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Abstract—The relay channel, consisting of a source-destination
pair and a relay, is a fundamental component of cooperative
communications. While the capacity of a general relay
channel remains unknown, various relaying strategies, including
compress-and-forward (CF), have been proposed. For CF,
given the correlated signals at the relay and destination,
distributed compression techniques, such as Wyner–Ziv coding,
can be harnessed to utilize the relay-to-destination link more
efficiently. In light of the recent advancements in neural network-
based distributed compression, we revisit the relay channel
problem, where we integrate a learned one-shot Wyner–Ziv
compressor into a primitive relay channel with a finite-capacity
and orthogonal (or out-of-band) relay-to-destination link. The
resulting neural CF scheme demonstrates that our task-oriented
compressor recovers binning of the quantized indices at the
relay, mimicking the optimal asymptotic CF strategy, although
no structure exploiting the knowledge of source statistics was
imposed into the design. We show that the proposed neural CF
scheme, employing finite order modulation, operates closely to the
capacity of a primitive relay channel that assumes a Gaussian
codebook. Our learned compressor provides the first proof-of-
concept work toward a practical neural CF relaying scheme.

Index Terms—relay channel, Wyner–Ziv source coding,
decoder-only side information, task-aware compression, binning.

I. INTRODUCTION

The relay channel, as introduced by van der Meulen [1], is
a building block of multi-user communications. In this model,
a relay facilitates communication between a source and a
destination by forwarding its “overheard” received signal to the
destination. As such, the relay channel comprises a broadcast
channel, from the source to both the relay and the destination,
and also a multiple access channel, from both the source and
the relay to the destination. The relay channel also forms the
foundation of cooperative networking, which has been shown
to be effective in mitigating fading [2], [3], increasing data
rates [4], and managing interference [5]. With the advent of
6G, new forms of relaying and cooperation are envisioned for
communicating in highly dynamic settings [6].

Despite decades of research, the capacity of the general
relay channel is still unknown to this day. Cover and
El Gamal [7] provided upper and lower bounds for the general
relay channel by invoking information theoretic achievability
and converse arguments.These bounds coincide only in a few
special cases, such as the physically degraded Gaussian relay
channel. Even though optimum relaying strategies are not
known in general, various effective relaying techniques have
been proposed, which can be broadly categorized into two
main classes: decode-and-forward (DF) and compress-and-
forward (CF); see [7] for a detailed analysis of DF, CF, their
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variations and combinations. While DF is known to be efficient
in certain scenarios [4], its achievable rate is bounded by
the capacity of the source-to-relay channel since the relay is
required to perfectly decode the source information. On the
other hand, in CF, the relay refrains from directly decoding the
source and instead, compresses its received signal to send to
the destination. Upon reception of the compression index, the
destination combines it with its own received signal to decode
the source information. Given that the received signals at the
relay and destination are correlated, the relay can leverage
distributed compression techniques to reduce the compression
rate without requiring explicit knowledge of the received signal
at the destination. As such, it can utilize Wyner–Ziv (WZ)
source coding [8], also known as source coding with decoder-
only side information, to efficiently describe its received
signal. Unlike DF, CF relaying consistently outperforms direct
transmission since the relay always aids in communication,
even when the source-to-relay channel is subpar. For additional
discussion on scenarios where CF has been proven to be
optimal, we direct readers to [9]. Despite its benefits, the
limitations of practical WZ implementations operating in the
finite blocklength regime have hampered the widespread use
of CF.

In this paper, drawing on recent advances in neural
distributed compression [10], [11], we revisit practical CF
relaying, and illustrate the potentials of learning for reaping
the benefits of CF. We focus on the primitive relay channel
(PRC) [12], depicted in Fig. 1, where there is an orthogonal
(out-of-band) noiseless link of rate R connecting the relay
to the destination. Our motivation for considering the PRC
is two-fold. First, the PRC provides the simplest setting in
which the compressed relay signal can be readily transmitted
to the destination. In addition, it is known that CF is optimal
for the PRC if the relay is unaware of the source codebook,
also known as oblivious relaying [13]. The oblivious setting
is well-suited to the learning framework, in which the relay is
not explicitly informed about the transmission strategy used by
the source; rather it trains its compressor based on samples of
its channel output. Focusing on a fixed modulation scheme, we
train the system consisting of the compressor at the relay and
the demodulator at the destination in an end-to-end fashion to
optimize the trade-off between the out-of-band rate R and the
overall source-to-destination achievable rate.

