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RANK TYPE CONDITIONS ON COMMUTATORS IN FINITE GROUPS

CRISTINA ACCIARRI, ROBERT M. GURALNICK, EVGENY KHUKHRO,
AND PAVEL SHUMYATSKY

Abstract. For a subgroup S of a group G, let IG(S) denote the set of commutators
[g, s] = g−1gs, where g ∈ G and s ∈ S, so that [G,S] is the subgroup generated by IG(S).
We prove that if G is a p-soluble finite group with a Sylow p-subgroup P such that any
subgroup generated by a subset of IG(P ) is r-generated, then [G,P ] has r-bounded rank.
We produce examples showing that such a result does not hold without the assumption of
p-solubility. Instead, we prove that if a finite group G has a Sylow p-subgroup P such that
(a) any subgroup generated by a subset of IG(P ) is r-generated, and (b) for any x ∈ IG(P ),
any subgroup generated by a subset of IG(x) is r-generated, then [G,P ] has r-bounded
rank. We also prove that if G is a finite group such that for every prime p dividing |G| for
any Sylow p-subgroup P , any subgroup generated by a subset of IG(P ) can be generated
by r elements, then the derived subgroup G′ has r-bounded rank. As an important tool in
the proofs, we prove the following result, which is also of independent interest: if a finite
group G admits a group of coprime automorphisms A such that any subgroup generated
by a subset of IG(A) is r-generated, then the rank of [G,A] is r-bounded.

1. Introduction

By the rank of a finite group G we mean the least positive integer r such that every
subgroup of G can be generated by r elements. (This parameter is also called the sectional
rank, or the Prüfer rank.) Bounds for the rank of finite groups or their subgroups impose
strong restrictions on their structure. Results of this kind also have applications in wider
classes of groups, such as profinite groups or locally finite groups. For example, conditions
on the ranks are central in the theory of powerful p-groups developed by A. Lubotzky and
A. Mann [25], as well as in several important applications of this theory for profinite and
residually finite groups. In representation theory of finite groups and its applications, the
ranks are related to the dimensions of linear spaces arising as elementary abelian sections
of the group. For example, Zassenhaus’ theorem on soluble linear group implies a bound
for the Fitting height of a finite soluble group of given rank. Therefore bounding the ranks
is an important avenue of research in group theory.

In this paper we study the ranks of subgroups generated by commutators of elements of
finite groups. For a subgroup S of a group G, let IG(S) denote the set of commutators
[g, s] = g−1gs, where g ∈ G and s ∈ S, so that [G, S] is the subgroup generated by IG(S).

One of our main results is the following ‘local–global’ theorem about ranks in p-soluble
finite groups. Henceforth we write “(a, b, c . . . )-bounded” to abbreviate “bounded above by
some function depending only on the parameters a, b, c . . . ”.
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Theorem 1.1. Let p be a prime, r a positive integer, G a p-soluble finite group, and P a

Sylow p-subgroup of G. Suppose that any subgroup generated by a subset of IG(P ) can be

generated by r elements. Then [G,P ] has r-bounded rank.

Examples show that Theorem 1.1 does not hold without the assumption of p-solubility.
We produce such examples for every prime p in § 5.

On the other hand, we prove the following result for arbitrary finite groups with a global
rank-type conclusion under a stronger local condition.

Theorem 1.2. Let p be a prime, r a positive integer, G a finite group, and P a Sylow

p-subgroup of G. Suppose that

(a) any subgroup generated by a subset of IG(P ) can be generated by r elements ; and
(b) for any x ∈ IG(P ), any subgroup generated by a subset of IG(x) can be generated by

r elements.

Then [G,P ] has r-bounded rank.

Another local–global result for arbitrary finite groups concerns the rank of the derived
subgroup.

Theorem 1.3. Let G be a finite group. Suppose that for every prime p dividing |G| for
any Sylow p-subgroup P , any subgroup generated by a subset of IG(P ) can be generated by

r elements. Then the derived subgroup G′ has r-bounded rank.

The proofs of Theorems 1.1, 1.2, 1.3 depend on the classification of finite simple groups.
As an important tool in the proofs, we prove the following result about automorphisms,

which is also of independent interest. When A is a group acting by automorphisms on a
group G, the subset IG(A) and the subgroup [G,A] have the same meaning as above, in the
natural semidirect product GA. We say that α is a coprime automorphism of a finite group
G if the order of α is coprime to the order of G, that is, (|G|, |α|) = 1.

Theorem 1.4. Suppose that G is a finite group admitting a group of coprime automorphisms

A such that, for a positive integer r, any subgroup generated by a subset of IG(A) can be

generated by r elements. Then [G,A] has r-bounded rank.

The proof of Theorem 1.4 depends on the classification of finite simple groups.
The set IG(A) is in a sense dual to the set of fixed points CG(A). For example, for

an automorphism α we have |IG(α)| = |G : CG(α)|. There is a great deal of important
results deriving nice properties of a finite group from various smallness conditions on the
centralizers of automorphisms. Many of these results stem from the seminal papers of
J. G. Thompson [32, 33] and G. Higman [20] on automorphisms with few fixed points. For
the ‘dual’ direction, in a few recent papers [1, 2, 3] conditions on the sets IG(A) were also
shown to strongly influence the structure of a finite group. Theorem 1.4 continues the line of
research initiated by C. Acciarri, R. Guralnick, and P. Shumyatsky [1] who proved a similar
result [1, Theorem 1.1] for the case of cyclic group of automorphisms A with a weaker bound
for the rank of [G,A] depending also on the order of A. Many ideas developed in [1] are
used in the proof of Theorem 1.4, and we improve some of the lemmas from [1] here for
not necessarily cyclic A making sure that the bounds depend only on r and not on |A|. In
the proof we also use [1, Theorem 1.2] saying that, for cyclic A = 〈α〉, if every commutator
[g, α] has odd order, then the subgroup [G,A] has odd order.

In the proofs we use the theory of powerful p-groups developed by A. Lubotzky and
A. Mann [25]. An important role is also played by results in representation theory. These
results include Hall–Higman–type theorems, both from the original Hall–Higman paper [16]
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with B. Hartley’s extensions [17], and one of the so-called ‘non-modular’ versions recently
obtained by E. I. Khukhro and W. Moens in [22] on the basis of the well-known technique
developed in the 1960s by E. C. Dade, E. Shult [30], F. Gross [10]. Another result in
representation theory used here is Theorem B in the paper of B. Hartley and I. M. Isaacs [18].

2. Preliminaries

All groups considered in this paper are finite. We use without explicit references the
Feit–Thompson theorem saying that groups of odd order are soluble [5]. The following
elementary lemma belongs to folklore.

Lemma 2.1. Let A be a group acting by automorphisms on a group G.

(a) If N is a normal subgroup of G such that N 6 CG(A), then [G,A] centralizes N .
(b) If H is a subgroup such that [H,H ] = H and [H,A] 6 CG(H), then [H,A] = 1.

Proof. (a) The hypothesis means that A is contained in the kernel K of the action of the
semidirect product GA by conjugation on N . Since K is a normal subgroup of GA, we also
have [G,A] 6 K.

(b) We have [[H,A], H ] 6 [CG(H), H ] = 1 and [[A,H ], H ] 6 [CG(H), H ] = 1; hence
[[H,H ], A] = [H,A] = 1 by the Three Subgroups Lemma. �

The following lemma collects some well-known facts about coprime automorphisms of
finite groups (see, for example, [7]); we shall sometimes use these facts without special
references. We denote by π(G) the set of primes dividing the order of a group G.

Lemma 2.2. Let A be a group of coprime automorphisms of a group G.

(a) The group G has an A-invariant Sylow p-subgroup for each prime p ∈ π(G).
(b) If N is an A-invariant normal subgroup of G, then CG/N(A) = CG(A)N/N ; in

particular, G = [G,A]CG(A).
(c) If N is a normal A-invariant subgroup of G such that CG(N) 6 N , then CA(N) = 1.

For a group A acting by automorphisms on a group G, recall the definition of the subset
IG(A) = {[g, α] | α ∈ A}, where the commutators [g, α] = g−1gα are considered in the
natural semidirect product GA. Clearly, [G,A] = 〈IG(A)〉. We shall use the following
elementary properties without special references.

Lemma 2.3. Let A be a group acting by automorphisms on a group G.

(a) If N is an A-invariant normal subgroup of G, then IG/N (A) = {gN | g ∈ IG(A)}.
(b) |IG(A)| > [G : CG(A)]; if A = 〈α〉 is cyclic, then |IG(α)| = [G : CG(α)].

We also recall another well-known fact.

Lemma 2.4. If N is a nilpotent group of class c generated by k elements, then the rank of

N is bounded in terms of k and c.

The following lemma appeared independently and simultaneously in the papers of Yu. M. Gor-
chakov [6], Yu. I. Merzlyakov [27], and as “P. Hall’s lemma” in the paper of J. Roseblade [29].

Lemma 2.5. Let p be a prime number. The rank of a p-group of automorphisms of an

abelian finite p-group of rank r is bounded in terms of r.

