to a given
probability distribution p. We denote the resulting probability
distribution chosen from @, as qLo(p). The procedure for
this method is summarized in Algorithm E} First, an initial
guess of the nearest distribution based on p and ¢ is made
using a simple mapping. If the mapping immediately results
in a probability distribution on @, the algorithm is complete;
otherwise, updates are made to the guess based on the observed
error to push it to the nearest point on ),. Thus, by mapping p
to one of the available distributions on )y, lattice-based quan-
tization (LQ) requires significantly less complexity compared
to UQ. As an example, assume that we are given a probability
vector p = [0.18,0.52,0.3] (meaning that £ = 3) and ¢ = 5.
This means that ()5 consists of all probability vectors of
length 3 whose entries have 5 as a denominator. Examples of

candidate probability vectors in Q5 include [1,2,2], [£,1,2],
and [%,%,0], Applying the initial mapping of p as shown

in Algorithm I} results in an initial guess of b’ = [1,3,2].
However, this means that we have ¢ = ). b’[i] = 6. Because
¢ # £, we must perform updates to push this guess closer
to ¢. We first calculate how far away the guess is from an
actual point on @, by performing ([i] = b[i] — ¢p[i], which
results in ¢ = [0.1,0.4,0.5]. Because ¢ — ¢ = 1, we must
decrement the element in b’ with the largest ([i] by 1. From
this example, we can see that the third element in b’ has the
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Fig. 2. (a) Table summarizing the pre-trained network architectures and datasets used to generate Figure 2] (b) Percentage of average mass
of kwp highest predictions from different pre-trained networks and datasets across 10, 000 test images. (c) Bit requirements for UQ, LQ, and
SLQ (with kwp = 5 & § = 0.00001) for different class sizes as a function of source distortion.

largest error; decrementing it gives us b’ = [1,3,1], which
results in qio(p) = [2, 2, L].

We note that [19]] uses the L;, Lo and L, norm to report
worst-case distance metrics between p and qr¢(p). By noting
that the L; norm is equivalent to 2Dpy (p, qro(p)). based on
(19]] the maximum source distortion between p and qrq(p)
is as follows{lt

k

Drv(p,qio(p)) = A @)

Two observations can be made from . First, for high
dimensional lattices, the resulting source distortion decreases,
meaning that the distributions on the lattice are closer repre-
sentations of p. Second, the guarantee on the source distortion
becomes looser as the length of p increases. This intuitively
makes sense because each distribution on the lattice will have a
longer length but still need to satisfy the summation constraint
in @, leading to distributions that are more distinct from
p. Once qro(p) is determined, its corresponding index is
calculated and transmitted. The number of bits required to
send this index under this method is as follows [19]]:

{+k—1
JLQ:[lo&( o ﬂ (8)

The next lemma shows the number of bits required under this
quantization technique to attain a source distortion [

Lemma 3. For a k-class classification problem, if the total
lattice-based quantization (LQ) budget under Algorithm

satisfies
(+k—1
>
Jip > [log2< E_1 >—‘, )

where { = ’74%5—‘, then Drv (p,q) < fBs.

Remark 2. It can be observed from Lemma 3| that the required
bits for LQ has an expression similar to the required bits for
UQ as shown in Lemma [2| However, unlike UQ, LQ does not

1 2a(k—a)
£ k

k
] . 2 |
By assuming even values of k, the simplified expression in (7) is obtained.

1'119] proves the maximum L; distance as , where a = { J

require an additional normalization operation, which reduces
the complexity of the derivation.