There is limited literature addressing practical CF designs,
e.g., [14], [15]. Both of these works proposed entropy-
constrained scalar quantizer designs with BPSK modulation
for the half-duplex Gaussian relay channel, with [14]
considering Slepian–Wolf coded nested quantization as a
practical form of WZ compression, and [15] not taking

ar
X

iv
:2

40
4.

14
59

4v
1 

 [
cs

.I
T

] 
 2

2 
A

pr
 2

02
4



bits

Ch.
Enc. Mod.

Source

p(yD, yR|x)

Relay
Enc.

Relay

Demod. Ch.
Decod.

est. bits

Destination

W X YD

YR

p(w|yD, u)

U

R

Fig. 1: The primitive relay channel (PRC) under consideration. The
red link denotes out-of-band relaying between relay and destination.

into account the side information at the destination while
quantizing at the relay. In addition, these works relied on
handcrafted and analytical solutions, thereby constraining their
applicability to more complex communication settings. Recent
learning approaches for the relay channel [16], [17] considered
a joint source-channel setting, where the former focused on
image transmission via joint source-channel coding, while the
latter one targeted text communications utilizing attention-
based transformer architectures. Our paper, in contrast,
concentrates only on the channel part and addresses an
important open problem in the cooperative communications
literature, namely how to make CF practical.

II. SYSTEM MODEL

A. Primitive Relay Channel

We consider the PRC setup [12], illustrated in Fig. 1. The
Gaussian PRC, which we study in this paper, is given by:

YR = X +NR, YD = X +ND, (1)

where X denotes the signal transmitted by the source, YR and
YD denote the received signals at the relay and the destination,
respectively. The corresponding noise components, NR ∼
N (0, σ2

R) and ND ∼ N (0, σ2
D), are independent. Note

that by allowing for arbitrary (σ2
R, σ

2
D), we can incorporate

the effect of different channel gains for the source-to-relay
and source-to-destination links. As customary, we consider
communication over a blocklength of n, with n asymptotically
large, and i.i.d. noise. For brevity, we omit the time
index in (1). The out-of-band relay-to-destination channel is
represented by a link of capacity R bits/channel use.

For a general PRC p(yD, yR|x) with an oblivious relay,
where the relay is unaware of the codebook shared by source
and destination, it has been shown that the capacity can be
attained by the CF strategy with time sharing [13]. Without
time-sharing, the following rate C is achievable [13]:

C = max I(X;YD, U), (2)
s.t. R ≥ I(YR; U | YD), (3)

where maximization is with respect to the distribution
p(x)p (u|yR). Here, U corresponds to the relay’s compressed
description of YR, and the rate constraint in (3) coincides
with the one that emerges in WZ rate–distortion function [8].
Recall that in CF, the relay regards its received signal YR

as an unstructured random process jointly distributed with the
signal received at the destination YD. This enables the relay to
exploit WZ compression [8], to efficiently describe its received

signal. We note that the capacity of the PRC without oblivious
relaying constraint is still not fully characterized [13].

For the Gaussian PRC in (1) with σ2 = σ2
R = σ2

D, the
following CF rate is achieved with Gaussian input under power
constraint P [13]:

CCF =
1

2
log2

(
1 + γ +

γ

1 + 1+2γ
(22R−1)(γ+1)

)
, (4)

where γ = P/σ2. It is shown in [13] that while the Gaussian
input is not necessarily optimal, the rate in (4) is at most 1/2
bit away from the capacity of the Gaussian PRC, even if the
relay is not oblivious. Hence, we will use (4) as a benchmark
for our learned CF communication rates.
B. Performance Criterion

For our learning-based CF framework, we assume a finite
order modulation such that an index W ∈ {1, . . . , |X |},
which represents the output of the channel endoder, is mapped
to a symbol X ∈ X , where X ⊂ R is a constellation
of cardinality |X |. We consider a fixed modulation scheme
with equally likely symbols, and do not optimize over the
constellation X nor the distribution p(x). Incorporating the
learned probabilistic and geometric constellation shaping [18]
into our neural CF framework is beyond the scope of this work.
Our goal is to jointly learn the relay encoder, which outputs
a compressed description U , and the (soft) demodulator at
the destination, which outputs a probability distribution on W
(Fig. 1) that maximize the mutual information I(X;YD, U)
subject to the rate constraint R, as in (2) and (3). We
assume the availability of good channel codes to be used
in conjunction with the modulation scheme, and as such
the mutual information I(X;YD, U) can be viewed as a CF
achievable rate. In Section III-B, we will discuss how this
performance criterion is incorporated into the loss function
used in the learning.

