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Abstract

New implicit and implicit-explicit time-stepping methods for the wave equation in second-
order form are described with application to two and three-dimensional problems discretized on
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the schemes are studied through analysis and numerical computations.
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1. Introduction

The wave equation in second-order form is an important model for many applications in science
and engineering involving wave propagation. Example applications include acoustics, electromag-
netics and elasticity; such problems are often posed mathematically as partial differential equations
with appropriate initial and boundary conditions. Wave propagation problems are often solved
most efficiently using high-order accurate explicit time-stepping schemes. Explicit schemes can be
fast and memory efficient. The time-step for such schemes is limited by the usual CFL stability
condition involving the size of grid cells and the wave speed. Thus, there are some situations, such
as with a locally fine mesh or a locally large wave speed, when an explicit scheme with a global
time-step is inefficient since a small time-step would be required everywhere. For such situations,
we say the problem is geometrically stiff or materially stiff. An example of a geometrically stiff
problem is the diffraction of an incident wave from a knife-edge as shown in Figure 1. The solution
of this problem is computed using an overset grid for which there are small grid cells near the tip
of the knife-edge. These small cells force the time-step of an explicit method to be reduced by a
factor of 20 from that required by the Cartesian background grid. (More information concerning
overset grids and our numerical schemes for such grids is given later.) There are two common ap-
proaches to overcome this stiffness, local time-stepping (LTS) and locally implicit methods (LIM).
LTS methods use a local time-step dictated by the local time-step restriction. LIM’s use an implicit
method on only part of the domain, usually where the grid cells are smallest.

0. 1.2

Figure 1: Geometrically stiff problem: scattering of a modulated Gaussian plane wave from a knife edge. Left: overset
grid for the geometry showing magnified views of the tip grid which has very small grid cells. Right: contours of |u|

computed with the new SPIE scheme; the tip grid was advanced implicitly while other grids were advanced explicitly
resulting in a time-step that was about 20 times larger than using an explicit scheme on all grids.

In this article we develop new locally implicit time-stepping schemes for the wave equation in
second-order form on overset grids based on the modified equation (ME) approach. These schemes
are high-order accurate single-step schemes that use three time-levels and a compact spatial stencil.
The schemes depend on one or more parameters that determine the degree of implicitness; the
second-order accurate scheme depends on one parameter while the fourth-order accurate scheme
depends on two parameters. For certain ranges of these parameters the schemes are unconditionally
stable in time. A small amount of upwind dissipation is added to the schemes for stability on overset
grids. The upwind dissipation can be added in several ways, for example, in a fully implicit manner
or in a predictor-corrector fashion where the upwinding is added in a separate explicit step.
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Our implicit time-stepping ME scheme, denoted by IME, is combined with a ME-based explicit
time-stepping scheme, denoted by EME, in a spatially partitioned manner. The EME schemes
we use have a compact stencil and have a time-step restriction that is independent of the order
of accuracy3. We say that these compact EME schemes are able to take a CFL-one time-step.
This is in contrast to typical linear multi-step methods where explicit higher-order schemes tend
to have smaller time-step restrictions, or to popular Discontinuous Galerkin (DG) methods where
the time-step restriction typically scales as 1{p2P ` 1q with P being the degree of the polynomial
basis [1]. For an overset grid, a locally implicit scheme can be used, for example, on boundary-
fitted component grids that resolve small geometrical features. The EME scheme can then be
used on Cartesian background grids or on curvilinear grids that have similar grid spacings to the
background grids. In this way the time-step for the EME scheme is not restricted by the small grid
cells used to resolve small geometrical features. In typical applications, the majority of the grid
points belong to background Cartesian grids, and the solution on these grid points can be advanced
very efficiently with a CFL-one time-step. This can make the hybrid IME-EME scheme much more
efficient than using the EME scheme everywhere with a small (global) CFL time-step. We refer to
this hybrid scheme as a Spatially Partitioned Implicit-Explicit (SPIE) scheme. Note that the EME
scheme is more accurate since ME schemes are most accurate for the CFL number close to one:
unlike method-of-lines schemes, the accuracy of ME schemes is degraded for small CFL numbers.
The implicit matrix formed by the IME schemes is definite, and it is well suited to a solution by
modern Krylov-based methods or multigrid.

Normally there is no benefit in using implicit time-stepping and taking a large (greater than
one) global CFL time-step for wave propagation problems as the accuracy of the solution is usually
degraded. However, there are applications where implicit time-stepping methods for the wave
equation using a large CFL number can be useful. For example, implicit methods for the wave
equation are an attractive option for each iteration step of the WaveHoltz algorithm [2–4] which
solves for time periodic (Helmholtz) solutions4. The WaveHoltz algorithm can solve Helmholtz
problems for frequencies anywhere in the spectrum without the need to invert an indefinite matrix
as is common with many approaches. Each iteration of the WaveHoltz algorithm requires a solution
of a wave equation over a given period, and just a few implicit time-steps per period (e.g. 5–10)
are needed which leads to very large CFL numbers on fine grids. This is one of our motivations for
developing stable IME schemes for overset grids.

There is a large literature on ME, LTS, and LIM schemes for the wave equation. Here we
provide a brief synopsis, for further references, see [5, 6], for example. Explicit ME schemes for
the wave equation go back, at least, to the work of Dablain [7] and of Shubin and Bell [8]. Local
time-stepping has most often been used for PDEs that are written as first-order systems in time.
LTS has been used for decades with adaptive mesh refinement (AMR) since the pioneering work of
Berger and Oliger [9]. Local time-stepping has also been developed, for example, for Runge-Kutta
time-stepping [5, 6, 10] and arbitrary high-order ADER schemes [1]. Of note is the ME-based
LTS method for the wave equation of Diaz and Grote [11], where it was found necessary to have a
small overlap of one or two cells between the coarse and fine cells in order to retain the time-step

3Many EME schemes take powers of an matrix operator (leading to a wider stencil) and the time-step restriction
depends on the order of accuracy.

4Note that the dispersion errors due to the large CFL time-step can be eliminated by an adjustment to the forcing
frequency.
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dictated by the coarse mesh. Also of note is the locally time-stepped Runge-Kutta finite difference
scheme of Liu, Li, and Hu [10] for the wave equation on block-structured grids. Another reason
for using local time-stepping is to couple two difference schemes together. For example, Beznsov
and Appelö [12] use local time-stepping for the wave equation to couple a DG scheme (which has
a small time-step) with an Hermite scheme (which has a CFL-one time-step). The DG scheme is
used on boundary-fitted grids of an overset grid for accurate treatment of the boundary conditions.

Compact implicit difference approximations lead to globally implicit systems (although some-
times with a time-step restriction) and these have been used for wave equations by a number
of authors [13–15]. To overcome the cost of the global implicit solve, it is common to use lo-
cally one-dimensional approximate factorizations such as the alternating-direction-implicit (ADI)
scheme [16, 17]. A variety of locally implicit methods for wave equations have been developed,
for example [18–20]. For some formulations care is required in coupling the implicit and explicit
schemes to avoid an order of accuracy reduction in time. Of particular note is the fourth-order
accurate locally implicit method for the wave equation of Chabassier and Imperiale [20]. They
use a Finite Element Method (FEM) discretization (with mass lumping to form a diagonal mass
matrix) and a mortar element method with Lagrange multipliers to couple the implicit and explicit
methods. The implicit ME scheme in [20] is similar to our implicit scheme except that we use finite
difference approximations and a more compact approximation (which leads to different stability
restrictions). Our approach uses a simple coupling between implicit and explicit regions based on
overset grid interpolation. The price for this simpler coupling is that upwind dissipation is needed
to ensure stability.

We have been developing high-order accurate algorithms for a variety of wave propagation prob-
lems on overset grids. These include the solution to Maxwell’s equations of electromagnetics for
linear and nonlinear dispersive materials [21–25], the solution of linear and non-linear compressible
elasticity [26, 27] and the solution of incompressible elasticity [28]. A fourth-order accurate ME
scheme for Maxwell’s equations in second-order form on overset grids was developed in [29]. Ex-
tensions of the implicit and implicit-explicit time-stepping methods developed in this article will be
very useful for these other applications, both to treat geometric stiffness and for solving Helmholtz
problems using the WaveHoltz algorithm.

The work presented in the remaining sections of this article are organized as follows. Explicit
and implicit ME schemes for the wave equation are introduced in Section 2, which also serves to
establish some notation. Details of the second and fourth-order accurate IME schemes for Cartesian
grids are given in Section 3 where a von Neumann stability analysis is also performed. Methods
of upwind dissipation for IME schemes are described in Section 4, and this is followed in Section 5
by a formulation and a GKS stability analysis of our new SPIE schemes. Section 6 discusses the
implementation of the new ME schemes for overset grids, and Section 7 provides results of a matrix
stability analysis the ME schemes for one-dimensional overset grids. Numerical results are discussed
in Section 8 and concluding remarks are offered in Section 9.

2. Three-level explicit and implicit ME schemes for the wave equation

We are interested in solving an initial-boundary-value (IBVP) problem for the wave equation in
second-order form for a function upx, tq on a domain Ω, with boundary Γ, in nd space dimensions,

B2
t u “ Lu, x P Ω, t ą 0, (1a)

upx, 0q “ u0pxq, x P Ω, (1b)
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Btupx, 0q “ u1pxq, x P Ω, (1c)

Bupx, tq “ gpx, tq, x P Γ, t ą 0. (1d)

Here, x “ rx1, ..., xnd
sT P Rnd is the vector of spatial coordinates, t is time, and L is the spatial

part of the wave operator,

L def
“ c2∆u, ∆

def
“

nd
ÿ

d“1

B2
xd
, (2)

with wave speed c ą 0. The initial conditions on u and Btu are specified by the given functions
u0pxq and u1pxq, respectively, and the boundary conditions, denoted by the boundary condition
operator B, may be of Dirichlet, Neumann, or Robin type with given boundary data gpx, tq.

We begin with a description of the three-level ME schemes that ignores the specifics of the
spatial discretizations. Details of the grids and spatial discretization are left to later sections. The
explicit and implicit ME schemes are both based on the standard second-order accurate central
difference approximation to the second time-derivative of u,

D`tD´t u “
upx, t ` ∆tq ´ 2upx, tq ` upx, t ´ ∆tq

∆t2
, (3)

where ∆t is the time-step and D`t and D´t are forward and backward divided difference operators
in time given by

D`t upx, tq
def
“

upx, t ` ∆tq ´ upx, tq

∆t
, D´t upx, tq

def
“

upx, tq ´ upx, t ´ ∆tq

∆t
, (4)

respectively. Expanding the terms in (3) using Taylor series gives the following expansion,

D`tD´t u “ B2
t u `

∆t2

12
B4
t u `

∆t4

360
B6
t u ` ¨ ¨ ¨ . (5)

Even time derivatives on the right-hand side of (5) are replaced by space derivatives using the
governing equation (1a) to give

D`tD´t u “ Lu `
∆t2

12
L2u `

∆t4

360
L3u ` ¨ ¨ ¨ . (6)

To form a pth order accurate in time scheme, the expansion (6) is truncated to p{2 terms, and the
spatial operators in the resulting truncated expansion are discretized with a time-weighted average
of three time levels. For example, second-order accurate explicit or implicit three-level ME schemes
take the form

D`tD´tupx, tq “ L2,h

´

α2upx, t ` ∆tq ` β2upx, tq ` γ2upx, t ´ ∆tq
¯

, (7)

where L2,h is a second-order accurate approximation of L on a grid with representative grid spac-
ing h. The coefficients pα2, β2, γ2q are the weights in the time-weighted average of upx, tq. The
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fourth-order accurate scheme has the form

D`tD´tupx, tq “ L4,h

´

α2upx, t ` ∆tq ` β2upx, tq ` γ2upx, t ´ ∆tq
¯

´ ∆t2L2
2,h

´

α4upx, t ` ∆tq ` β4upx, tq ` γ4upx, t ´ ∆tq
¯

, (8)

where L4,h is a fourth-order accurate approximation of L and pα4, β4, γ4q are coefficients involved
in the time-average of the correction term. Higher-order accurate schemes for p “ 6, 8, . . . can be
defined in a similar way but for this article we only consider schemes for p “ 2 and 4. The explicit
ME schemes we use have α2m “ γ2m “ 0 and β2m ‰ 0 for m “ 1 and 2, while the implicit schemes
have α2m ‰ 0 for m “ 1 or 2.