3) Sparse Lattice-based Quantization (SLQ): For large
values of k, it may be desired to only send a certain number
of the top highest predictions in the k-dimensional probability
vector due to many elements of the vector being very close to
0. To accommodate this, we now propose a sparse version of
the algorithm presented in [19]]. The motivation for this method
comes from the notion that for high dimensional datasets
(i.e. high k), a large portion of the mass of a classifier’s
decisions is concentrated in the ki, highest predictions (i.e.
Ziekmp p[i] > 1 —4, where 0 < § < 1 represents the mass of
the k — ko, lowest probabilities). As a case study, Figures @]
plots the average mass of the k., highest predictions outputted
by different neural network architectures on various datasets.
The networks and datasets evaluated used to generate the
figure are summarized in Figure Imagenet-1K [34] and
CIFAR-100 [35] are variations of the Imagenet and CIFAR-10
image datasets that have been frequently used in the machine
learning literature, containing 1000 and 100 classes respec-
tively. Kinetics-400 [36] and UCF-101 [37] are datasets that
have been generated for classifying human actions present in
videos, with each having 400 and 101 classes respectively. The
figure indicates that as k., increases gradually, the average
mass of the probability vector encapsulated by these Kip
values also increases. This is beneficial as it further shows that
transmitting the whole probability vector may not be required
to accurately identify the classifier’s decision on an image.

Under sparse-lattice based quantization (SLQ), the Fiqp
highest values of the probability vector p are chosen to
constitute the sparse vector q. However, q does not constitute a
probability vector and must be normalized, which is denoted as
q. Algorithm [T]is then used to perform LQ on the normalized
sparse vector; the resulting vector is denoted as dsio(p).
The positions of the ki, highest predictions also need to
be transmitted for the receiver to know which classes the
probabilities correspond to. We quantize the set of positions of
the kip highest values by representing it as integer. The total

number of bits needed to send this integer is {log2 ( kk )—‘ . The
top
total number of bits needed to send the index for qsLo(p)
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is given as {log2 (“TFer" 1) |. This has a similar form to the
top

number of bits needed for the regular LQ given in (8). It can
be observed that using this procedure introduces two sources
of distortion: normalization and lattice-based quantization. The
next lemma shows a lower bound on the required number of
bits for this technique to satisfy this more stringent restriction
on the source distortion.

Lemma 4. For a k-class classification problem, if the total
sparse lattice-based quantization (SLQ) budget satisfies

k {+ ki — 1
> |1 4
JSLQ N [ng (kmp)-‘ " ’VIOg ( ktr)p -1 >-‘ ’ (10)

kmp -
where { = [m—‘ & Zigkmpp[z] < 4§, then

Dry(p,asco(p)) < Bs.

Remark 3. Despite the additional term in Lemma, compared
to that of Lemma [3| because fewer bits are sent, the number
of bits required under SLQ should be less compared to its
standard counterpart for large k-dimensional vectors. Addi-
tionally, we also see that compared with the standard LQ, the
choice of { is also dependent on the mass encapsulated by the
k — kiwp lowest values in the probability vector.

Comparison of Bounds: To develop an intuition as to how
the bounds in Lemmas 2}f4] compare with each other, Figure
plots each of them as a function of the source distortion
Bs. The figure was generated assuming k = 50 classes and
for SLQ kip = 5. The figure indicates that as the allowable
amount of source distortion increases, the number of bits
required for UQ, LQ, and SLQ decreases. The figure also indi-
cates that for a relatively high number of classes, SLQ requires
the lowest number of bits. Looking at 55 = 0.05, for example,
SLQ incurs a reduction in bit budget of approximately 96%
and 80% with respect to UQ and LQ. However, it can also be
observed that LQ requires significantly fewer bits compared
to UQ. Observing Lemmas 2-3 for large %k, the number of
bits for UQ and LQ an be approximated as O(k log(rgs)) &
1

O(klog(ﬁ)). This implies that LQ requires approximately

O(log(k)) fewer bits compared to UQ for the same f3;.