We shall be using the following well-known result of A. Lubotzky and A. Mann [25,
Propositions 2.6 and 4.2.6].

Lemma 2.6. Let p be a prime, and G a group of exponent pk and of rank m. Then there

is a number s(k,m) depending only on k and m such that |G| 6 ps(k,m).
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For a prime p, the largest normal p-subgroup of a group G is denoted by Op(G), and
the largest normal p′-subgroup by Op′(G). Then Op′,p(G) denotes the inverse image of
Op(G/Op′(G)), then Op′,p,p′(G) is the inverse image of Op′(G/Op′,p(G)), and so on; these
subgroups form the so-called upper p-soluble series of G. A group G is said to be p-soluble,
if this series terminates with Op′,p,p′...(G) = G; then the number of symbols p in the subscript
is called the p-length of G. We shall need the following lemma.

Lemma 2.7. Suppose that G is a p-soluble group, P is a Sylow p-subgroup of G, and N
is a normal subgroup of P of rank r. Then the normal closure of N in G has r-bounded
p-length.

Proof. In other words, we need to show that N is contained in Op′,p,p′,p,...(G), where the
number of symbols p in the subscript is r-bounded.

Consider the image N̄ of N in G/Op′,p(G) in its action by conjugation on the Frattini
quotient V of Op′,p(G)/Op′(G) regarded as an Fp(G/Op′,p(G))-module. By the Hall–Higman
Theorem B [16, Theorem B], if g ∈ N̄ has order pk, then its minimal polynomial on V has
degree at least pk − pk−1. This degree is known to be equal to the (maximum) dimension
of the span of an orbit of a vector v ∈ V under the action of 〈g〉; see, for example, [22,
Lemma 2.6(d)]. This span is generated by v, [v, g], [v, g, g], .... All these elements, except v,
are images of elements of N , and therefore the dimension of the span is at most r+1. Thus,
pk−pk−1 6 r+1. Hence pk is r-bounded, which means that the exponent of N̄ is r-bounded.

Since the rank of N̄ is at most r, it follows by Lemma 2.6 that the order |N̄ | is r-bounded.
In particular, the derived length of N̄ is r-bounded. Then the Hall–Higman theorem [16,
Theorem 3.2.1] for p > 3 and B. Hartley’s results [17, Theorem 2] for p = 2, 3 imply that
N̄ 6 Op′,p,p′,p,...(G/Op′,p(G)), where the number of symbols p in the subscript is r-bounded.
Hence the result. �

For brevity we say “simple group” meaning “non-abelian simple group”. We will often
use without special references the well-known corollary of the classification that if a simple
group G admits a coprime automorphism α of order e, then G = L(q) is a group of Lie type
and α is a field automorphism. Furthermore, CG(α) = L(q0) is a group of the same Lie type
defined over a smaller field such that q = qe0 (see [8]).

The following two lemmas were stated in [1] for cyclic A, but formally apply with any A,
since any group of coprime automorphisms of a simple group is cyclic, being a subgroup of
the group generated by the field automorphism induced by the Frobenius automorphism of
the field.

Lemma 2.8 ([1, Lemma 2.2]). Let r be a positive integer and G a simple group admitting

a group of coprime automorphisms A.

(a) If the order of [P,A] is at most r whenever P is an A-invariant Sylow subgroup of

G, then the order of G is r-bounded.
(b) If the rank of [P,A] is at most r whenever P is an A-invariant Sylow subgroup of G,

then the rank of G is r-bounded.

Lemma 2.9 ([1, Lemma 2.3]). Let G be a simple group admitting a group of coprime

automorphisms A. There is a prime p ∈ π(G) such that G is generated by two p-subgroups
P1 and P2 with the property that P1 = [P1, A] and P2 = [P2, A].

We call a direct product of simple groups a semisimple group. The next lemma is proved
similarly to [1, Lemma 2.4].
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Lemma 2.10. Let C be a positive integer and G a finite group admitting a group of coprime

automorphisms A such that G = [G,A]. Suppose that the order of [P,A] is at most C
whenever P is an A-invariant Sylow subgroup of G. Then the order of G is C-bounded.

Proof. If G is abelian, then for every prime p the unique Sylow p-subgroup satisfies P =
[P,A] and p 6 |P | 6 C. It follows that |G| 6 Cf , where f is the number of primes less than
or equal to C. So we assume that G is nonabelian.

First suppose that G has no proper A-invariant normal subgroups. Being non-abelian,
then G = G1×· · ·×Gl is a direct product of isomorphic simple groups transitively permuted
by A. If l = 1, then the result immediately follows from Lemma 2.8(a). If l > 1, then for
any prime q ∈ π(G) an A-invariant Sylow q-subgroup Q is a product Q1 × · · · × Ql of
Sylow subgroups of the Gi and A transitively permutes the factors Qi. We observe that
C > |[Q,A]| > |Q1|

l−1 and the result follows since any prime dividing |G| is at most C,
while |G| =

∏
q∈π(G) |Q1|

l, with |Q1|
l 6 |Q1|

2l−2 6 C2.

So suppose that G has proper A-invariant normal subgroups. Let π(G) = {p1, . . . , pk}
and for each i 6 k choose an A-invariant Sylow pi-subgroup Pi of G. We set s(G) =∏

16i6k |[Pi, A]|. Note that the number of factors greater than 1 is C-bounded, since for
such factors pi 6 |[Pi, A]| 6 C. Hence, s(G) is C-bounded and we can use induction on
s(G). Suppose first that A acts nontrivially on every A-invariant normal subgroup of G. Let
M be a minimal A-invariant normal subgroup. Since [M,A] 6= 1, we have s(G/M) < s(G).
By induction the order of G/M is C-bounded. The subgroup M is either an elementary
abelian p-group for some prime p 6 C or a semisimple group. In any case, [M,A] has C-
bounded order. Since [M,A] is normal in M and M has C-bounded index in G, the normal
closure 〈[M,A]G〉 has C-bounded order. By the minimality of M we have 〈[M,A]G〉 = M ,
and so the order of G is C-bounded. This completes the proof in the particular case where
A acts nontrivially on every A-invariant normal subgroup of G.

Next, suppose that G has nontrivial normal subgroups contained in CG(A). Let N be
the product of all such subgroups. In view of the above, G/N has C-bounded order. Since
N 6 Z(G), we deduce from Schur’s theorem [28, Theorem 4.12] that G′ has C-bounded
order. Hence the result. �

In the proof of the next lemma, which is similar to [1, Lemma 2.5], we shall use the
following theorem of B. Hartley and I. M. Isaacs [18].

Theorem 2.11 ([18, Theorem B]). Let A be an arbitrary finite group. Then there exists

a number ε = ε(A) > 0, depending only on A, with the following property. Let A act by

coprime automorphisms on a soluble finite group H , and let k be any field with characteristic

not dividing |A|. Let V be any simple kHA-module and let S be any simple kA-module which

appears as a component of the restriction V |A. Then the multiplicity of S in V |A is at least

ε dimV .

Lemma 2.12. Let G = HA be a group with a normal subgroup H and a subgroup A such

that (|H|, |A|) = 1 and H = [H,A]. Suppose that G faithfully acts by permutations on a

set Ω in such a way that the subgroup A moves only m points. Then the order of G is

m-bounded.

Proof. First, note that the order of A is obviously m-bounded. Another useful observation
is that because of Lemma 2.10 we can assume without loss of generality that H is a p-group
for some prime p.

Let Ω0 be a nontrivial G-orbit. If A moves no points in Ω0, then H = [H,A] also acts
trivially on Ω0, a contradiction. Therefore, A moves at least 2 points on every nontrivial
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G-orbit and so there are at most m/2 nontrivial orbits of G in Ω. Since G embeds into the
direct product G1 × · · · ×Gk, where Gi is the image of G in its action on the ith nontrivial
G-orbit, and k 6 m/2, it is sufficient to obtain a bound in terms of m for each |Gi|. Each
Gi satisfies the hypotheses of the lemma with Gi = HiAi in place of G = HA, where Hi

and Ai are the images of H and A. Thus, we can assume without loss of generality that G
acts transitively on Ω and hence it is sufficient to bound the cardinality of Ω in terms of m.

Consider the corresponding permutational representation of G over C, where G naturally
acts on the |Ω|-dimensional linear space V . The dimension of [V,A] is at most m− 1. The
space V is a direct sum of irreducible CG-modules and there are at most m irreducible
CA-submodules. Each of the irreducible G-modules has (m, |A|)-bounded dimension by
the Hartley–Isaacs Theorem 2.11, which is applicable since H is a p-group. Since |A| is
m-bounded, it follows that the dimension of V is m-bounded, as required. �

3. Proof of Theorem 1.4

Suppose that G is a finite group admitting a group of coprime automorphisms A such
that any subgroup generated by a subset of IG(A) can be generated by r elements. Our aim
is to prove that [G,A] has r-bounded rank. The overall strategy involves the following steps.
First we prove the result for the case of nilpotent group G. Then we consider semisimple
normal subgroups in the general case. Next, we obtain a bound in terms of r for the
exponent of the automorphisms induced by A on the quotient by the generalized Fitting
subgroup G/F ∗(G). Combined with the previous result in [1], this bound gives the proof of
Theorem 1.4 for the case of cyclic group A, as well as a bound in terms of r for the Fitting
height of soluble A-invariant sections S satisfying S = [S,A]. Then a crucial proposition is
proved stating that the group [G,A] can be assumed to be generated by r-boundedly many
orbits of elements of IG(A) under the action of A. This proposition enables us to combine
the aforementioned bound in terms of r for the exponent of the automorphisms induced by
A on G/F ∗(G) with the case of cyclic A to obtain a reduction to the case of A being a
p-group of r-bounded derived length and to finish the proof by induction on this derived
length.