Truncation error analysis can be used to determine the constraints on the parameters α2m, β2m
and γ2m for pth order accuracy. The truncation error of the p “ 2 scheme in (7), denoted by τ2px, tq,
is

τ2px, tq “
`

1 ´ pα2 ` β2 ` γ2q
˘

Lu ´ ∆t
`

α2 ´ γ2
˘

BtLu ` Op∆t2 ` h2q. (9)

For second-order accuracy in ∆t and h we take

α2 ` β2 ` γ2 “ 1, (10a)

α2 ´ γ2 “ 0. (10b)

These two conditions involving the three parameters pα2, β2, γ2q give a single-parameter family of
second-order accurate schemes discussed further in Section 3. Note that the condition α2 “ γ2
implies that the schemes are symmetric in time which implies the schemes are time reversible. A
similar analysis of the p “ 4 scheme in (8) leads to the conditions

α2 ` β2 ` γ2 “ 1, (11a)

α2 ´ γ2 “ 0, (11b)

α4 ´ γ4 “ 0, (11c)

1

2
pα2 ` γ2q ´ pα4 ` γ4q ´ β4 “

1

12
. (11d)

The four constraints in (11) involving the six parameters pα2m, β2m, γ2mq, m “ 1, 2, implies a two-
parameter family of fourth-order accurate schemes as discussed further in Section 3. Note that
these p “ 4 schemes are also symmetric in time. Choices of the parameters that lead to stable
schemes for p “ 2 and 4 are discussed in Section 3.2.

3. Implicit modified equation (IME) schemes on Cartesian grids

In order to analyze the proposed IME schemes in more detail we introduce a spatial approx-
imation for Cartesian grids in Section 3.1. This allows us to show the form of the fully discrete
schemes and to perform a von Neumann stability analysis in Section 3.2.
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3.1. Spatial approximation on Cartesian grids

Let the domain Ω “ r0, 2πsnd be a box in nd dimensions discretized with a Cartesian grid with
Nd grid points in each direction. Denote the grid points as

xj “ rj1h1, ..., jnd
hnd

sT (12)

for multi-index j P Znd and grid spacings hd “ 2π{Nd. Let Un
j « upxj, t

nq be elements of a grid
function at time tn “ n∆t. Define the usual divided difference operators to be

D`xd
Un
j

def
“

Un
j`ed

´ Un
j

hd
, D´xd

Un
j

def
“

Un
j ´ Un

j´ed

hd
, D0xd

Un
j

def
“

Un
j`ed

´ Un
j´ed

2hd
, (13)

where ed P Rnd is the unit vector in direction d (e.g. e2 “ r0, 1, 0s).
The compact pth order accurate discretization of the operator L can be written in the form

Lp,h
def
“ c2

p{2´1
ÿ

m“0

κm

«

nd
ÿ

d“1

h2md pD`xd
D´xd

qm`1

ff

. (14)

where, for example, κ0 “ 1, κ1 “ ´1{12, κ2 “ 1{90 and κ3 “ ´1{560. The compact second-order
accurate approximation to L2 is just the square of the second-order accurate approximation L2,h

L2
2,h “ L2,h L2,h. (15)

Although not used here, note that the compact fourth-order accurate approximation to L2 is not
the square of L4,h as pL4,hq2 has a wider stencil than is needed [30].

Given the accuracy requirements (10) we write the fully discrete second-order accurate ME
scheme (denoted by IME2) in terms of a single free parameter α2,

D`tD´tU
n
j “ L2,h

´

α2 U
n`1
j ` p1 ´ 2α2qUn

j ` α2 U
n´1
j

¯

. (16)

Note that larger values of α2 correspond to schemes that are more implicit with α2 “ 0 being the
explicit EME2 scheme. Similarly the fully discrete fourth-order accurate ME scheme (denoted by
IME4) involves two two free parameters α2 and α4,

D`tD´tU
n
j “ L4,h

´

α2 U
n`1
j ` p1 ´ 2α2qUn

j ` α2 U
n´1
j

¯

´ ∆t2L2
2,h

´

α4 U
n`1
j ` pα2 ´ 2α4 ´

1

12
qUn

j ` α4 U
n´1
j

¯

. (17)

Larger values of α2 and α4 correspond to schemes that are more implicit with α2 “ α4 “ 0 being
the explicit EME4 scheme.

3.2. Stability analysis of the implicit modified equation (IME) schemes

The stability of the IME schemes (16) and (17) is now studied using von Neumann analysis,
assuming solutions that are periodic in space. Von Neumann analysis expands the solutions in
a Fourier series and determines conditions so that all Fourier modes remain stable. There are
numerous definitions for stability, but for our purposes here we make the following definition:
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Definition 1 (Stability). A numerical scheme for the wave equation is stable if there are no
Fourier modes with non-zero wave-number, k ‰ 0, whose magnitude grow in time. For the zero
wave-number, k “ 0, case the linear in time mode given by u “ c0 ` c1t for constants c0 and c1, is
permitted since this is an exact solution to the wave equation.

The explicit ME schemes (with α2 “ α4 “ 0) are known to be CFL-one stable (at least for
p “ 2, 4, 6), meaning stable for

c2∆t2
nd
ÿ

d“1

1

h2d
ă 1. (18)

For implicit ME schemes we are generally interested in unconditional stability, that is stability
for any ∆t ą 0. The constraint on α2 for unconditional (von Neumann) stability of the second-order
accurate IME2 scheme is summarized by the following theorem.

Theorem 1 (IME2 Stability). The IME2 scheme (16) is unconditionally stable on a periodic
domain provided

α2 ě
1

4
. (19)

The constraints on α2 and α4 for unconditional stability of the fourth-order accurate IME4
scheme are summarized by the following theorem.

Theorem 2 (IME4 Stability). The IME4 scheme (17) is unconditionally stable on a periodic
domain provided

α2 ě
1

12
, (20a)

α4 ě

#

1
4α2 ´ 1

48 , when α2 ě 1
4 ,

1
4α2 ´ 1

48 ` 8
9p14 ´ α2q2, when 1

12 ď α2 ď 1
4 .

(20b)

The proofs of Theorems 1 and 2 are given in Appendix A.1 and Appendix A.2, respectively.

4. Upwind dissipation and implicit modified equation (IME-UW) schemes

The EME and IME schemes described in previous sections have no dissipation and are neutrally
stable. As a result, perturbations to the schemes, such as with variable coefficients or when the
schemes are applied on overset grids may lead to instabilities. For single curvilinear grids, stable
schemes can be defined using special discretizations such as summation by parts (SBP) [31–35]
methods or the schemes described in [29]. Overset grids are a greater challenge and in this case
we add dissipation for stability. Upwind dissipation for the wave equation in second-order form
was first developed in [36] and applied to Maxwell’s equations in [21]. An optimized version of
the upwind dissipation was developed in [25] and it is this optimized version that we use here as a
template for the IME scheme.

We first consider upwind dissipation for the explicit ME scheme to establish our basic approach
and to introduce some notation. For the explicit scheme, dissipation is added in a predictor-
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corrector fashion,

U
p0q

j “ 2Un
j ´ Un´1

j ` ∆t2 Lp U
n
j , (21a)

Un`1
j “ U

p0q

j ´ νp∆t2Qp

»

–

U
p0q

j ´ Un´1
j

2∆t

fi

fl , (21b)

where Lp denotes the (full) spatial operator for the pth-order accurate scheme, νp is an upwind
dissipation parameter, and Qp is a dissipation operator, which on a Cartesian grid takes the form

Qp
def
“

nd
ÿ

d“1

c

hd
r´∆`xd

∆´xd
s
p{2`1 , (22)

where ∆˘xd
are undivided difference operators corresponding to the divided difference operators

defined in (13). Note that the dissipation operator Qp has a stencil of width p` 3 compared to the
stencil width of p ` 1 for Lp. The wider stencil for the dissipation reflects the upwind character of
the operator [36]. Also note that the addition of the upwind dissipation does not change the order
of accuracy of the scheme.

The dissipation operator Qp in (21b) acts on an approximation of Btupxj, t
nq. The treatment of

this approximation in the predictor-corrector scheme in (21) ensures that the scheme, with dissi-
pation, remains explicit and pth-order accurate. For implicit ME schemes, there is more flexibility
in the treatment of this approximation. Two approaches are described in the next subsections.

4.1. Monolithic upwind dissipation for IME schemes (IME-UW)

Upwind dissipation for the implicit ME schemes can be added directly into the single step
update (denoted as the IME-UW scheme) as

D`tD´tU
n
j “ LαppUn`1

j , Un
j , U

n´1
j q ´ νpQp

«

Un`1
j ´ Un´1

j

2∆t

ff

. (23)

Here Lαp denotes the spatial part of the IME scheme as given in (16) and (17) for some choice
of the parameters α2 and α4. A von Neumann stability analysis for a Cartesian grid leads to the
following result.

Theorem 3. The IME-UW schemes (23) for p “ 2, 4 on a periodic Cartesian grid are uncondi-
tionally stable for any νp ą 0 provided α2 satisfies the conditions of Theorem 1, for p “ 2, or α2

and α4 satisfy the conditions for Theorem 2 for p “ 4.

The proof of this theorem is given in Appendix A.3. The monolithic upwind dissipation allows
for any νp ą 0 and there are various possible strategies for choosing this value [37].

4.2. Predictor-corrector upwind dissipation for IME schemes (IME-UW-PC)

One disadvantage of the upwind scheme (23) is that the dissipation operator changes the im-
plicit matrix, increasing the stencil size. This may increase the cost of the implicit solve and be
undesirable, if for example, one wants to use an existing multigrid solver not designed for this
special matrix. Dissipation can be added to the IME scheme is a separate explicit correction step
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as in (21). Allowing for for multiple corrections leads to the implicit-predictor explicit-corrector
upwind scheme (IME-UW-PC)

U
p0q

j ´ 2Un
j ` Un´1

j

∆t2
“ Lαp pU

p0q

j , Un
j , U

n´1
j q, (24a)

U
pkq

j “ U
pk´1q

j ´ νp∆t2Qp

»

–

U
pk´1q

j ´ Un´1
j

2∆t

fi

fl , k “ 1, 2, . . . , nu, (24b)

Un`1
j “ U

pnuq

j . (24c)

where nu denotes the number of upwind correction steps. The sequence of corrections in (24) can
be combined and written succinctly as

Un`1
j “ Rnu

p U
p0q

j ` pI ´ Rnu
p qUn´1

j , (25)

where

Rp
def
“ I ´

νp∆t

2
Qp. (26)

The conditions on νp for stability are specified in the following theorem. The theorem covers the
cases of using an implicit or an explicit ME predictor.