It is worth noting that for high B, the figure indicates

that the number of bits required for LQ starts to approach
that of SLQ. However, this phenomenon is intuitive, because
when a high amount of source distortion is allowed, this
implies that fewer bits are needed as the requirement to meet
the total distortion constraint is placed more on the channel
encoder/decoder rather than the source encoder. Thus, we
care more about the performance of the quantization schemes
for low fs, and Figure indicates that SLQ significantly
outperforms UQ and LQ in this regime.
Selection of kp: The latency incurred by using SLQ is
contingent on the choice of ki,. However, ki, cannot be
chosen arbitrarily because the choice of k., affects the average
mass of the probability vector represented in the transmitted
quantized vector. Figure [3] shows the average mass of the
k — kwp lowest probabilities (denoted as d,yg) for predictions
made on CIFAR-100 and Imagenet-1K. As k,, increases, and
more of the mass of the probability vector is subsequently
represented by the ki, highest values, we see that the average
mass of the k — ki, values decreases for both datasets.
Because of the higher number of classes in Imagenet-1K, a
larger choice of ki, is needed to reduce d,e compared to
CIFAR-100. If a requirement was given for 6., < 0.01, for
example, then for CIFAR-100 and Imagenet-1K this would
require approximately a ki, of 6 & 140 respectively.

B. Tradeoff Between Latency & End-to-End Distortion

Impact of Channel Noise & Decoding Error: We now incor-
porate the effect of channel noise and decoding errors in the
analysis of the end-to-end distortion. The next lemma shows
a bound on the overall expected distortion (expectation is
over the channel noise realizations) if the source distortion
is bounded by S5, and the decoding error probability is given

by €*(n).

Lemma 5. For a given source distortion 35 and decoding
error probability €*(n), the overall expected distortion is upper
bounded as follows:

E[Drv(p, p(r(y)))] < (1 =€ (n))Bs + € (n). (1D



Remark 4. An observation from Lemma 5| is that there is no
explicit dependence on the specific quantization technique. The
bound on overall distortion is only dependent on the source
distortion Bs and decoding error probability introduced via
€*(n). This indicates that this framework can work generally
for different quantization techniques (for instance, one could
replace uniform quantization with some other sophisticated
non-uniform quantizer) and the bound will only be a function
of the corresponding source distortion.

We next show how the results obtained up to this point
can be used to devise a framework for analyzing the tradeoff
between latency and distortion. In Lemma [5] we showed
that the overall expected distortion E[Drv(p, p(k(y))] can be
upper bounded by (1—€*(n))8s+€*(n). For brevity, we refer
to E[Drv(p, p(x(y))] as B¢ (i.e., the total expected distortion).
To derive a relationship between the overall distortion 8; and
latency 7', we first recall the finite blocklength result from [J]],
which states that the decoding error probability €*(n) that can
be assured for sending J bits through an AWGN channel is
given by [8]] [38]]:

e (n,7,J) = Q ("C( M- )1°g2”>, (12)

where n represents the blocklength, ~ represents the
SNR, C(v) represents the capacity defined by 3log,(1 +
v) and V(vy) denotes the channel dispersion defined by
JEEE) (loga(e))?

Let us now return to the problem of transmitting a probabil-
ity vector p over an AWGN channel. Observe that the number
of bits one can use to represent p can be chosen as a function
of the source distortion 3, (via Lemmas i.e., J(Bs)). How-
ever, the choice of (3, and therefore J(3;) also directly impact
the decoding error probability €*(n,~,J(Bs)) as given in
(T2). Thus, the resulting overall distortion from Lemma E] can
then be bounded by (1 —€e*(n,~, J(Bs)))Bs +€*(n, v, J(Bs)).
Hence, if we are given a target total expected distortion of [,
one can then optimize 3, to minimize latency while satisfying
the total distortion budget. This is the core idea behind our
approach and is formalized in the following Theorem.

J+
nV(y

Theorem 1. Given a total distortion budget S, for a certain
quantization technique we can achieve the following latency
assuming an AWGN channel:

T(B) = o<%1il<lm ng%) (13)
where ERTeIEoN
nEy ="t V2 +4C(7)J(8s) a4

2C(y) ’
and v = \/VH)Q ™ (58 ).