3.1. The case of nilpotent groups. First we settle the case where G is nilpotent, by
largely following the lines of arguments in [1]. Recall the usual notation Zi(H) and γi(H)
for the i-th term of the upper and lower central series of a group H , respectively.

Lemma 3.1. Let G be a group admitting a group of coprime automorphisms A such that

G = [G,A]. Let p be a prime and suppose that M is an A-invariant normal p-subgroup of

G such that |IM(A)| = pm for some non-negative integer m. Then M 6 Z2m+1(Op(G)).

Proof. We use induction on m. If m = 0, then M 6 CG(A) and therefore M 6 Z(G) by
Lemma 2.1(a). Now let m > 1. Set K = Op(G) to lighten the notation. If M 6 Z(K),
there is nothing to prove. If M 66 Z(K), then the image of M in K/Z(K) has a non-trivial
intersection with the centre of this quotient. In other words, M ∩ Z2(K) 66 Z(K). Then
Lemma 2.1(a) implies that IM∩Z2(K)(A) 6= 1 and therefore, |IM/M∩Z2(K)(A)| < |IM(A)| =
pm. By induction, M/M ∩ Z2(K) 6 Z2m−1(K)/M ∩ Z2(K), whence M 6 Z2m+1(K), as
required. �

Throughout the rest of this subsection, unless stated otherwise, G is a p-group admitting
a group of coprime automorphisms A such that G = [G,A] and any subgroup generated by
a subset of IG(A) can be generated by r elements.
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Lemma 3.2. Suppose that G is of prime exponent p or of exponent 4. There exists a number

l(r) depending on r only such that the rank of G is at most l(r).

Proof. Let C be Thompson’s critical subgroup of G (see [7, Theorem 5.3.11]). Observe
that [Z(C), A] is an r-generated abelian subgroup of exponent p (or 4) and so the order
of [Z(C), A] is at most pr (or 22r). By Lemma 3.1 Z(C) is contained in Z2r+1(G) (or in
Z4r+1(G)). Since [G,C] is contained in Z(C), we conclude that C is contained in Z2r+2(G)
(or in Z4r+2(G)). Recall that γ2r+2(G) commutes with Z2r+2(G) and so in particular γ2r+2(G)
(respectively, γ4r+2(G)) centralizes C. By Thompson’s theorem, CG(C) = Z(C). Thus
γ2r+2(G) (respectively, γ4r+2(G)) is contained in Z(C), that is, the quotient G/Z(C) is
nilpotent of class 2r + 1 (respectively, of class 4r + 1). Since Z(C) 6 Z2r+1(G) (or Z(C) 6
Z4r+1(G)), it follows that G has r-bounded nilpotency class. Since G = [G,A] is r-generated
by hypothesis, by Lemma 2.4 the rank of G is r-bounded, as desired. �

We will require the concept of powerful p-groups introduced by A. Lubotzky and A. Mann
in [25]. A finite p-group H is powerful if and only if [H,H ] 6 Hp for p 6= 2 (or [H,H ] 6 H4

for p = 2). Apart from the original paper [25], information about the properties of powerful
p-groups can also be found in the books [4] or [21].

Lemma 3.3. There exists a number λ = λ(r) depending only on r such that γ2λ+1(G) is

powerful.

Proof. Let s′(m) = s(1, m) if p 6= 2, and s′(m) = s(2, m) if p = 2 for the function s(k,m) as
in Lemma 2.6, and let l(r) be as in Lemma 3.2. Take N = γ2λ+1(G), where λ = s′(l(r)). In
order to show that N ′ 6 Np (or N ′ 6 N4 when p = 2), we assume that N is of exponent p
(or 4) and prove that N is abelian.

Since the subgroup [N,A] is of exponent p (or 4), the rank of [N,A] is at most l(r) by
Lemma 3.2. Then |[N,A]| 6 ps

′(l(r)) = pλ by Lemma 2.6. We now obtain N 6 Z2λ+1(G)
by Lemma 3.1. Since [γi(G), Zi(G)] = 1 for any positive integer i, we conclude that N is
abelian, as required. �

Lemma 3.4. For any i > 1, there exists a number mi = m(i, r) depending only on i and r
such that γi(G) is an mi-generated group.

Proof. Let N = γi(G). We can pass to the quotient G/Φ(N) and assume that N is elemen-
tary abelian. It follows that |IN(A)| 6 pr. Then N 6 Z2r+1(G) by Lemma 3.1, and therefore
G has nilpotency class bounded only in terms of i and r. Since G = [G,A] is r-generated,
the rank of G is also (i, r)-bounded by Lemma 2.4. In particular, N is mi-generated for
some (i, r)-bounded number mi. �

The next proposition shows that Theorem 1.4 is valid in the case where G is a p-group.

Proposition 3.5. Suppose that G is a p-group admitting a group of coprime automorphisms

A such that any subgroup generated by a subset of IG(A) can be generated by r elements.
Then [G,A] has r-bounded rank.

Proof. We can obviously assume that G = [G,A]. Let s′(m) = s(1, m) if p 6= 2, and
s′(m) = s(2, m) if p = 2 for the function s(k,m) as in Lemma 2.6, and let l(r) be as in
Lemma 3.2. Take N = γ2λ+1(G), where λ = λ(r) = s′(l(r)). Let d be the minimum number
of generators of N . The number d is r-bounded by Lemma 3.4, and N is a powerful p-group
by Lemma 3.3. By the properties of powerful p-groups (see, for example, [4, Theorem 2.9])
the rank of N is equal to d and therefore is r-bounded. Since the nilpotency class of G/N
is r-bounded (recall that λ depends only on r) and G = [G,A] is r-generated, the rank of
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G/N is also r-bounded by Lemma 2.4. Since the rank of G is at most the sum of the ranks
of G/N and N , the result follows. �

Corollary 3.6. Suppose that G is a nilpotent group admitting a group of coprime auto-

morphisms A such that any subgroup generated by a subset of IG(A) can be generated by r
elements. Then [G,A] has r-bounded rank.

Proof. The rank of [G,A] is equal to the rank of [P,A], where P is some Sylow p-subgroup
of G, and the result follows from Proposition 3.5. �

3.2. The case of semisimple groups. Let G be a finite group admitting a group of
coprime automorphisms A such that any subset of IG(A) generates an r-generator subgroup.
We want to prove that [G,A] has r-bounded rank. Throughout this subsection we assume
that G = [G,A]. Note that from Proposition 3.5 we already know that [P,A] has r-bounded
rank for any A-invariant Sylow subgroup P of G.

Lemma 3.7. If G is simple, then the rank of G is r-bounded.

Proof. This immediately follows from Lemma 2.8(b) and Proposition 3.5. �

Recall that a semisimple group is a direct product of non-abelian simple groups.

Lemma 3.8. Suppose that G is semisimple and A transitively permutes the simple factors.
Then the rank of G is r-bounded.

Proof. Write G = S1 × · · · × Sk, where the Si are simple groups. Since the case k = 1 was
considered in Lemma 3.7, we assume that k > 2.

First we note that k is at most r+1. Indeed, say, for an involution t ∈ S1 there are elements
αi ∈ A such that tαi ∈ Si for all i. Then the rank of the subgroup 〈[t, αi] | 1 6 i 6 k〉 is at
least k − 1, so that k − 1 6 r by hypothesis.

As a result, it is sufficient to show that the rank of S1 is at most r. Suppose that this is
not the case, so that there is a subgroup H 6 S1 which cannot be generated by r elements.
Let α ∈ A be such that Sα

1 = Sj 6= S1. Consider the subgroup K 6 S1 × Sα
1 generated by

all elements of the form x−1xα, where x ∈ H . Since K is generated by a subset of IG(A), it
can be generated by r elements. Hence H , which is the projection of K onto S1, can also
be generated by r elements, a contradiction. �

Lemma 3.9. Suppose that G is semisimple. Then the rank of G is r-bounded.

Proof. Since G = [G,A], it follows that G = G1 × · · · ×Gm, where each factor Gi is either
simple such that Gi = [Gi, A] or a direct product, with at least two factors, of simple groups
transitively permuted by A. By the two previous Lemmas 3.7 and 3.8 the rank of each Gi is
r-bounded. Hence it remains to show that the number m of such factors is also r-bounded.
For every i there is αi ∈ A such that [Gi, αi] 6= 1. By [1, Theorem 1.2] each subgroup Gi has
an element gi such that [gi, αi] has even order. The abelian subgroup 〈[g1, α1], . . . , [gm, αm]〉
has a Sylow 2-subgroup of rank m and therefore it cannot be generated by less than m
elements. This subgroup is generated by a subset of IG(A), and therefore m 6 r. �

Lemma 3.10. Let N be an A-invariant normal subgroup of G which is a direct product

N = S1 × · · · × Sl of simple factors Si. Then both l and the rank of N are r-bounded.