Theorem 4. The upwind predictor-corrector scheme (24) is stable on the periodic domain provided
the non-dissipative predictor scheme (explicit or implicit) is stable and provided

0 ď νp ă
σnu

2p`1
řnd

d“1 λxd

. (27)

where σnu “ 2 for nu even and σnu “ 1 for nu odd, and where λxd
is the CFL parameter in

coordinate direction d,

λxd

def
“

c∆t

hd
. (28)

The proof of Theorem 4 is given in Appendix A.4. In practice a reasonable choice might be

νp “
sf σnu

2p`1
řnd

d“1 λxd

, (29)

where sf P p0, 1q is a safety factor.
Note from (27) that the coefficient of dissipation, νp, decreases as the CFL parameter increases,

and thus less dissipation is added as the CFL number increases. Thus, for large CFL it may become
necessary to use more than one correction step and in general taking nu to be the integer larger
than the CFL, nu “ rCFLs, seems appropriate for difficult cases such as when solving on an overset
grid.
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5. Spatially partitioned implicit-explicit (SPIE) ME schemes

The IME and EME schemes can be combined in a spatially partitioned manner. For overset
grids, the IME scheme is used on certain components grids while the EME scheme is applied on all
other component grids. A typical strategy is to employ the EME scheme on background Cartesian
grids and any curvilinear grids with grids spacings close to a nominal Cartesian value, and then
use the IME scheme on any curvilinear component grids that have a minimum grid spacing that is
relatively small as compared to the nominal value.

5.1. Formulation of the SPIE scheme

Let Ge denote the set of grids that use explicit time-stepping (e.g. Cartesian grids), and let Gi

denote the set of grids that use implicit time-stepping (e.g. curvilinear grids). The SPIE algorithm
consists of the following three stages:

Stage 1. Update explicit grids,

U
p0q

g, j ´ 2Un
g, j ` Un´1

g, j

∆t2
“ Lp U

n
g, j, g P Ge, (30a)

Stage 2. Update implicit grids, interpolating from the solution on explicit grids from Stage 1,

U
p0q

g, j ´ 2Un
g, j ` Un´1

g, j

∆t2
“ Lαp pU

p0q

g, j , U
n
g, j, U

n´1
g, j q, g P Gi (30b)

Stage 3. Add dissipation to all grids. For example, if all grids use a predictor-corrector upwind
formulation, then use

Un`1
g, j “ U

p0q

g, j ` νp∆t2Qp

»

–

U
p0q

g, j ´ Un´1
g, j

2∆t

fi

fl . g P Gi Y Ge. (30c)

Multiple upwind correction steps can also be used as discussed in Section 4.2.

5.2. GKS stability analysis of a model problem for the SPIE scheme

This section investigates the stability of the SPIE scheme for a one-dimensional overset grid.
Normal mode (GKS) analysis [38, 39] is used to show that the second-order accurate SPIE scheme
is stable when solving the wave equation on an overset grid for a one-dimensional infinite domain.
Matrix stability analysis on a finite domain is presented later in Section 7 and the result of the
matrix analysis supports the conclusions of the GKS analysis discussed in this section.

xL,´3

UL,´3

xL,´2

UL,´2

xL,´1

UL,´1

xL,0

UL,0

. . .

xR,0

UR,0

xR,1

UR,1

xR,2

UR,2

xR,3

UR,3

. . .

Figure 2: One-dimensional overset grid used to assess the stability of the SPIE scheme. The explicit scheme is used
on the left grid and the implicit scheme is used on the right. Interpolation points are marked as circles.
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Consider the one-dimensional overlapping grid for Ω “ p´8,8q shown in Figure 2. Let xL,j “

pj ` 1qh and xR,j “ jh denote the grid points for the left and right grids, respectively. Let Us,j ,
for s “ L,R, denote the discrete solutions on the two grids. The grids overlap by a distance h
and the solution is interpolated at the interpolation points shown in Figure 2. The second-order
accurate SPIE scheme is used. The explicit (EME2) scheme is applied on the left grid and the
implicit (IME2) scheme is applied on the right grid. The discrete equations are

D`tD´tU
n
L,j “ c2D`xD´xU

n
L,j , j ă 0, (31a)

D`tD´tU
n
R,j “ c2D`xD´x

”

α2 U
n`1
R,j ` p1 ´ 2α2qUn

R,j ` α2 U
n´1
R,j

ı

, j ą 0, (31b)

|Un
L,j | ă 8, j Ñ ´8, (31c)

|Un
R,j | ă 8, j Ñ 8, (31d)

Un
L,0 “ Un

R,1, (31e)

Un
R,0 “ Un

L,´1, (31f)

where we have assumed that the solution is bounded as |j| Ñ 8. Each individual scheme is
assumed to be stable and so we take λ “ c∆t{h ă 1 and α2 ě 0. Note that the IME2 scheme is
unconditionally stable for α2 ě 1{4, but α2 ě 0 is sufficient when λ ă 1.

Before proceeding with the stability analysis, it is useful to first state the following lemma
related to the stability of the EME2 and IME2 schemes for the Cauchy problem.

Lemma 5.1. Suppose a is a root of quadratic equation,

a2 ´ 2b a ` 1 “ 0, (32a)

where b is defined in terms of some κ P C by

b
def
“

1 ` p12 ´ α2qλ2 pκ ´ 2 ` κ´1q

1 ´ α2 λ2 pκ ´ 2 ` κ´1q
. (32b)

Then, |κ| “ 1 implies |a| “ 1, when (i) λ ă 1 and α2 ě 0 or when (ii) λ ą 0 and α2 ě 1{4.

The proof of Lemma 5.1 is given in Appendix A.5.

We are now ready to prove the main theorem of this section.

Theorem 5. The SPIE scheme in (31), for the one-dimensional infinite domain overset grid, has
no unstable solutions provided λ ă 1 and α2 ě 0.

Proof. We look for unstable mode solutions of the form

Un
L,j “ anκjL, (33a)

Un
R,j “ anκjR, (33b)

for some a P C with |a| ą 1. Note that the same amplification factor a must appear in both the left
and right grid functions in order to match the interpolation equations (31e) and (31f). Substituting
the ansatz (33) into (31a) and (31b) implies,

a1 ´ 2a ` a´1 “ λ2pκL ´ 2 ` κ´1
L q, (34a)
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a1 ´ 2a ` a´1 “ λ2pκR ´ 2 ` κ´1
R q

`

α2a ` p1 ´ 2α2q ` α2a
´1

˘

. (34b)

The equations (34) can be written as quadratics for κs,

κ2s ´ 2bsκs ` 1 “ 0, (35a)

for some bs, s “ L,R, with roots denoted by κs,˘. The general solutions for the left and right sides
then take the form

Un
L,j “ anpc`κ

j
L` ` c´κ

´j
L`q, (36a)

Un
R,j “ anpd`κ

j
R` ` d´κ

´j
R`q, (36b)

where c˘ and d˘ are constants. Note that both equations in (34) are of the form (32) of Lemma 5.1.
Since we have assumed |a| ą 1, it follows from Lemma 5.1 that the roots κs,˘ cannot have magnitude
equal to one. Since the product of the roots κs,˘ is one, we can therefore, without loss of generality,
take |κs,`| ă 1, s “ L,R.

The boundedness conditions (31c) and (31d) at infinity imply c` “ 0 and d´ “ 0, reducing the
solutions to

Un
L,j “ anc´κ

´j
L`, (37a)

Un
R,j “ and`κ

j
R`. (37b)

Applying the interpolation conditions (31e) and (31f) gives

c´ “ d`κR`, (38a)

d` “ c´κL`, (38b)

which implies, assuming c´ ‰ 0 and d` ‰ 0, that

κL`κR` “ 1. (39)

This last equation cannot hold since |κL`κR`| ă 1. Therefore, only the trivial solution remains,
thus yielding no unstable solutions with |a| ą 1.

6. Overset grids, implicit first step, and implicit solvers

The new ME schemes have been implemented for complex geometry using overset grids, which
are also known as composite overlapping grids or Chimera grids. As shown in Figure 3, an overset
grid, denoted as G, consists of a set of component grids tGgu, g “ 1, . . . ,N , that cover the entire
domain Ω. Solutions on the component grids are matched by interpolation [40]. Overset grids
enable the use of efficient finite difference schemes on structured grids, while simultaneously treating
complex geometry with high-order accuracy up to and including boundaries. Each component grid,
Gg, is a logically rectangular, curvilinear grid defined by a smooth mapping from a unit cube in nd

dimensions (called the parameter space with coordinates r) to physical space x,

x “ Ggprq, r P r0, 1snd , x P Rnd . (40)
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All grid points in G are classified as discretization, interpolation or unused points [40]. The over-
lapping grid generator Ogen [41] from the Overture framework is used to construct the overlapping
grid information.

G1

G2

G1

interpolation
ghost
unused

G2

Figure 3: Left: composite of a background grid (G1, blue) and a boundary-fitted grid (G2, green) in physical space
for the domain defined by the interior of the red boundary. The grid points on G1 with green dots interpolate from
G2 and the grid points on G2 with blue dots interpolate from G1. Middle: Plot of G1 showing interpolation points,
ghost points (grid points which exist outside the physical boundary), and unused points (grid points which do not
affect the computation). Right: The green boundary fitted grid, G2, is mapped to a unit square. The plot shows
interpolation points and ghost points.

6.1. Discrete approximations on curvilinear grids

Approximations to derivatives on a curvilinear grid can be formed using the mapping method.
Given a mapping x “ Ggprq and its metric derivatives, Brℓ{Bxm, ℓ,m “ 1, . . . , nd, the derivatives
of a function upxq “ Uprq are first written in parameter space using the chain rule, for example,

Bu

Bxm
“

nd
ÿ

ℓ“1

Brℓ
Bxm

BU

Brℓ
. (41)

Derivatives of U with respect to rℓ are then approximated with standard finite differences. Let
ri denote grid points on the unit cube, where ik “ 0, 1, . . . , Nk. Let ∆rk “ 1{Nk denote the grid
spacing on the unit cube with ri “ pi1∆r1, i2∆r2, i3∆r3q. Let Ui « Upriq and define the difference
operators,

D`rℓUi
def
“

Ui`eℓ ´ Ui

∆rℓ
, D´rℓUi

def
“

Ui ´ Ui´eℓ

∆rℓ
, D0rℓUi

def
“

Ui`eℓ ´ Ui´eℓ

2∆rℓ
, (42)

where eℓ is the unit vector in direction ℓ. Second-order accurate approximations to the first deriva-
tives, for example, are

Dxm,hUi
def
“

nd
ÿ

ℓ“1

Brℓ
Bxm

ˇ

ˇ

ˇ

ˇ

i

D0,rℓUi, (43)

where we assume the metric terms Brℓ{Bxm are known at grid points from the mapping. We do
not, however, assume the second derivatives of the mapping are known (to avoid the extra storage)
and these are computed using finite differences of the metrics. Using the chain rule, the second
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derivatives are

B2u

BxmBxn
“

nd
ÿ

k“1

nd
ÿ

l“1

Brk
Bxm

Brl
Bxn

B2U

BrkBrl
`

nd
ÿ

k“1

#

nd
ÿ

l“1

Brl
Bxn

B

Brl

Brk
Bxm

+

BU

Brk
. (44)

The second derivatives are approximated to second-order accuracy using approximations such as

B2U

BrkBrl

ˇ

ˇ

ˇ

ˇ

ri

« D`rkD´rlUi, for k “ l, (45)

B2U

BrkBrl

ˇ

ˇ

ˇ

ˇ

ri

« D0rkD0rlUi, for k ‰ l, (46)

B

Brl

ˆ

Brk
Bxm

˙ˇ

ˇ

ˇ

ˇ

ri

« D0rl

ˆ

Brk
Bxm

ˇ

ˇ

ˇ

ˇ

i

˙

. (47)

Fourth and higher-order accurate approximations are straightforward to form using similar tech-
niques.

6.2. Boundary conditions and upwind dissipation

Careful attention to the discrete boundary conditions is important for accuracy and stability,
especially for the wave equation which has no natural dissipation. We use compatibility boundary
conditions (CBCs) which are generally more accurate and stable than one-sided approximations [30].
A simple CBC uses the governing equation on the boundary. More generally, CBCs for the case of
the wave equation are formed by taking even time-derivatives of the boundary condition and then
using the governing equation to replace B2

t by L. For flat boundaries with homogeneous Dirichlet
or Neumann boundary conditions CBCs lead to odd or even reflection conditions, respectively. For
more details on CBCs see [29, 30] for example.