Proof. Our objective is to minimize latency while satisfying
a constraint on the overall distortion [;. First, the number
of bits to quantize p can be obtained based on the choice

of quantization scheme (e.g. J(8s) = 2klog, ) for UQ
on Lemma [2). We can then rearrange Lemma t0 solve for
— ﬁt Bs

the desired block error probability €*(n, v, J(5s)) = in

terms of 3; & Bs. Hence, the next step is to find the minimum
number of channel uses (n) that can support the desired block
error probability of % by using (12)). Specifically, we wish
to solve for the smallest non-negative integer n satisfying:

(ﬁ_;) SQ(?%C(W)—J(Bs)ﬂ;élngn)_ as)

nV(y
As the Q(-) function (complementary CDF of standard Gaus-
sian) is monotonically decreasing, this means that for any
n > 1, we can bound the rh.s. of as:

o (ncm —J(8) + 3 logy n> <0 (ncm - J(&)) |
nV(3) ()
(16)

Thus, we can find n by instead solving for the simpler equation

(5] G (] e )
sides, we arrive at the following:
\/nV Q 615753 /(1*65))7‘](50 =0. (A7)

This equation can be viewed as a quadratic by setting 7 = y/n.
Solving for n, we arrive at the latency expression (setting 1" =
n/2B). One can then optimize the latency by minimizing over
all 35 € [0, ¢], thus completing the proof of Theorem O

C. Generalization to Fading Channels

In this section, we now extend our framework to derive
results for fading channels. To accomplish this, we leverage
finite blocklength results for coherent and non-coherent fading
channels [29]]. The probability of error €*(n) for sending J ()
bits through a Rayleigh fading channel assuming access to
channel state information (CSI) at the receiver is given by

[29]:
€ (n,v,J(Bs)) = Q (nCC(VBLF“/])Efj);;@)> . (18)

where F represents the coherence interval, C. is the capacity
defined as E[log(l + vZ1)] (where Z; is a sequence of
variables samples from the Gamma(l,1) distribution), and
VC(F ~y) is the channel dispersion given as var{log(14+vZ1)]+
f - E[l"r’)’zl]z'

Similarly, an approximation for the error probability sending
J(Bs) bits through a Rayleigh fading channel without CSI was
derived in [29] for high SNRs assuming that 0 < €*(n) < 3.
The approximation is as follows:

nI(F,y) = J(Bs)Fn(2)

€7, J(B:) = Q | — == . (19)
nFU(F)

where I(F,v) can be approximated as (F — 1)log(F7v) —

logT'(F') — (F — 1)(1 +n) + K;(F,~), n represents Euler’s

constant, I' is the Gamma function, U(F) = (F — 1)2%2 +

(F —1), and K7 is a function that must be 0 as v — co and
F > 2. In this work, we assume K/ (F,v) = £.

With respect to & (19), recall that in this work, J
is determined based on a given requirement on the source
distortion 5 and choice of quantization: UQ, LO, or SLQ.
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Fig. 4. Lower convex hull of latencies for different 8; for UQ, LQ, and SLQ (obtained from Theorem . Results are reported for k =
10(a), 50(b) & 100(c) to observe the impact varying the number of classes has on the quantization schemes.

Theorem [I] introduced our framework for finding the optimal
Bs to achieve the minimum latency for a specific total dis-
tortion /3;. Following similar steps as shown in the proof for
Theorem [I] and using (I8) & (19), the following theorems
can be obtained for analyzing the latency-distortion tradeoff
in fading channels with/without CSI.

Theorem 2. Given a total distortion budget B, for a certain
quantization technique we can achieve the following latency
assuming a Rayleigh fading channel with CSI at the receiver:

n(Bs)

T3 = Juin, 55 (20)
where
n(Bs) = r+ /12 +4C:(7)J(8s) In2 on

2C() ’
— ./ —1 ( Be=PBs
Theorem 3. Given a total distortion budget [, for a certain

quantization technique we can achieve the following latency
assuming a Rayleigh fading channel at high SNRs without

CSI:
n(fs)

T(8,) = mi
(82) 0<p.2p 2B

(22)

where

=" + /12 + 4;(01?77))J(53)F1n2, -

and r =/ FU(F)Q~1 (%) with 0 < §= < 1.

