
Efficient and Timely Memory Access
Vishakha Ramani, Ivan Seskar, Roy D. Yates

WINLAB, Rutgers University
Email: {vishakha, seskar, ryates}@winlab.rutgers.edu

Abstract—This paper investigates the optimization of memory
sampling in status updating systems, where source updates are
published in shared memory, and reader process samples the
memory for source updates by paying a sampling cost. We
formulate a discrete-time decision problem to find a sampling
policy that minimizes average cost comprising age at the client
and the cost incurred due to sampling. We establish that
an optimal policy is a stationary and deterministic threshold-
type policy, and subsequently derive optimal threshold and the
corresponding optimal average cost.

I. INTRODUCTION

This work examines status updating systems in which
sources generate time-stamped status updates of a process of
interest, and these updates are stored/written in a memory
system. A reader fulfills clients’ requests for these updates by
reading from the memory. The asynchronous nature of reader-
writer interactions within memory systems introduces signif-
icant challenges. In particular, the readers’ memory accesses
should be optimized for timely processing of source updates
as the reader becomes aware of fresher updates in the memory
only when it chooses to query the memory. Furthermore, the
memory access process must be regulated by a synchronization
method between readers and writers to avoid race conditions.

The primary question in this paper is when should the
reader sample the memory. Typically, there is a cost associated
with memory sampling, and this cost structure varies between
systems. In systems with substantial object sizes, retrieving
and locally copying objects incurs a high cost, while querying
for timestamps remains relatively inexpensive. In contrast,
there are systems where memory contains smaller objects, and
the cost of retrieval is comparable to the cost of a timestamp
query. These are systems where queries are sent to a distant
database, with the cost being the latency associated with the
query.

In this work, we focus on former class of systems where
the Reader knows the freshness of object in the memory by
virtue of inexpensive timestamp retrievals. However, due to
longer read times, denoted by high sampling costs, the Reader
must decide if sampling is justified compared to age reduction
obtained after sampling.

A. Related Work

Prior research on timely memory access has explored issues
related to the impact of different synchronization primitives
on the timely retrieval of stored data items. Particularly,
[1], [2] examined the impact of lock-based and lock-less
synchronization primitives in the context of a timely packet
forwarding application.

In [3], the authors addressed the timely processing of up-
dates stored in memory from multiple sources. The framework
involved a system where the Reader samples the memory
as a renewal point process. Under this model, it was shown
that a lazy sampling policy from the Reader proved to be
an optimal strategy. The rationale behind this finding was
that lazy sampling effectively mitigates the negative impacts
of high variance in the client’s processing times. This work
differs from [3] in that it no longer assumes renewal sampling
from the Reader and in contrast to previous work, in this study,
the Reader pays a cost of sampling. Nevertheless, the primary
objective remains consistent: to identify an optimal reading
policy for the Reader that maximizes the timeliness of source
updates with the client.

We note that the concept of timely memory sampling,
wherein the Reader incurs a cost for sampling for age reduc-
tion, shares similarities with research focused on managing
access for multiple users within a communication channel.
Various studies in the AoI literature have explored Whit-
tle’s index-based transmission scheduling algorithms [4]–[13],
wherein the scheduling problem is decomposed into multiple
independent subproblems. Within each subproblem, an addi-
tional cost (C) is associated with updating the user. The goal
is to determine, in each time slot, whether updating the user
is warranted, thereby striking a balance between the updating
cost and the age-related costs.

B. Contributions and Paper Outline

This paper investigates the relation between sampling costs
and Age-of-Information [14]. In section II, we formulate our
problem as a Markov Decision Process (MDP) with the goal of
minimizing average cost comprising age at the client and the
cost incurred due to sampling. In section III, we establish that
an optimal policy of the MDP is a stationary and deterministic
threshold-type policy. We then derive optimal threshold and
the optimal average cost by exploiting the structure of optimal
policy. Finally, section IV presents numerical evaluation on
average cost against system parameters.

II. SYSTEM MODEL

In this work, we focus on a class of systems (see Fig. 1)
where a Writer writes the time-varying data received from the
source into the memory, and a Reader samples the memory on
behalf of a client. The client can be either the same entity as
the Reader, running as a single process, or a separate process.
Additionally, while the system will have many sources, our
focus will be on the memory that tracks the status of a single

ar
X

iv
:2

40
4.

14
59

6v
1

 [
ee

ss
.S

Y
]

 2
2

A
pr

 2
02

4

Fig. 1. A writer updates memory based on the update received from source.
A client requests the Reader process to read the source updates from the
memory. The source update publication in the memory generates age process
x(t), and the update sampling by the Reader generates age process y(t) at
the client input.

process of interest. Even in this seemingly straightforward sce-
nario, not previously explored in the AoI literature, optimizing
AoI presents non-trivial challenges.

We consider a discrete-time slotted system with slots la-
belled t = 0, 1, 2, The system involves two key processes:
writing the time-varying data from the source into the memory
and reading the source data from memory. The modeling
details of these processes are discussed below.

A. Writing source updates to memory

We assume the Writer commits/writes fresh (age zero)
source updates to memory at the end of each slot with
probability p, independent from slot to slot. These source
updates generate the age process x(t) in the memory.

In practice, the write time will be non-negligible. However,
our focus in this work is not on systems where writing to
the memory is the bottleneck process. Instead, our primary
interest lies in examining the delays associated with reading
and processing of source updates. Note that in the event that
these writes do require time τ > 0, x(t) and the update age
process at the client will be shifted by τ .

B. Sampling source updates from memory

At each time slot, the Reader determines whether to access
the memory and read a source update. The update in memory
is read over a period of a slot, and the reader gets the data at the
end of the slot. Notably, this model aligns with the Read-Copy-
Update (RCU) [15], [16] memory access paradigm, where a
new update can be written in slot t while the Reader is in the
process of reading the current update in the same slot.

The Reader generates an age process y(t) at the input to the
client that is a sampled version of source update age process
x(t) in the memory. Hence we say the Reader samples the
updates in the memory.

The state-dependent action a(t) selected by the Reader at
time slot t determines whether the Reader remains idle (a(t) =
0) or performs a read operation (a(t) = 1). We consider a
scenario where a non-negative fixed cost c is associated with
reading the memory during each time slot. Ideally, the Reader
aims to minimize y(t), which means it would prefer to read
in every slot to stay close to the age process x(t). However,
this comes at the cost of paying the sampling cost c. If the
Reader samples too frequently, it might end up with the same
update, resulting in no age reduction but incurring a penalty

for sampling. On the contrary, if it reads too infrequently, the
age at the client input increases.

In this work, we assume that the Reader is notified when
an update is published in the memory, enabling the Reader to
know the update age in the memory. Based on the system state,
the Reader implements a scheduling scheme that minimizes
the average cost E[y(t) + ca(t)]. To address this, we model
our problem as a Markov Decision Process (MDP).