Proof. By Lemma 3.9 the rank of [N,A] is r-bounded. Since all factors Si have even order
and the rank of the Sylow 2-subgroup of [N,A] is r-bounded, it follows that only r-boundedly
many, say m, of the subgroups S1, . . . , Sl are not contained in CG(A). On the other hand,
because of Lemma 2.1(a) CN(A) cannot contain a nontrivial normal subgroup of G. Hence
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every simple factor among S1, . . . , Sl is conjugate in G with a factor which is not centralized
by A and so each Si has r-bounded rank by Lemma 3.9. Thus, we only need to show that
l is r-bounded.

The group GA naturally acts on the set Ω = {S1, . . . , Sl} by conjugation. The above
argument shows that the number of GA-orbits in this action is at most m. It is sufficient
to show that each GA-orbit has r-bounded length. Let K be the kernel of the action, that
is, K =

⋂
iNGA(Si). By Lemma 2.12 the order |GA/K| is m-bounded. Since the length of

each GA-orbit is at most |GA/K|, the result follows, since m is r-bounded. �

3.3. The exponent of the automorphisms induced by A on G/F ∗(G). Let G be a
finite group admitting a group of coprime automorphisms A such that any subset of IG(A)
generates an r-generator subgroup. Recall that these hypotheses are inherited by IS(B) for
any B-invariant section S of G for any subgroup B 6 A. The aim is to prove that [G,A]
has r-bounded rank. In this subsection we focus on the action of A on the quotient by the
generalized Fitting subgroup F ∗(G). Recall that F ∗(G) = F (G)E(G), where F (G) is the
Fitting subgroup, while E(G) = Q1 ∗ · · · ∗ Qk, known as the layer, is the central product
of all subnormal quasisimple subgroups Qi, that is, perfect groups with non-abelian simple
central quotients. Our aim in this subsection is a bound in terms of r for the exponent of
the automorphisms induced by A on G/F ∗(G). As a consequence, we shall finish the proof
of Theorem 1.4 for the case of cyclic A, which will be also used later.

Lemma 3.11. The rank of [F ∗(G), A] is r-bounded.

Proof. The rank of [F (G), A] is r-bounded by Corollary 3.6. The rank of [E(G), A]/Z([E(G), A])
is r-bounded by Lemma 3.9. The rank of Z([E(G), A]) is also r-bounded. Indeed, this
is a product of the centres of the quasisimple factors involved in [E(G), A], because if
[Qi, A] 6 Z(E(G)) for a quasisimple factor Qi, then [Qi, A] = 1 by Lemma 2.1(b). The
number of quasisimple factors involved in [E(G), A] is r-bounded by Lemma 3.10, and each
has centre of rank at most 2, as known from the classification. Hence the result. �

Let α ∈ A be any element of A.

Lemma 3.12. The automorphism of [E(G), α] induced by α has r-bounded order.

Proof. The automorphism α permutes the quasisimple factors Qi in E(G) = Q1 ∗ · · · ∗ Qk.
As in the proof of Lemma 3.8, the orbits have length at most r + 1. If the stabilizer of a
point Qi in 〈α〉 does not centralize Qi, then it induces a non-trivial coprime automorphism β
of the simple group Qi/Z(Qi). Then this Qi/Z(Qi) must be a group of Lie type, say, L(qf)
over a field Fqf for a prime q, and β must be a field automorphism of order dividing f .
The rank of this L(qf ) is r-bounded by Lemma 3.11. In particular, f must be r-bounded,
since L(qf ) contains an elementary abelian q-subgroup of order qf . We have proved that
the automorphism induced by α on E(G)/Z(E(G)) has r-bounded order. This is also the
order of the automorphism induced by α on E(G), since if [E(G), αs] 6 Z(E(G)), then
[E(G), αs] = 1 by Lemma 2.1(b). Hence the result. �

Proposition 3.13. Let G be a finite group admitting a group of coprime automorphisms

A such that any subset of IG(A) generates an r-generator subgroup. There is an r-bounded
positive integer n = n(r) such that An acts trivially on G/F ∗(G).

Proof. In other words, we need to show that for any α ∈ A the order of the automorphism
ᾱ induced by α on G/F ∗(G) is r-bounded. It is sufficient to bound in terms of r the order
of every Sylow p-subgroup of 〈ᾱ〉, since then there will be only few such primes p, and |ᾱ|

9



will be bounded in terms of r. Therefore, replacing 〈α〉 with its Sylow p-subgroup, we can
simply assume that |ᾱ| = pm for a prime p; then we can also assume that α is a p-element.

The generalized Fitting subgroup of the quotient G/Φ(F (G)) by the Frattini subgroup of
F (G) is the image of F ∗(G). Therefore we can assume that Φ(F (G)) = 1, so that F (G) is
a direct product of elementary abelian groups.

The automorphism of E(G) induced by α has r-bounded order by Lemma 3.12, so if αpm−1

does not centralize E(G), then |ᾱ| = pm is r-bounded. For the same reason, if α induces
an automorphism of E(G/F ∗(G)) of order at least pm, then |ᾱ| = pm is r-bounded by
Lemma 3.12 applied to G/F ∗(G) and its group of automorphisms induced by A. Therefore
we can assume that αpm−1

centralizes both E(G) and E(G/F ∗(G)).
Since F ∗(G/F ∗(G)) contains its centralizer in G/F ∗(G) and ᾱ is a coprime automorphism,

ᾱ acts faithfully on F ∗(G/F ∗(G)) by Lemma 2.2(c). Since [E(G/F ∗(G)), αpm−1

] = 1 by our
assumption, ᾱ acts faithfully on F (G/F ∗(G)). Hence there is a prime s such that 〈ᾱ〉 acts

faithfully on the Sylow s-subgroup S of F (G/F ∗(G)), so that [S, αpm−1

] 6= 1.

Let Ŝ be an s-subgroup that is a preimage of S in G. Note that CŜ(F (G)s′E(G)) 6 F (G),
where F (G)s′ is the Hall s

′-subgroup of F (G), because CŜ(F (G)s′E(G))F (G) is a nilpotent

normal subgroup. It follows that [Ŝ, αpm−1

] acts nontrivially on F (G)s′E(G).

Since [E(G), αpm−1

] = 1 by our assumption, [Ŝ, αpm−1

] centralizes E(G) by Lemma 2.1(a).

Therefore there is a prime t 6= s and the Sylow t-subgroup T of F (G) on which [Ŝ, αpm−1

]

acts non-trivially; this is the same action as that of [S, αpm−1

]. Let S̃ = Ŝ/CŜ(T ). Then the

semidirect product S̃〈α〉 naturally acts on the vector space T in such a way that [S̃, αpm−1

]

acts non-trivially, and S̃ acts faithfully.
This is a kind of “non-modular Hall–Higman type” configuration for the group S̃〈α〉

acting on the vector space T . This is not quite the usual setting as in the classical papers
with non-modular Hall–Higman–type theorems, because 〈α〉 may not be faithful on S̃, that
is, α may have order greater than pm = |ᾱ|. But this new situation was analysed in the
recent paper of E. I. Khukhro and W. Moens [22], with a proof similar to the classical case.

Lemma 3.14 ([22, Lemma 3.3(a)]). Suppose that r is a prime, R is an r-group, and 〈ψ〉
is a cyclic group of order pk for a prime p 6= r acting (not necessarily faithfully) by auto-

morphisms on R such that the induced automorphism of R has order pm. Suppose that the

semidirect product R〈ψ〉 acts by linear transformations on a vector space V over a field K
whose characteristic does not divide p ·r, and suppose that V is a faithful KR-module. Then
the minimal polynomial of ψ on V has degree at least pm − pm−1.

Applying this lemma with V = T , R = S̃, and ψ = α we obtain that the minimum
polynomial of α on T has degree at least pm−pm−1. This degree is known to be the maximum
dimension of the span of an orbit under 〈α〉 on T ; see, for example, [22, Lemma 2.6(d)].
Hence the dimension of [T, α], which is the same as the rank of this abelian subgroup, is
at least pm − pm−1 − 1. By hypothesis, pm − pm−1 − 1 6 r. Hence pm is bounded in terms
of r. �

We combine Proposition 3.13 with one of the main results of [1] to prove Theorem 1.4 for
the case of cyclic A. The following corollary may seem to have a formally weaker condition
relating to subgroups generated by subsets of IG(α), rather than subsets of IG(〈α〉). But
these conditions are in fact equivalent, since a subgroup generated by elements of a subset
of IG(〈α〉) is also generated by a subset of IG(α). Indeed, this follows from iteration of the
standard commutator formula [g, αk] = [g, α] · [g, αk−1]α = [g, α] · [gα, αk−1].
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Corollary 3.15. Let G be a finite group admitting a coprime automorphism α such that any

subset of IG(α) generates an r-generator subgroup. Then the rank of [G,α] is r-bounded.