The upwind dissipation operator Qp was introduced in Section 4 and defined in (22) for the
case of a Cartesian grid. More generally for a curvilinear grid the upwind dissipation operator is
taken as

Qp “

nd
ÿ

ℓ“1

c }∇xrℓ}

∆rℓ

`

´ ∆`rℓ∆´rℓ

˘p{2`1
, (48a)

where

}∇xrℓ}
2 “

nd
ÿ

m“1

„

Brℓ
Bxm

ȷ2

. (48b)

Here, ∆˘rℓ are undivided difference operators in the ℓ coordinate direction of the parameter space r
corresponding to the divided difference operators defined in (42).

6.3. Implicit first time-step

Implicit three-level ME schemes require two time levels to initiate the time stepping. The
solution at t “ 0 is found directly from the initial condition (1b). The solution at the first time-
step t “ ∆t could be found from a Taylor series in time using both initial conditions (1b), and
(1c), together with the governing equation (1a). It would be convienent to use an explicit version
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of this Taylor series approximation to obtain the solution at the first time-step; formally this would
not change the stability of the scheme. In practice, however, very large errors can be introduced
in the first explicit time-step at t “ ∆t when the CFL number is large, often rendering the full
computation useless. Thus the first-time step should be taken implicitly when the CFL number
is large. Further, it would be convenient if this implicit first time-step utilized the same implicit
matrix as subsequent time steps of the full three-level scheme. In this section we show how this
can be accomplished.

6.3.1. Implicit first time-step: second-order accuracy

Consider the second-order accurate implicit IME2 scheme, re-written here for clarity,

Un`1
i ´ 2Un

i ` Un´1
i

∆t2
“ L2,h

”

α2U
n`1
i ` β2U

n
i ` α2U

n´1
i

ı

, (49)

which has the implicit operator

A2
def
“ I ´ α2∆t2L2,h. (50)

Given the initial conditions,

upx, 0q “ u0pxq, (51a)

Btupx, 0q “ u1pxq, (51b)

approximate (51b) to second-order accuracy using

D0tU
n
i “

Un`1
i ´ Un´1

i

2∆t
“ u1,i, (52)

with n “ 0. Solving for Un´1
i gives

Un´1
i “ Un`1

i ´ p2∆tqu1,i. (53)

Substituting (53) into (49) and dividing by 2 gives the following implicit scheme for the first step
(n “ 0),

Un`1
i ´ Un

i ´ ∆tu1,i
∆t2

“ L2,h

”

α2U
n`1
i `

1

2
β2U

n
i ´ α2∆t u1,i

ı

. (54)

This gives the following update for the first time-step (n “ 0)

A2U
n`1
i “ Un

i ` ∆t u1,i ` ∆t2L2,h

”1

2
β2U

n
i ´ α2∆t u1,i

ı

, (55)

that uses the same implicit operator A2 as the later time steps.
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6.3.2. Implicit first time-step: fourth-order accuracy

Consider the fourth-order accurate implicit IME4 scheme, re-written here for clarity,

Un`1
i ´ 2Un

i ` Un´1
i

∆t2
“ L4,h

”

α2U
n`1
i ` β2U

n
i ` α2U

n´1
i

ı

´ ∆t2L2
2,h

”

α4U
n`1
i ` β4U

n
i ` α4U

n´1
i

ı

.

(56)

Scheme (56) has the implicit operator

A4
def
“ I ´ α2∆t2L4,h ` α4∆t4L2

2,h. (57)

To approximate the second initial condition (51b) to fourth-order accuracy, we use

Btu “ D0tu ´
∆t2

6
B3
t u ` Op∆t4q. (58)

To treat the B3
t u term in (58), take the first time derivative of the governing equation and write it

in the form

B3
t u “ B2

t pBtuq “ LpBtuq. (59)

Using this expression for B3
t u in (58) gives the approximation

D0tU
n
i ´

∆t2

6
L2,hu1,i “ u1,i, pn “ 0q. (60)

Solving (60) for Un´1
i gives

Un´1
i “ Un`1

i ´ p2∆tqu1,i ´
∆t3

3
L2,hu1,i, (61a)

“ Un`1
i ´ Wi, (61b)

where

Wi
def
“ p2∆tqu1,i `

∆t3

3
L2,hu1,i. (61c)

Substituting (61b) into (56) and dividing by 2 gives the following fourth-order accurate implicit
scheme for the first step (n “ 0),

Un`1
i ´ Un

i ´ 1
2Wi

∆t2
“ L4,h

”

α2U
n`1
i `

1

2
β2U

n
i ´

1

2
α2Wi

ı

´ ∆t2L2
2,h

”

α4U
n`1
i `

1

2
β4U

n
i ´

1

2
α4Wi

ı

. (62)

Rearranging (62) gives

A4U
n`1
i “ Un

i `
1

2
Wi ` ∆t2L4,h

”1

2
β2U

n
i ´

1

2
α2Wi

ı

´ ∆t4L2
2,h

”1

2
β4U

n
i ´

1

2
α4Wi

ı

pn “ 0q,

(63)
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and substituting for Wi leads to

A4U
n`1
i “ Un

i ` ∆t u1,i `
∆t3

6
L2,hu1,i (64a)

` ∆t2L4,h

´1

2
β2U

n
i ´ α2p∆t u1,i`

∆t3

6
L2,hu1,iq

¯

(64b)

´ ∆t4L2
2,h

´1

2
β4U

n
i ´ α4p∆t u1,i`

∆t3

6
L2,hu1,iq

¯

. (64c)

The terms in blue are dropped, based on accuracy, and this keeps the stencil compact. Note that
scheme (64) has the same implicit operator A4 as scheme (56). If the red term L2,hu1,i in (64) is
replaced by L4,hu1,i, then the form of (64) is similar to the usual interior update and the same code
can be used for both the first step and later steps with the appropriate choice of coefficients.

6.4. Solution of the implicit time-stepping equations

For the overset grid results presented in this article the implicit equations are solved either with
a direct sparse solver (for problems that are not too large) or with a Krylov space method (bi-CG-
stab with an ILU preconditioner). The approach we currently use is not efficient since an implicit
matrix is formed for all grids points, on both explicit and implicit grids. The implicit matrix entries
corresponding to the equations at points treated explicitly are simply the identity. This approach
was done so that existing software could be used. A more efficient approach would be to only form
a system for the implicit points. Moreover, it is often the case that the implicit points on different
component grids are not coupled and in this case multiple smaller implicit systems could be formed.

7. Matrix stability analysis on one-dimensional overset grids

In this section, matrix stability analysis is used to study the behavior of the new schemes on
a collection of one-dimensional overset grids. A large number of overset grids with different grid
spacings are considered to determine the stability behavior for a wide range of grid configurations.
A scaled upwind dissipation coefficient νγ “ γνp is used with γ P r0, 1s to show how the stability
of the scheme depends on the amount of dissipation ranging from no dissipation γ “ 0 to full
dissipation γ “ 1. In particular, the results for γ “ 0 show the necessity of upwind dissipation.
For some cases, the number of upwind corrections, nu, must also be chosen greater than one for
stability.

The time-stepping update on an overset grid is written in the form of a single vector update
for the active unknowns (i.e. unknowns corresponding to the interior equations) excluding the
constraint unknowns (i.e. unknowns associated with the boundary conditions and interpolation
equations). For homogeneous boundary conditions, this update is written in terms of the matrices
B1 and B2 and the vector Vn of active unknowns at time tn,

Vn`1 “ B1V
n ` B2V

n´1. (65)

For a given overset grid, the associated eigenvalues and eigenvectors can be determined and this
shows whether discrete solutions grow in time or not.
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7.1. Matrix stability formulation

Some details on the construction of the matrix stability equation (65) is now described. We
assume the problem domain is Ω “ r´1, 1s and let it be discretized with an overset grid as shown
in Figure 4. The left domain is ΩL “ r´1, bLs, where bL may vary, and the right domain is fixed
at ΩR “ r0.5, 1s. Let Un

L,j and Un
R,j denote grid functions on the left and right grids, respectively,

at time tn. The active points on the left grid are j “ 1, 2, . . . , NL, while those on the right grid
are j “ 0, 1, 2, . . . , NR ´ 1. Dirichlet boundary conditions are given at j “ 0 (left grid) and at
j “ NR (right grid). The interpolation points on the left grid are at j “ NL ` 1, . . . , NL ` nghost,
where nghost “ p{2 ` 1 is the number of ghost points. The interpolation points on the right
grid are at j “ ´nghost, . . . ,´1. The grid spacings for the left and right grids are uniform with
hL “ pbL ` 1q{NL and hR “ 0.5{NR. In our study of stability for a collection of overset grids,
NR is held fixed and thus hR is also fixed. We then select a ratio of the grid spacings δ “ hL{hR
which implies bL “ ´1`δhRNL. The value for NL, and the corresponding value for bL, is chosen to
minimize the grid overlap while maintaining the assumption of an explicit interpolation as discussed
in more detail below. The sampling of overset grids is performed for grids for a range of grid spacing
ratios δ P rδmin, δmaxs as noted below.

xL,0

UL,0

xL,1

UL,1

xL,2

UL,2

. . . xL,NL

UL,NL

xL,NL`2

UL,NL`2

xR,´2

UR,´2

xR,0

UR,0

xR,1

UR,1

xR,NR

UR,NR

. . .

Figure 4: One-dimensional overset grid used for the matrix stability analyses. Interpolation points are marked as
circles, ghost points are marked as squares.

In Stages 1 and 2 of the SPIE scheme in (30), the solutions for the left and right grids are ad-
vanced one time step (without dissipation) and the boundary/interpolation conditions are applied.
This step can be written in matrix form as

Q0U
p0q “ Q1U

n ` Q2U
n´1, (66)

where Un is a vector holding all of the unknowns on the two grids (including ghost points and
interpolation points). The equations in (66) include the interior equations, boundary conditions
and interpolation equations. The matrix Q0 is equal to the identity matrix at active points using an
explicit scheme, while the matrix has values corresponding to the implicit operators A2 in (50) and
A4 in (57) at active points corresponding to the second and fourth-order accurate implicit schemes,
respectively. The matrix Q0 also includes the boundary conditions and interpolation equations; the
corresponding rows in Q1 and Q2 are zero. For example, the boundary conditions on the left grid
are

U
p0q

L,0 “ 0, (67)

U
p0q

L,´j “ ´U
p0q

L,j , j “ 1, . . . , nghost, (68)

where the odd symmetry conditions on the ghost points are determined from compatibility condi-
tions. The boundary conditions on the right grid are similar. The values at interpolation points
are found using Lagrange interpolation for a stencil of p ` 1 points. For example, an interpolation
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point on the left grid is found using a formula of the form

U
p0q

L,k “

p`1
ÿ

j“1

wL
k,j U

p0q

R,mk`j . (69)

where mk denotes the left index of the interpolation stencil, chosen to make the interpolation as
centered as possible, and wL

k,j are interpolation weights. The values on the right hand side of (69)
are known as donor points. The interpolation is taken to be explicit so that none of the donor
points for one grid are interpolation points for the other grid.

Explicit upwind dissipation is incorporated in Stage 3 of the SPIE scheme. Assuming nu

applications of the dissipation, the updates of the solution at this stage have the matrix form

P0U
pkq “ P1U

pk´1q ` P2U
n´1, k “ 1, 2, . . . , nu, (70)

where P0, like Q0, includes the boundary/interpolation equations. Finally, the solution at the new
time is

Un`1 “ Upnuq. (71)

Combining the time step in Stages 1/2 and the corrections in Stage 3 leads to a three-level matrix
equation of the form

Un`1 “ A1U
n ` A2U

n´1. (72)

where A1 and A2 are coefficient matrices generated from the ones in (66) and (70). The constraint
unknowns in (72) can be eliminated by row operations and this leads to the compressed form in (65).
The correctness of the matrices B1 and B2 in (65) is checked by comparing, at each time-step, the
solution computed using the SPIE scheme in (30) with the solution arising from the compressed
form (65).