C. Markov Decision Process Formulation

In the context of our MDP model, denoted with M from
here on, the following four components make up the structure:

• States: We denote the set of possible system states by
S which does not vary with time. State s(t) ∈ S is a
tuple (x(t), y(t)), where at the start of a time slot, x(t) ∈
{0, 1, 2, . . .} is the age of the update in the memory, and
y(t) ∈ {1, 2, 3, . . .} is the age of sampled source updates
at the client. Notice that S is a countably infinite set since
age is unbounded.

• Action: Let a(t) ∈ {0, 1} denote the action taken in slot
t indicating Reader’s decision, where a(t) = 1 if Reader
decides to read and a(t) = 0 if idle.

• Transition Probabilities: Letting p̄ = 1− p, when a(t) =
1, the transition probability from state s = (x, y) to state
s′ ∈ S is

P[s′ | s = (x, y), a = 1] =

{
p s′ = (0, x+ 1),

p̄ s′ = (x+ 1, x+ 1).
(1a)

And when a(t) = 0, the transition probability is

P[s′ | s = (x, y), a = 0] =

{
p s′ = (0, y + 1),

p̄ s′ = (x+ 1, y + 1).
(1b)

• Cost: The cost C(s(t); a(t)) incurred in state s(t) in time
slot t under action a(t) is defined as:

C(s(t) = (x, y); a(t) = a) := y + ca. (2)

Let π = {a(0), a(1), . . .} denote a policy that specifies an
action a(t) at slot t. The expected average cost under policy
π starting from a given initial state at t = 0, s(0) = s, is
defined as:

gπ(s) = lim sup
T→∞

1

T
Eπ

[
T−1∑
t=0

C(s(t); a(t)) | s(0) = s

]
,

= lim sup
T→∞

1

T
Eπ

[
T−1∑
t=0

(y(t) + ca(t))

]
. (3)

We say that policy π∗ is average-cost optimal if gπ∗(s) =
inf gπ(s) for every s ∈ S. We focus on the case where for
some constant g, gπ∗(s) = g for all s ∈ S. Thus, the problem
is to obtain π∗ such that g = gπ∗(s) = inf gπ(s) for every
s ∈ S.

Our cost minimization problem falls within the category of
average cost minimization problems. Given that the age can
grow unbounded, both the number of states and the cost in
each stage are countably infinite. In such Markov Decision

Processes (MDPs), the existence of an optimal policy, whether
stationary or non-stationary, is not guaranteed [17, Chap 5].
Notably, even the existence of an optimal stationary policy
may not hold, while an optimal non-stationary policy might
exist [18].

Analyzing average cost problems with an infinite state space
poses inherent difficulties. However, under certain conditions
and structures, it is possible to develop useful results. Proving
the existence of an optimal average cost stationary policy
is not an immediate goal in this paper and we defer this
discussion to later in Section V. There, we draw upon results
from [19], which provides conditions ensuring the existence of
an expected average cost optimal stationary policy. We verify
that these conditions hold for our problem. In the subsequent
section, we derive results regarding the structure of the optimal
policy under the assumption that the optimal policy exists and
the relative cost Bellman’s equation is valid.

III. CHARACTERIZATION OF COST OPTIMALITY

A. Discounted Cost

We begin by introducing the α-discounted version of the
problem. Recall that the state for MDP M is a tuple s =
(x, y), and a ∈ {0, 1}. Then using (1), the discounted cost
Bellman’s optimality equation for M is given by

V (x, y) = min{y + α (pV (0, y + 1) + p̄V (x+ 1, y + 1)) ,

y + c+ α(pV (0, x+ 1) + p̄V (x+ 1, x+ 1))}. (4)

Here, the first term of min corresponds to the reader staying
idle (a = 0), and the second term corresponds to the reader
sampling (a = 1). The action that is a minimizer of (4) is
referred to as the α-optimal action and the resulting policy
π∗
α is referred to as the α-optimal policy.
We define the value iteration Vn(s) by V0(s) = 0,∀s ∈ S,

and, for any n > 0,

Vn+1(x, y) = min{y + α (pVn(0, y + 1) + p̄Vn(x+ 1, y + 1)) ,

y + c+ α(pVn(0, x+ 1) + p̄Vn(x+ 1, x+ 1))}, (5)

For non-negative costs, it is evident that Vn(s) ≤ Vn+1(s). It
then follows from [17, Theorem 4.2, Chapter III] that

lim
n→∞

Vn(s) = V (s), s ∈ S. (6)

We now state properties of the value function.

Proposition 1. (Monotonicity): The value function V (x, y) is
non-decreasing in both x and y.

The proof, using mathematical induction on (5), is straightfor-
ward but omitted because of space constraints.

Proposition 2. If the α-optimal action is to sample in (x, y),
then the α-optimal action is to sample in every (x, y′) with
y′ ≥ y.

Proof of this proposition is provided in the Appendix. Another
version of this proposition asserts that if the α-optimal action
is to sample in state (x, y) at stage n, then it is also optimal
to sample in every (x, y′) with y′ ≥ y at stage n. The proof

employing the value iteration (5) is omitted as it is similar to
that of Proposition 2.

Proposition 3. (Concavity): For a fixed x, V (x, y + 1) −
V (x, y) is non-increasing in y.

The proof appears in the Appendix. The intuitive structure
of the optimal policy is that with knowledge of the age
in the memory, the Reader should refrain from sampling if
the reduction in age doesn’t justify the sampling cost. To
further characterize this intuition, we introduce the following
proposition. The proof appears in the Appendix.

Proposition 4. If the α-optimal action in state (x, y) is to
idle, then the α-optimal action in states (x+ i, y + i),∀i ≥ 1
is to stay idle.

Specifically, when the memory is freshly updated, the
Reader must assess whether sampling is worthwhile. If it
opts against sampling initially, it should consistently abstain
from sampling in subsequent slots until the memory undergoes
another update, as the age reduction remains constant in the
absence of changes. In terms of the MDP M, this concept
translates to making a decision in the state (0, y). If the
optimal decision is not to sample at this point, then the Reader
should consistently refrain from sampling in states (1, y+1),
(2, y + 2), and so on.

B. Average Cost Optimality

Since the conditions of Theorem 2 (in section V) hold, the
cost-optimal policy π∗ is the limit point of α-optimal policies
π∗
α with α → 1 [19, Lemma]. Therefore, Propositions 2 and 4

are sufficient to provide the structure of average cost optimal
policy. Specifically, Propositions 2 and 4 imply that there exists
a threshold Y0 such that it is optimal to sample in (0, y) for
every y ≥ Y0 and idle otherwise.

At this point, it is important to mention the set of fea-
sible states under π∗. With Y0 = 1, the optimal policy
dictates sampling in every state (0, y) where y ≥ 1. Upon
sampling in (0, 1), the system transitions to feasible states,
specifically {(0, 1), (1, 1)}. In state (1, 1), a close examination
of Bellman’s equation (4) reveals that it is optimal to idle.
Therefore, the set of possible states when choosing to idle in
(1, 1) becomes {(0, 2), (2, 2)}. Subsequent transitions follow a
pattern where sampling in (0, y) leads to states {(0, 1), (1, 1)},
and choosing to idle in states (i, i) with i ∈ N resulting in
{(0, i+ 1), (i+ 1, i+ 1)}.