Proof. By Proposition 3.13 there is an r-bounded positive integer n = n(r) such that
[G,αn] 6 F ∗(G). Since α is a coprime automorphism, we have G = CG(α

n)F ∗(G), so
that [F ∗(G), αn] = [G,αn]. Hence [F ∗(G), αn] is a normal α-invariant subgroup. The order
of the automorphism of G/[F ∗(G), αn] induced by α divides n and so is r-bounded. By [1,
Theorem 1.1] the rank of [G,α]/[F ∗(G), αn] is bounded in terms of n an r and therefore is
r-bounded. The rank of [F ∗(G), αn] is r-bounded by Lemma 3.11. As a result, the rank of
[G,α] is also r-bounded. �

We now derive a useful corollary for the case of a soluble group G in the general situation
of Theorem 1.4.

Corollary 3.16. Suppose that G is a finite soluble group admitting a group of coprime

automorphisms A such that any subgroup generated by a subset of IG(A) can be generated

by r elements. Then [G,A] has r-bounded Fitting height.

Proof. Clearly, [G,A] =
∏

α∈A[G,α]. Every subgroup [G,α] has r-bounded rank by Corol-
lary 3.15. The Fitting height of a finite soluble group is known to be bounded in terms of
its rank; see for example, [23, Lemma 2.4]. Therefore each of the normal subgroups [G,α]
has r-bounded Fitting height. Hence so does their product. �

3.4. Generation by elements of IG(A). Let G be a finite group admitting a group of
coprime automorphisms A such that any subset of IG(A) generates an r-generator subgroup.
We wish to prove that [G,A] has r-bounded rank. The aim of this subsection is a reduction
to a situation, where [G,A] can be generated by r-boundedly many orbits of elements of
IG(A) under the action of A. First we show that we can pass to a subgroup of r-bounded
index.

Lemma 3.17. Suppose G has an A-invariant subgroup H such that the index |G : H| and
the rank of [H,A] are both r-bounded. Then the rank of [G,A] is r-bounded.

Proof. Replacing H with H ∩ [G,A] we can assume that G = [G,A]. The normal core⋂
g∈GH

g of H is A-invariant and has index at most |G : H|!. Therefore we can assume from

the outset thatH is a normal subgroup. Since the index |G : H| is r-bounded, the number of
conjugates of the subgroup [H,A] is r-bounded. All these conjugates are normal subgroups
of H and have r-bounded rank and therefore their product, which is the normal closure
[H,A]G, has r-bounded rank. Hence it suffices to prove that the rank of G/[H,A]G is r-
bounded. The image of H in G/[H,A]G is centralized by A and therefore is contained in the
centre of G/[H,A]G by Lemma 2.1(a), since G = [G,A] by assumption. Hence G/[H,A]G

has centre of r-bounded index. By Schur’s theorem [28, Theorem 4.12] the derived subgroup
of G/[H,A]G has r-bounded order. The rank of the abelian quotient of G = [G,A] is r-
bounded by the hypothesis that IG(A) generates an r-generator subgroup. �

Lemma 3.18. The subgroup [G,A] has an A-invariant soluble-by-semisimple-by-soluble sub-

group H of r-bounded index.

Proof. In the proof we can obviously assume that G = [G,A] and the soluble radical of G
is trivial. By Lemma 3.10 then F ∗(G) is a product of r-boundedly many simple factors.
Then for the required subgroup H we can take the kernel of the natural action of G on the
simple factors, which is semisimple-by-soluble and A-invariant and has r-bounded index.
Indeed, since the centralizer of F ∗(G) is trivial, the group G embeds into the automorphism
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group of F ∗(G). If F ∗(G) = T1×· · ·×Tn, where the Ti are non-abelian simple groups, then
AutF ∗(G) = (Aut T1 × · · · ×Aut Tn)U , where U is a subgroup of the symmetric group Sn.
Since n is r-bounded and the outer automorphism groups AutTi/Ti are known to be soluble
by the classification, the result follows. �

In what follows we denote by xA the orbit of an element x of any A-invariant section
under the action of A; we call such orbits A-orbits for brevity.

Lemma 3.19. Suppose that G = [G,A]. Suppose that N is an A-invariant normal subgroup

such that the quotient G/N is generated by the A-orbits of s elements in IG/N (A) and [N,A]
is generated by the A-orbits of t elements in IN(A). Then G can be generated by the A-orbits
of s+ t elements of IG(A).

Proof. Let [N,A] be generated by the A-orbits of elements b1, . . . , bt ∈ IN (A), and let
G/N be generated by the A-orbits of elements ā1, . . . , ās ∈ IG/N (A). In accordance with
Lemma 2.3(a) choose some pre-images a1, . . . , as ∈ IG(A) of ā1, . . . , ās. We claim that
G = 〈aA1 , . . . , a

A
s , b

A
1 , . . . , b

A
t 〉. We set H = 〈aA1 , . . . , a

A
s 〉, so that G = NH . Since [N,A] is

normal in N , the normal closure [N,A]G = [N,A]H is contained in 〈aA1 , . . . , a
A
s , b

A
1 , . . . , b

A
t 〉.

Since the image ofN in the quotient G/[N,A]H is centralized by A, it is central in G/[N,A]H

by Lemma 2.1(a), and therefore the image of H becomes normal. Thus, [N,A]HH is normal
in G. Obviously, A acts trivially on G/[N,A]HH = NH/[N,A]HH . Since G = [G,A], we
conclude that G = [N,A]HH , and the result follows. �

Lemma 3.20. Suppose that G = [G,A] and G is soluble. Then G is generated by r-
boundedly many A-orbits of elements of IG(A).

Proof. The Fitting height h(G) is r-bounded by Corollary 3.16; therefore we can proceed
by induction on h(G). First let h(G) = 1, when G is nilpotent. The abelian quotient
G/G′ is generated by r elements of IG/G′(A) by hypothesis, and these elements are images
of elements of IG(A) by Lemma 2.3(a). The same elements of IG(A) then generate G,
since the Frattini subgroup of a nilpotent group G contains G′. When h(G) > 1, the
quotient G/F (G) is generated by r-boundedly many A-orbits of elements of IG/F (G)(A) by
the induction hypothesis, and [F (G), A] is generated by r elements of IG(A) as shown above.
The result follows by Lemma 3.19. �

Lemma 3.21. Suppose that G = [G,A] and G is semisimple. Then G can be generated by

r-boundedly many A-orbits of elements of IG(A).

Proof. Let G = S1×· · ·×Sl where the factors Si are simple. The group of automorphisms A
permutes the simple factors and the proof of Lemma 3.9 shows that there are at most r orbits
under this action. Therefore we can assume without loss of generality that A transitively
permutes the factors Si. If G is simple, then Lemma 2.9 tells us that G is generated by
two nilpotent subgroups P1 and P2 such that [P1, A] = P1 and [P2, A] = P2. Each of the
subgroups Pi is generated by at most r elements from IG(A) by Lemma 3.20, whence G is
generated by at most 2r such elements. Therefore we can assume that l > 2.

We use the fact each nonabelian simple group can be generated by two elements. Let
a, b generate S1. Choose α ∈ A such that Sα

1 = S2. Consider the elements x1 = a−1aα,
x2 = b−1bα, and x3 = ab((ab)−1)α, which belong to IG(A). Let K = 〈xA1 , x

A
2 , x

A
3 〉, which is

an A-invariant subgroup. We observe that 1 6= x1x2x3 = [a, b] ∈ S1 ∩ K. The projection
of K onto S1 is the whole group S1, since the projections of x1 and x2 onto S1 are a−1 and
b−1, which generate S1. Hence the conjugacy class [a, b]K is equal to [a, b]S1 and therefore
generates S1. Thus, S1 is contained in K. Since K is A-invariant, we must have K = G
and the result follows. �
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Proposition 3.22. Suppose that G = [G,A] and the group G is soluble-by-semisimple-by-

soluble. Then the group G can be generated by r-boundedly many A-orbits of elements of

IG(A).

Proof. By hypothesis there are normal subgroups S 6 T such that S and G/T are soluble,
and T/S is semisimple. By choosing S to be the soluble radical, and then T the general-
ized Fitting subgroup of G/S, we can assume that S and T are A-invariant. The soluble
quotient G/T can be generated by r-boundedly many A-orbits of elements of IG/T (A) by
Lemma 3.20. Then in the quotient G/S the semisimple subgroup [T/S,A] can be generated
by r-boundedly many A-orbits of elements of IT/S(A) by Lemma 3.21. Hence the quotient
G/S can be generated by r-boundedly many A-orbits of elements of IG/S(A) by Lemma 3.19.
In turn, the soluble subgroup [S,A] can be generated by r-boundedly many A-orbits of ele-
ments of IS(A) by Lemma 3.20. Hence the group G can be generated by r-boundedly many
A-orbits of elements of IG(A) by Lemma 3.19. �

3.5. Completion of the proof of Theorem 1.4.

Proof of Theorem 1.4. Recall that G is a finite group admitting a group of coprime auto-
morphisms A such that any subset of IG(A) generates an r-generator subgroup. We need
to prove that [G,A] has r-bounded rank.