IV. EXPERIMENTAL RESULTS

In this section, we present results which illustrate the
tradeoff between the latency and overall distortion for sending
a probability vector to a receiver over AWGN and fading
channels for UQ, LQ, and SLQ. Unless otherwise stated,
we assume that By = 10 kHz, 6 = 0.00001 for SLQ, and
0 <e*(n) <0.5.

A. Comparison of Quantization techniques

We first observe the trade-off between latency and distortion
for the uniform and lattice-based quantization techniques for
the AWGN channel.

Minimum latency for a fixed 5, & different k: Figure E| re-
ports results comparing the incurred latencies for the three
quantization methods by solving the optimization problem in
Theorem [I] as the number of classes is varied for & = 10, 50
& 100. We assume that B = 320 kHz and o = 5 dB, which
yields an SNR of v =~ —10.1 dB. We also assume ki, = 5
for SLQ. The figure indicates that LQ and SLQ can incur
lower latencies over an AWGN channel compared to UQ as the
number of classes is varied. Additionally, the figure indicates
that as k increases, the latency reduction from LQ to SLQ
increases. At kK = 100 and 3; = 0.05, for example, SLQ can
attain a latency reduction of approximately 97% and 85% with
respect to UQ and LQ. However, it’s interesting to note that
for low & and high 3,, Figure [4d] indicates that LQ can incur
less latencies compared to SLQ. This emphasizes that when
using SLQ, more benefits are obtained at higher k.

Interplay between source distortion (f3s) and Latency: Fig. |§|
compares the quantization schemes for a fixed total distortion
B¢ with k = 70 classes and k¢, = 20 for SLQ. We also
set B = 100 kHz and 9 = 15 dB, which results in v = 5
dB. Each of the figures indicate, that for higher dimensional
probability vectors, a reduction in latency can be achieved
when more source distortion is allowed. However, as the total
distortion is increased, the optimal source distortion increases
for each of the lattice-based methods. The figure also indicates
that the lattice based quantizers can attain lower latencies
compared to UQ, with SLQ performing better than LQ when
quantizing high dimensional probability vectors. Each of the
figures also indicate that surges in the latency occur as [;
approaches ;. This intuitively makes sense because as [
approaches (;, this implies that no compensation for the
distortion is being performed by the source encoder/decoder.
This means that the channel encoder/decoder are responsible
for satisfying the requirement on 3; and can only do so by
using higher blocklengths.

Impact of degree of sparseness: Figure @ presents the effect
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different SNRs (—6.46, —1.46, 3.54 dB) with £ = 100 classes.

of varying ki, (i.e. how many of the highest probabilities are
chosen for transmission) has on the latency for a fixed [,
when using SLQ. It’s assumed that B = 100 kHz and vy = 8
dB resulting in v = —2 dB. Similar to Figure fa] to observe
the full merit of the method, £ = 1000. The figure indicates
that as ki, increases, the latency also increases, which is as
expected as this means more predictions are included in the
sparse vector. The figure also indicates, similar to Figure [3]
that as more source distortion is allowed, smaller latencies can
be attained. This means that to quantize and send additional
values from the probability vector at a lower latency, more
source distortion must be allowed.

Latency as a function of SNR: Figure presents the laten-
cies incurred for LQ and SLQ at different SNRs. Recall that
the SNR is related to the bandwidth B as v = WOTfO; thus
by varying the reference SNR 7y, different SNRs v can be
simulated. In Figure |3_5[, ~o is varied to 5 dB, 10 dB, and 15
dB respectively, which corresponds to v of —6.46, —1.46, 3.54
dB respectively. To observe the full benefits of SLQ, £ = 100
and ki p = 20. The figure indicates that for both techniques,
the incurred latency decreases as the SNR increases. Figure

[6b] also indicates that SLQ significantly outperforms LQ at
each of the simulated SNRs. This means that for a high k-
dimensional probability vector, SLQ can incur lower latencies
even in poor channel conditions.