In scenarios where Y0 > 1, optimality dictates idling in
(0, y) with y < Y0, prompting the system to transition to states
{(0, y + 1), (1, y + 1)}. The subsequent action in (0, y + 1)
hinges upon whether y + 1 < Y0. If y + 1 ≥ Y0, the system
resets, transitioning to either (0, 1) or (1, 1); conversely, if
y + 1 < Y0, the system perpetuates a structure akin to that
observed in state (0, y). Conversely, if the system transitions
to (1, y + 1), idling in (1, y + 1) is optimal. The resulting
permissible states from this point include {(0, y + 2), (2, y +
2)}, and this pattern repeats. We summarize this set of feasible
states for the optimal policy in the following proposition.

Proposition 5. For MDP M, under the optimal policy π∗

with threshold Y0, the set of feasible states is

S∗ = {(0, y) | y ∈ N}∪{(x, y) | x ≥ 1 and y−x < Y0}. (7)

To determine the optimal threshold for an optimal policy
π∗, we employ the relative cost Bellman’s equation

g + f(x, y) = min{y + pf(0, y + 1) + p̄f(x+ 1, y + 1),

y + c+ pf(0, x+ 1) + p̄f(x+ 1, x+ 1)}. (8)

Here, g denotes the optimal average cost, and f(x, y) rep-
resents the relative cost-to-go function. Our objective is to
identify relative cost-to-go function f(x, y) for (x, y) ∈ S∗,
facilitating the determination of the optimal threshold and,
consequently, the optimal average cost.

Proposition 6. Defining (0, 1) as the reference state with
f(0, 1) = 0, the relative cost functions satisify:

(i) f(0, Y0 + 1)− f(0, Y0) = 1.
(ii) For any x ≥ 0,

f(x, Y0 − 1) =
1

p
(J0 +

p̄

p
)− 1, (9)

where J0 = Y0 − g + pf(0, Y0).
(iii) For every y < Y0, f(0, y) = f(1, y) . . . = f(y, y).
(iv) When Y0 > 1, f(0, Y0) = Y0 − g + c.

The proof appears in the Appendix. We now use Proposi-
tion 6 to derive the optimal threshold.

Lemma 1. As a function of the threshold Y0, the average cost
is

g0(Y0) =
1

2

(
1

p
+ Y0 +

2cp+ p̄/p

pY0 + p̄

)
. (10)

The proof appears in the Appendix.

Theorem 1. The optimal threshold Y ∗
0 associated with optimal

policy π∗ for MDP M is Y ∗
0 = ⌈Y ′⌉ where

Y ′ =

√
2c+ (1/p− 1/2)

2 − (1/p− 1/2). (11)

Proof. It follows from (10) and some algebra that

g0(Y0)− g0(Y0 +1) =
−p2

2

[
Y 2
0 + (2/p− 1)Y0 − 2c

(pY0 + p̄)(pY0 + 1)

]
(12)

We define Q(Y0) ≡ Y 2
0 + Y0 (2/p− 1) − 2c and we observe

that Y ′ in (11) is the only positive root of Q(y). Further
Q(Y0) > 0 for Y0 > Y ′. It then follows from (12) that
g0(⌊Y ′⌋) ≥ g0(⌈Y ′⌉) and that g0(⌈Y ′⌉), g0(⌈Y ′⌉ + 1), . . . is
a non-decreasing sequence.

Lemma 2. The optimal average cost satisfies

g ≥ 1/2 +
√
2c+ 1/p2 − 1/p. (13)

Proof. Note that g = minY0∈N g0(Y0) ≥ miny∈R+ g0(y). To
minimize g0(y) over positive reals, we set dg0(y)/dy = 0,
yielding y = Ỹ ∗

0 = −p̄/p +
√
2c+ p̄/p2. This yields g ≥

g0(Ỹ
∗
0), which is the lower bound (13).

0 10 20 30

12

14

16

18

20

22

24

Fig. 2. Plot of average cost g0(Y0) as a function of threshold Y0 with
sampling cost c = 80. The circle point is the minimum of g0(Y0), the cross
is the approximate optimal threshold Ỹ ∗

0 .

0 0.2 0.4 0.6 0.8 1

0

5

10

15

c = 10

c = 100

Fig. 3. Plot of optimal threshold Y ∗
0 as a function of probability p of source

update publication in a slot, with a fixed sampling cost c.

IV. NUMERICAL EVALUATION

Figure 2 illustrates the behavior of the average cost given
by (10) with respect to Y0. For fixed system parameters p
and c, the plot reveals an initial decline in average cost as
threshold Y0 increases. This trend aligns with expectations, as
a low threshold prompts the Reader to sample too frequently,
incurring the sampling cost without achieving a significant
reduction in age, ultimately leading to a higher average cost.
As Y0 increases further, the cost of sampling approaches the
gain obtained with age reduction. However, setting threshold
Y0 too high precludes timely access to the memory, resulting
in increased age at the client and consequently increased
average cost of the system. The observed behavior in Figure 2
highlights the existence of an optimal threshold at which the
cost payed for sampling is justified with the corresponding
reduction in age.

Fig. 3 illustrates the value of optimal threshold Y ∗
0 as a

function of probability p of source update publication in a slot.
We observe that the optimal threshold increases with p. When
the Reader is required to make a decision in a given slot, it
assesses both the age at the client and the age in the memory.
These evaluations contribute to determining the potential age

0.2 0.4 0.6 0.8 1
0

5

10

15

20

Fig. 4. Comparison of Optimal average cost g and the corresponding lower
bound (LB) as a function of probability p of source update publication in a
slot, with a fixed sampling cost c.

reduction vs the cost of sampling. In scenarios where the
client’s update is deemed sufficiently recent, the Reader may
choose to skip sampling. This decision is influenced by a
higher probability (p) of obtaining a more recent update soon,
that will perhaps be worth sampling.

Figure 4 compares the optimal average cost g with the
lower bound provided in (13). The tightness of the lower
bound is evident, as it closely aligns with the curve of
the optimal average cost. Additionally, the figure illustrates
that the optimal cost tends to increase with an increase in
the sampling cost c. This suggests that while designing the
cost structure, the cost should be sufficiently high but not
excessively so. Furthermore, the plot shows that the average
cost decreases as the probability p of memory updates in a
slot increases. This is intuitive, as frequent memory updates
increase the likelihood of the Reader receiving a fresh update
when it samples, thereby reducing the age at the client.

V. STATIONARY AVERAGE COST OPTIMAL POLICY

In this section we verify that the average cost optimality
equation for MDP holds for M. To get started, we need the
following result.