III. NEURAL COMPRESS-AND-FORWARD (CF) SCHEMES

In this section, we propose three neural CF schemes to
be employed in the PRC shown in Fig. 1. As discussed in
Section II-B, the modulation scheme is fixed. On the other
hand, the relay’s encoder, employing CF strategy, and the
demodulator will be parametrized via artificial neural networks
(ANNs) that will be jointly optimized in an end-to-end fashion.

A. Neural CF Architectures

Building onto neural distributed compressors proposed in
[10], we consider learning-based CF schemes at the relay
that include neural one-shot WZ compressors (with side
information YD at the destination), paired with either a classic
entropy coder (EC) or a Slepian–Wolf (SW) coder. We will
name these two variants as marginal (marg.) and conditional
(cond.) formulations, respectively. As a benchmark, we also
consider a neural one-shot point-to-point (p2p) compressor
coupled with a classic EC. All of these learned compressors
are combined with a neural demodulator available at the
destination, which has access to the side information YD.

The overall proposed neural CF architectures are illustrated
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Fig. 2: The three proposed detection-oriented neural compress-
and-forward relay schemes: (a) and (b) are based on marginal
and conditional formulations respectively; (c) is the point-to-point
scheme. The learned parameters are indicated in blue. Note that
the schemes in (a) and (b) operationally correspond to task-aware
neural Wyner–Ziv compressors, since the encoder can exploit the
side information YD at the receiver side.

in Fig. 2. The relay’s encoder ANN is denoted by eθ(·),
where θ represents its parameters; the probability distribution
of the relay’s encoder output (which is then used by
the EC or SW coder) is modeled with qζ , parameterized
by ζ; the demodulator’s ANN is pϕ(w|yD, eθ(yR)), where
ϕ denotes its parameters. The mapping defined by
the demodulator represents the posterior probability on
the alphabet {1, . . . , |X |} (soft decision), which serves
as an approximation of the true posterior distribution
p(w|yD, eθ(yR)). In the learning process of a p2p compressor,
as shown in Fig. 2c, we initially train a demodulator
pξ(w|eθ(yR)) to prevent this neural compressor from utilizing
the side information YD during training. The pre-trained p2p
neural compressor as such (highlighted in green) is then used
as input for fine-tuning the demodulator pϕ(w|yD, eθ(yR)),
which incorporates side information (highlighted in orange).
Note that, in this p2p scenario, eθ is not able to compress
with side information YD and therefore, cannot exhibit binning
(grouping) in the source space.

Note that we use a deterministic encoder in our proposed
schemes. Specifically, we set the encoder as U ≜ eθ(YR)
as in Fig. 1, where eθ(YR) is discrete. Similar to [10], the
probabilistic models, eθ(YR) and qζ , are defined, without
loss of generality, as discrete distributions with probabilities
Pk = expαk∑K

i=1 expαi
for k ∈ {1, . . . ,K}, where K is a model

parameter. The unnormalized log-probabilities (logits) αi are
either directly treated as learnable parameters or computed
by ANNs as functions of the conditioning variable. The
lossless compression rates induced by the models qζ are
attainable with high-order classic EC or SW coder, operating
on discrete values [19]. As in the popular class of neural

compressors [20], we use stochastic gradient descent to
optimize all learnable parameters jointly, which relies on
Monte Carlo approximation for the expectations in the loss
function. Following the approach in [10], we employ the
widely recognized Gumbel-max technique [21] to generate
samples from discrete distributions. Additionally, we utilize
Concrete distributions [22] to aid in stochastic optimization.
During training, to align with the distribution of samples from
eθ, we also opt for Concrete distribution for the models qζ .
B. Loss Function

In contrast to prior works on neural distributed
compression [10], which focus on minimizing the distortion
in the reconstruction of the input source in tandem with
variable rate entropy coding, our goal in this work is to
optimize the operational trade-off between relay-to-destination
compression rate and source-to-destination communication
rate in the PRC setup.

For our objective function, building onto the compression
rate in (3), we first consider the following upper bound:

I(YR; U | YD) ≤ H(U | YD), (5)

≤ E [− log2 qζ(eθ(yR))]
∆
= R̃, (6)

where R̃ represents an operational upper bound on the relay’s
compression rate, which is upper bounded by R as in (3).
The inequality in (6) is due to the fact that the cross-entropy
is larger or equal to entropy [23, Theorem 5.4.3]. Here, R̃
encapsulates the compression rate of a relay quantizer having
a one-shot encoder coupled with high-order entropy coder over
large blocks of the quantized source.