B. Application to Fading Channels

We now analyze our framework considering Rayleigh block-
fading channels using the finite blocklength approximations
presented in Section We assume ky,, = 16, B = 100
kHz, 79 = 11 dB, and k£ = 100, which results in v = 1
dB. Figure [7a] shows the latency-distance tradeoff for the
three quantization schemes for a Rayleigh fading channel
assuming CSI at the receiver and F' = 20. The figure indicates
that, similar to our previously presented results, SLQ can
still outperform UQ and LQ. Figure [7b] shows the latency-
distortion tradeoff for the three quantization schemes for a
Rayleigh fading channel without CSI. As (T9) is a high SNR
approximation, we have adjusted the following parameters:
B = 200kHz, By = 800kHz, vy = 15 dB, which results
in v ~ 21 dB. Additionally, k£ is set to 1000 classes, with
kwp = 70 for SLQ. It can be observed that even without access
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to CSI, similar trends are observed with SLQ performing
significantly better than UQ & LQ.

V. CONCLUSION

In this work, we have investigated a framework where
the decisions (a probability vector) from a classification task
are transmitted over a noisy channel. Specifically, we study
the tradeoff between the latency associated with transmitting
this result against the distortion incurred with quantizing the
result and the impact of channel noise on the transmission.
To accomplish this, we have analyzed the performance of
uniform and lattice-based quantization techniques by first
providing results bounding the necessary bit budgets under
each technique to satisfy a requirement on the allowable source
distortion. Then by linking distortion due to decoding errors
(using results from finite blocklength channel capacity) with
the distortion due to quantization, we are able to create a
framework that allows us to find an optimized source distortion
that achieves a minimal transmission latency at different levels
of end-to-end distortion. Our results show that there is an
interesting interplay between source distortion (i.e., distortion
for the probability vector measured via f-divergence) and
the subsequent channel encoding/decoding parameters; and
indicate that a joint design of these parameters is crucial to
navigate the latency-distortion tradeoff. After varying different
parameters of the framework, and assuming both AWGN and
fading channels, our results show that sparse-lattice based
quantization is the most efficient at minimizing latency at dif-
ferent levels of end-to-end distortion. Specifically, our results
indicate that sparse-lattice based quantization outperforms all
other methods for high dimensional probability vectors (i.e. a
higher number of classes) and sparse predictions generated
by the classifier (which is often the case in various ML
classifiers, as also evidenced in CIFAR-100, Imagenet-1K, and
Kinetics-400 datasets). We believe that the sparse lattice based
quantization techniques could also be useful for other ML
based systems requiring low latency, such as in transmitting
semantic information.

APPENDIX
PROOF OF LEMMA[I]

The minimal achievable latency 7%(3) is a non-increasing
function of . This is clear from the fact that any decoder
which satisfies a distortion constraint of 3 also satisfies the
distortion constraint of 3’ for 3’ > .

We next show that 7*(f) is a convex function of 3. Let
T*(Bt,) (T*(Bt,), respectively) represent the minimum laten-
cies obtained using encoder-decoder pair (&5, D5) ((€5,D5),
respectively) that satisfy Di(p,p1) < 8, (De(p,P2) < Bt
respectively). We define a new encoder-decoder pair (&3, Ds)
such that,

(€5, D7)
(&,D3)

with probability «

&, D3) =
(£3, D) { with probability 1 — «.

The expected latency using (&3, D3) is aT*(B:,) + (1 —
a)T*(PBt,). The total distortion using (&3, Ds3) is Di(p, ap; +
(1 — a)p2), which can be upper bounded as,

(@)

Di(p,ap; + (1 — a)p2) < aDi(p,p1) + (1 — a)Di(p, P2)

b
(S) By, + (1 —a)B,,
(24)

where (a) follows from convexity of f-divergence, and (b)
follows from the bounds on end-to-end distortion for the two
individual decoders. Let us now consider the optimal encoder-
decoder pair (£*,D*) that satisfies the distortion constraint
D¢(p,p) < afy, + (1 — a)pBt,. The minimum latency using
(E*,D*) is then T*(afs, + (1 — @)Bt,). Recall, (£*,D*) is
optimal encoder-decoder pair, and therefore, the corresponding
latency must be always less than the latencies obtained using
any (&3, D3) pair. That is,

T (b, + (1= @)fp,) < T (Br,) + (1 = )T (B,)-
This proves that 7*(8) is convex. D*(T') can be shown to

be convex in a similar manner by leveraging the convexity of
f-divergence.