Lemma 3. Under the deterministic stationary policy θ of
reading in every slot, the system exhibits an irreducible,
ergodic Markov Chain, with expected cost M(x, y) of first
passage from state s = (x, y) to (0, 1) satisfying

M(x, y) ≤ 1 + p

p2
(c+ y) +

3

2p3
. (14)

Proof of Lemma 3 appears in the Appendix. We now
employ the lemma in verifying the conditions of the following
theorem.

Theorem 2. [19, Theorem] If the following conditions hold
for MDP M:

1) For every state s and discount factor α, the quantity V (s)
is finite,

2) fα(s) := V (s) − V (0) satisfies −N
(a)

≤ fα(s)
(b)

≤ M(s),
where M(s) ≥ 0, and

3) For all s and a,
∑

s′ Ps,s′(a)M(s′) < ∞,
then there exists a stationary policy that is average cost
optimal for MDP M. Moreover, for M, there exists a constant
g = limα→1(1−α)V (s) for every state s, and a function f(s)
with −N ≤ f(s) ≤ M(s) that solve relative-cost Bellman’s
equation,

g + f(s) = min
a

{C(s; a) +
∑
s′∈S

Ps,s′(a)f(s
′)}. (15)

For MDP M, we choose reference state 0 as (0, 1). A
sufficient condition for 1 and 2(b) to hold is the existence of a
single stationary policy that induces an irreducible, ergodic
Markov Chain, with the associated expected cost of first
passage from any state (x, y) to state (0, 1) being finite ([19,
Propositions 4 and 5]). Lemma 3 verifies that this sufficient
condition is met for our problem. A sufficient condition for
2(a) is that V (s) is non-decreasing in s [19]. Proposition 1
demonstrates that this sufficient condition is also met.

Now, condition 3 of Theorem 2 asserts that under any a,
the quantity

∑
s′ Ps,s′(a)M(s′) should be finite. For MDP M,

from (1b), when a = 0, we have for any state s = (x, y),∑
s′

Ps,s′(0)M(s′) = pM(0, y+1)+ p̄M(x+1, y+1). (16)

From (1a), when a = 1, we similarly have for any state s =
(x, y),∑

s′

Ps,s′(1)M(s′) = pM(0, x+1)+ p̄M(x+1, x+1). (17)

It follows from (16), (17) and Lemma 3 that condition 3
holds for MDP M. Therefore, there exists a constant g =
limα→1(1−α)V (x, y) for every state (x, y) that is an optimal
average cost and a relative cost to go function f(x, y) with
0 ≤ f(x, y) ≤ M(x, y).

VI. CONCLUSION

This paper focused on a class of systems where source
updates are disseminated using shared memory. The Writer
process records these source updates in the memory, and a
Reader fulfills clients’ requests for these measurements by
reading from the memory. We studied the problem of optimiz-
ing memory access by the Reader with respect to minimizing
average cost. Our main contributions included establishing
the existence of an optimal stationary deterministic policy
for our Markov Decision Process (MDP). Furthermore, we
demonstrated that the optimal policy has a threshold structure.

A key insight from our analysis was that the Reader should
choose to sample only when the memory undergoes an update.
If the Reader decides not to sample, this decision of staying
idle should perpetuate in subsequent slots until the memory
is updated with a fresh source update. This is because, in
the absence of updates, there is no change in age reduction;
it remains the same as when the memory was last updated.
Finally, an interesting extension to this work would involve
investigating an alternate regime for optimizing memory ac-
cess, where the Reader operates without knowledge of source
update age in the memory.

REFERENCES

[1] V. Ramani, J. Chen, and R. D. Yates, “Lock-based or lock-less: Which
is fresh?” 2023.

[2] ——, “Timely mobile routing: An experimental study,” 2023.
[3] V. Ramani, I. Seskar, and R. D. Yates, “Timely processing of updates

from multiple sources,” 2023.
[4] Y.-P. Hsu, “Age of information: Whittle index for scheduling stochastic

arrivals,” in 2018 IEEE International Symposium on Information Theory
(ISIT), 2018, pp. 2634–2638.

[5] Y.-P. Hsu, E. Modiano, and L. Duan, “Scheduling algorithms for
minimizing age of information in wireless broadcast networks with
random arrivals,” IEEE Transactions on Mobile Computing, vol. 19,
no. 12, pp. 2903–2915, 2020.

[6] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broadcast
wireless networks,” IEEE/ACM Transactions on Networking, vol. 26,
no. 6, pp. 2637–2650, 2018.

[7] A. Maatouk, S. Kriouile, M. Assad, and A. Ephremides, “On the
optimality of the whittle’s index policy for minimizing the age of
information,” IEEE Transactions on Wireless Communications, vol. 20,
no. 2, pp. 1263–1277, 2021.

[8] J. Sun, Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu, “Closed-form
whittle’s index-enabled random access for timely status update,” IEEE
Transactions on Communications, vol. 68, no. 3, pp. 1538–1551, 2020.

[9] I. Kadota, A. Sinha, and E. Modiano, “Scheduling algorithms for
optimizing age of information in wireless networks with throughput
constraints,” IEEE/ACM Transactions on Networking, vol. 27, no. 4,
pp. 1359–1372, 2019.

[10] V. Tripathi and E. Modiano, “A whittle index approach to minimizing
functions of age of information,” in 2019 57th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton). IEEE,
2019, pp. 1160–1167.

[11] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “Asymptoti-
cally optimal scheduling policy for minimizing the age of information,”
in 2020 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2020, pp. 1747–1752.

[12] J. Sun, Z. Jiang, S. Zhou, and Z. Niu, “Optimizing information freshness
in broadcast network with unreliable links and random arrivals: An ap-
proximate index policy,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
2019, pp. 115–120.

[13] Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu, “Can decentralized
status update achieve universally near-optimal age-of-information in
wireless multiaccess channels?” in 2018 30th International Teletraffic
Congress (ITC 30), vol. 1. IEEE, 2018, pp. 144–152.

[14] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. IEEE INFOCOM, March 2012, pp. 2731–2735.

[15] P. E. McKenney and J. D. Slingwine, “Read-copy update: Using execu-
tion history to solve concurrency problems,” in Parallel and Distributed
Computing and Systems, vol. 509518. Citeseer, 1998, pp. 509–518.

[16] P. E. Mckenney, J. Appavoo, A. Kleen, O. Krieger, O. Krieger, R. Rus-
sell, D. Sarma, and M. Soni, “Read-copy update,” in In Ottawa Linux
Symposium, 2001, pp. 338–367.

[17] S. Ross, Introduction to Stochastic Dynamic Programming, ser.
Probability and Mathematical Statistics: A Series of Monographs
and Textbooks. Academic Press, 1983. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B978012598420150009X

[18] ——, Applied Probability Models with Optimization Applications, ser.
Holden-Day series in industrial engineering and management science.
Holden-Day, 1970.