Similarly, we also establish a lower bound based on the
communication rate term in (2) as follows:

I(X;YD, U) = H(W )−H(W | YD, U), (7)

≥ log(|X |)− D̃, (8)

where D̃
∆
= E [− log(pϕ(x|yD, eθ(yR)))] and (8) is a lower

bound on the source-to-destination communication rate C
from (2). Here, (7) follows from X being a one-to-one
deterministic function of W , and (8) is again due to cross-
entropy being larger or equal to entropy. Since we have a
fixed modulation scheme and do not perform any probabilistic
shaping, in (8) we have H(W ) = H(X) = log(|X |).

For a demodulator taking hard decisions as

Ŵ = arg max
w∈{1,...,|X |}

pϕ(w|yD, eθ(yR)), (9)

the corresponding symbol error rate (SER) would be SER =
P (W ̸= Ŵ ). Since minimizing the cross-entropy D̃ is known
to be a surrogate for maximizing the accuracy of classification
(i.e., symbol detection) [24], minimizing D̃ also operationally
corresponds to minimizing SER.

Building onto the above bounds, the training objective of all
the proposed neural CF relaying schemes depicted in Fig. 2
can be described by the following loss function:

L(θ, ϕ, ζ) = R̃+ λ · D̃, (10)

where R̃ and D̃ are from (6) and (8) respectively, and λ > 0



controls the trade-off. The optimized eθ, qζ and pϕ models,
parameterized by θ, ζ and ϕ, yield the ANN-based encoder,
EC or SW coder, and demodulator component, respectively.

Note that in spite of considering specific modulation
schemes in training, we do not assume a priori knowledge
of modulation symbols by the relay in our neural CF
schemes. The parameters {θ, ϕ, ζ} are learned solely in a
data-driven fashion from samples, through the proposed loss
function in (10). Further improvement in the performance
may be obtained by also optimizing the probabilistic (p(x)
in optimization (2)-(3)) and geometric shaping (constellation
X ) of the modulation [18]. Consistent with findings in [14],
[15], we empirically confirmed that minimizing mean squared
distortion at the quantizers may not always maximize the
source-to-destination communication rate.

IV. RESULTS AND DISCUSSION

While our framework can be adapted to different modulation
schemes and PRC setups, we adopt the following system
configuration to showcase numerical results. We consider
BPSK and 4-PAM modulations, having constellations X =
{±1} and X = {±1,±3}, respectively, and equally likely
symbols, p(x) = 1/|X |. We assume that the noise variances on
both the direct and the relay paths are equal, i.e., σ2

R = σ2
D =

σ2. The signal-to-noise ratio (SNR) is defined as γ = P/σ2,
where P = E[|X|2].

For the parametrization of eθ and pϕ, we use ANNs of
three dense layers, with 100 units each, except the last one,
and leaky rectified linear unit as the activation function.
All neural CF schemes are trained for 500 epochs with
randomly initialized network weights. Initially, we set the
model parameter K = 32. The output dimension of pϕ is
set to be |X |, since this probabilistic model represents the
posterior over the transmitted constellation.

We evaluate our learned CF relaying schemes in terms of the
trade-off between the relay rate R (using the proxy R̃ in (6)),
and two metrics: (i) the communication rate I(X;YD, U), for
which we use the lower bound (hence, a pessimistic estimate)
in (8), and (ii) the SER = P (W ̸= Ŵ ) (see (9)).

A. Baselines

The regimes where R = 0 and R → ∞ are referred
to as without relay and perfect relay scenario, respectively.
In particular, in the perfect relay regime, the demodulator
has full access to YR, and it optimally combines (YD, YR).
This corresponds to an increased SNR, γ, with respect to the
point-to-point scenario. When the variances σ2 = σ2

D = σ2
R

are equal, the perfect relay setting has double the SNR in
comparison with the one without relay. In these two regimes,
mutual information and SER can be numerically computed for
BPSK and 4-PAM modulations as a function of γ.