To investigate the growth of solutions to the discrete problem (65) we look for solutions of the
form Vn “ anV0 which leads to a quadratic eigenvalue problem for a given by

pa2I ´ aB1 ´ B2qV0 “ 0. (73)

This quadratic form can also be written as a regular eigenvalue problem of twice the dimension,

„

O I
B2 B1

ȷ „

V0

V1

ȷ

“ a

„

V0

V1

ȷ

. (74)

The eigenvalue problem in (74) is solved easily with standard software.
For the stability studies, we set NR “ 10 for the right grid with fixed domain ΩR “ r0.5, 1s. This

right grid represents the local boundary grid in a general overset grid. The grid spacing on the left
grid is determined by hL “ δhR, where δ is the ratio of grid spacings. This ratio is varied from 1

2 to
2 to represent typical overset grids where the grid spacings in the overlap are chosen to be nearly
the same. For each value of δ, the parameters bL and NL for the left grid are determined based
on the grid overlap as discussed above. Finally, the parameter γ for the scaled upwind dissipation
coefficient νγ “ γνp is varied between 0 and 1 to study how much dissipation is needed to stabilize
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the SPIE scheme for the different cases considered.
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Figure 5: Example stable and unstable cases for the SPIE2-UW-PC scheme with γ “ 0.3. Middle left: amplification
factors a for the stable case corresponding to the grid on the top, grid-ratio δ “ .5. Middle right: amplification
factors a for the unstable case corresponding to the grid on the bottom, grid-ratio δ “ 1.55.

Figure 5 shows some sample results for the SPIE2-UW-PC scheme. The left grid uses the EME2
explicit scheme with CFL “ 0.9, while the right grid uses the IME2 implicit scheme. Explicit upwind
dissipation is added in a corrector step with νp given by (29) and nu “ 1 corrections. The safety
factor for νp is chosen as sf “ .9. Two grid cases are shown for γ “ 0.3; one with grid-ratio δ “ .5
and one with δ “ 1.55. The grid plotted on the top of the figure is stable as shown in the middle
left plot; all eigenvalues of a satisfy |a| ď 1 ` tola, where tola “ 10´8. The grid on the bottom has
two unstable modes, as illustrated on the middle right plot. The conclusion for this representative
case is that there is insufficient dissipation for the SPIE2-UW-PC scheme with γ “ 0.3 and nu “ 1.

7.2. Matrix stability numerical results

Results are now presented using different combinations of explicit and implicit schemes; different
orders of accuracy (p “ 2 and p “ 4), and different numbers of upwind corrections. The following
cases are considered

1. EMEp: explicit pth-order accurate ME schemes are used on the left and right grids.

2. IMEp: implicit pth-order accurate ME schemes are used on the left and right grids.

3. SPIEp : An EMEp scheme is used on the left grid and an IMEp scheme is used on the right
grid.
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Explicit upwind dissipation is used in all cases. Unless otherwise specified, the IME schemes use
the parameters, α2 “ 1{4 and α4 “ 1{12. For each value of upwind scaling factor γ, the grid-ratio
δ is varied form .25 to 2 using Nδ “ 101 different values (i.e. Nδ different overset grids).
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Figure 6: Overset grid EMEp: Fraction of unstable grids versus dissipation parameter γ for the EMEp scheme on
an overset grid. The colour of each dot corresponds to the value of |a| ´ 1 for the most unstable mode.

Figure 6 shows results for the EMEp scheme. The time-step is chosen so that the CFL number
is 0.9 on the side with the smallest grid spacing. The number of unstable grids is plotted versus γ,
the scaling factor of the dissipation coefficient νp. For p “ 2 and γ “ 0 (no dissipation), roughly
60% of the grids tested are unstable. This number drops to about 25% when γ “ 0.1, and there
are no unstable grids for γ ě 0.3. For p “ 4 a value of about γ “ 0.5 is sufficient to stabilize all
the grids tested.
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Figure 7: Overset grid IMEp: Fraction of unstable grids versus dissipation parameter γ for the IMEp scheme on an
overset grid. The colour of each dot corresponds to the value of |a| ´ 1 for the most unstable mode.

Figure 7 shows results for IMEp schemes. Note that these schemes use a single implicit solve
over both grids (i.e. the implicit solves are coupled, not partitioned). For p “ 2 (p “ 4), the
time-step is chosen so that CFL number is 4.0 (5.0) on the side with the smallest grid spacing. The
number of explicit upwind corrections is set to nu “ 4 for p “ 2 and nu “ 5 for p “ 5. This choice
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is made since the value of νp for the IME schemes scales with the inverse of the CFL. The results
in Figure 7 show that the schemes have no unstable grids for γ ě 0.1.
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Figure 8: Overset grid SPIE: Fraction of unstable grids versus dissipation parameter γ for the SPIE scheme on an
overset grid with weights α2 “ 1{4, and α4 “ 1{12. The colour of each dot corresponds to the value of |a| ´ 1 for the
most unstable mode.

Figure 8 shows results for the implicit-explicit SPIE scheme. The left grid uses an explicit solver
and the overall time-step is chosen to match a CFL number of 0.9 on this grid. The CFL number
on the implicit grid varies between grids and reaches a maximum of 1.8. The left column of plots
show results for the second-order accurate SPIE2+UW+PC scheme using nu “ 1 (sf “ 0.9) and
nu “ 2 (sf “ 1.9) upwind corrections. With nu “ 1 there are no unstable grids for γ ě 0.8. For
nu “ 2, which incorporates more dissipation, there are no unstable grids for γ ě 0.3. The right
column of plots show corresponding results for the fourth-order accurate SPIE4+UW+PC scheme
using nu “ 1 (sf “ 0.9) and nu “ 2 (sf “ 1.9). This fourth-order accurate SPIE scheme presents
a more difficult case to keep stable. With nu “ 1, there are some unstable grids even for γ “ 1,
while the grids are stable for γ ě 0.6 using nu “ 2.

A possible reason the SPIE schemes may require more dissipation to remain stable compared
to the other cases is that there is a mismatch in the truncation errors between the left and right
grids, the IME schemes generally having larger errors than the corresponding EME schemes. Some
support for this hypothesis comes from results shown in Figure 8 when using the trapezoidal IME
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Figure 9: Overset grid SPIE + Trap: Fraction of unstable grids versus dissipation parameter γ for the SPIE scheme
on a overset grid with trapezoidal weights α2 “ 1{2, and α4 “ 5{24. The colour of each dot corresponds to the value
of |a| ´ 1 for the most unstable mode.

scheme with α2 “ 1{2 and α4 “ 5{24. The Trapezoidal scheme has a larger truncation error
compared to the default scheme. As seen in Figure 9 the trapezoidal scheme is more difficult to
stabilize.

8. Numerical results

In this section we present numerical results to demonstrate the accuracy, stability, and efficiency
of the proposed new implicit modified equation schemes. The results are organized into two groups.
The results in first group are aimed at demonstrating the accuracy and stability of the schemes.
For this group, numerical solutions are computed for several problems in two and three dimensions
where exact solutions are available. In addition, long-time simulations are performed for problems
in two and three dimensions with random initial conditions as a demonstration of the stability of
the schemes. The results in the second group are used to illustrate the performance of the SPIE
schemes for problems with geometric stiffness.

In all examples the wave speed c is taken to be one. For overset grid problems using the SPIE
scheme, the curvilinear grids are taken to be implicit and the Cartesian grids are taken to be
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explicit. Unless otherwise specified the IME schemes use the implicit weighting parameters

α2 “
1

4
, α4 “

1

12
. (75)

For grids g using an implicit method, the coefficient of upwind dissipation is chosen as

νp “
sf

2p`1 ?
nd

1

λg
, (76)

where sf is the safety-factor and where λg is the CFL number for grid g, which on a Cartesian grid
is given by

λg
def
“ c∆t

g

f

f

e

nd
ÿ

d“1

1

h2d
“

g

f

f

e

nd
ÿ

d“1

λ2
xd
. (77)

For grids using an explicit method we take

νp “
sf

2p`1 ?
nd

. (78)

since λg « 1 for such grids according to the CFL condition.

8.1. Accuracy and stability of the IME and SPIE schemes

We begin with numerical results illustrating the accuracy and stability of the second and fourth-
order accurate IME and SPIE schemes.

8.1.1. Eigenmodes on a disk

In this section, eigenmodes of the unit disk in two dimensions are computed. We look for
time-periodic solutions to the wave equation. In polar coordinates pr, θq, these solutions have the
form

umθ,mrpr, θ, tq “ Jmθ
pkmθ,mrrq eimθθ eiωt (79)

where Jmθ
is the Bessel function of the first kind of (integer) order mθ, kmθ,mr , mr “ 1, 2, . . . are

the positive zeros of Jmθ
(for the case of Dirichlet boundary conditions) or J 1

mθ
(for the case of

Neumann boundary conditions). The frequency of vibration for a particular eigenmode is given by

ω “ c kmθ,mr . (80)

Numerical solutions are computed using the fully implicit IME-UW-PC scheme and the mixed
explicit/implicit SPIE-UW-PC scheme using the overset grid for the unit disk consisting of a back-
ground Cartesian grid (blue) and an annular boundary-fitted grid (green) as shown in Figure 10.

The grid, denoted by Gpjq

disk, has a target grid spacing of ∆spjq “ 1{p10jq, where the index j de-
termines the size of the grid spacing. The figure also shows a representative solution at t “ 1

computed using the IME scheme and the grid Gp4q

disk for the case pmθ,mrq “ p2, 2q and Dirichlet
boundary conditions. For this Dirichlet case, kmθ,mr « 8.41724414, while kmθ,mr « 6.70613319 for
Neumann case (not shown). The rightmost plot in the figure shows the (signed) max-error in the
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solution. The error is seen to be smooth with negligible artifacts due to the interpolation at the
grid overlap.

u, t “ 1

-.26 .26

err, t “ 1

-9.3e-5 9.3e-5

Figure 10: Results for the disk. Left: overset grid Gp2q

disk for a disk. Middle: computed eigenfunction pmθ,mrq “ p2, 1q.

Right: error. Implicit time-stepping, order four, grid Gp4q

disk.

Figure 11 shows grid convergence results. Numerical solutions are computed using a time-step

∆t “ .04{j for grids Gpjq

disk, j “ 2, 4, 8, 16. Max-norm errors at t “ 0.7 are plotted as a function
of the grid spacing. The left-plot in the figure shows results for the eigenmode pmθ,mrq “ p2, 2q

using the IME-UW-PC scheme for both Dirichlet and Neumann cases. The results show that the
numerical solutions are converging at close to the expected rates (as indicated by the reference lines
in the log-log plots). The right-plot in the figure shows results for the same eigenmode, but using
the SPIE-UW-PC scheme with time-step determined by the explicit grid. As with the case of the
fully implicit scheme, the results show that the numerical solutions are converging at close to the
expected rates.

Figure 11: Left: Grid convergence for the IME-UW-PC scheme. Right: Grid convergence for the SPIE-UW-PC
scheme.
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8.1.2. Scattering from a 2D cylinder

We consider the scattering of a plane wave from a cylinder of radius a in two dimensions. The
incident field is taken to be

uincpx, tq “ eikpx´ctq, (81)

where k is the wave number of the incident field in the reference direction given by x. The exact
solution is written in polar coordinates pr, θq with the usual assignment x “ r cos θ. A homogeneous
Dirichlet boundary condition on the cylinder is assumed so that the total field (incident plus
scattered) is given by

upr, θ, tq “ e´ikct
8
ÿ

m“0

ϵm im

«

Jmpkrq ´
Jmpkaq

H
p1q
m pkaq

Hp1q
m pkrq

ff

cospmθq, (82a)

“ eikpx´ctq ´ e´ikct
8
ÿ

m“0

ϵm im

«

Jmpkaq

H
p1q
m pkaq

Hp1q
m pkrq

ff

cospmθq, (82b)

where ϵ0 “ 1 and ϵm “ 2 for m ą 0, and H
p1q
m pzq “ Jmpzq`iYmpzq is the Hankel function of the first

kind of order m defined in terms of the Bessel functions of the first and second kind. Real-valued
solutions are obtained by using either the real or imaginary parts of the solutions in (82).