[19] L. I. Sennott, “Average cost optimal stationary policies in infinite
state markov decision processes with unbounded costs,” Operations
Research, vol. 37, no. 4, pp. 626–633, 1989. [Online]. Available:
http://www.jstor.org/stable/171262

https://www.sciencedirect.com/science/article/pii/B978012598420150009X
https://www.sciencedirect.com/science/article/pii/B978012598420150009X
http://www.jstor.org/stable/171262

APPENDIX

PROOF OF LEMMA 3

Lemma 3. The expected first passage cost M(x, y) to go from
state (x, y) to state (0, 1) under the optimal policy satisfies

M(x, y) ≤ 1 + p

p2
(c+ y) +

3

2p3
. (18)

Proof. Note that

M(x, y) ≤ E[Ĉ(x, y)], (19)

where Ĉ(x, y) is the first passage cost under the policy
in which the Reader samples in every slot. Starting from
state (x, y) under the “always sample” policy, there is a
geometric (p) number N of slots in which the system passes
from states (x, y) up through (x + N − 1, y + N − 1) until
a memory update takes the system to state (0, x+N). In the
next slot, a cost c + x + N is incurred and the system goes
to either state (0, 1) with probability p or, with probability
1− p, to (1, 1). In the latter case, the additional cost Ĉ(1, 1)
is incurred to reach (0, 1). We define the Bernoulli (1 − p)
random variable Z such that Z = 1 if a memory update does
not occur in state (0, x +N). The cost expended to go from
(x, y) to (0, 1) is then

Ĉ(x, y) =

y+N−1∑
j=y

(c+ j) + (c+ x+N) + ZĈ(1, 1)

= N(c+ y) + (c+ x) + N(N+1)
2 + ZĈ(1, 1). (20)

Taking expectation,

E[Ĉ(x, y)] =
c+ y

p
+ (c+ x) +

3− p

2p2
+ p̄E[Ĉ(1, 1)]. (21)

Evaluating (21) at (x, y) = (1, 1) yields

E[Ĉ(1, 1)] =
1

p

[(
1

p
+ 1

)
(c+ 1) +

3− p

2p2

]
. (22)

Combining (21) and (22) yields

E[Ĉ(x, y)] =
c+ y

p
+ (c+ x) +

1− p2

p2
(c+ 1) +

3− p

2p3
. (23)

Since x ≤ y and 1 ≤ y for any feasible state (x, y), we obtain

E[Ĉ(x, y)] ≤
(
1

p
+ 1

)
(c+ y) +

1− p2

p2
(c+ y) +

3− p

2p3

≤ 1 + p

p2
(c+ y) +

3

2p3
. (24)

The claim then follows from (19).

PROOF OF PROPOSITION 2

Proposition 2. If the α-optimal action is to sample in (x, y),
then the α-optimal action is to sample in every (x, y′) with
y′ ≥ y.

Proof. For brevity, we’ll use the following shorthand notation
in the proof. For w ≤ v, we define

J̃(u, v, w) = V (u, v)− V (u,w). (25)

The monotonicity of the value function (Proposition 1) implies

J̃(u, v1, w) ≤ J̃(u, v2, w) for all u, w, and v1 ≤ v2. (26)

For the rest of our discussion, we use the following form of
discounted-cost Bellman’s optimality equation with cα = c/α:

V (x, y) = y + αmin{pV (0, y + 1) + p̄V (x+ 1, y + 1),

cα + pV (0, x+ 1) + p̄V (x+ 1, x+ 1)}, (27)

Let x̂ = x+1 and ŷ = y+1. According to (27), the condition
for the Reader to sample in (x, y) is

pV (0, ŷ) + p̄V (x̂, ŷ) ≥ cα + pV (0, x̂) + p̄V (x̂, x̂). (28)

Using the shorthand J̃(u, v, w), the inequality (28) becomes

pJ̃(0, ŷ, x̂) + p̄J̃(x̂, ŷ, x̂) ≥ cα. (29)

Given that condition (29) holds, we examine the state (x, ŷ).
The value function for this state is

V (x, ŷ) = ŷ + αmin{pV (0, ŷ + 1) + p̄V (x̂, ŷ + 1),

cα + pV (0, x̂) + p̄V (x̂, x̂)}. (30)

The condition for the Reader to sample in (x, ŷ) is

pV (0, ŷ+1)+p̄V (x̂, ŷ+1) ≥ cα+pV (0, x̂)+p̄V (x̂, x̂), (31)

or equivalently,

pJ̃(0, ŷ + 1, x̂) + p̄J̃(x̂, ŷ + 1, x̂) ≥ cα. (32)

Now we observe from the monotonicity property (26) and (29)
that

pJ̃(0, ŷ + 1, x̂) + p̄J̃(x̂, ŷ + 1, x̂) ≥ pJ̃(0, ŷ, x̂) + p̄J̃(x̂, ŷ, x̂)

≥ cα. (33)

Thus (32) holds, confirming that the Reader samples in state
(x, ŷ).

PROOF OF PROPOSITION 3

Proposition 3. (Concavity): V (x, y) is concave in y. Specif-
ically, for a fixed x, V (x, y + 1)− V (x, y) is non-increasing
in y.

Proof. We want to show that for a fixed x, Vn(x, i + 1) −
Vn(x, i) ≥ Vn(x, i + 2) − Vn(x, i + 1), for every i ∈ N. To
achieve this, we focus on demonstrating the inequality:

Vn(x, i+ 2) + Vn(x, i) ≤ 2Vn(x, i+ 1) ∀ n, i. (34)

The base case for n = 1 is trivially satisfied, as V1(x, y) =
y. Now suppose (34) holds for n = 1, 2 . . . k for every i.
We will establish the validity of (34) under two scenarios,
corresponding to the α-optimal action at stage k + 1 being
either to sample or idle in state (x, i+1). First, let’s consider
the case where it is optimal to sample in (x, i + 1) at stage
k + 1. This implies that the value iteration function in this
state satisfies:

Vk+1(x, i+ 1) = i+ 1 + c+ αpVk(0, x+ 1)

+ αp̄Vk(x+ 1, x+ 1). (35)

Furthermore, leveraging Proposition 2, we deduce that sam-
pling in (x, i+1) is also the optimal action for state (x, i+2)
at stage k + 1, resulting in:

Vk+1(x, i+ 2) = i+ 2 + c+ αpVk(0, x+ 1)

+ αp̄Vk(x+ 1, x+ 1). (36)

Notice that the value iteration function for (x, i) satisifies

Vk+1(x, i) ≤ i+ c+ α (pVk(0, x+ 1) + p̄Vk(x+ 1, x+ 1)) .