PROOF OF LEMMA [2]

We consider uniform quantization (UQ) with bins of width
2, where j = |J/k]. For r € {1,2,---,27 — 1}, we define
the values for the r" bin in the range [271 , T;jl) In other
words, for any ¢ € [k], q[i] is obtained by mapping the
value of p[i] in the range [+, 75 to ”;2 However, we
note that g may not necessarily be a probability vector. We
define the probability vector q, by normalizing the values in
q. Therefore, for any ¢ € [k], we can write p[i] and q[i] as
follows:

1
7"1+§

ri + 0; ..[,]_
ql - 5.2]‘?

pli] = —;—,
rit3

where 6; € [0,1) and S = Zl 1—37=- Returning to our goal,
recall that we wish to pick J such that Drv(p,q) < fs. To
this end, we first bound

(25)

Drv(p.a Z|p
1
. Tl-i-(s ’I“,“‘rg
_72 S .2
1 1 1
:mzl Ti<1—s>+(5i—25’

) k

1
9(i+1) z_; (
2(J+1) Z <

I/\?

. l_l _|_6_i
" S SYS
1
5= 351)

(-s))
(26)

where (a) follows from triangle inequality, and (b) follows
from the fact that r; < 27. We also know that, Z pli] =1

—
I/\s

and E q[i] = S. Consider the difference,
k 1 k 1
7’7+(5 7"1+§ |51—§| k
z; B Z 27 < Z; 27 = 2j+1 27)
Therefore, we have that,
k
[1-5]< 41 (28)
Suppose that j is given as
k
=1 — 29
J = 108, (204) (29)

for some « € (0,0.5]. Therefore, from (28)) we have that,
1-a<S<1+oa. (30)
Using and in (26), we can further bound Drv(p, Q)

as,

P R Er ey
(%) ok L _ o« (k:—l— 1 7
20-a) 2(1l-a) 1l-«a 2

€29

where (a) holds for all o € (0,0.5]. Now, since we require
Drv(p,@) < Bs, we can pick o such that 2 (&) < 3.
We can pick « to satisfy this constraint with equality, i.e.,

. 2B

~“E Tt A 52)

Next, substituting (32) in ([29), we can then claim that as
long as the total bit budget J = kj > klogy(k/2a*),
then Drv(p,q) < Bs. Now, using the fact that & > 2 and
Bs € [0,1], it can be readily verified that 2k - log, (Bi) >
klogy(k/2a*), completing the proof of Lemma

PROOF OF LEMMA 3]

We denote the probability distribution on (), closest to a
given probability vector p as qro(p). Recall from [19] that
by performing lattice-based quantization (LQ), the distortion
incurred is given by D(p, qLQ( )) = +5. For our framework,

we propose setting £ = . In domg $0, we can obtain the

45
following upper bound on D(p, qiq(p)):
k
Db, awo(p) = 55
_ k
k
1[5

W
~~
S
™|
1)
~—

Thus, sending [logQ (ZJrk 1)—[ bits under LQ, with ¢ = [7_‘
will satisfy the source distortion requirement.

PROOF OF LEMMA [4]

For sparse lattice-based quantization (SLQ), we assume p

has the following property: 3, Frop pli] > 1 — 4, where § €
[0,1]. In other words, we assume that the ki, highest values
constitute a significant portion of the mass of p. This implies
that 3,0, pli] < 6. Let § = Ziekap[i]. We denote q as
the resulting probability vector normalized by the sum of the
kiop values; more explicitly, qfi] = % if i € kyp and zero
otherwise. Lastly, qsi.o(p) is the subsequent probability vector
after passing the non-zero values of q into the standard LQ
algorithm (Algorithm [T)).
To determine the number of bits needed to send the index
of gsLo(p) we want to bound the bit budget as a function
of the source distortion incurred. Under SLQ, there are two
causes of distortion: normalization of the ki, highest values
and standard LQ. To represent this, we first prove the following
statement on the distortion encapsulated by both operations:

Dry(p,asto(p)) < Drv(p,q) + Drv(a, asco(p)), (33)



where Dry (p,q) represents the distortion incurred through
normalization and Dpy (Q, gsio(p)) represents the distortion
incurred through LQ. We prove (33) as follows:

1
Drv(p,asLo(p)) = §|P —asLo(p)|
1 _
= §|P —q+9q—qso(p)|

(a) 1 _ 1 _
< §\P —q| + 5\(1 — qsLo(pP)
= Drv(p,q) + Drv(Q, dsio(P)),

where (a) follows from the triangle inequality. Having proved

(33), we now upper-bound Drv(p,gsLo(p)) by the required
source distortion 5, which can be explicitly stated as:
Drv(p,asie(P)) < Drv(p,@) + Drv (@, asie(p)). (34)

We upper bound Drv (p,q) as follows:

Drv(p.@) = 5 3 Ipli - al]

1 .
—5 [ 3 o= P+ 5wt -t
i€k i#Feop
(a) 1 )
SEIDIEUIEEEDY pw)
ieklop igklop
S .
IO UIE=F |pm|>
1€ kwp i Kop
1 A8 =1
SR oE 0l IS
iek(op iéktop

where (a) follows from q[i] = 0 Vi ¢ kip, (b) follows from
S >0.

Drvip.a) @ L 3 bl + Y ol

1€ kiop 5 i€ Kiop
. .
ol B Y wi s Y pld
1€Ktop 1€ Kiop i€kiop
1 . .
3|1 > plil+ > plil
ieklop 7;gklop
(c) .
1- Y pli
1€ Kiop
(d)
<9,

(36)

where (a) follows from 0 < S < 1, (b) follows from S =
Ziekmp pli], (c) follows from Zigkm pli]=1- Ziekmp pli],
(d) follows from Zigkmp pli]=1- iiekmp pli] <é.
From (7), we can upper bound the distortion due to LQ as
Drv(q,aso(p)) < 57, as only the Ky, non-zero values of
q will be passed into Algorithm [I] for quantization. Recalling

(), this would imply that {log2 (%f“’*’_}l) bits are needed to
send the index of the resulting probability vector. Substituting
these bounds into (34) gives

ktop
o+ 1 S Bs (37)
Solving for ¢ in (37) gives:
Ky
= Op-‘ ; (38)
{4(55 —0)

which implies that 5 > §. We now have a bound on the choice
of £ to ensure a source distortion no greater than 3, accounting
for normalization and standard LQ. The positions of the ki
highest predictions also need to be transmitted for the receiver
to know which classes the probabilities correspond to. To
address this, the set of positions of the ki, highest values are

represented as an integer. This means that [1og2 (k:ip)—‘ bits
are required to send this integer. Thus, {logg (é',:f”ﬁzl)-‘ +
[Tog ()] bits under SLQ with ¢ = [ 55 | will saisty
the source distortion requirement.

PROOF OF LEMMA
We can bound the end-to-end expected distortion as

E[Drv(p, (s(y))] 2 P(1(p)=r(y)) Di+P(1h(p) # #(y)) D

(b)
< (1 —€"(n))D1 + € (n)Dy
(1 - )+ (),

where (a) follows from the total probability theorem, and D; =
E[Drv(p. (p))|¢:(p) = £(y)] (D2 = E[Dry(p, p)v:(p) #
k(y)], respectively) is the expected distortion when quan-
tized probability vector is exactly constructed (not exactly
reconstructed, respectively) at the receiver; (b) follows from
considering a bound on the decoding error probability such
that, P(¢(p) # k(y)) < €*(n). (c) follows using the source
distortion constraint D < 35, and from the fact that the total
distortion is quantified using TV-divergence which allows us
to bound Dy < 1.

(39)
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