Numerical solutions are computed using an overset grid, denoted by Gpjq

scat, consisting of two
component grids, a background Cartesian grid covering r´2, 2s2 and an annular grid with inner
radius a “ 0.5 and outer radius b “ 0.8. The inner radius represents the cylindrical scatterer with
a homogeneous Dirichlet boundary condition applied there, and the boundary conditions on the
outer boundaries of the Cartesian grid are set to the exact solution. The target grid spacing is
approximately equal to ∆spjq “ 1{p10jq in all directions.

u, t “ 1.0

-1.76 1.62

err, t “ 1.0

-1.7e-5 1.4e-5

Figure 12: Scattering from a cylinder. Left: overset grid for scattering from a cylinder. Middle and right: solution
and errors for SPIE-UW-PC, order four, grid Gp8q

scat, k “ 10.

Figure 12 shows the overset grid Gp2q

scat and contours of the computed solution and errors at t “ 1

using the fourth-order accurate SPIE-UW-PC scheme. The grid Gp8q

scat is used for this calculation
with k “ 10. The errors are seen to be smooth.

Figure 13 shows grid convergence results at t “ 0.4 for an incident field with k “ 2 using the
second and fourth-order accurate IME-UW-PC and SPIE-UW-PC schemes. Max-norm errors are
plotted as a function of the grid spacing and the solutions are seen to be converging at close to the
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Figure 13: Left: Grid convergence for the IME-UW-PC scheme. Right: Grid convergence for the SPIE-UW-PC
scheme.

expected rates.

8.2. Cylinder eigenmodes with implicit time-stepping

Figure 14: Left: Grid convergence for the IME-UW-PC scheme. Right: Grid convergence for the SPIE-UW-PC
scheme.

In this section eigenmodes of a three-dimensional cylindrical solid pipe are computed. The pipe
has a radius of 0.5 and extends in the axial direction z from 0 to 1. In cylindrical coordinates
pr, θ, zq, the eigenmodes, for Dirichlet boundary conditions, take the form

umθ,mr,mzpr, θ, tq “ Jmθ
pkmθ,mrrq eimθθ sinpmzπzq eiωt. (83)

The composite grid for the solid cylinder, denoted by Gpjq
c , consists of two component grids, each

with grid spacings approximately equal to ∆spjq “ 1{p10jq in all directions. One component grid is
a boundary-fitted cylindrical shell, while the other component grid is a background Cartesian grid
covering the interior of the cylindrical domain (see Figure 14).

Figure 14 shows grid convergence results. Max-norm errors are plotted as a function of the grid
spacing. Results are shown for IME-UW-PC and SPIE-UW-PC schemes for Dirichlet at t “ 0.6.
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Figure 15: Cylinder. Left: overset grid Gp2q
c for a solid cylinder. Middle and right: Solution and errors for IME-UW-

PC, order four, grid Gp4q
c , eigenmode pmθ,mr,mzq “ p2, 1, 1q. A coarsened version of the grid is shown.

The eigenmode was pmθ,mr,mzq “ p1, 2, 2q. For Dirichlet boundary conditions this corresponded
to a value of kmθ,mr “ 8.41724414. The time-step for the SPIE scheme was chosen as ∆t “ .04{j

for grid Gpjq

disk, j “ 2, 4, 8. The results show that the computed solution is converging at close to the
expected rates. Figure 15 shows contours of the solution and errors for pmθ,mr,mzq “ p2, 2, 2q.

8.2.1. Eigenmodes on a sphere

We now consider eigenmode solutions of a solid unit sphere assuming a homogeneous Dirichlet
boundary condition on the surface of the sphere. Introduce spherical polar coordinates pr, θ, ϕq,
where r is the radius, θ P r0, 2πs is the angle in the x-y plane and ϕ P r0, πs the angle from the
z-axis. We assume time-periodic eigenmodes with frequency ω having the well known form

umr,mθ,mϕ
pr, θ, ϕ, tq “ r´1{2 Jmϕ` 1

2
pλmϕ,mrrqPmθ

mϕ
pcosϕq eimθθ eiωt, (84)

where Jmϕ` 1
2
, mϕ “ 0, 1, 2, . . ., are Bessel functions of fractional order, Pmθ

mϕ
, mϕ ě mθ, are associ-

ated Legendre functions, and λmϕ,mr , mr “ 1, 2, . . ., are zeros of Jmϕ` 1
2
. The frequency of vibration

is given by ω “ c λmϕ,mr .

The composite grids for the solid sphere of radius one, denoted by Gpjq
s , consist of four component

grids, each with grid spacing approximately equal to ∆spjq “ 1{p10jq. The sphere is covered with
three boundary-fitted patches near the surface as shown on the left in Figure 17. There is one
patch specified using spherical polar coordinates that covers much of the sphere except near the
poles. To remove the polar singularities there are two patches that cover the north and south poles,
defined by orthographic mappings. A background Cartesian grid (not shown) covers the interior
of the sphere. The middle image in the figure shows the solution at t “ 0.5 for the eigenmode
with pmϕ,mθ,mrq “ p2, 1, 1q and λmϕ,mr « 5.7634591968945. This solution is computed using the

fourth-order accurate SPIE-UW-PC scheme and the grid Gp4q
s . The right image shows the max

errors which are smooth.
Figure 17 shows grid convergence results for the eigenmode pmϕ,mθ,mrq “ p2, 1, 1q at t “

0.4. Results are shown for the second and fourth-order accurate IME-UW-PC and SPIE-UW-PC
schemes. The graphs demonstrate that the solutions are converging at close to the expected rates.
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u, t “ 0.5
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err, t “ 0.5
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Figure 16: Sphere eigenmodes. Left: exploded view of the surface patches of the overset grid for the interior of a
sphere. Middle and right: Computed solution and errors for the fourth-order accurate SPIE-UW-PC scheme on grid
Gp4q
s , eigenmode pmϕ,mθ,mrq “ p2, 1, 1q. A coarsened version on the grid is shown.

Figure 17: Left: grid convergence results for the IME-UW-PC scheme. Right: grid convergence results for the
SPIE-UW-PC scheme.

8.2.2. Long time simulations with random initial conditions

In this section we perform some very long-time simulations to confirm numerically that the
solutions computed using the IME and SPIE schemes with upwinding remain stable and bounded.
Initial conditions are chosen with random grid values on r0, 1s so that all eigenmodes, including
any possible unstable ones, would be seeded with an order one amount of energy. The numerical
schemes are integrated to very long times and the solutions are monitored for any growth. Due to
the upwinding, the magnitude of the computed solutions for a stable scheme is expected to decay
slowly to zero over time.

To assess the growth or decay of the solution we plot a discrete approximation to the energy
given by

Eptq “
1

2

´

}Btu}2Ω ` c2}∇u}2Ω

¯

, (85)

where } ¨ }Ω denotes the L2´norm over the domain Ω. We note that the energy defined in (85)
remains constant in time for exact solutions of the wave equation on Ω assuming homogeneous
Dirichlet or Neumann conditions specified on the boundary of Ω. For purposes of this study, a first
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order accurate approximation to (85) is sufficient, denoted by Eh. D´tU
n
i is used to approximate the

time derivative in (85) and first order accurate backward differences are used to approximate the
spatial derivatives, for example on a Cartesian grid Bxu « D´xU

n
i . Note that the discrete energy Eh

would remain approximately constant if the scheme is stable, but with upwind dissipation included
the discrete energy is expected to decay over time.
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Figure 18: Long time simulations. Left: disk, SPIE-UW-PC. Middle: sphere, SPIE-UW-PC. Right: disk, IME-UW-
PC.

Figure 18 shows results from some long-time simulations for both the SPIE and IME schemes.
In all cases the schemes remained stable. The left plot shows the discrete energy Ehptq over time

for a computation on the disk grid Gp4q

disk as described in Section 8.1.1. The final time is t “ 104 for
the simulation and approximately 6 ˆ 105 time-steps are used. Results are shown for the second
and fourth-order accurate SPIE-UW-PC schemes. The discrete energy is seen to decay rapidly
at first as the high-frequency components of the solution are damped by the high-order upwind
dissipation. As time progresses the solution becomes smoother and the energy decays more slowly.
The discrete energy for the fourth-order accurate scheme decays more slowly than the second-
order accurate scheme since its dissipation scales as Oph5q compared to Oph3q for the second-order

accurate scheme. The middle plot shows results for the three-dimensional solid sphere grid Gp4q
s

as described in Section 8.2.1. In this case the final time is t “ 103 and the calculation requires
approximately 105 time-steps. The results show that the discrete energy decays and schemes remain
stable for the spherical case in qualitative agreement with the results for the disk case.

The right-most plot of Figure 18 compares the energy decay for the (fully implicit) IME4-UW-

PC scheme on the disk grid Gp4q

disk for three different values of the CFL number, 1, 5 and 10. In
each case the scheme remains stable and the discrete energy Eh decays. The dissipation parameter
νp is the same for each case. Note that the CFL=10 run takes 10 times fewer time-steps than the
CFL=1 run, and thus the dissipation has fewer time-steps to act.

8.3. Performance of the SPIE scheme

We now turn our attention to a set of examples that posses some geometric stiffness. For
such problems it is demonstrated that the SPIE scheme can be much faster than the fully explicit
schemes. Importantly, it is also shown that the accuracy of the computed solutions from the SPIE
scheme are, in general, quite similar to the accuracy of the explicit ME solutions. Thus, at least
for the cases shown here, taking a large CFL time-step using an implicit ME method in small parts
of the domain where geometric stiffness occurs does not appear to have a significant effect on the
overall accuracy.

33



8.3.1. Scattering from a small hole

This section studies the accuracy and performance of the SPIE scheme for the scattering of
a plane wave from a small cylinder in two space dimensions. The incident wave, exact solution,
and overset grid topology were described previously in Section 8.1.2. The results presented in this
section show that the SPIE scheme can compute solutions much faster than the EME scheme but
with similar errors.
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Figure 19: Scattering from a small hole. Left: overset grid Gp2q

scat and magnified views. Right: max-norm errors over

time for the EME4 and SPIE4 schemes on grid Gp4q

scat. The SPIE4 scheme achieves similar errors to the EME4 scheme
but at a factor 21 reduced CPU cost.

u, t “ 1.0

-1.23 1.17

us, t “ 1.0

-.24 .89

err, t “ 1.0

-3.5e-4 3.4e-4

Small hole

Figure 20: Scattering from a small hole. Left: contour plot of the total field u. Middle: surface plot of the scattered
field us. Right: errors in u. Solution at t “ 1 computed on grid Gp4q

scat using the EME4-UW-PC scheme.

A very small cylindrical hole of radius a “ 0.01 sits at the center of a square domain r´2, 2s2.
The overset grid is shown in Figure 19. An incident field with wave-number k “ 10 impinges on the
hole where a homogeneous Dirichlet boundary conditions is applied. The exact solution is imposed
on the outer boundaries of the square. The solution is computed to a final time of t “ 10 using
the EME4-UW-PC scheme and the SPIE4-UW-PC scheme with nu “ 2 upwind corrections. For
the SPIE scheme, implicit time-stepping is used for the boundary-fitted annular grid with radial
stretching near the small hole, while explicit time-stepping is used for the Cartesian background
grid. Figure 20 shows the computed solution at t “ 1 for the total field, u, the scattered field, us,
and the error in u. Note that there is a significant scattered field for this case even though the
radius of the cylinder a “ 0.01 is fairly small compared to the wavelength, 2π{k « 0.63, of the
incident field. The error is seem to be smooth with the largest errors distributed throughout the
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domain; there are no particularly large errors in the vicinity of the hole.
The right graph in Figure 19 compares the max-norm errors over time for the EME4 and SPIE4

schemes. The error in the EME scheme starts out smaller but then becomes similar in magnitude
to the errors in the SPIE4 scheme. The time-step for the EME4 scheme is approximately 30 times
smaller than that for the SPIE4 scheme, and the CPU time required to compute the solution at
t “ 10 using the SPIE4 scheme is approximately 20 times smaller than that needed for the EME4
scheme.