(37)
Combining (35), (36), and (37), we establish:

Vk+1(x, i+ 2) + Vk+1(x, i) ≤ 2Vk+1(x, i+ 1). (38)

Let us now consider the situation where the α-optimal action
is to stay idle in state (x, i + 1) at stage k + 1. This implies
that

Vk+1(x, i+1) = i+1+α (pVk(0, i+ 2) + p̄Vk(x+ 1, i+ 2)) .
(39)

Leveraging Proposition 2, we conclude that staying idle in
(x, i + 1) is also the optimal action for state (x, i) at stage
k + 1, leading to:

Vk+1(x, i) = i+α (pVk(0, i+ 1) + p̄Vk(x+ 1, i+ 1)) . (40)

The value iteration function for (x, i+ 2) satisfies

Vk+1(x, i+2) ≤ i+2+α (pVk(0, i+ 3) + p̄Vk(x+ 1, i+ 3)) .
(41)

Combining (40) and (41), we can demonstrate:

Vk+1(x, i+ 2) + Vk+1(x, i)

≤ 2(i+ 1) + α[p (Vk(0, i+ 3) + Vk(0, i+ 1))

+ p̄ (Vk(x+ 1, i+ 3) + Vk(x+ 1, i+ 1))],

(a)

≤ 2(i+ 1) + α [2pVk(0, i+ 2) + 2p̄Vk(x+ 1, i+ 2)] ,

= 2 (i+ 1 + α [pVk(0, i+ 2) + p̄Vk(x+ 1, i+ 2))] ,

(b)
= 2Vk+1(x, i+ 1), (42)

where (a) follows from induction hypothesis that Vk(x, i +
3) + Vk(x, i + 1) ≤ 2Vk(x, i + 2), and (b) follows from
(39). It follows from principle of mathematical induction that
(34) holds for every n, and hence Vn(x, y) is concave in y.
As limn→∞ Vn(x, y) = V (x, y), this implies that V (x, y) is
concave in y.

PROOF OF PROPOSITION 4

Proposition 4. If the α-optimal action in state (x, y) is to idle,
then the α-optimal action in states (x+ i, y + i),∀i ≥ 1 is to
stay idle.

Proof. For brevity, we’ll use the following shorthand notation
in the proof. For w ≤ v, let

J̃n(u, v, w) = Vn(u, v)− Vn(u,w). (43)

We establish key properties of J̃n(u, v, w) to be utilized later
in the proof.

1) Given w ≤ v, Proposition 1 implies Vn(u, v) ≥
Vn(u,w) ≥ 0 and hence J̃n(u, v, w) ≥ 0.

2) If v2 ≥ v1, and w2 ≥ w1, it follows from concavity
property (Proposition 3) that

Vn(u, v2)− Vn(u,w2) ≤ Vn(u, v1)− Vn(u,w1) (44)

and as a consequence,

J̃n(u, v2, w2) ≤ J̃n(u, v1, w1),∀u, w1 ≤ w2, and v1 ≤ v2.

(45)
3) Let û = u + 1, v̂ = v + 1 and ŵ = w + 1. Under the

condition of not sampling in (u, v), it can be shown that

J̃n(u, v, w) = v − w + α(pJ̃n−1(0, v̂, ŵ) + p̄J̃n−1(û, v̂, ŵ)).

(46)
We now resume the proof of proposition. Letting x̂ = x+1

and ŷ = y + 1 and cα = c/α, we re-write the value iteration
in state (x, y) given by (5) as:

Vn+1(x, y) = y + αmin{pVn(0, ŷ) + p̄Vn(x̂, ŷ),

cα + pVn(0, x̂) + p̄Vn(x̂, x̂)}, (47)

Given that Reader doesn’t sample in (x, y) implies that for all
n, the terms inside the min function in (47) satisfy:

pVn(0, ŷ) + p̄Vn(x̂, ŷ) ≤ cα + pVn(0, x̂) + p̄Vn(x̂, x̂). (48)

Expressing inequality (48) in terms of J̃n(u, v, w), we get:

pJ̃n(0, ŷ, x̂) + p̄J̃n(x̂, ŷ, x̂) ≤ cα. (49)

Given that (49) holds for every n, we examine state (x+i, y+
i). The value iteration expression at stage n+ 1 is given by:

Vn+1(x+ i, y + i)

= y + i+ αmin{pVn(0, ŷ + i) + p̄Vn(x̂+ i, ŷ + i),

cα + pVn(0, x̂+ i) + p̄Vn(x̂+ i, x̂+ i)}. (50)

To establish that the optimal action in state (x, y) being to
stay idle implies the same for states (x+ i, y + i), we aim to
show that the terms inside the min function in (50) satisfy:

pVn(0, ŷ + i) + p̄Vn(x̂+ i, ŷ + i) ≤ cα + pVn(0, x̂+ i)

+ p̄Vn(x̂+ i, x̂+ i).
(51)

or equivalently,

pJ̃n(0, ŷ + i, x̂+ i) + p̄J̃n(x̂+ i, ŷ + i, x̂+ i) ≤ cα. (52)

Given that (49) holds for all n, proving that (52) holds for all
n is equivalent to showing that the LHS of (52) is less than
LHS of (49). For that it is sufficient to show for all n ≥ 1

I1(n+ 1) = J̃n(0, ŷ + i, x̂+ i)− J̃n(0, ŷ, x̂) ≤ 0, (53)

and

I2(n+ 1) = J̃n(x̂+ i, ŷ + i, x̂+ i)− J̃n(x̂, ŷ, x̂) ≤ 0. (54)

With i ≥ 1, it is clear that ŷ+i ≥ ŷ and x̂+i ≥ x̂. Leveraging
(45) , we conclude that J̃n(0, ŷ+i, x̂+i) ≤ J̃n(0, ŷ, x̂), leading

to I1 ≤ 0 for every n. We use inductive arguments to show
that I2(n+ 1) ≤ 0. When n = 1, we see that

J̃1(u, v, w) = V1(u, v)− V1(u,w) = v − w. (55)

This means that

I2(2) = J̃1(x̂+ i, ŷ + i, x̂+ i)− J̃1(x̂, ŷ, x̂) = 0,

and hence the base case holds. Now assume that I2(n+1) ≤ 0
for n = 1, . . . k − 1 for all i ≥ 0. This implies:

I2(k) = J̃k−1(x̂+i, ŷ+i, x̂+i)−J̃k−1(x̂, ŷ, x̂) ≤ 0, ∀i ≥ 0.
(56)

We have established that I1(k) ≤ 0, implying that (53) holds
at n = k−1. Combining this with (56), we conclude that both
I1 and I2 hold at n = k − 1. This, in turn, implies that (52)
holds at n = k − 1. Consequently, (51) holds at n = k − 1.
Therefore, the assumption I2(k) ≤ 0 for all i ≥ 0 implies that
the action that minimizes (50) at stage k is to stay idle in state
(x+ i, y + i) for all i ≥ 1.