By Proposition 3.13 there is an r-bounded positive integer n = n(r) such that An acts
trivially on G/F ∗(G). Since G = CG(A

n)F ∗(G), we have [G,An] = [CG(A
n)F ∗(G), An] =

[F ∗(G), An] and therefore [F ∗(G), An] is a normal A-invariant subgroup of G. By Corol-
lary 3.6 and Lemma 3.9 the subgroup [F ∗(G), An] has r-bounded rank. Therefore it is
sufficient to prove that the rank of G/[F ∗(G), An] is r-bounded. Since An acts trivially
on this quotient, it is sufficient to prove the theorem assuming that the exponent of A is
r-bounded.

We choose one Sylow subgroup Ap of A for each prime p ∈ π(A); the number of them is
r-bounded as the exponent of A is r-bounded. We have [G,A] =

∏
[G,Ap], since Ap acts

trivially on G/[G,Ap], whence A = 〈Ap | p ∈ π(A)〉 acts trivially on the quotient by the
product. Since the number of factors in this product of normal subgroups is r-bounded, it is
sufficient to prove that the rank of each [G,Ap] is r-bounded. Thus, it is sufficient to prove
the theorem assuming that A is a p-group of r-bounded exponent.

Lemma 3.23. The p-group A has r-bounded derived length.

Proof. Let Q be an A-invariant Sylow q-subgroup of G. By Proposition 3.5 the rank of
[Q,A] is r-bounded. Then A/CA(Q) acts faithfully on [Q,A], and also faithfully as a linear
group on the Frattini quotient [Q,A]/Φ([Q,A]) regarded as a vector space over GF (q) of
r-bounded dimension. Hence the derived length of A/CA(Q) is r-bounded by Zassenhaus’s
theorem (see [28, Theorem 3.23]) stating that the derived length of any soluble subgroup
of GLn(k) over any field k is bounded in terms of n only. Clearly,

⋂
q CA(Q) = 1, where Q

runs over A-invariant Sylow q-subgroups of G over all primes q ∈ π(G). Since the quotient
A = A/

⋂
q CA(Q) embeds into the direct product of the quotients A/CA(Q), the result

follows. �

By Lemma 3.18 the subgroup [G,A] has an A-invariant soluble-by-semisimple-by-soluble
subgroup H of r-bounded index. By Lemma 3.17 it is sufficient to prove that the rank
of [H,A] is r-bounded. Hence we can assume from the outset that [G,A] is soluble-by-
semisimple-by-soluble.
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By Proposition 3.22 the subgroup [G,A] is generated by r-boundedly many A-orbits of
elements of IG(A), say, [G,A] = 〈[g1, α1]

A, . . . , [gk, αk]
A〉, where gi ∈ G, αi ∈ A, and k is

r-bounded.
Since the derived length of A is r-bounded by Lemma 3.23, we can use induction on

the derived length of A (when A is a p-group). If A is abelian, then obviously [gi, αi]
A =

{[gαi , αi] | α ∈ A} ⊆ [G,αi] for every i. Then [G,A] =
∏k

i=1[G,αi], where each factor has
r-bounded rank by Corollary 3.15, in which the case of cyclic A was already covered. Since
the number of factors is r-bounded, it follows that the rank of [G,A] is also r-bounded.
Thus, the result is proved for A abelian.

When A is not abelian, let B 6 A be an abelian normal subgroup of A with A/B of
smaller derived length. By the above, [G,B] has r-bounded rank. The action of A on the
quotient G/[G,B] factors through to the action of A/B, which has smaller derived length.
By the induction hypothesis, the rank of [G,A]/[G,B] is r-bounded. Hence the rank of
[G,A] is r-bounded, as required. �

4. Ranks in p-soluble groups

Proof of Theorem 1.1. Recall that p is a prime, G is a finite p-soluble group, and P is a Sylow
p-subgroup of G such that any subgroup generated by elements of IG(P ) is r-generator. We
need to prove that [G,P ] has r-bounded rank. First we deal with the case where G = P .

Lemma 4.1. Suppose that P is a finite p-group such that any subgroup generated by com-

mutators of elements of P is r-generator. Then [P, P ] has r-bounded rank.

Proof. Let M be a maximal normal abelian subgroup of P . Then [M,P ] has rank at
most r by hypothesis. Let C = CP ([M,P ]). Then [[C,M ], C] = 1 and [[M,C], C] = 1,
whence [[C,C],M ] = 1 by the Three Subgroups Lemma. Since CP (M) = M , we must
have [C,C] 6 M , and therefore C is a normal metabelian subgroup. The rank of [C, P ]
is r-bounded. Indeed, [C,C] is abelian and therefore has rank at most r. The quotient
C/[C,C] is abelian and therefore [C, P ]/[C,C] has rank at most r. Hence the rank of [C, P ]
is at most 2r.

The quotient P/C acts faithfully by automorphisms on [M,P ] and therefore has r-
bounded rank by Lemma 2.5.

In the quotient P̄ = P/[C, P ] the image C̄ of C is central. The intersection [P̄ , P̄ ] ∩ C̄,
which is a subgroup of the Schur multiplier of P̄ /C̄, has r-bounded rank by the Lubotzky–
Mann theorem [25, Theorem 4.2.3]. The result follows, since the ranks of P/C and [C, P ]
are r-bounded, as shown above. �

We return to the proof of Theorem 1.1. Since the rank of [P, P ] is r-bounded by
Lemma 4.1, the normal closure [P, P ]G has r-bounded p-length by Lemma 2.7. The p-
length of G/[P, P ]G is at most 1, since its Sylow p-subgroup is abelian. Hence the p-length
of G is also r-bounded.

It is convenient to define the parameter lp×p′(G) as the minimum length of a normal series
of G all of whose factors L are of the form Op(L)×Op′(L). We call such series (p× p′)-series.
This parameter lp×p′(G) is clearly at most double the p-length of G plus 1, and therefore is
also r-bounded. Hence we can prove the theorem by induction on lp×p′(G).

For lp×p′(G) = 1 we have G = P × H (where H = Op′(G)), whence [G,P ] = [P, P ] and
the result is furnished by Lemma 4.1.

Now let lp×p′(G) > 2. In a (p× p′)-series of length lp×p′(G) > 2, let N be the second
term, which satisfies lp×p′(N) = 2. Let P0 be a Sylow p-subgroup of N contained in P , and
H0 a Hall p′-subgroup of N .
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Lemma 4.2. Both [Op(N), H0] and [Op′(N), P0] have r-bounded rank.

Proof. The group P0 acts by coprime automorphisms on Op′(N) and IOp′(N)(P0) ⊆ IG(P ).

Therefore the hypothesis of Theorem 1.1 ensures that every subset of IOp′(N)(P0) generates

an r-generator subgroup. Hence the rank of [Op′(N), P0] is r-bounded by Theorem 1.4.
The group H0 acts by coprime automorphisms on Op(N) and IOp(N)(H0) ⊆ IG(P ) because

every commutator in IOp(N)(H0) involves an element of Op(N) 6 P . Therefore every subset
of IOp(N)(H0) generates an r-generator subgroup by the hypothesis of Theorem 1.1. Hence
the rank of [Op(N), H0] is r-bounded by Theorem 1.4. �

We are now ready to finish the proof of Theorem 1.1. Note that [Op′(N), P0] and
[Op(N), H0] are normal subgroups of G. Indeed, [Op′(N), P0] is normal in Op′(N)P0, which
is normal in G. By the Frattini argument we have G = Op′(N)P0NG(P0) and NG(P0)
also normalizes [Op′(N), P0]. Similarly, [Op(N), H0] is normal in Op(N)H0, which is normal
in G. By the generalized Frattini argument for the Hall p′-subgroup H0 of Op(N)H0, we
have G = Op(N)H0NG(H0) and NG(H0) also normalizes [Op(N), H0].

We set R = [Op(N), H0] · [Op′(N), P0]. The image N̄ of N in the quotient G/R clearly
satisfies N̄ = Op(N̄) × Op′(N̄). Therefore the images of the terms of our (p× p′)-series in
G/R form a (p× p′)-series of smaller length. By the induction hypothesis, the rank of the
image of [G,P ] in G/R has r-bounded rank. Since the rank of R = [Op(N), H0] · [Op′(N), P0]
is r-bounded by Lemma 4.2, the result follows. �

5. Counterexamples

In this section we produce examples showing that Theorem 1.1 is not valid without the
assumption of p-solubility. Actually, for each prime p we produce a series of finite groups G
having a Sylow p-subgroup P such that any subgroup generated by a subset of IG(P ) can be
generated by 3 elements, while the rank of [G,P ] is unbounded. We give slightly different
examples for p = 2 and p 6= 2.

We first give examples for p = 2.

Example 5.1. Let q be a prime such that q ≡ 3 mod 8. Note that then we also have
qe ≡ 3 mod 8 for any odd e. Let G = PSL2(q

e) for odd e = 1, 3, 5, . . . . For these G, it is
easy to see that a Sylow 2-subgroup P of G is elementary abelian of order 4.