8.3.2. Scattering of a modulated Gaussian plane wave by a collection of small holes

We consider the scattering of a modulated Gaussian plane wave from two different arrays of
small holes. This example demonstrates an interesting scattering problem for a geometry with
small geometric features for which the SPIE scheme gives a good speedup over the explicit scheme.
The incident field consists of a modulated Gaussian plane wave traveling from left to right and
given by the formula

upx, tq “ e´βpx´x0´ctq2 cosp2π k0 px ´ x0 ´ ctqq, (86)

where the Gaussian shape parameter is β “ 20, the modulation wave-number is k0 “ 8, and the
center of the pulse is at x0 “ ´2 initially.

Two configurations of holes are considered for the region r´3, 2s ˆ r´2, 2s. The first, called
the aligned-hole configuration, contains an array of Mx ˆ My holes, each of radius a “ 0.01, with
Mx “ 7 and My “ 26. The centers of the holes are located at

xmx,my “

„

mx sx
my sy

ȷ

´
1

2

„

pMx ´ 1qsx
pMy ´ 1qsy

ȷ

, mx “ 0, 1, . . . ,Mx, my “ 0, 1, . . . ,My, (87)

where sx “ 0.15 and sy “ 0.15 denote the hole separations in the x and y directions, respectively.
The second configuration, called the offset-hole configuration, also contains Mx “ 7 columns of
holes, but every second column is shifted vertically by sx{2 and contains 27 holes instead of 26.

SPIE

EME

Figure 21: Left: Closeup of the aligned hole grid. Middle: Closeup of the offset hole grid. The white dots on the
right plots are small holes with a grid around each as shown on the left. Right: comparison of the implicit-explicit
SPIE solution (top half of computation) to the explicit EME scheme (bottom half of computation) on the aligned
hole grid. The results are nearly indistinguishable.

The overset grid for the aligned-hole configuration, denoted by Gpjq

h,a, consists of a background
Cartesian grid for the region r´3, 2sˆr´2, 2s, together with small annular grids around the holes as
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shown in Figure 21. The nominal grid spacing is ∆spjq “ 1{p10jq with the grid lines on the annulii
slightly smaller and clustered near the boundary as shown in the figure. The overset grid for the

offset-hole configuration, denoted by Gpjq

h,o, has a similar construction to that of the aligned-hole
grid following its placement of holes. The boundary conditions are taken as Dirichlet on the holes,
Dirichlet on the left and right ends of the outer rectangle and periodic in the y-direction of the
outer rectangle.

|u|, t “ 1.0

0.0 1.0

|u|, t “ 2.0

0.0 1.0

|u|, t “ 3.5

0.0 1.0

Offset holes

|u|, t “ 1.0

0.0 1.0

|u|, t “ 2.0

0.0 1.0

|u|, t “ 3.5

0.0 1.0

Aligned holes

Figure 22: Scattering of a modulated Gaussian plane wave by small holes (the white dots are small holes with a grid
around each as shown in Figure 21). Top: Offset holes. Bottom: Aligned holes.

Figure 22 shows the solution at three times for the two grid configurations of aligned and offset

holes. The solution is computed with the SPIE4-UW-PC scheme on grids Gp16q

h,a and Gp16q

h,o . Note
that there are some edge effects in the solutions near the top and bottom periodic boundaries
of the domain, due to the arrangement of the hole grids near these boundaries. The solution at
t “ 1 shows the incident Gaussian plane wave just starting to impact the first column of holes. At
t “ 2 the wave has travelled through most of the holes and a reflected wave is beginning to appear.
By t “ 3.5 most of the incident wave has been reflected or transmitted, although some residual
wave motion resides within the array of holes. Perhaps surprisingly, the transmitted wave is much
stronger for the offset arrangement of holes.

Returning to Figure 21, the right plot compares contours of the solutions computed using the
SPIE and EME schemes. The top half of the plot shows the SPIE4 solution, while the bottom
half shows the EME4 solution. After accounting for the reflection symmetry about the horizontal
centerline, the results are nearly indistinguishable. The speedup of the SPIE scheme over the EME
scheme was about a factor of 2 for this case. The SPIE time-step is about 4 times that for the
EME scheme. A better implementation of the implicit solvers should show an even bigger speedup
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of perhaps a factor of 3 or more (see the comments in Section 6.4).

8.3.3. Scattering of a modulated Gaussian plane wave from a knife edge

In this example, a modulated Gaussian plane wave given by (86) travels from left to right and
diffracts off a thin knife edge as shown in Figures 1 and 23. This example demonstrates a problem
that is geometrically stiff due to a sharp corner in the domain geometry, and one for which only a
small portion of the overset grid is treated implicitly.

The overset grid for the geometry, denoted by Gpjq

ke , is shown in Figure 1, and consists of four
component grids. A background Cartesian grid covers the domain r´1.25, 1s ˆ r0, 1s. Two other
Cartesian grids lie adjacent to the lower sides of the knife edge which has a total height of 0.5. A
curvilinear grid is used over the tip of the knife edge. The nominal grid spacing was ∆spjq “ 1{p10jq,
although the tip grid used a finer mesh with stretching to resolve the sharp tip of the knife edge.

|u|, t “ .6

0. 1.

|u|, t “ .8

0 1.4

|u|, t “ 1

0 1.2

Figure 23: Scattering of a modulated Gaussian plane wave from a knife edge. Contours of the solution at times
t “ .6, .8, 1 for the modulation wave number k0 “ 20 using the fourth-order accurate implicit-explicit scheme SPIE4-
UW-PC. The time-step was about 20 times larger compared to the corresponding explicit scheme.

Figure 23 shows contours of the solution for three times computed on grid Gp16q

ke using the fourth-
order accurate SPIE4-UW-PC scheme. The Gaussian is centered at x0 “ ´.75 initially and the
Gaussian shape parameter is taken as β “ 80. Neumann boundary conditions are used on the outer
boundaries of the domain and a Dirichlet condition is used on the knife edge. The SPIE scheme
is used with only the curvilinear tip grid treated implicitly. As a result, the scheme is able to use
a time-step that is about 20 times larger than that required by the fully explicit EME-UW-PC
scheme. The speedup factor over the fully explicit scheme is found to be about 11 for both the
second and fourth-order accurate SPIE schemes. Note that the tip grid has just 1, 760 grid points
out of a total of 928, 765, or 0.2% of the points. Obviously a more efficient implementation of the
implicit solver should lead to speedups closer to a factor of 20, a task for future work.

9. Conclusions

We have described and analyzed a class of new implicit and implicit-explicit time-stepping
methods for the numerical solution of the wave equation in second-order form. These single-
step, three time-level, schemes are based on the modified equation (ME) approach. Second and
fourth-order accurate schemes are developed, although the approach supports higher-order accurate
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schemes. The coefficient matrix implied by the implicit scheme is definite and well suited for solution
by modern Krylov methods or multigrid. Conditions for accuracy and unconditional stability of the
implicit ME (IME) schemes are derived. Several approaches for incorporating upwind dissipation
into the IME schemes are discussed. A predictor-corrector approach that adds the upwinding
in a separate explicit step appears to be quite useful. For problems on overset grids that are
geometrically stiff due to locally small cells, we have developed a spatially partitioned implicit-
explicit (SPIE) scheme whereby component grids with small cells are integrated with the IME
scheme while others grids use an explicit ME (EME) scheme. We have shown that for geometrically
stiff problems the resulting SPIE scheme can be many times faster and more accurate that using
the EME scheme everywhere. Although developed for the wave equation, the new schemes can
be extended to other wave propagation problems written in second-order form such as Maxwell’s
equations of electromagnetics, elasticity, and acoustics.

Appendix A. Stability proofs

For the stability analyses we consider a Cartesian grid on a 2π periodic domain Ω “ r0, 2πsnd .
Von Neumann analysis expands the solution in a discrete Fourier series in space. The stability
condition is enforced by ensuring each Fourier mode satisfies the condition.

Appendix A.1. Stability of the second-order accurate implicit ME scheme (IME2)

Here is the proof of Theorem 1, the statement of which is repeated here for clarity.

Theorem (IME2 Stability). The IME2 scheme (16) is unconditionally stable on a periodic domain
provided

α2 ě
1

4
. (A.1)

Proof. We look for solutions consisting of a single Fourier mode,

Un
j “ an eik¨xj , (A.2)

where a is the amplification factor and k “ rk1, k2, k3sT is the vector of wave numbers, with
kd “ ´Nd{2,´Nd{2`1, . . . , Nd{2´1, assuming Nd is even. Substituting the anstaz (A.2) into (16)
leads to a quadratic equation for a

a2 ´ 2b a ` 1 “ 0, (A.3a)

where

b
def
“

1 ` pα2 ´ 1
2q λ̂2

2 z

1 ` α2λ̂2
2 z

, (A.3b)

λ̂2
2
def
“ ´ yL2,h, z

def
“ ∆t2, (A.3c)

and where yL2,h is the Fourier symbol of L2,h,

yL2,h
def
“ c2

nd
ÿ

d“0

´4 sin2pkdhdq

h2d
. (A.4)
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Note that λ̂2
2 ě 0, with strict inequality λ̂2

2 ą 0 when k ‰ 0. It is not hard to show that for stability
(Definition (1)) we require b P R and |b| ă 1 (the end cases b “ ˘1 lead to double roots a “ ˘1
and linearly growing modes). Thus, when k ‰ 0, we require

´1 ă
1 ` pα2 ´ 1

2q λ̂2
2 z

1 ` α2λ̂2
2 z

ă 1, (A.5)

for all z ą 0. The right inequality in (A.5) gives

1 ` pα2 ´
1

2
q λ̂2

2 z ă 1 ` α2λ̂
2
2 z, (A.6a)

ùñ ´
1

2
λ̂2
2 z ă 0, (A.6b)

which is always true. The left inequality implies

´ p1 ` α2λ̂
2
2 zq ă 1 ` pα2 ´

1

2
q λ̂2

2 z, (A.7a)

ùñ ´ 2 `
1

2
λ̂2
2z ă 2α2λ̂

2
2 z, (A.7b)

ùñ α2 ą
1

4
´

1

λ̂2
2 z

. (A.7c)

Therefore we require

α2 ě
1

4
, (A.8)

and this completes the proof.

Appendix A.2. Stability of the fourth-order accurate implicit ME scheme (IME4)

Here is the proof of Theorem 2, the statement of which is repeated here for clarity.

Theorem (IME4 Stability). The IME4 scheme (16) is unconditionally stable on a periodic domain
provided

α2 ě
1

12
, (A.9a)

α4 ě

#

1
4α2 ´ 1

48 , when α2 ě 1
4 ,

1
4α2 ´ 1

48 ` 8
9p14 ´ α2q2, when 1

12 ď α2 ď 1
4 .