Now, we need to demonstrate that:

I2(k+1) = J̃k(x̂+ i, ŷ+ i, x̂+ i)− J̃k(x̂, ŷ, x̂) ≤ 0, ∀i ≥ 0.
(57)

Given that the assumption is to not sample in (x̂+ i, ŷ+ i) for
i ≥ 0 at stage k, this means that it is optimal to not sample
in (x̂, ŷ) (Proposition 2). Hence, employing Property (3) of
J̃n(u, v, w), from (46), we have with î = i+ 1,

J̃k(x̂+ i, ŷ + i, x̂+ i)

= ŷ − x̂+ α(pJ̃k−1(0, ŷ + î, x̂+ î)

+ p̄J̃k−1(x̂+ î, ŷ + î, x̂+ î)). (58)

Similarly, we have

J̃k(x̂, ŷ, x̂) = ŷ − x̂+ α(pJ̃k−1(0, ŷ + 1, x̂+ 1)

+ p̄J̃k−1(x̂+ 1, ŷ + 1, x̂+ 1)). (59)

From (45), we can state that:

J̃k−1(0, ŷ + î, x̂+ î) ≤ J̃k−1(0, ŷ + 1, x̂+ 1). (60)

Additionally, it follows from (56),

J̃k−1(x̂+ î, ŷ + î, x̂+ î) ≤ J̃k−1(x̂+ 1, ŷ + 1, x̂+ 1). (61)

Based on (60) and (61), we observe that

J̃k(x̂+ i, ŷ + i, x̂+ i)− J̃k(x̂, ŷ, x̂) = I2(k + 1) ≤ 0. (62)

Thus, by induction, we establish that I2(n+1) ≤ 0 holds for
all n ≥ 1.

PROOF OF PROPOSITION 6

Proposition 6. Defining (0, 1) as the reference state with
f(0, 1) = 0, the relative cost functions satisify:

(i)
f(0, Y0 + 1)− f(0, Y0) = 1. (63)

Proof. Given that it is optimal to sample in (0, Y0), the
relative-cost Bellman’s equation in state (0, Y0) is given
as

g + f(0, Y0) = Y0 + c+ pf(0, 1) + p̄f(1, 1). (64)

The optimal action in (0, Y0 + 1) is also to sample
(Proposition 2), and therefore, the relative-cost Bellman’s
equation in state (0, Y0 + 1) becomes

g+f(0, Y0+1) = Y0+1+c+pf(0, 1)+ p̄f(1, 1). (65)

It follows from (64) and (65) that f(0, Y0 + 1) −
f(0, Y0) = 1.

(ii) For any x ≥ 0,

f(x, Y0 − 1) =
1

p
(J0 +

p̄

p
)− 1, (66)

where J0 = Y0 − g + pf(0, Y0).
Proof. For any x ≥ 0, the optimal action in (x, Y0 − 1)
is to idle, and the Bellman’s equation (8) becomes

f(x, Y0− 1) = −g+Y0− 1+ pf(0, Y0)+ p̄f(x+1, Y0).
(67)

Let J0 = −g + Y0 + pf(0, Y0), we obtain

f(x, Y0 − 1) = J0 − 1 + p̄f(x+ 1, Y0). (68)

Since the optimal action in (x, Y0−1) is to idle, then from
Proposition 4, the optimal action in x ≥ 0, (x+1, Y0), is
to idle as well. The Bellman’s equation (8) in (x+1, Y0)
becomes

f(x+ 1, Y0)

= −g + Y0 + pf(0, Y0 + 1) + p̄f(x+ 2, Y0 + 1),

(a)
= −g + Y0 + p(1 + f(0, Y0)) + p̄f(x+ 2, Y0 + 1),

= J0 + p+ p̄f(x+ 2, Y0 + 1), (69)

where (a) follows from Proposition 6(i). Substituting (69)
into (68), we obtain

f(x, Y0 − 1) = J0(1+ p̄)− 1+ pp̄+ p̄2f(x+2, Y0 +1).
(70)

Repeating this procedure n times yields

f(x, Y0 − 1) = J0

n∑
i=0

p̄i + pp̄

n−1∑
i=1

(i+ 1)p̄i

+ p̄2
n−2∑
i=0

(i+ 1)p̄i

+ p̄n+1f(x+ n+ 1, Y0 + n)− 1, (71)

and in the limit n → ∞ we have

f(0, Y0 − 1) =
J0

1− p̄
+

pp̄

(1− p̄)2
+

p̄2

(1− p̄)2
− 1,

=
1

p
(J0 +

p̄

p
)− 1. (72)

Here, p̄n+1f(x + n + 1, Y0 + n) → 0 when n → ∞ as
f(x+n+1, Y0+n) is bounded. This bounding property

is derived from Theorem 2, where it is established that
f(x + n + 1, Y0 + n) ≤ M(x + n + 1, Y0 + n). Then it
follows from (14),

f(x+n+1, Y0 +n) ≤ 1 + p

p2
(c+ Y0 +n) +

3

2p3
. (73)

(iii) For every y < Y0,

f(0, y) = f(1, y) = · · · = f(y, y). (74)

Proof. From the threshold structure of the optimal policy,
the optimal action in (x, Y0 − 2) is to stay idle, and the
relative-cost Bellman’s equation (8) becomes

f(0, Y0 − 2)

= −g + Y0 − 2 + pf(0, Y0 − 1) + p̄f(1, Y0 − 1),

(a)
= −g + Y0 − 2 + pf(0, Y0 − 1) + p̄f(0, Y0 − 1),

= −g + Y0 − 2 + f(0, Y0 − 1), (75)

where (a) follows from Proposition 6(ii) as f(x, Y0 − 1)
is independent of x. This fact along with (75) implies that
f(x, Y0 − 2) is also independent of x, and so f(0, Y0 −
2) = f(1, Y0 − 2) . . . f(Y0 − 2, Y0 − 2). In fact this can
be generalized such that (x, Y0 − k) with x ≥ 0 and
k ∈ {1, 2, . . . , Y0 − 1} is independent of x.

(iv) When Y0 > 1,

f(0, Y0) = Y0 − g + c. (76)

Proof. At (0, Y0) the Reader samples and the Bellman’s
equation (8) becomes

f(0, Y0) = Y0 − g + c+ pf(0, 1) + p̄f(1, 1). (77)

When Y0 > 1, we have from Proposition 6(iii), f(0, 1) =
f(1, 1), and since f(0, 1) = 0, it follows that

f(0, Y0) = Y0 − g + c. (78)

PROOF OF LEMMA 1

Lemma 1. The average cost as a function of the threshold Y0

is given by:

g0(Y0) =
1

2

(
1

p
+ Y0 +

2cp+ p̄/p

pY0 + p̄

)
. (79)

Proof. We break down the proof into three parts. In the first
and second parts, we derive analytical expressions for the
optimal average cost when Y0 = 1 and Y0 = 2, respectively.
In the third part, we focus on obtaining a general expression
for the optimal average cost when Y0 > 2. Surprisingly, we
discover that the average cost equation as a function of Y0

obtained in the third part is a general equation for any Y0 ≥ 1.