We claim that every subgroup generated by elements of IG(P ) is generated by at most 3
elements. This suffices, since clearly the rank of G is at least e and G = [G,P ].

Let H be a subgroup generated by elements of IG(P ). Note that any subgroup of G not
contained in a Borel subgroup is generated by at most two elements. Indeed, the subgroups
of G are either contained in a Borel subgroup, or are dihedral, or are contained in a subgroup
isomorphic to S4 or A5, or are isomorphic to PSL2(q

k) for some k.
So it remains to consider the case where H 6 B = TU , where B is a Borel subgroup and

U is its unipotent radical.
We first note that U ∩ IG(P ) = {1}, since no involution inverts a nontrivial element of U .

If 1 6= x ∈ P , then IG(x) ∩ B = Tx, where Tx is the (unique) maximal torus of B that is
inverted by x; actually, Tx = B ∩Bx. Since IG(P ) = IG(x1) ∪ IG(x2) ∪ IG(x3) for the three
involutions xi ∈ P , we obtain that any subgroup of B ∩ IG(P ) is generated by subgroups
of the three cyclic tori corresponding to each involution in P and so is 3-generated. Since
there is no bound on the rank of U for qe with e increasing, we see that there is no bound
on the rank of G = [G,P ].

Next we produce a similar example for p 6= 2. Here, the details are more complicated.
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Example 5.2. Given an odd prime p, choose a prime ℓ ≡ (p− 1) mod p2 and let e be any
positive integer coprime to 2p. Let q = ℓe and consider G = SL2(q). Note that a Sylow
p-subgroup P of G has order p and P ∩ B = 1 for any Borel subgroup B. Fix an element
a ∈ G of order p.

As noted in Example 5.1, any subgroup of G not contained in a Borel subgroup is gen-
erated by at most two elements. Therefore it suffices to show that any subgroup generated
by elements of IG(P ) ∩ B is generated by two elements.

Let t be any noncentral semisimple element conjugate to an element of B. Consider the
set of triples (x, y, z) of elements of G with xyz = 1 such that x, y are conjugate to a (which
is conjugate to a−1) and z is conjugate to t. This set is nonempty by [9, 14]. Since the
centralizer of x in PGL2(q) is a torus of order q+1 and the centralizer of t is a torus of order
q − 1, the centralizer of any conjugate of a and any conjugate of t is trivial (in PGL2(q)).
Clearly, any two conjugates of a and t generate an irreducible subgroup and so an absolutely
irreducible subgroup. It follows by [31, Theorem 2.3] that all such triples form a regular
PGL2(q)-orbit.

If we only consider such triples with x = a−1, they form a single orbit under C, the
centralizer of a (in PGL2(q)). So there are q+1 triples (a−1, y, z) with a−1yz = 1 such that
y is conjugate to a and z is conjugate to t. Note that for such triples we have z = tu =
(a−1av)−1 = [v, a] ∈ IG(a) for some u, v ∈ G. Since C acts regularly on the set of Borel
subgroups, we obtain |B ∩ IG(a) ∩ tG| = 1. Thus there is a unique conjugate s of t with
s = a−1av ∈ IG(a). By uniqueness it follows that if s ∈ IG(a) is conjugate to an element of
SL2(ℓ

f) for some f dividing e, then s ∈ SL2(ℓ
f) ∩ B.

If we replace t with a nontrivial unipotent element, in fact there are no solutions [11].
The only other noncentral class is the class of −u for u a nontrivial unipotent element.
The argument above applies to that class as well and so |IG(a) ∩ B ∩ (−u)G| 6 1 and
IG(a) ∩ B ∩ (−u)G ⊂ SL2(ℓ). The same argument applies to any power of a. Note that
since all Borel subgroups are conjugate under the centralizer of a in PGL2(q), it suffices to
work in a fixed Borel subgroup B which may take to be defined over the prime field. Write
B = TU , where T is a maximal torus of B, which is cyclic of order q − 1, and U is the
unipotent radical of B. Let T = 〈w〉.

Consider some subset S of IG(P )∩B. Write the nontrivial elements as wju with 1 6 j <
q − 1 and u ∈ U and consider 〈S〉. We claim that 〈S〉 can be generated by two elements.
We induct on e. If e = 1, every subgroup of B is either cyclic or 2-generated.

If all wj ∈ SL2(ℓ
f ) for some f < e, then by the argument above 〈S〉 6 B ∩ SL2(ℓ

f) and
the result follows by induction. Otherwise, 〈S〉U/U acts irreducibly on U and in particular
U is a cyclic 〈S〉-module. Since 〈S〉U/U is cyclic, it follows that 〈S〉 is 2-generated.

Thus, we have shown that any subgroup of G generated by elements of IG(P ) can be
generated by at most two elements. On the other hand, e can be arbitrarily large and the
rank of U is at least e. Thus, we see that there is no bound on the rank of G = [G,P ].

6. Proofs of Theorems 1.2 and 1.3

We begin with a useful lemma used in the proofs of both Theorems 1.2 and 1.3.

Lemma 6.1. Suppose that G is a finite group, p is a fixed prime, P is a Sylow p-subgroup
of G, and r is a positive integer such that any subgroup generated by a subset of IG(P ) is

r-generated. Then the rank of P ∩G′ is r-bounded.

Proof. The subgroup P∩G′ is generated by a subset of IG(P ) by D. Higman’s focal subgroup
theorem [19] (see also [7, Theorem 7.3.4]). Hence P ∩G′ is generated by r elements, whence
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the abelian quotient (P ∩G′)/P ′ has rank at most r. Since the rank of P ′ is r-bounded by
Lemma 4.1, the result follows. �

First we give a short proof of Theorem 1.3.

Proof of Theorem 1.3. Recall the hypotheses of Theorem 1.3: G is a finite group such that
for every prime p dividing |G| for any Sylow p-subgroup P any subgroup generated by a
subset of IG(P ) can be generated by r elements. We need to prove that the derived subgroup
G′ has r-bounded rank. The rank of a finite group is known to be at most s + 1, where s
is the maximum of the ranks of its Sylow subgroups [12, 24, 26]. The ranks of all Sylow
subgroups of G′ are r-bounded by Lemma 6.1; hence the result. �

We now recall the hypotheses of Theorem 1.2: G is a finite group, p is a fixed prime, P
is a Sylow p-subgroup of G, and r is a positive integer such that

(1) any subgroup generated by a subset of IG(P ) is r-generated; and
(2) for any x in IG(P ), any subgroup generated by a subset of IG(x) is r-generated.

We fix these notations and assume these conditions for the rest of the section. Our aim is
to prove that the rank of [G,P ] is r-bounded.

First we consider the case of simple groups.

Proposition 6.2. If G is simple, then the rank of G is r-bounded.

Proof. Of course, there is nothing to prove for sporadic groups. We now consider alternating
groups.

Lemma 6.3. If G = An is an alternating group on n symbols, then n is r-bounded.

Proof. Let (12 . . . p) ∈ P . The commutator [(12 . . . p), (123)] = (124) belongs to IG(P ), and
so do the commutators

[(12 . . . p), (4k + 1 4k + 2 4k + 3)] = (4k + 1 4k + 2 4k + 4)

for k = 1, 2, . . . , ⌊p/4⌋−1. Since these 3-cycles are independent, they generate an elementary
abelian 3-group of rank ⌊p/4⌋, whence p is r-bounded by condition (1). The same procedure
repeated for ⌊n/p⌋ independent p-cycles produces an abelian 3-group of rank ⌊p/4⌋ · ⌊n/p⌋
generated by elements of IG(P ), whence n is r-bounded by condition (1). �

Thus, it suffices to consider finite simple groups of Lie type of Lie rank d defined over the
field of ℓe elements for some prime ℓ. We first note that d must be r-bounded, and this fact
will also be used later.

Lemma 6.4. If G is a finite simple group of Lie type of Lie rank d, then d is r-bounded.

Proof. We may assume d > 8 and so G is a classical group with natural module V of
dimension n. It is well-known that n = d+1, or n = 2d, or n = 2d+1. We shall show that
a large alternating group is always contained in G and so we may apply the previous result.

Note that form > 5, the groupAm has an irreducible self-dual representation of dimension
at most m− 1 defined over the prime field. Thus, Am embeds in SLm−1(q) and SUm−1(q).
Since GLn(q) embeds in Sp2n(q), we see that An+1 embeds in Sp2n(q).

If q is odd, then this irreducible representation is always orthogonal (since the permutation
module is orthogonal) and so, adjusting for the type if necessary, we see that An embeds in
SO±

n (q).
If q is even, then A2n embeds in Sp2n−2(q), and this group embeds in either of the

orthogonal groups SO±

2n(q) (as the derived subgroup of the stabilizer of a nondegenerate
vector).
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Thus, we see that for d > 8 the group G contains an alternating group of degree at least d.
The result follows by Lemma 6.3. �

We also note the following well-known fact.

Lemma 6.5. If G is a finite simple group of Lie type of Lie rank d over the field of size

q = ℓe for a prime ℓ, then the (Prüfer) rank of G is bounded in terms of d and e.