When 0 < R < ∞, we consider CCF from (4) as a
benchmark on the communication rate for our learned CF
schemes with discrete modulations. Increasing the modulation
order, |X |, gives more degrees of freedom for the end-to-end
learned communication system to approach the rate of a PRC
that assumes Gaussian inputs, that is CCF in (4).
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Fig. 3: SER and mutual information results as a function of the relay-
to-destination rate R, for the 4-PAM modulation with γ = 13 dB.
The colored lines represent the performance of three neural CF relay
architectures (Fig. 2), where each marker corresponds to a unique
model trained for a particular value of λ in (10). The horizontal lines
provide baseline results without relaying (R = 0) and with perfect
relaying (R → ∞).
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Fig. 4: Mutual information results for the marginal model (Fig. 2a) in
case of BPSK and 4-PAM modulations with γ = 3 dB. The solid line
represents CCF in (4) [13], obtained for Gaussian inputs. The dotted
lines represent the perfect relay (R → ∞) bounds for the respective
curves, similar to Fig. 3.

B. Numerical Results for the Learned CF Schemes

Fig. 3 shows the SER and mutual information for the 4-PAM
modulation for γ = 13 dB. In this case, YR and YD, are highly
correlated. We observe that the three models exhibit different
trade-offs. The conditional model yields the best performance
as the side information is also exploited within the SW coder,
which operationally executes binning over long sequences i.e.,
in a multi-shot fashion. The marginal model surpasses the p2p
model mainly due to the learned one-shot binning behavior in
the source space (see Fig. 5), yielding rate reduction.

Fig. 4 compares CCF from (4) with the mutual information
obtained with the marginal formulation for the BPSK and
4-PAM modulations. Here, the SNR for all the considered
schemes is γ = 3 dB, suggesting a lower correlation between
YR and YD compared to the one illustrated in Fig. 3. As
expected, increasing the modulation order reduces the gap with
the bound in (4), at higher rates meeting the performance of
the CF relaying strategy that assumes Gaussian inputs.

Fig. 5 illustrates the learned CF strategy and hard
demodulation decision regions (see (9)) for the 4-PAM with
γ = 13 dB. The vertical axis and horizontal axis show YR

and YD, respectively. The colors represent the transmitted
indices eθ(YR) by the relay, and the horizontal lines are the
corresponding quantization boundaries. Note that the neural
CF architecture exhibits binning (grouping) since non-adjacent
intervals are assigned to the same index (same color). The
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Fig. 5: Visualization (best viewed in color) of the learned CF strategy
(marginal scheme in Fig. 2a) and demodulation decisions for the 4-
PAM modulation with γ = 13 and relay rate R ≈ 1. The horizontal
lines denote the quantization boundaries on YR, and the colors
designate the transmitted index eθ(YR). The vertical lines denote
the hard decision boundaries for the demodulator, and the markers
represent the decisions. The transmitted symbols (denoted by cross,
triangle, star, square) are also reported near the axis for reference.

vertical lines denote the hard decision boundaries, where the
markers denote the decisions Ŵ . We observe that the lines
are shifted with respect to the midpoints between transmitted
symbols (optimal boundaries without relaying). This highlights
the interpretability of our neural CF relaying scheme. For
example, when cross or star are transmitted, the index blue
will be the (most likely) relayed index. In this case, the
decision regions for cross and star at the destination are larger
than the others symbols.

Moreover, Fig. 5 can be used as a look-up table for
a direct deployment of the resulting CF relaying strategy.
Although ANN-based architectures (Fig. 2) were used to
minimize the loss function in (10), the actual hard demodulator
implementation at test time relies only on the learned threshold
values shown in Fig. 5.

V. CONCLUSION

We revisit CF relaying in the context of learned distributed
compression and incorporate a task-oriented neural WZ
compressor into a PRC setup as a practical form of CF
relaying mechanism. Our proposed framework represents the
first proof-of-concept work for an interpretable learned CF
relaying scheme, where both the compressor and demodulator
components are parameterized with lightweight ANNs. Such
a design choice also enables us to provide post-hoc
interpretations of these learned components by explicitly
visualizing their behaviors (see Fig. 5). This reveals that
the learned CF scheme exhibits characteristics of optimal
asymptotic relaying strategy, such as binning of the quantized
indices at the relay, while its performance is close to the one
of a PRC model that assumes continuous Gaussian inputs.

Extending our framework to a general relay channel,

in which the destination does successive decoding of the
compressed relay index and the source information, would
be possible. Additional design constraints arising from
incorporating learned CF in full-duplex and half-duplex relay
channels, as well as more complex channel models would be
interesting future research directions.
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