(Part 1): If Y0 = 1, it is optimal to sample in (0, 1). Thus
Bellman’s equation (8) yields

f(0, 1) = −g + 1 + c+ pf(0, 1) + p̄f(1, 1). (80)

Defining (0, 1) as the reference state with f(0, 1) = 0 yields
0 = −g + 1 + c+ p̄f(1, 1), or equivalently,

f(1, 1) =
g − 1− c

p̄
. (81)

Now it is optimal to never sample in f(1, 1). Then

f(1, 1) = −g + 1 + pf(0, 2) + p̄f(2, 2),

(a)
= g + 1 + p(1 + f(0, 1)) + p̄f(2, 2),

= −g + 1 + p+ p̄f(2, 2), (82)

where (a) follows from Proposition 6(i). Since staying idle
is the optimal action in (1, 1), then Proposition 4 implies that
staying idle is also the optimal action in state (2, 2), and hence

f(2, 2) = −g + 2 + pf(0, 3) + p̄f(3, 3),

= −g + 2 + p(2 + f(0, 1)) + p̄f(3, 3),

= −g + 2 + 2p+ p̄f(3, 3). (83)

Substituting f(2, 2) obtained in (83) in (82), we obtain

f(1, 1) = −g(1 + p̄) + 1 + p+ 2p̄+ 2pp̄+ p̄2f(3, 3). (84)

Similar to above, we can obtain f(3, 3) as

f(3, 3) = −g + 3 + 3p+ p̄f(4, 4). (85)

Again substituting f(3, 3) obtained in (85) in (84), we obtain

f(1, 1) = −g(1 + p̄+ p̄2) + 1 + p+ 2p̄+ 2pp̄+

3p̄2 + 3pp̄2 + p̄3f(4, 4). (86)

Repeating this n times we obtain

f(1, 1) = −g(1 + p̄+ p̄2 . . .+ p̄n)

+ (1 + 2p̄+ 3p̄2 + . . .+ (n+ 1)p̄n)

+ p(1 + 2p̄+ 3p̄2 + . . .+ (n+ 1)p̄n)

+ p̄n+1f(n+ 2, n+ 2), (87)

and letting n → ∞, we obtain

f(1, 1) =
−g

1− p̄
+

1

(1− p̄)2
+

p

(1− p)2
,

=
−g

p
+

1

p2
+

1

p
,

=
−g + 1

p
+

1

p2
. (88)

Here, p̄n+1f(n + 2, n + 2) → 0 when n → ∞ as f(n +
2, n+ 2) is bounded. This bounding property is derived from
Theorem 2, where it is established that f(n + 2, n + 2) ≤
M(n+ 2, n+ 2). Subsequently, (14) implies that

f(n+ 2, n+ 2) ≤ 1 + p

p2
(c+ n+ 2) +

3

2p3
. (89)

Now equating f(1, 1) in (81) and (88), we obtain

g =
1

p
+ cp. (90)

(Part 2): If Y0 = 2, then it is optimal to sample in (0, 2). The
realtive-cost Bellman’s equation (8) is

f(0, 2) = −g + 2 + c+ pf(0, 1) + p̄f(1, 1),

(a)
= −g + 2 + c, (91)

where (a) follows from Proposition 6(iii) which for Y0 = 2
implies that f(1, 1) = f(0, 1) = 0. Now from (9), we have
for x = 1, and Y0 = 2,

f(0, 1) =
1

p

(
J0 +

p̄

p

)
− 1,

=
1

p

(
−g + 2 + pf(0, 2) +

p̄

p

)
− 1. (92)

With f(0, 2) given by (91), we have

f(0, 1) =
1

p

(
−g + 2 + p(−g + 2 + c) +

p̄

p

)
− 1. (93)

Equating f(0, 1) = 0 gives

g =
1

1 + p

(
2 + 2p+ cp+

p̄

p
− p

)
,

=
1

1 + p

(
1 + 1 + p+ cp+

p̄

p

)
,

=
1

1 + p

(
1 +

1

p
+ p(c+ 1)

)
,

=
1

p
+

(c+ 1)p

1 + p
. (94)

(Part 3): Now consider the case when Y0 > 2. Since it is
optimal to not sample in state (0, Y0 − 2), the Bellman’s
equation for state (0, Y0 − 2) becomes

f(0, Y0 − 2) = Y0 − 2− g + pf(0, Y0 − 1) + p̄f(1, Y0 − 1),

(a)
= Y0 − 2− g + f(0, Y0 − 1), (95)

where (a) follows from Proposition 6(iii). Moreover,

f(0, Y0 − 3) = Y0 − 3− g + pf(0, Y0 − 2) + p̄f(0, Y0 − 2),

= Y0 − 3− g + f(0, Y0 − 2),

= 2(Y0 − g)− (2 + 3) + f(0, Y0 − 1). (96)

Repeating this procedure k times yields,

f(0, Y0 − k)

= (k − 1)(Y0 − g)− (2 + 3 + 4 + · · ·+ k) + f(0, Y0 − 1),

= (k − 1)(Y0 − g)− k(k + 1)

2
+ 1 + f(0, Y0 − 1). (97)

Recalling (0, 1) as the reference state with f(0, 1) = 0,
evaluating (97) at k = Y0 − 1 yields

(Y0 − 2)(Y0 − g) =
(Y0 − 1)Y0

2
+ 1 + f(0, Y0 − 1), (98)

From Proposition 6,

f(0, Y0 − 1) = (1 + 1/p)(Y0 − g) + c+ p̄/p2 − 1. (99)

Thus it follows from (98) that

(Y0 − g)

(
1

p
+ Y0 − 1

)
=

(Y0 − 1)Y0

2
− p̄

p2
− c. (100)

Rearranging to solve for g yields

g = Y0 −
1

Y0 − 1 + 1/p

[
Y0(Y0 − 1)

2
− c− p̄

p2

]

=
Y0

2
+

Y0(Y0−1+1/p)
2 −

[
Y0(Y0−1)

2 − c− p̄
p2

]
Y0 − 1 + 1/p

=
Y0

2
+

Y0

2p + c+ p̄
p2

Y0 − 1 + 1/p
. (101)

Recalling −1 + 1/p = p̄/p, we obtain

g =
Y0

2
+

1

2p
+

1

2

2cp+ p̄/p

pY0 + p̄
. (102)

Since (102) depends upon Y0, we express it as

g0(Y0) =
1

2

(
1

p
+ Y0 +

2cp+ p̄/p

pY0 + p̄

)
. (103)

Finally observe that even though (103) was derived for Y0 > 2,
we see that g0(1) = 1/p + cp, where the RHS is same as
RHS of (90), the average cost obtained separately at Y0 = 1.
Similarly, g0(2) = 1/p+ (c+ 1)p/(1 + p), where the RHS is
same as RHS of (94), the average cost obtained separately at
Y0 = 2.

	Introduction
	Related Work
	Contributions and Paper Outline

	System Model
	Writing source updates to memory
	Sampling source updates from memory
	Markov Decision Process Formulation

	Characterization of cost optimality
	Discounted Cost
	Average Cost Optimality

	Numerical Evaluation
	Stationary average cost optimal policy
	Conclusion
	References
	Appendix