In particular, this upper bound for the rank of G is independent of ℓ.

Proof. To bound the rank of G, it suffices to bound the rank of each Sylow s-subgroup of G
[12, 24, 26]. If s 6= ℓ, it is well known that the rank of a Sylow s-subgroup of G is at most the
(untwisted) Lie rank of G plus the rank of the Weyl group [8, Sec. 4.10], which is bounded

in terms of d. The Sylow ℓ-subgroup has order less than ℓed
2

and its rank is at most ed2. �

We proceed with the proof of Proposition 6.2. By Lemma 6.3, we may assume G to be a
finite simple group of Lie type of Lie rank d over the field of q elements with q = ℓe for a
prime ℓ, and we may assume that d is fixed and indeed assume the type of G is fixed. By
Lemma 6.5 it remains to show that e is bounded in terms of r.

For most cases, we only require condition (1), although we cannot do this in all cases as
Examples 5.1 and 5.2 show.

If p = ℓ, then P/Φ(P ) is elementary abelian of order at least ℓe. Since P = P ∩ G′ (as
G is simple) and the rank of P = P ∩ G′ is r-bounded by Lemma 6.1, it follows that e is
r-bounded.

So we may assume that p 6= ℓ. First suppose that p divides the order of some maximal
parabolic subgroupM . LetM = LQ, where L is a Levi subgroup ofM andQ is its unipotent
radical. Recall that CM(Q) 6 Q (that is, all parabolic subgroups are ℓ-constrained). If x
is an element of order p in M , we see that x acts nontrivially on Q and so also on Q/Φ(Q)
as a linear transformation over the field of q = ℓe elements. Hence [x,Q/Φ(Q)] has rank at
least e. Since [x,Q/Φ(Q)] is generated by the images of elements of IG(x) and x is conjugate
to an element of P , we obtain e 6 r by condition (1).

Therefore we may assume that p does not divide the order of any parabolic subgroup
and so every nontrivial element of P is semisimple regular. By [9, Corollary], then IG(P )
intersects every nontrivial conjugacy class of semisimple elements.

By the above, we may assume that there exists a semisimple regular element x of prime
order in a Borel subgroup B such that x ∈ IG(P ). We now apply to IG(x) the arguments
as in the above case where an element of order p 6= ℓ is contained in a parabolic subgroup.
Using condition (2) we obtain that e 6 r. �

Completion of the proof of Theorem 1.2. First we extend Proposition 6.2 from simple groups
to semisimple.

Lemma 6.6. If G is a direct product of m non-abelian simple groups of order divisible by p,
then m 6 r and the rank of G is r-bounded.

Proof. Let P be the product of Sylow p-subgroups Pi of the simple factors Gi. We know
that Pi is not in the centre of the normalizer NGi

(Pi) by Burnside’s theorem on normal p-
complements. Hence each factor Gi contains a non-trivial commutator [xi, ni] ∈ IG(P )∩ Pi

for xi ∈ Pi. These commutators generate an abelian p-subgroup of rank m. Hence m 6 r
by condition (1). Then the rank of G is r-bounded, since the rank of each factor Gi is
r-bounded by Proposition 6.2. �

When G is a p-soluble group, the result already follows from Theorem 1.1. Therefore we
assume henceforth that G is not p-soluble.
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Lemma 6.7. If the quotient G/R of G by the p-soluble radical R is a direct product of

non-abelian simple groups of order divisible by p, then the rank of [G,P ] is r-bounded.

Proof. The quotient G/R is a direct product of at most r finite simple groups by Lemma 6.6.
By Lemma 6.3 the alternating factors have r-bounded order, as obviously do sporadic fac-
tors. By Lemma 6.4 the factors of Lie type have r-bounded Lie ranks. By the result of
J. Hall, M. Liebeck, and G. Seitz [15] (later improved by R. Guralnick and J. Saxl [13]),
each of these factors can be generated by r-boundedly many p-elements. Altogether, the
quotient G/R is generated by r-boundedly many p-elements.

We choose p-elements a1, . . . , am of G that generate G modulo R, where m is r-bounded,
and set H = 〈a1, . . . , am〉. Each ai has a conjugate agii ∈ P , for which [R, agii ] has r-bounded

rank by Theorem 1.1 applied to RP . Then [R, ai] = [R, agii ]
g−1

i also has r-bounded rank. As
a result, the product

∏
i[R, ai] has r-bounded rank, since the number of factors is r-bounded.

Note that the product
∏

i[R, ai] is normal in G = RH . Indeed, it is normal in R, since
each [R, ai] is normal in R, and this product is H-invariant because it is the smallest normal
subgroup of R such that H acts trivially on the quotient.

Since the rank of
∏

i[R, ai] is r-bounded, we can pass to the quotient G/
∏

i[R, ai] and
assume that [H,R] = 1.

Let Hp be a Sylow p-subgroup of H ; then Hg
p 6 P for some g ∈ G. If g = xy, where x ∈ R

and y ∈ H , we see that Hg
p = Hxy

p = Hy
p 6 H , since x centralizes H by our assumption.

Thus, H ∩ P is a Sylow p-subgroup of H . Note that P = (P ∩R) · (P ∩H).
We need to bound the rank of [G,P ] = [RH,P ] = [R,P ] · [H,P ]. The rank of [R,P ]

is r-bounded by Theorem 1.1 applied to RP . Since [R,P ] 6 R is centralized by H by
assumption, it remains to bound the rank of [H,P ] = [H, (P ∩R) · (P ∩H)] = [H, P ∩H ].

In fact, the rank of [H,H ] is r-bounded. Since [H,R] = 1, the intersection [H,H ] ∩ R is
central in H and therefore is isomorphic to a subgroup of the Schur multiplier of H/(H∩R).
Since the rank of H/(H ∩ R) ∼= G/R is r-bounded by Lemma 6.6, the rank of this Schur
multiplier is also r-bounded by the Lubotzky–Mann theorem [25, Theorem 4.2.3]. As a
result, the rank of [H,H ] is r-bounded, and so is the rank of [H,P ], as required. �

We now show that in the general case the group G has a subgroup of r-bounded index
that satisfies the hypotheses of Lemma 6.7.

Lemma 6.8. The group G has a normal subgroup M of r-bounded index containing the

p-soluble radical R of G such that M/R is a direct product of non-abelian simple groups of

order divisible by p.

Proof. The socle F ∗(G/R) of G/R is a direct product of non-abelian simple groups of order
divisible by p. The number of these factors is at most r by Lemma 6.6. We take the inverse
image of F ∗(G/R) in G for the required subgroup M . We only need to show that the
index of M is r-bounded. Indeed, the group G/R embeds into the automorphism group of
F ∗(G/R). Let F ∗(G/R) = T1× · · ·×Tn, where the Ti are non-abelian simple groups. Then
AutF ∗(G/R) = (Aut T1×· · ·×Aut Tn)U , where U is a subgroup of the symmetric group Sn.
Since n 6 r, it remains to prove that the orders of the outer automorphism groups Aut Ti/Ti
are r-bounded. This is obviously true for sporadic factors. The alternating factors have r-
bounded orders by Lemma 6.3. The factors of Lie type have r-bounded Lie ranks and are
defined over fields of orders ℓe for primes ℓ with r-bounded exponents e by Proposition 6.2
and Lemma 6.4. Therefore their outer automorphism groups also have r-bounded orders. �

We now finish the proof of Theorem 1.2. LetM be the normal subgroup of G of r-bounded
index given by Lemma 6.8, which is actually the inverse image of the socle F ∗(G/R) of the
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quotient G/R by the p-soluble radical R. By Lemma 6.7 the rank of [M,M ∩ P ] is r-
bounded. Note that M = R · [M,M ∩ P ], so that M/[M,M ∩ P ] is p-soluble. Since M has
r-bounded index in G, the normal closure N of [M,M ∩P ] in G is a product of r-boundedly
many conjugates of [M,M ∩ P ] and therefore also has r-bounded rank. Note that M/N is
p-soluble. Passing to the quotient G/N we can assume that N = 1.

Thus, we can assume that G has a p-soluble normal subgroup M of r-bounded index. By
Theorem 1.1 applied to the product MP the rank of [M,P ] is r-bounded. Since M has
r-bounded index in G, the normal closure T of [M,P ] in G is a product of r-boundedly
many conjugates of [M,P ] and therefore also has r-bounded rank. Passing to the quotient
G/T we can assume that T = 1, so that [M,P ] = 1.

Hence the index of the centralizer CG(P ) is r-bounded. This centralizer contains a normal
subgroup C of r-bounded index. Then C centralizes [G,P ] by Lemma 2.1(a). Since C ∩
[G,P ] 6 Z([G,P ]), we obtain that the centre of [G,P ] has r-bounded index. By Schur’s
theorem (see [28, Theorem 4.12]) the derived subgroup [G,P ]′ of [G,P ] has r-bounded order.
Passing to the quotient G/[G,P ]′ we can assume without loss of generality that [G,P ] is
abelian. Since [G,P ] = 〈IG(P )〉 is r-generated, the rank of [G,P ] is at most r. �
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