(A.9b)

Proof. Using the anstaz (A.2) in (16) leads to following quadratic for the time-stepping amplification
factor a ,

a2 ´ 2b a ` 1 “ 0, (A.10)

where

b
def
“

1 ´ 1
2β2 λ̂

2
4 z ´ 1

2β4 λ̂
4
2 z

2

1 ` α2λ̂2
4 z ` α4λ̂4

2 z
2

, (A.11)
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λ̂2
4
def
“ ´ yL4,h, λ̂2

2
def
“ ´ yL2,h, z

def
“ ∆t2, (A.12)

and where

β2 “ 1 ´ 2α2, β4 “ α2 ´ 2α4 ´
1

12
. (A.13)

For stability we require that |b| ă 1 for k ‰ 0,

ˇ

ˇ

ˇ

1 ´ 1
2β2λ̂

2
4 z ´ 1

2β4λ̂
4
2 z

2

1 ` α2λ̂2
4 z ` α4λ̂4

2 z
2

ˇ

ˇ

ˇ
ă 1, (A.14)

which will give constraints on α2 and α4. Requiring (A.14) leads to two conditions,

1 ´
1

2
β2λ̂

2
4 z ´

1

2
β4λ̂

4
2 z

2 ă 1 ` α2λ̂
2
4 z ` α4λ̂

4
2 z

2, (A.15a)

´ p1 ` α2λ̂
2
4 z ` α4λ̂

4
2 z

2q ă 1 ´
1

2
β2λ̂

2
4 z ´

1

2
β4λ̂

4
2 z

2. (A.15b)

These can be simplified to

1

2
λ̂2
4 z ` p

1

2
α2 ´

1

24
qλ̂4

2 z
2 ą 0, (A.16a)

pα4 ´
1

2
β4qλ̂4

2 z
2 ` p2α2 ´

1

2
qλ̂2

4 z ` 2 ą 0. (A.16b)

Inequality (A.16a) must hold for all z ą 0 which implies

α2 ě
1

12
. (A.17)

Inequality (A.16b) is a quadratic inequality in z “ ∆t2,

Az2 ` Bz ` C ą 0, (A.18)

A
def
“ pα4 ´

1

2
β4qλ̂4

2, B
def
“ p2α2 ´

1

2
qλ̂2

4, C
def
“ 2, (A.19)

which must hold for all z ą 0. This quadratic must be flat or concave upward which implies
A “ α4 ´ 1

2β4 ě 0 or

α4 ě
1

4
α2 ´

1

48
ě 0, when

1

12
ď α2. (A.20)

The minimum of the quadratic with z ě 0 occurs when zm “ ´B{p2Aq ě 0, which implies B ď 0
or α2 ď 1

4 . The minimum value of the quadratic is C ´ B2{p4Aq and this should be greater than
or equal to zero which implies B2 ď 4AC or

p2α2 ´
1

2
q2λ̂4

4 ď 8pα4 ´
1

2
β4qλ̂4

2, when
1

12
ď α2 ď

1

4
. (A.21)
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This last inequality is re-arranged as a condition on α4 in terms of α2, (using (A.13)),

α4 ě
1

4
α2 ´

1

48
`

1

2
pα2 ´

1

4
q2

λ̂4
4

λ̂4
2

, when
1

12
ď α2 ď

1

4
. (A.22)

Using
λ̂4
4

λ̂4
2

ď p4{3q2 in the last term gives

α4 ě
1

4
α2 ´

1

48
`

8

9
p
1

4
´ α2q2, when

1

12
ď α2 ď

1

4
. (A.23)

In summary α2 must satisfy

α2 ě
1

12
, (A.24)

while α4 is constrained by

α4 ě

#

1
4α2 ´ 1

48 , when α2 ě 1
4 ,

1
4α2 ´ 1

48 ` 8
9p14 ´ α2q2, when 1

12 ď α2 ď 1
4 ,

(A.25)

which completes the proof.

Appendix A.3. IME stability with single stage upwind dissipation (IME-UW)

In this section we prove Theorem 3, which is repeated here or clarity.

Theorem. The IME-UW schemes (23) for p “ 2, 4 on a periodic or infinite domain Cartesian
grid are unconditionally stable for any νp ą 0 provided α2 satisfies the conditions of Theorem 1,
for p “ 2, or α2 and α4 satisfy the conditions for Theorem 2 for p “ 4.

Proof. We show the proof for p “ 4, the case p “ 2 is similar. Using the anstaz (A.2) in (23) leads
to following quadratic for the time-stepping amplification factor a ,

a2 ´ 2b a ` c “ 0, (A.26)

where

b
def
“

1 ´ 1
2β2 λ̂

2
4∆t2 ´ 1

2β4 λ̂
4
2∆t4

1 ` Λ̂ `
νp
2 ∆t q̂2p

, (A.27)

c
def
“

1 ` Λ̂ ´
νp
2 ∆t q̂2p

1 ` Λ̂ `
νp
2 ∆t q̂2p

, (A.28)

Λ̂
def
“ α2λ̂

2
4∆t2 ` α4λ̂

4
2∆t4, (A.29)

q̂2p
def
“ Q̂p, (A.30)

and where Q̂p ą 0 (for k ‰ 0) is the symbol of the dissipation operator Qp in (22),

Q̂p
def
“

nd
ÿ

d“1

c

hd

“

4 sin2phd{2q
‰p{2`1

. (A.31)
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The conditions for stability come from the theory of Schur and von Neumann polynomials [42, 43]
which for the quadratic (A.26) are

|c| ă 1, (A.32a)

|b| ď
1

2
|1 ` c|. (A.32b)

Note that the magnitude of the product of the roots c in (A.28) is now less than 1, |c| ă 1, when
νp ą 0, since we have assumed Λ̂ ą 0 for k ‰ 0. Thus the first condition (A.32a) is true. Note that

1

2
p1 ` cq “

1 ` Λ̂ `
νp
2 ∆t q̂2p ` 1 ` Λ̂ ´

νp
2 ∆t q̂2p

1 ` Λ̂ `
νp
2 ∆t q̂2p

“
1 ` Λ̂

1 ` Λ̂ `
νp
2 ∆t q̂2p

, (A.33)

and thus 1 ` c ą 0. The inequality (A.32b) thus requires the two conditions

1 ´ 1
2β2 λ̂

2
4∆t2 ´ 1

2β4 λ̂
4
2∆t4

1 ` Λ̂ `
νp
2 ∆t q̂2p

ď
1 ` Λ̂

1 ` Λ̂ `
νp
2 ∆t q̂2p

, (A.34a)

´
1 ` Λ̂

1 ` Λ̂ `
νp
2 ∆t q̂2p

ď
1 ´ 1

2β2 λ̂
2
4∆t2 ´ 1

2β4 λ̂
4
2∆t4

1 ` Λ̂ `
νp
2 ∆t q̂2p

(A.34b)

or upon multiplying through by the denominator,

1 ´
1

2
β2 λ̂

2
4∆t2 ´

1

2
β4 λ̂

4
2∆t4 ď 1 ` Λ̂, (A.35a)

´ p1 ` Λ̂q ď 1 ´
1

2
β2 λ̂

2
4∆t2 ´

1

2
β4 λ̂

4
2∆t4. (A.35b)

These last two conditions (note that νp has dropped out) are satisfied since these are essentially
the same inequalities (A.15) hold from Theorem Appendix A.2 (the only difference is that ď is
replaced by ă in (A.15)). This proves the theorem.

Appendix A.4. IME Stability with predictor-corrector upwind dissipation (IME-UW-PC)

Here is the proof of theorem 4.

Proof. We prove the result for p “ 2, the proof for p “ 4 follows in a similar fashion. The second-
order accurate IME-UW-PC scheme with multiple stages is

U
p0q

j ´ 2Un
j ` Un´1

j

∆t2
“ Lαp pU

p0q

j , Un
j , U

n´1
j q, (A.36a)

Un`1
j “ Rnu

p U
p0q

j ` pI ´ Rnu
p qUn´1

j , (A.36b)

where

Rp
def
“ I ´

νp∆t

2
Qp. (A.37)
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Substituting the ansatz U
p0q

j “ Û p0q eik¨xj and Un
j “ Ûn eik¨xj leads to

Û p0q ´ 2Ûn ` Ûn´1

∆t2
“ ´λ̂2

2

´

α2 Û
p0q ` p1 ´ 2α2q Ûn ` α2 Û

n´1
¯

, (A.38a)

Ûn`1 “ R̂nu
p Û

p0q

j ` pI ´ R̂nu
p qÛn´1

j , (A.38b)

where

R̂p “ 1 ´
νp∆t

2
q̂p. (A.39)

Solving (A.38a) for Û p0q ,

Û p0q “ 2
1 ´ λ̂2

2∆t2p12 ´ α2q

1 ` α2λ̂2
2∆t2

Ûn ´ Ûn´1 (A.40)

and substituting into (A.38b) gives

Ûn`1 “
R̂nu

p

1 ` α2∆t2 λ̂2
2

”

2Ûn ´ Ûn´1 ´ ∆t2λ̂2
2

`

p1 ´ 2α2q Ûn ` α2 Û
n´1

˘

ı

` p1 ´ R̂nu
p q Ûn´1,

(A.41a)

“ 2
1 ´ ∆t2λ̂2

2 p12 ´ α2q

1 ` α2∆t2 λ̂2
2

R̂nu
p Ûn ` p1 ´ 2R̂nu

p qÛn´1. (A.41b)

Now looking for solutions of the form Ûn “ c0 a
n for some constant c0 leads to a quadratic equation

for a,

a2 ´ 2ba ` c “ 0, (A.42)

where

b
def
“ R̂nu

p

1 ´ ∆t2λ̂2
2 p12 ´ α2q

1 ` α2∆t2 λ̂2
2

, (A.43)

c
def
“ ´1 ` 2R̂nu

p (A.44)

For stability we require the two conditions (A.32) from Section Appendix A.3,

|c| ă 1 ùñ |1 ´ 2R̂nu
p | ă 1, (A.45)

|b| ď
1

2
|1 ` c| ùñ |R̂p|nu

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´ ∆t2λ̂2
2 p12 ´ α2q

1 ` α2∆t2 λ̂2
2

ˇ

ˇ

ˇ

ˇ

ˇ

ď |R̂p|nu (A.46)

If we assume the parameters α2 and λ̂2 are chosen to make the scheme without dissipation stable
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then
ˇ

ˇ

ˇ

ˇ

ˇ

1 ´ ∆t2λ̂2
2 p12 ´ α2q

1 ` α2∆t2 λ̂2
2

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1 (A.47)

and (A.46) is satisfied. Condition (A.45) implies 0 ă R̂nu
p ă 1 or

0 ă
`

1 ´
νp∆t

2
q̂p

˘nu
ă 1 (A.48)

which implies (ignoring the special case when νpq̂2 “ 0 )

νp∆t

2
q̂p ă

#

2 if nu is even,

1 if nu is odd.
(A.49)

The conclusions of the proof now follow.

Appendix A.5. Proof of a lemma

Here is the proof of Lemma 5.1.

Proof. If |κ| “ 1 then it can be written as κ “ eiθ for θ P R. Then, using κ´2`κ´1 “ ´4 sin2pθ{2q

gives

b “
1 ´ 4p12 ´ α2qλ2 sin2pθ{2q

1 ` 4α2 λ2 sin2pθ{2q
. (A.50)

Note that b P R and |b| ď 1 since b ď 1 implies

1 ´ 4p
1

2
´ α2qλ2 sin2pθ{2q ď 1 ` 4α2 λ

2 sin2pθ{2q, (A.51)

ùñ ´ 2λ2 sin2pθ{2q ď 0, (A.52)

which is true, while b ě ´1 implies

´ p1 ` 4α2 λ
2 sin2pθ{2qq ď 1 ´ 4p

1

2
´ α2qλ2 sin2pθ{2q, (A.53)

ùñ p1 ´ 4α2qλ2 sin2pθ{2q ď 1, (A.54)

which holds when λ ă 1 and α2 ě 0, or for any λ ą 0 when α2 ě 1{4. Now, when b P R and |b| ď 1
then the magnitude of the roots a of (32a) satisfy

|a| “ |b ˘
a

b2 ´ 1| “ |b ˘ i
a

1 ´ b2| “
a

b2 ` p1 ´ b2q “ 1. (A.55)

This proves the lemma.
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